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Dispersion Characteristics of a Cylindrical
Electromagnetic Band Gap Structure

Halim Boutayeb and Kouroch Mahdjoubi

Abstract— In this letter, a new analytical expression for the
dispersion equation of radially periodic structures is derived. The
periodic structure is considered as a set of parallel cylindrical
Frequency Selective Surfaces (FSSs), and the dispersion equation
is calculated by using a transmission line model. Using this
result, the dispersion proprieties of Cylindrical Electromagnetic
Bandgap (CEBG) structures composed of continuous or discon-
tinuous metallic wires are presented. It is shown that the band
structures of these materials can be determined by using the
proposed dispersion equation. Cylindrical periodic materials have
potential applications for designing directive antennas, circular
high impedance surfaces or agile antennas.

Index Terms— Periodic structures, dispersion equation, cylin-
drical structures

I. I NTRODUCTION

CYLINDRICAL Electromagnetic Bandgap (CEBG) struc-
tures [1] are circularly and radially periodic materials

which present pass-bands and stop-bands to cylindrical elec-
tromagnetic waves. Potential applications of these structures
have been proposed in microwave and antenna domains for
wireless communication systems [1, 2]. In [1], analytical
expressions have been proposed to obtain the reflection and
transmission coefficients of a cylindrical EBG structure, and
a directive antenna based on this structure has been proposed,
fabricated and tested. In addition, the authors have proposed to
use a cylindrical EBG structure with active elements to obtain
a reconfigurable directive beam over360◦ range. In [2], a
cylindrical EBG-based antenna with a high directivity in the
elevation plane and wide horizontal beam has been presented.
It is well known that the propagation of waves in periodic
structures is described by means of a band theory. For instance,
the dispersion proprieties of crystals with a rectangular lattice
is often used for the design of microwave and optical com-
ponents [3]. However, cylindrical periodic materials are not
often used, probably because their properties have not been
analyzed enough. In this letter, a new analytical expression
for the dispersion equation of a radially periodic structure is
derived. The periodic structure is considered as a set of parallel
cylindrical Frequency Selective Surfaces (FSSs). Using the
proposed dispersion equation, the pass-bands and stop-bands
of cylindrical EBG structures composed of continuous or
discontinuous metallic wires are predicted. It is shown that the
predicted results are in good agreement with the band structure
deduced from the transmission coefficients.
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II. CHARACTERIZATION OF A RADIALLY PERIODIC

STRUCTURE

In this section, the dispersion equation of radially periodic
structures composed of multiple layers of cylindrical Frequen-
cy Selective Surfaces (FSSs) is derived by using a transmission
line model, where a cylindrical FSS is modelled by a T circuit.

A. Transmission line for a cylindrical wave

The propagation of the cylindrical waves in the line section of
width P as illustrated in Fig. 1 is considered.
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Fig. 1. Characterization of the transmission line of widthP , for a cylindrical
wave in free space. The line starts at||ρ|| = C and ends at||ρ|| = C + P .

The relationships between the powersa1, b1, a2 andb2 shown
in Fig. 1 can be written

b1 = eη0(kC)−η0(k(C+P ))a2 (1)

and
b2 = eη0(kC)−η0(k(C+P ))a1 (2)

wherek is the free space wave number andη0(x) is the phase
of the cylindrical wave:

η0(x) = arctan

(

N0(x)

J0(x)

)

(3)

whereJ0(x) andN0(x) are the first and second kind Bessel
functions of zero order.
Then, the S matrix of the transmission line section can be
written

(

0 eη0(kC)−η0(k(C+P ))

eη0(kC)−η0(k(C+P )) 0

)

(4)

From the S matrix, the chain matrix of the line section is
(

cos(A) jsin(A)
jsin(A) cos(A)

)

(5)
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where
A = η0(k(C + P )) − η0(kC) (6)

B. Circuit model of a cylindrical FSS

A cylindrical FSS as shown in Fig. 2(a) is considered. This
structure is characterized by its transmission and reflection
coefficients,t andr. Figure 2(b) presents the T circuit model
of the cylindrical shell.
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Fig. 2. (a) Characteristics of a Cylindrical Frequency Selective Surface. (b)
T circuit model of the cylindrical shell.

The chain matrix of the T circuit is written
(

b c
d b

)

=

(

1 + Y Z 2Z + Y Z2

Y 1 + Y Z

)

(7)

where the termsZ andY are written as functions ofr and t

Y =
(r − t − 1)(r + t − 1)

2t
(8)

Z =
−r + t − 1

r − t − 1
(9)

C. Multilayered cylindrical structures

A radially periodic structure as shown in Fig. 3 is now
considered. The structure is composed of multiple layers
of cylindrical FSSs, which are periodically spaced with the
radial periodPr and have the same coefficientst and r. The
transmission line model of the periodic structure is presented
in Fig. 4. An elementary cell is composed of the cylindrical
shell and of two transmission lines of lengthPr/2 on each side
of the shell. Using the previous results, the chain matrixes of
these two sections are given by :

(

α1 γ1

γ1 α1

)

=

(

cos(A1) jsin(A1)
jsin(A1) cos(A1)

)

(10)

and
(

α2 γ2

γ2 α2

)

=

(

cos(A2) jsin(A2)
jsin(A2) cos(A2)

)

(11)

where
A1 = η0(kPr) − η0(k

Pr

2
) (12)

and
A2 = η0(k

3Pr

2
) − η0(kPr) (13)

The chain matrix of the elementary cell is then obtained by
multiplying the different chain matrixes:

(

α1 γ1

γ1 α1

)(

b c
d b

)(

α2 γ2

γ2 α2

)

(14)
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Fig. 3. Radially periodic structure.
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Fig. 4. Transmission line model of the periodic structure in Fig. 3.

This chain matrix can also be written
(

cos(B) jsin(B)
jsin(B) cos(B)

)

(15)

where

B = η0(β
3Pr

2
) − η0(β

Pr

2
) (16)

andβ is the propagation constant of the transmission line.
By identifying the first terms of the two matrixes given by Eqs.
14 and 15, we obtain the dispersion equation of the structure

cos

(

η0(β
3Pr

2
) − η0(β

Pr

2
)

)

= (1 + Y Z) cos (A3)

+ j
(

2Z + Y Z2
)

cos (A1) sin (A2)

+ jY cos (A2) sin (A1)

(17)

where

A3 = A1 + A2 = η0(k
3Pr

2
) − η0(k

Pr

2
) (18)

Eq. 17 is an extension to the cylindrical case of the formu-
la for multi-sections transmission lines [4]. The coefficient
η0(β

3Pr

2 ) − η0(β
Pr

2 ) has real values in pass-bands. Whereas,
it has no real value in stop-bands. Then, the band structure of
the cylindrical periodic material can be obtained by using Eq.
17 if one knows the transmission and reflection coefficientst
andr of one cylindrical shell.

III. R ESULTS

Now, we consider a Cylindrical EBG structure composed
of metallic wires as shown in Fig. 5. The propagation of the
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transverse Electric field in the radial direction is considered.
The cylindrical surfaces are periodically spaced with the period
Pr and have the same transversal period (Pt), and accordingly
the same transmission and reflection coefficients (t andr)[1].
According to [1], the transmission and reflection coefficients
of this CEBG structure withn cylindrical shells can be written

tn =
tn−1t

1 − rn−1re−j2η0(knPr))+j2η0(k(n−1)Pr)
(19)

rn = rn−1 +
t2n−1re

−j2η0(knPr))+j2η0(kPr)

1 − rn−1re−j2η0(knPr))+j2η0(k(n−1)Pr)
(20)

wheret1 = t andr1 = r.
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Fig. 5. CEBG structure composed of metallic wires.Pr = 45mm, Pt =
45 × π/6mm and the wire diameter is2mm.

Fig. 6. (a) coefficientη0(β 3Pr

2
)− η0(β Pr

2
) (Eq. (17) ) and (b) coefficient

|t5| (Eqs. (19) and (20)) of a CEBG structure with continuous metallic wires.

The coefficientst andr of a cylindrical shell were calculated
as follows: first, the total fields inside and outside the cylindri-
cal cavity, excited by a line source in its center, were calculated

by using a Finite Difference Time Domain code; Then, the
coefficientst andr were extracted by considering that multiple
reflections occur between the surface and the center [1]. Using
these results, the coefficientη0(β

3Pr

2 ) − η0(β
Pr

2 ) and the
transmission coefficient|t5| of a structure with continuous
metallic wires were calculated and are plotted in Fig. 6. From
Fig. 6, the band structures given by the transmission coefficient
and the dispersion equation are in good agreement. Fig. 7
presents the same diagrams as that of Fig. 6 for a structure
composed of discontinuous wires. The finite wires are18 mm
length and the vertical distance between two wires is2 mm.
The radial period and the wire diameter are the same than
previously. From Fig. 7, the proposed dispersion equation
gives also a good prediction of the band structure of the
cylindrical periodic material.

Fig. 7. coefficients (a)η0(β 3Pr

2
)− η0(β Pr

2
) (Eq. (17)) and (b)|t5| (Eqs.

(19) and (20)) of a CEBG structure with discontinuous metallic wires.

IV. CONCLUSION

A new analytical expression for the characterization of
cylindrical periodic materials has been presented. The disper-
sion equation has been calculated for determining the band
structure of these materials. The obtained results are in good
agreement with the band structure deduced from the trans-
mission coefficients. Due to their angular isotropy, cylindrical
periodic structures have potential applications in antenna and
microwave domains such as circular high impedance surfaces,
agile antennas or circular reflectors.
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