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Abstract

If X ⊂ Pn
C

is an algebraic complex projective variety, one defines the dual
variety X∗ ⊂ (Pn)

∗
as the set of tangent hyperplanes to X . The purpose of this

paper is to generalise this notion when Pn is replaced by a quite general partial
flag variety. A similar biduality theorem is proved, and the dual varieties of
Schubert varieties are described.

Introduction

Let X ⊂ PV be a complex projective algebraic variety, with V a C-vector
space. If h ∈ PV ∗ is a hyperplane and x ∈ X is a smooth point, we say that
h is tangent to X at x if h contains the embedded tangent space of X at x.
Equivalently, the intersection X ∩ h is singular at x. The closure of the set of
all h ∈ PV ∗ which are tangent at some smooth point of X is denoted X∗ and
called the dual variety of X ; for given h ∈ X∗, the closure of the set of smooth
points x ∈ X such that h is tangent at x is called the tangency locus of h.

This notion of dual varieties is a very classical one, and it is used plentifully
in both classical and modern articles. The very powerfull biduality theorem,
to the effect that (X∗)

∗
= X , and its corollary, which states that the tangency

locus at a smooth point h ∈ X∗ is a linear space, are ubiquitous. To state only
one example, this result is crucial in Zak’s classification of Severi varieties, since
it allows proving that the entry locus of a Severi variety is a smooth quadric
[Za 93, proposition IV.2.1].

This biduality theorem deals with subvarieties of projective space, which
have been studied by so many classical algebraic geometers. More recently,
work has been done in a new direction which consists in considering subvari-
eties of other homogeneous spaces. For example, G. Faltings [Fa 81] and O.
Debarre [De 96a, De 96b] have shown some connectivity theorems that hold in
an arbitrary homogeneous space, E. Arrondo has proved a classification of some
subvarieties of Grassmannians similar to Zak’s result [Ar 99], and some topo-
logical results on low-codimensional subvarieties of some homogeneous spaces
emerge in works of E. Arrondo - J. Caravantes [AC 05] and N. Perrin [Pe 07].

AMS mathematical classification : 14N99, 14L35, 14L40.

Key-words: dual variety, homogeneous space, projective geometry.
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Obviously, to study subvarieties of homogeneous spaces, a similar notion of
dual variety and a biduality theorem are lacking. The aim of this article is to
fill this gap as much as it is possible.

Since homogeneous spaces G/P are by definition projective algebraic vari-
eties, it is certainly possible to embed them in a projective space, and therefore
a subvariety X ⊂ G/P is a fortiori a subvariety of a projective space, so that
one can consider the usual dual variety of X .

However I claim that in many cases this is not the best thing to do. Let
us consider an example. Let V be a C-vector space equipped with a non-
degenerate quadratic form. If Q ⊂ PV is the smooth quadric it defines, then it
is well-known that Q∗ ⊂ PV ∗ is also a smooth quadric, canonically isomorphic
with Q. Now, let r be an integer and let us consider the variety GQ(r, V )
parametrising r-dimensional isotropic subspaces as a subvariety of a suitable
projective space using Plücker embedding. Then clearly we no longer have
GQ(r, V )∗ ≃ GQ(r, V ). On the contrary, let us consider GQ(r, V ) as a subvariety
of the Grassmannian G(r, V ); proposition 4.1 shows that for my definition of
dual varieties, GQ(r, V ) ⊂ G(r, V ) has a well-defined dual variety in G(r, V ∗)
which is canonically isomorphic with GQ(r, V ).

In fact, homogeneous spaces are often minimally embedded in projective
spaces of very big dimension, so that the usual dual variety of a subvariety of
a homogeneous space will happen to be very large and often untractable. A
notion of dual varieties within homogeneous spaces is probably more suitable
if one wants to deal with low-dimensional or low-codimension subvarieties (of
course, the price to pay is that the ambient space is a bit more complicated
than a projective space).

My definition of dual varieties uses a class of birational transformations
called stratified Mukai flops by Namikawa [Na 06]. These are birational maps
µ : T ∗G/P 99K T ∗G/Q defined in terms of nilpotent orbits for some semi-simple
group G and some parabolic subgroups P, Q. For given G, P, Q, if there exists
such a map, then we say that G/P and G/Q allow duality. For X ⊂ G/P ,
we consider its conormal bundle N∗X ⊂ T ∗G/P and define the dual variety
XQ = πQ ◦ µ(N∗X) ⊂ G/Q (πQ : T ∗G/Q → G/Q denotes the projection)
if N∗X meets the locus where µ is defined (in which case we say that X is
suitable). For example, if G = SL(V ) and G/P = PV , the only possibility for
Q leads to G/Q = PV ∗; any proper subvariety X ⊂ PV will be suitable and
XQ = X∗. Another example is the fact that a Grassmannian G(r, V ) and its
dual Grassmannian G(r, V ∗) allow duality, as one could naturally expect.

One advantage of this definition is that it uses the so-called Springer reso-
lutions of the corresponding nilpotent orbit, which are symplectic resolutions,
and this article uses heavily informations which come from the study of such
resolutions [Na 06, Ch 06]. Another advantage is that it exhibits the symplectic
nature of dual varieties. In fact, T ∗G/P and T ∗G/Q are symplectic varieties and
N∗X , as a subvariety of T ∗G/P , is a Lagrangian subvariety. These properties
suffice to show very easily the biduality theorem 2.1 in our setting.

However, this definition also has its drawbacks. The most important is
probably that it is not so much intuitive, so that given x ∈ X and h ∈ XQ,
it is not obvious at all what the sentence “h is tangent to X at x” should
mean. However, in the case of a Grassmannian, using the natural rational map
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Hom(Cr, V ) 99K G(r, V ), I show that the dual variety of X ⊂ G(r, V ) can
be computed in terms of the usual dual variety of an adequate subvariety of
PHom(Cr, V ) (see subsection 1.6). Therefore, this is a way of understanding
more easily dual varieties in the case of Grassmannians. In general however,
there are two fundamental differences between our setting and usual duality.

First of all, given G, P , there may be many different Q’s, or none, such that
G/P and G/Q allow duality. Therefore, given suitable X ⊂ G/P , we will get
a dual variety XQ for each such Q. If one restricts to maximal parabolic sub-
groups, thanks to [Na 06], this difficulty disappears because for given G/P there
will be at most one parabolic subgroup Q such that G/P and G/Q allow duality.
Moreover, section 2 shows that one can understand all dual varieties if they are
understood when P and Q are maximal parabolic subgroups. These cases are
therefore called fundamental cases. They include the duality between the Grass-
mannian G(r, V ) and its dual Grassmannian G(r, V ∗), but also a duality between
the two spinor varieties of a quadratic space of dimension 4p + 2, and between
the exceptional homogeneous spaces E6/P1 ↔ E6/P6 and E6/P3 ↔ E6/P5.

The second difference is that not all proper subvarieties X ⊂ G/P will have
a dual variety. Note that X = PV has no dual variety in PV ∗, because for any
x ∈ X , no non-zero cotangent form can vanish on TxX . From this point of view,
the situation is quite similar in our setting : too big subvarieties X of G/P don’t
have dual varieties because for any x ∈ X there is no generic cotangent form in
T ∗

xG/P which vanishes on TxX .

In the classical setting, a hyperplane h is tangent to X at x if and only if the
intersection h∩X is singular. As I already alluded to, I have not been able to give
a similar geometric notion of “tangent element”. The only sensible definition
seemed to state that h ∈ XQ is tangent to X at x ∈ X if h belongs to the image
of N∗

xX under πQ ◦ µ. Since there is an incidence variety in G/P × G/Q (the
closed G-orbit), any h ∈ G/Q still defines, exactly as in the classical situation,
a subvariety Ih ⊂ G/P . Lemma 3.3 implies that if h is tangent to x at X , then
the intersection Ih ∩X is not transverse, but the reciprocal of this fact is false.

Section 3 deals with this matter. Corollary 3.1 states that if h is tangent to
X at x, then x ∈ Ih. For x ∈ X with X suitable, the tangent cone TxX ⊂ G/P
of X at x is defined in a roundabout manner as the dual variety of the variety
of h’s in XQ which are tangent to X at x. Theorem 3.1 implies that TxX
is a “cone” with vertex x, where definition 3.5 generalises the classical notion
of cones from subvarieties of projective space to subvarieties of fundamental
homogeneous spaces.

Finally, section 4 studies dual varieties of Schubert varieties. In the classical
setting, the dual variety of a linear subspace is again a linear subspace. In our
setting, it is a formal consequence of the definitions that the dual variety of a
Schubert variety is again a Schubert variety (see proposition 4.6 which relies on
the functorial property of dual varieties given in proposition 1.3).

Let B ⊂ G be a Borel subgroup. It turns out that the combinatorial invo-
lution X 7→ XQ between B-stable suitable Schubert subvarieties of G/P and
G/Q is no longer decreasing, as it was the case for G/P = PV . For this reason,
the description of this map is quite intricate. In the case of Grassmannians and
spinor varieties, we give explicitly in terms of partitions the map X 7→ XQ, see
propositions 4.8 and 4.9. This relies on a general recipy for finding XQ when
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X is a Schubert variety which is given in subsection 4.3. For the exceptional
cases, this recipy theoretically defines the involution (there is only a finite num-
ber of calculations to do to compute the dual variety of a Schubert subvariety),
but I will not give a more explicit description of it. As a first step, I describe
a criterion for a Schubert subvariety to be suitable. Remarkably enough, this
criterion can be stated in a uniform way for all the fundamental cases, using the
combinatorics of some quivers studied in [Pe 06] : see theorem 4.1.

Further questions : Of course this study only gives basic properties of our
generalised dual varieties : if one compares with usual dual varieties, what
essentially has been proved is the biduality theorem and the computation of
the dual variety of a quadric and a linear subspace. The power of the classical
notion of dual varieties gives hope to me that much more can be said on this
topic, including :

• Is it true that for a smooth subvariety X ⊂ G/P one has dim XQ ≥
dim X ? This question has been raised by Laurent Manivel.

• Many Fano 3-folds are defined as subvarieties of some homogeneous spaces.
What are the dual varieties of these Fano 3-folds ?

• What is the dual variety of a divisor in G/P ? If this is a divisor, what is
the degree of this divisor ? The answer to this question for G/P = G(2, V )
or G/P = E6/P1 and a divisor of degree 1 has been given in [Ch 07] (the
dual variety is again a divisor of degree 1).

• Classification problems : for example find all smooth varieties with dual
variety a divisor of low degree.

Acknowledgements : I am very grateful to M. Brion for suggesting that
maybe nilpotent orbits could help defining an interesting equivariant rational
map T ∗G/P 99K G/Q, as it was finally exactly the case. Thanks are also due
to B. Fu who pointed to me the reference [Na 06].
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1 Definition of the dual variety

1.1 Notations and definition

In this subsection, I introduce the (abstract) definition of dual varieties,
which allows easy proofs of general results; in subsection 1.6, an equivalent but
more “down-to-earth” definition will be given in the case of Grassmannians.

Before giving this definition, which is not so intuitive, I give some “naive
guesses” and explain why the corresponding notion of dual varieties would not
be interesting. In this way, I hope to convince the reader that it is not possible
to avoid some technicalities. Let us try our unsuccessful experiments in the case
of Grassmannians.

So assume G/P = G(r, V ) and G/Q = G(r, V ∗) and assume 2r < dimV .
Any element h ∈ G(r, V ∗), representing a codimension r subspace of V denoted
Lh, defines (at least) two subvarieties in G(r, V ). The first (resp. the second) is
the subvariety of x ∈ G(r, V ) such that Lx ⊂ Lh (resp. dim(Lx ∩ Lh) > 0). It
will be denoted Ih (resp. h⊥). Assume X ⊂ G(r, V ) is a subvariety and x ∈ X .
In the following, we give some naive definitions of the fact that h is tangent to
X at x in terms of the intersection of X , h⊥ and Ih.

Naive guess 1.1. “h is tangent to X at x if x ∈ Ih and the intersection h⊥∩X
is singular at x.”

This is really stupid, because if x ∈ Ih, then h⊥ is singular at x, and so is the
intersection h⊥ ∩ X . So any h such that Lx ⊂ Lh will satisfy this condition,
regardless to the tangent space TxX .

Naive guess 1.2. “h is tangent to X at x if x ∈ h⊥ and the intersection h⊥∩X
is singular at x.”

For the same reason as above, it suffices that Lh contains Lx in order that
this condition holds. So if we define X∗ as the set of h’s satisfying the above
condition, we will not have a biduality theorem. In fact, if for example X = {x}
is a point, then X∗ will contain {h : Lh ⊃ Lx} and (X∗)

∗
will certainly not be

reduced to {x}.
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Therefore, it seems necessary to use the smooth subvariety Ih. In this case,
assuming that Ih ∩ X is singular is not quite acurate, because Ih has codimen-
sion larger than 1, so this condition should be replaced by the fact that the
intersection is not transverse :

Naive guess 1.3. “h is tangent to X at x if x ∈ Ih and the intersection Ih∩X
is not transverse at x.”

Again, if we take X = {x}, then X∗ = {h : Lh ⊃ Lx}, and (X∗)∗ = {y :
dim(Lx ∩ Ly) > 0}. So we don’t have a biduality theorem.

Of course we could multiply such definitions; let us just consider one more
possibility :

Naive guess 1.4. “X∗ is the intersection of the usual dual variety of X (in
the Plücker embedding) with G(r, V ∗).”

Already in case r = 2 and dimV even, it is easy to see that biduality will not
hold. Let again X = {x}. The usual dual variety of X in the Plücker embedding
is a hyperplane; therefore X∗ will be a hyperplane section of G(2, V ∗). As it is
well-known, the dual variety of G(2, V ∗) ⊂ P∧2 V ∗ is a hypersurface in P∧2 V .
Therefore it follows that the usual dual variety of X∗ ⊂ P ∧2 V ∗ will have
codimension at most 2 in P ∧2 V . Thus its intersection (X∗)

∗
with G(2, V )

cannot be a point.

I hope that the previous unsuccessfull experiments will convince the reader
to accept a more conceptual definition of generalised dual varieties. Let G be a
semi-simple simply-connected complex algebraic group with Lie algebra g, and
let g∗ be the dual vector space of g. We fix T ⊂ B ⊂ G a maximal torus and
a Borel subgroup of G. If P ⊂ G is a parabolic subgroup, let G/P denote
the corresponding flag variety. If X is a variety, let T ∗X denote its cotangent
bundle; we denote tP : T ∗G/P → g∗ the natual map.

Definition 1.5. Let P, Q be parabolic subgroups of G. We say that G/P and
G/Q allow duality if there is a nilpotent orbit O ⊂ g∗ such that tP : T ∗G/P →
g∗ and tQ : T ∗G/Q → g∗ are birational isomorphisms between the cotangent
bundles and O.

Assume that G/P and G/Q allow duality. The birational map t−1
Q ◦ tP :

T ∗G/P 99K T ∗G/Q will be denoted µ. Let O be such that tP (T ∗G/P ) =
tQ(T ∗G/Q) = O. Let X ⊂ G/P be any subvariety. Let Xsm denote its smooth
locus and let N∗X ⊂ T ∗G/P denote the conormal bundle to Xsm : we have
(x, f) ∈ N∗X if and only if x ∈ Xsm, f ∈ T ∗

xG/P , and f|TxX = 0.

Definition 1.6.

• A form f ∈ T ∗G/P (resp. f ∈ T ∗G/Q) is called generic if it belongs to
t−1
P (O) (resp. t−1

Q (O)).

• A subvariety X ⊂ G/P is suitable if it is irreducible and there are generic
forms in N∗X.
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• A point x of a suitable variety X is itself suitable if there are generic forms
in N∗

xX. Let Xs denotable the locus of suitable points of X.

Remark : One could also consider reducible suitable subvarieties : they would
be subvarieties such that every irreducible component is suitable; we could then
define the dual variety of a reducible suitable variety as the union of dual vari-
eties of its irreducible components.

Notation 1.7. Let πP denote the projection T ∗G/P → G/P .

Definition 1.8. If X ⊂ G/P is suitable then we define XQ ⊂ G/Q as the
image of N∗X by the rational map πQ ◦ µ.

In the rest of the article, P and Q will denote parabolic subgroups of a
reductive simply-connected group G allowing duality. Moreover, we denote
p := πP ◦ µ : T ∗G/Q 99K G/P , q := πQ ◦ µ−1 : T ∗G/P 99K G/Q the
relevant rational maps. Finally, let O ⊂ g∗ be the G-orbit which is dense in
tP (T ∗G/P ) = tQ(T ∗G/Q).

Definition 1.9.

• Let x ∈ X ⊂ G/P . We say that h ∈ G/Q is tangent to X at x if
h ∈ q(N∗

xX).

• If h ∈ G/Q, let Ih denote the Schubert variety of elements in G/P which
are incident to h, in the sense that x is incident to h if the intersection of
the stabilisors of x and h (in G) contain a Borel subgroup.

• As a corollary of Borel’s conjugacy theorem, Ih is homogeneous under the
stabilisor of h.

The notion of tangency will be studied in more details in subsection 3. Here we
only remark the following :

Fact 1.1. If h is tangent to X at x, then the intersection Ih∩X is not transverse
at x.

The proof of this fact is postponed to section 3 : see lemma 3.3. Note that the
converse does not hold in general, contrary to the case when G/P = PV .

1.2 Fundamental cases

Definition 1.10. Let P, Q ⊂ G allow duality. We say that P, Q, G is a funda-
mental case if one of the following hold :

• G = SLn, P and Q are the stabilisors of supplementary subspaces of Cn.

• G = Spin4p+2, P and Q are the stabilisors of supplementary (and so of
different families) isotropic subspaces of C4p+2.

• G is of type E6, and, with Bourbaki’s notations [Bou 68, p.261] (P, Q)
correspond either to the roots (α1, α6) or (α3, α5).

If this holds, G/P and G/Q are called fundamental homogeneous spaces.
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By [Na 06, theorem 6.1], these examples are all the examples of maximal
parabolic subgroups allowing duality. Recall that the corresponding rational
map µ : T ∗G/P 99K T ∗G/Q is called a stratified Mukai flop.

Moreover, in all the other cases, the rational map µ : T ∗G/P 99K T ∗G/Q
(and, as we will see in subsection 2.2, the dual varieties) may be described using
only fundamental stratified Mukai flops : let us recall this construction [Na 06,
theorem 6.1]. Assume P, Q ⊂ G are parabolic subgroups included in a common
parabolic subgroup R. Then we have fibrations

G/P G/Q
fP ց ւ fQ

G/R

with fibers R/P and R/Q. Let U(R) denote the unipotent radical of R and Z(R)
its connected center; let L = R/Z(R)U(R); R/U(R) is isomorphic with a levi
factor of R and L is semi-simple. Moreover, R/P and R/Q are L-homogeneous
varieties : denote π : R → L the projection, and denote PL := π(P ) (resp.
QL := π(Q)) we have R/P ≃ L/PL and R/Q ≃ L/QL. Assume now that
PL, QL allow duality. Therefore there is a rational map µL : T ∗L/PL 99K

T ∗L/QL which can be used to define the stratified Mukai flop.
In fact, let z ∈ G/R, and denote Fz := f−1

P (z) (resp. Gz := f−1
Q (z)), and

let iz : Fz → G/P (resp. jz : Gz → G/Q) be the natural inclusions. We have
Fz ≃ L/PL and Gz ≃ L/QL. Let Lz = Rz/Z(Rz)U(Rz) denote the group
isomorphic with L acting on Fz and Gz . Because µL is canonical, it defines an
algebraic family of rational maps µz : T ∗Fz 99K T ∗Gz parametrised by G/R.
Now, if α is an element of T ∗G/P , say α ∈ T ∗

xG/P with x ∈ G/P , then we
can restrict this linear form to TxFfP (x); this gives an element in the bundle
T ∗FfP (x) which we denote fx. Finally, recall that πP : T ∗G/P → G/P and
πQ : T ∗G/Q → G/Q denote the bundle projections. With these notations we
have the following proposition :

Proposition 1.1. If f ∈ T ∗
x G/P belongs to the open G-orbit, then fx ∈

T ∗FfP (x) belongs to the open LfP (x)-orbit, and πQ(µ(f)) = jfP (x)◦πQL
◦µx(fx).

Then, using [Ch 06, theorem 4.1], one can deduce a description of the flop
T ∗G/P 99K T ∗G/Q.

Proof : Since both maps of the proposition are equivariant, we can assume
that x corresponds to the base point in G/P . If the restriction of f to TxFfP (x)

would belong to a closed L-stable strict subvariety of T ∗FfP (x), then forms in
the G-orbit of f would restrict to non generic forms; therefore this G-orbit could
not be dense in T ∗G/P .

Let u(r) and z(r) denote the nilpotent part and the centraliser of the Lie
algebra r of R. Let p be the Lie algebra of P . Under tP , f is mapped to an
element in g∗ which is orthogonal to p and therefore to u(r) ⊕ z(r). It thus
defines an element f in l∗, if l denotes the Lie algebra of L. If y ∈ L/QL denotes
the element µL(f), then, by definition of the Mukai flop, f is orthogonal to qy

(qy denotes the Lie algebra of the stabilisor of y in L). Thus it follows that f
vanishes on qj(y), the Lie algebra of the stabiliser of j(y) in G/Q. Therefore, y
equals πQ ◦ µ(f). �

Now, [Na 06, theorem 6.1] states that for any pair (P, Q) of parabolic sub-
groups allowing duality, we can find a chain (P0 = P, P1, . . . , Pn = Q) of
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parabolic subgroups such that all the pairs (Pi, Pi+1) are as above and the
corresponding pair PL, QL ⊂ L is a fundamental case. Therefore, the descrip-
tion of stratified Mukai flops in the fundamental cases is enough to understand
all stratified Mukai flops. As we will see in section 2, the same is true as far as
dual varieties are concerned.

1.3 Recallections about fundamental homogeneous spaces

We now introduce some notations and recall some results for fundamental
homogeneous spaces which will be used throughout the article. In particular, we
give in each case a simple way of understanding the rational map q : T ∗G/P 99K

G/Q.
Let r and n be integers with 2r < n. The Grassmannian parametrising r-

linear subspace of a fixed n-dimensional vector space V will be denoted G(r, V ).
The dual Grassmannian, parametrising codimension r subspaces of V , will be
denoted G(r, V ∗). Let x ∈ G(r, V ); it represents a linear subspace of V which
will be denoted Lx. Moreover, we have a natural identification T ∗

x G(r, V ) ≃
Hom(V/Lx, Lx). If ϕ ∈ Hom(V/Lx, Lx) is generic (that is, of rank r), then
its kernel is a codimension r subspace of V containing Lx. In fact, we have
q(ϕ) = kerϕ.

Let p be an integer. Let V be a vector space of dimension 4p + 2, equipped
with a quadratic form. In case we need a basis for V , we will take a hyper-
bolic one, of the form (e+

1 , . . . , e+
2p+1, e

−
1 , . . . , e−2p+1), such that the quadratic

form is given by Q(
∑

x+
i e+

i +
∑

x−
i e−i ) =

∑
x+

i x−
i . Recall that the variety

parametrising isotropic subspaces of V of dimension 2p + 1 has two connected
components, which will be denoted G/P = G+

Q(2p + 1, 4p + 2) and G/Q =

G−
Q(2p+1, 4p+2). As in the case of Grassmannians, for x ∈ G+

Q(2p+1, 4p+2) and

h ∈ G−
Q(2p+1, 4p+2), we denote Lx, Lh the corresponding isotropic subspaces.

The relation x ∈ Ih amounts to dim(Lx∩Lh) = 2p. Given x ∈ G+
Q(2p+1, 4p+2)

and L ⊂ Lx of dimension 2p, there is exactly one h ∈ G−
Q(2p + 1, 4p + 2) such

that Lx ∩ Lh = L : this yields a natural isomorphism between Ix and PL∗
x.

The map q may be defined as follows. Let x ∈ G+
Q(2p + 1, 4p + 2); the

cotangent space T ∗
x G+

Q(2p + 1, 4p + 2) identifies with ∧2Lx. If ω ∈ ∧2Lx is a
skew form of rank 2p, let Lω be its image. It is a hyperplane in Lx; therefore it
defines a unique element h ∈ G−

Q(2p + 1, 4p + 2) such that Lx ∩ Lh = Lω. We
have q(ω) = h.

As far as the exceptional group E6 is concerned, we denote Vi the i-th
fundamental representation of E6, so that E6/Pi ⊂ PVi. We have V6 = V ∗

1 and
V5 = V ∗

3 . In terms of this embedding, an element h ∈ PV ∗
1 belongs to E6/P6 if

and only if it contains the linear span of two tangent spaces TxE6/P1, TyE6/P1,
for some distinct x, y ∈ E6/P1.

We refer to [Ch 06] for the proofs of the following results. Let x ∈ E6/P1.
The cotangent space T ∗

xE6/P1 identifies with OC ⊕ OC, if OC denotes the
algebra of complexified octonions, an 8-dimensional non-associative and non-
commutative algebra over C. This algebra is a normed algebra : there is a
quadratic form N : OC → C such that N(z1z2) = N(z1)N(z2) for all z1, z2 ∈ OC.
The variety Ix is an 8-dimensional smooth quadric. It is convenient to denote
Z = C ⊕ OC ⊕ C a 10-dimensional space, equipped with the quadratic form
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Q(t, z, u) = tu − N(z). Then Ix is the smooth quadric defined by Q and q is
defined by q((z1, z2)) = [N(z1) : z1z2 : N(z2)] ∈ PZ [Ch 06, theorem 3.3 and
corollary 3.2].

To visualise the homogneous space E6/P3 (resp. E6/P5), we use the fact that
its points parametrise projective lines included in E6/P1 (resp. E6/P6) [LM 03,
theorem 4.3 p.82]. To avoid confusions between points in E6/P1 and E6/P3, we
will denote the latters with greek letters. Since the marked Dynkin diagrams

of E6/P3 and E6/P5 are respectively ◦ ◦ ◦ ◦ ◦•

◦

and ◦ ◦ ◦ ◦ ◦•

◦

, we see

that for κ ∈ E6/P5, Iκ ≃ G(2, 5). Let us describe this isomorphism Iκ ≃ G(2, 5)
more explicitly, since this will be needed to describe the rational map q. If
α ∈ E6/P3, we will denote lα ⊂ E6/P1 the corresponding line and Lα the
linear subspace it represents. By [Ch 06, proposition 3.6], the span of the affine

tangent spaces ̂TxE6/P1 in V1 for x in lα is a 22-dimensional linear subspace in
V1 denoted Sα. Therefore, any 25-dimensional space which contains Sα defines
a pencil of hyperplanes which belong to E6/P6 ⊂ PV ∗

1 , that is, a point in E6/P5.
Denoting Qα = V1/Sα, this shows that Iα = G(3, Qα) ≃ G(2, 5). Dually, for
β ∈ E6/P5, Iβ ≃ G(2, Wβ), where Wβ ⊂ V1 is a 5-dimensional linear subspace
such that PWβ ⊂ E6/P1.

A Levi factor of P contains L′ ≃ SL2 × SL5, and Lα (resp. Qα) is the
natural representation of SL2 (resp. SL5). These representations are usefull
describing T ∗E6/P3 : let [e] ∈ E6/P3 denote the base point; according to [Ch 06,
propositions 3.6 and 3.7], T ∗

[e]E6/P3 is no longer an irreducible L′-module, but

there are exact sequences of L′-representations

0 → L∗
α ⊗ ∧2Qα → T[e]E6/P3 → Q∗

α → 0 (1)

0 → Qα → T ∗
[e]E6/P3

π
→ Lα ⊗ ∧2Q∗

α → 0.

We now describe the rational map q. Choose a base e∗1, e
∗
2 (resp. f1, . . . , f5)

of L∗
α (resp. Qα). The rational map q : T ∗

[e]E6/P3 99K I[e] factors through

Lα ⊗∧2Q∗
α, and the induced rational map q : Lα ⊗∧2Q∗

α 99K I[e] = G(2, Q∗
α) is

described as follows : let ϕ ∈ Lα ⊗ ∧2Q∗
α ≃ Hom(Lα ⊗ ∧2Q∗

α) be generic. Its
image in G(2, W ∗

5 ) under q represents the linear subspace generated by

• the orthogonal for the alternate form ϕ(e∗2) of the kernel of ϕ(e∗1), and

• the orthogonal for ϕ(e∗1) of the kernel of ϕ(e∗2).

This is well-defined if and only if ϕ(e∗1) and ϕ(e∗2) have maximal rank 4 and the
corresponding orthogonals are different lines in V ∗

2 . This is proved in [Ch 06,
theorem 4.3].

1.4 Dual schemes

For some purposes (for example [Ch 07]), it may be usefull to extend the
above definition of dual varieties to more general schemes. The goal of this
subsection is to explain how this is possible.

Let us first define the cotangent scheme of a subscheme. So let S be an
arbitrary scheme and f : X → Y a morphism above S. The cotangent scheme
T ∗X of X is Spec S

•

Hom(ΩX/S ,OX); it is a scheme over X , equipped with a

10



natural section, the zero section. Now f induces a natural morphism of sheaves
f∗ΩY/S → ΩX/S , and so a morphism f∗T ∗Y → T ∗X . We finally define the
cotangent scheme N∗

X,Y as the fiber above the zero section of this map.
Let G be a semi-simple Chevalley group scheme over Z, P and Q parabolic

subgroups.

Definition 1.11. P and Q allow duality if the complex groups P (C), Q(C) do.

If P and Q allow duality, although the moment map T ∗G/P → g∗ may fail
to be birational in positive caracteristic, there is still a well-defined birational
map T ∗G/P 99K T ∗G/Q, defined over Z :

Proposition 1.2. There is a G-equivariant birational map µ : T ∗G/P 99K

T ∗G/Q defined over Z.

Proof : By [Na 06, theorem 6.1] and proposition 1.1, any pair of parabolic
subgroups allowing duality is related by a chain of pairs (P, Q) of parabolic
subgroups for which the birational map T ∗G/P 99K T ∗G/Q is locally isomorphic
with a family of birational maps given by a fundamental stratified Mukai flop.
It is therefore enough to check the proposition for fundamental cases. In these
cases it is a consequence of the explicit description of this flop recalled in 1.3.

If S is a scheme and G, P, Q are as above, let GS , PS , QS the groups obtained
by base change S → Spec Z.

Definition 1.12. Let S be a reduced irreducible scheme, and let f : X → GS/PS

be an irreducible closed S-subscheme. We say that X is suitable if µ is defined
at the generic point of N∗

X,GS/PS
. In this case, the dual scheme of X is the

scheme-theoretic image of N∗
X,GS/PS

under πQ ◦ µ.

1.5 Functorial property of dual varieties

We come back to our setting of complex geometry. In the usual setting, if
X1, X2 ⊂ PV are subvarieties, with X1 ⊂ X2, there is in general no relation
of inclusion between the dual varieties of X1 and X2. Thus dual varieties have
bad functorial properties. The only thing one can say is the following obvious
result.

Proposition 1.3. Let P, Q ⊂ G allow duality. Let X ⊂ G/P be suitable, g ∈ G,
and Y = g(X). Then Y is suitable and g(XQ) = Y Q.

Proof : Let x ∈ Xs and f ∈ N∗
xX ⊂ g∗ an element in the open G-orbit.

Then tg−1.f ∈ N∗
g(x)Y is also in the open G-orbit. Therefore, Y is suitable.

Moreover, since q is equivariant, q(tg−1.f) = g.q(f). Therefore, g(XQ) ⊂ Y Q.
By symmetry, we have also g−1(Y Q) ⊂ XQ, so g(XQ) = Y Q.

1.6 Dual varieties in type A

In this section, I give a description of the dual variety of a subvariety X ⊂
G(r, V ) using an analog of the quotient map V 99K PV for Grassmannians.

If A and B are vector spaces, Inj(A, B) will denote the sets of linear (resp.
linear and injective) maps from A to B. Let ̟ : Hom(Cr, V ) 99K PHom(Cr, V )
denote the natural rational map, and let π : PHom(Cr, V ) 99K G(r, V ) map ϕ
of rank r on its image. Dually, consider ̟′ : Hom(V, Cr) 99K PHom(V, Cr)
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and π′ : PHom(V, Cr) 99K G(r, V ∗) mapping ϕ′ of rank r on its kernel. If
X ⊂ G(r, V ) is a subvariety, let X

o
denote the set π−1(X) and X its closure in

PHom(Cr, V ).

Proposition 1.4. Let X ⊂ G(r, V ) be a suitable variety. Then XQ = π′[(X)
∗
],

where (X)
∗

is the usual dual variety of the subvariety X ⊂ PHom(Cr, V ) of a
projective space.

Proof : We fix a smooth point x ∈ X and f ∈ PHom(Cr, V ) such that
π(f) = x, and start with two easy lemmas.

Lemma 1.2. X is smooth at f .

Proof : In a neighbourhood of f we have X = X
o
. Moreover, the map π : X

o
→

X is locally a trivial fibration with fiber at x the smooth variety Inj(Cr, Lx).
�

We denote f ∈ Hom(Cr, V ) such that ̟(f) = f .

Lemma 1.3. The affine tangent space T̂fX is the linear space of maps g : Cr →

V such that the composition Lx
f−1

→ Cr g
→ V → V/Lx belongs to TxX.

Recall that for Z ⊂ PW a projective variety and z ∈ Z, the affine tangent space
T̂zZ ⊂ W is the tangent space of the affine cone over Z at a lift of z in W .

Proof : Let X̂ ⊂ Hom(Cr, V ) be the affine cone over X . Since X̂ is smooth at

f , any tangent vector is the direction of a curve included in X̂. Let γ : (C, 0) →

(X̂, f) be a curve in X̂ and let g = γ′(0) ∈ Hom(Cr, V ). Under the well-known
identification of TxG(r, V ) with Hom(Lx, V/Lx), the composition of the lemma
equals (π ◦ ̟ ◦ γ)′(0). Therefore it belongs to TxX . By dimension count, the
lemma follows. �

Proof of proposition 1.4 : The linear subspace (TfX̂)⊥ ⊂ Hom(V, Cr) is the

set of g’s such that for all h ∈ TfX̂, the composition Cr h
→ V

g
→ Cr is traceless.

Since TfX̂ contains Hom(Cr, Lx), this means that g is induced by a morphism
g : V/Lx → Cr such that f ◦ g is orthogonal to TxX ⊂ Hom(Lx, V/Lx), by

lemma 1.3. Therefore, for h ∈ G(r, V ∗), we have h ∈ π′ ◦ ̟((Tf X̂)⊥) if and
only if h ∈ q(N∗

xX).

2 Reduction to fundamental examples

From section 1, we see that there are a lot of pairs of parabolic subgroups
which allow duality. In this section, I will show that to understand all the dual
varieties, it is enough to understand dual varieties for fundamental cases.

For example, the varieties corresponding to the marked diagrams

◦ ◦ ◦ ◦ ◦• •

◦

◦ ◦ ◦ ◦ ◦• •

◦

both have dimension 26. Using tables in [McG 02, p.202], we see that there is a
unique nilpotent orbit of dimension 52 in e6 and that the disconnected centralizer
of an element of this orbit is trivial. Therefore, the two corresponding parabolic
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subgroups P, Q ⊂ E6 allow duality. It may seem at first that the corresponding
duality X ⊂ G/P 7→ XQ ⊂ G/Q has to do with the exceptional geometry of E6.
However, we will see that it is not the case; indeed, XQ can be described using
dual varieties in four classical homogeneous spaces. Indeed, [Na 06, theorem
6.1] is verified in this case thanks to the sequence of parabolic subgroups

◦ ◦ ◦ ◦ ◦• •

◦

→ ◦ ◦ ◦ ◦ ◦•

•

→ ◦ ◦ ◦ ◦ ◦•

•

→ ◦ ◦ ◦ ◦ ◦• •

◦

,

and we will see in this section how to compute accordingly dual varieties. We
will show that the computation of the dual variety XQ for X ⊂ G/P can be
done in three steps, the first and the last in a family of spinor varieties G+

Q(5, 10),

and the second in a family P5’s.

2.1 Biduality theorem

Let G be as above, P, Q, R ⊂ G be subgroups such that P and Q allow
duality, and Q and R allow duality. Then, by definition P and R also allow
duality.

Theorem 2.1 (Biduality theorem). Let X ⊂ G/P be an suitable variety.

Then XQ is suitable and µ(N∗X) = N∗XQ. In particular, (XQ)
R

= XR.

If G = SLn, P = R is the stabilisor of a line and Q is the stabilisor of a
hyperplane, we recover the usual biduality theorem.

Proof : We follow the argument of [GKZ 94, pp.27 to 30].
Let N = µ(N∗X) ⊂ T ∗G/Q. Recall that T ∗G/Q is a symplectic variety. More-
over, it is proved in [GKZ 94] that N∗X ⊂ T ∗G/P is a lagrangien subvariety
of T ∗G/P . Let O ⊂ g∗ denote the nilpotent orbit which closure is the im-

age of T ∗G/P . Since the birational morphisms T ∗G/P
∼

99K O
∼

99K T ∗G/Q are
symplectic, it follows that N is also lagrangien.

Moreover, it has the property that if (x, f) ∈ N and λ ∈ C, then (x, λf) ∈
N . This follows from the fact that the image of N∗X in O is stable under
multiplication by scalars. From [GKZ 94, proposition 3.1], we know that N =
N∗Z for Z = πQ(N) = XQ. Therefore, µ(N∗X) = N∗XQ and XQ is suitable.

Since (XQ)
R

(resp. XR) is the image of N∗XQ (resp. µ(N∗X)) under the
rational map T ∗G/Q 99K G/R, these varieties are equal. �

The following corollary shows that the name of biduality theorem for the
above result is justified :

Corollary 2.1. Let P, Q ⊂ G allow duality. If X ⊂ G/P is suitable, then XQ

is suitable and (XQ)
P

= X. Moreover, if x ∈ X and h ∈ XQ, then h is tangent
to X at x if and only if x is tangent to XQ at h.

Proof : To prove that (XQ)
P

= X , it is enough to take R = P in theorem 2.1,
after observing that for suitable X ⊂ G/P , XP = X . The second result, that
h is tangent to X at x if and only if x is tangent to XQ at h follows from the
fact the first (resp. the second) affirmation means that (x, h) lies in the image
by (p, πQ) of an element in µ(N∗X) (resp. N∗XQ). �
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2.2 Families of dual varieties

We consider the following situation : let R ⊂ G be a parabolic subgroup.
Let P, Q ⊂ R ⊂ G be parabolic subgroups and recall notations of subsection 1.2.
If X ⊂ G/P and z ∈ G/R, denote Xz := X ∩ Fz. Assume PL, QL ⊂ L allow
duality. For z ∈ G/R and suitable Y ⊂ Fz ≃ L/PL, let Y QL ⊂ Gz ≃ L/QL

denote its generalised dual variety.

Theorem 2.2. With the previous notations, assume that P, Q ⊂ G allow du-
ality, and also PL, QL ⊂ L. If X ⊂ G/P is suitable, then for generic x ∈ X,
XfP (x) ⊂ FfP (x) is suitable. Moreover, XQ is the closure of the union of the

XQL

fP (x), for such x in X.

Proof : Let f ∈ N∗
xX an element which G-orbit in T ∗G/P is dense and set

z = fP (x). We have seen in the proof of proposition 1.1 that the restriction fx

of f to TxFz is a generic element in T ∗Fz ≃ T ∗L/PL. Moreover, this restriction
belongs to N∗

xXz, so that Xz is suitable.
Let qz : T ∗Fz 99K Gz be the composition of µz : T ∗Fz 99K T ∗Gz and the

projection T ∗Gz → Gz . Proposition 1.1 states that q(f) = jz ◦ qz(fx) ∈ G/Q.
Therefore it follows that q(N∗X|Xz

) = jz(X
QL
z ). The description of XQ in the

theorem follows.

As a consequence of theorems 2.1 and 2.2, if P = P1 ×P2 and Q = Q1 ×Q2

are parabolic subgroups of G = G1 × G2, and if X = X1 × X2, then we have
XQ = XQ1

1 × XQ2

2 .

3 Tangency for fundamental examples

In this section, if x ∈ X ⊂ G/P , I introduce a definition of the embedded
tangent cone at x, TxX, which is a subvariety of G/P and a cone at x (in a
suitable sense). I also introduce the cotangent variety at x, NxX, which is a
subvariety of G/Q. Moreover a notion of “linear varieties” is defined and linear
varieties are classified.

From now on, P, Q ⊂ G are fundamental subgroups of G allowing duality.

3.1 A tangent element is incident

In this subsection, we prove that if x ∈ X ⊂ G/P and h ∈ G/Q is tangent
to X at x (see definition 1.9), then h is incident to x (in the sense that the
stabilisors of x and h contain a common Borel subgroup). This only holds in
fundamental cases.

Notation 3.1. Let x ∈ g nilpotent. Then there exists y, h ∈ g such that (x, y, h)
is a sl2-triple. For i ∈ Z, let gi denote {X ∈ g : [h, X ] = iX}. The parabolic
subalgebra px := ⊕i≥0gi does not depend on y and h [McG 02, theorem 3.8],
and is called the canonical parabolic subalgebra of x.

In the following lemma, I say that p ⊂ g is a maximal parabolic subalgebra
of g of fundamental type if the pair (g, p) is the pair of Lie algebras of groups
(G, P ) as in definition 1.10.

Lemma 3.1. Let x ∈ g and p be a polarisation of x. Assume that p is a
maximal parabolic subalgebra of fundamental type. Then px ⊂ p.
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Proof : Let p be a maximal parabolic subalgebra which is a polarisation of
x. Let (x, y, h) be a sl2-triplet, h a Cartan subalgebra containing h and ∆ =
{α1, . . . , αr} a basis of the root system such that ∀α ∈ ∆, α(h) ≥ 0.

We denote p1 the following maximal parabolic subalgebra :

p1 := h ⊕
⊕

α =
∑

j kjαj

ki ≥ 0

gα ,

where i is chosen such that p is conjugated to p1 (such i exists because p is a
maximal parabolic subalgebra).

Let us prove that x ∈ u(p1). According to the decomposition g = h⊕
⊕

α gα,
we can write x = hx +

∑
α xα, with hx ∈ h and xα ∈ gα. Now, since [h, x] = 2x,

we deduce that hx = 0 and that for any root α, either xα = 0 or α(h) = 2.

Claim 3.2. If α =
∑

kjαj is a root, then α(h) = 2 =⇒ ki > 0.

Proof : This is proved by ad hoc arguments in all cases. Assume first that
g = sln and that p is the stabilisor of an r-dimensional subspace. Thus i = r.
Recall that the weighted diagram of x is by definition the list of the values
αj(h). The weighted diagrams of nilpotent elements in sln are well-known; in
our case, since x is a generic element of u(p) with p conjugated to p1, we have
αi(h) = αn−i(h) = 1 and the other values αj(h) equal 0. The equality α(h) = 2
with α =

∑
kjαj amounts to ki + kn−i = 2, which implies ki = kn−i = 1.

Assume now that g = spin4p+2. In this case, there is only one possibility for
the G-orbit in spin4p+2 of x, and αj(h) = 1 if and only if αj is a spin root (ie
j ∈ {2p, 2p+1}); otherwise αj(h) = 0. Therefore α(h) = 2 implies that α is not
less than the root α2p−1 + α2p + α2p+1, which implies the claim.

If g is of type e6 and p corresponds to the first root, then the weighted

diagram of x is

[
1 00 0 1

0

]
(see [McG 02, table p.202]). Since for all roots

∑
kjαj

we have −1 ≤ k1, k6 ≤ 1, we again have
∑

kjαj(h) = 2 ⇒ k1 = k6 = 1. In

case p corresponds to the second root, the weighted diagram is

[
0 10 1 0

0

]
. The

equality α(h) = 2 for α =
∑

kjαj implies that k3 + k5 = 2. If k3 = 2, then
necessarily k5 ≥ 1 (see the list of roots in [Bou 68]), so we get a contradiction.
Similarly k5 ≤ 1. So k3 = k5 = 1, and again the claim is proved. �

This claim therefore proves that if xα 6= 0, with α =
∑

kjαj , then ki > 0.
This proves that x belongs to

⊕

α =
∑

j kjαj

ki ≥ 1

gα ,

which is readily seen to be p⊥1 = u(p1). Thus x ∈ u(p1) and p1 is a polarisation
of x. Now, since the map T ∗G/P → g is birational on its image, there is a
unique polarisation of x in the conjugacy class of p. Therefore p = p1.

Let us now show that px ⊂ p1. Since px ⊃ h, it is the sum of h and
some root spaces. Now, assume gα ⊂ px, with α =

∑
kjαj . This means that
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∑
kjαj(h) ≥ 0. I claim that ki ≥ 0. In fact, if ki < 0, then α is a negative

root, so kj ≤ 0 for all j. We therefore have
∑

kjαj(h) ≤ kiαi(h). In the proof
of the above claim, we have seen that we allways have αi(h) = 1. So we get a
contradiction.

Therefore, we have ki ≥ 0, and so gα ⊂ p1. Since p1 = p, we have proved
that px ⊂ p, as claimed. �

Corollary 3.1. If p and q are polarisations of the same nilpotent element x,
and are maximal parabolic subalgebras of fundamental type, then they contain a
common Borel subalgebra.

Proof : They both contain the canonical parabolic subalgebra px.

We now show, with an example, that the above corollary is wrong if one
considers non maximal parabolic subalgebras.

Example 3.2. Let g = sln. Let x ∈ g be an element of rank 2, such that x3 = 0
but x2 6= 0. Let p (resp. q) be the parabolic subalgebra preserving the image of
x2 and the image of x (resp. the kernel of x and the kernel of x2). Then we
have x ∈ u(p) and x ∈ u(q). However, since Im x 6⊂ kerx, p and q are not
incident.

Proof : If y ∈ p (resp. y ∈ q), then the commutator [x, y] is strictly upper
triangular for the filtration Im x2 ⊂ Im x ⊂ Cn (resp. kerx ⊂ kerx2 ⊂ Cn).
Therefore, [x, y] is traceless and so x ∈ p⊥ (resp. x ∈ q⊥). �

The Schubert varieties Ih (recall definition 1.9) give a geometric understand-
ing of the rational map q : T ∗G/P 99K G/Q :

Lemma 3.3. Assume P and Q are maximal parabolic subgroups. Let x ∈ G/P
and h ∈ G/Q, and let f be a generic element in T ∗

xG/P . Then q(f) = h if and
only if x ∈ Ih and the cotangent form f vanishes on TxIh.

As a consequence of the lemma, there is a unique h such that x ∈ Ih and f
vanishes on TxIh. By definition, if h is tangent to X at x, then there exists
f ∈ N∗

xX such that q is defined at f and q(f) = h. Thus the lemma implies
that the intersection Ih ∩ X is not transverse at x, as was stated in fact 1.1.

Proof : Let x ∈ G/P ; tP restricts to an isomorphism between T ∗
xG/P and

(g/px)∗ ⊂ g∗ if px denotes the Lie algebra of the stabilisor of x. Conversely,
given η ∈ O, πP (t−1

P (η)) is the unique x ∈ G/P such that the corresponding
parabolic subalgebra px is orthogonal to η.

Let x ∈ G/P , f ∈ T ∗
x G/P generic and η = tP (f) ∈ p⊥x , and let h = q(f).

The previous argument shows that h is the unique element in G/Q such that
η vanishes on qh. Moreover, we know by corollary 3.1 that x ∈ Ih. Note that
TxG/P = g/p and TxIh ≃ qh/(px ∩ qh). Since η vanishes on px, it will vanish
on qh if and only if it vanishes on qh/(px ∩ qh), namely, if and only if f vanishes
on TxIh. �

Example 3.3. Let h ∈ G/Q and let X = Ih ⊂ G/P . Then X is suitable and
XQ = {h}. Moreover p(T ∗

hG/Q) = Ih.
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Proof : First, let x ∈ X , let f ∈ T ∗
xX be generic and let h = q(f). By corollary

3.1, x and h are incident, and by lemma 3.3, f vanishes on TxIh. Thus, Ih is
suitable. Since G/Q is homogeneous, Ih is suitable for all h ∈ G/Q.

Let x ∈ X and f ∈ N∗
xX generic. Then by the above q(f) =: h′ is well-

defined, and by lemma 3.3 again, h′ is the unique element in G/Q such that
x ∈ Ih′ and such that f vanishes on TxIh′ . Since h satisfies these conditions,
h′ = h. Therefore, XQ = {h}.

For the last point, we note that p(T ∗
hG/Q) = {h}P = Ih, by biduality

theorem 2.1, since we have proved that IQ
h = {h}. �

3.2 Dual varieties and cones

If X ⊂ PV is included in a hyperplane represented by h ∈ PV ∗, then the
dual variety of X , which is a subvariety of PV ∗, is a cone over h. The aim of
this subsection is to prove an analogous result for our generalised dual varieties.
Our first goal is to define cones.

Definition 3.4. Let x1, x2 ∈ G/P

• x1, x2 are linked if there exists h ∈ G/Q such that x1, x2 ∈ Ih.

• If E ⊂ G/P , let IE :=
⋂

x∈E

Ix ⊂ G/Q.

• If x1, x2 are linked, denote L(x1, x2) =
⋂

h∈I{x1,x2}

Ih.

In PV , all points are linked, and L(x1, x2) is the line through x1 and x2. The
difference between PV and our general situation is that in general G does not act
transitively on pairs of distinct points x, y ∈ G/P , so that L(x, y) may depend,
up to isomorphism, on x and y. However, cones are defined in perfect analogy :

Definition 3.5. Let X ⊂ G/P and x ∈ X. Then X is a cone over x if for all
y ∈ X, x and y are linked and L(x, y) ⊂ X.

An equivalent definition is that for generic y ∈ X the same condition holds, as
will be clear from the following description of L(x, y) :

Proposition 3.2. Let x 6= y ∈ G/P . We have :

• If G/P = G(r, V ), then (x, y) are linked if and only if codimV (Lx +Ly) ≥
r, in which case L(x, y) = G(r, Lx + Ly).

• If G/P = G+
Q(2p + 1, 4p + 2), then (x, y) are linked if and only if we have

dim(Lx ∩Ly) = 2p− 1, in which case L(x, y) = {z : Lz ⊃ Lx ∩Ly} ≃ P1.

• If G/P = E6/P1, then (x, y) are allways linked. In case a line passes
through x and y in E6/P1, then L(x, y) is this line; otherwise, there is a
unique smooth 8-dimensional quadric through x and y, and L(x, y) is this
quadric.

• If G/P = E6/P3, then (x, y) are linked if and only if there is a G(2, 5)
through them. If dim(Lx∩Ly) = 1 then L(x, y) is equal to G(2, Lx+Ly) ≃
P2, otherwise L(x, y) ≃ G(2, 5).
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In this proposition, for the two exceptional cases, I use the minimal projective
homogeneous embedding E6/Pi ⊂ PVi. For example, in the case of E6/P3, the
condition that there is a G(2, 5) through x and y means that there is a linear
10-dimensional subspace W ⊂ V3 containing x and y and such that PW ∩E6/P3

is projectively isomorphic with a Grassmanian G(2, 5) in its Plücker embedding.
Recall also that E6/P3 parametrises projective lines in V1 which are included
in E6/P1. For x ∈ E6/P3, the corresponding 2-dimensional subspace of V1 has
been denoted Lx.

Proof : The first case follows directly from the definition. In the second case,
one only has to note that if there exists h ∈ G/Q such that (x, h), (y, h) are
incident, then dim(Lx∩Lh) = dim(Ly∩Lh) = 2p, so dim(Lx∩Lh∩Ly) = 2p−1.

For the exceptional cases one oviously has to use the geometry of the in-
volved homogeneous spaces. Let us first consider E6/P1. For all x ∈ E6/P1,
Ix is a smooth 8-dimensional quadric. Moreover, for any x 6= y ∈ E6/P1, the
intersection of the two quadrics Ix and Iy is either a point or a P4. In fact, this
was proved in [Za 93, propositions IV.3.2 and IV.3.3] in the context of Severi
varieties, but also follows easily from the fact that there are three E6-orbits in
E6/P1 × E6/P1 [CMP 06, proposition 18]. Given x, y ∈ E6/P1, we can have
x = y, x 6= y and there is a line through x and y, or there is no line through x
and y. This describes the three orbits in E6/P1×E6/P1. In the degenerate case
when a line passes through x and y, Ix ∩ Iy is thus isomorphic with P4. Dually,
the intersection of all the Ih for h in this P4 is a linear space (indeed, x ∈ Ih

if and only if x ∈ E6/P1 ⊂ PV1 is orthogonal to ̂ThE6/P6 ⊂ V6 = V ∗
1 ) and

contains x and y; a direct computation of dimension shows that it is exactly the
line through x and y. In the generic case, Ix ∩ Iy = {h}; therefore L(x, y) = Ih

is the unique 8-dimensional quadric through x and y.

Let α, β ∈ E6/P3 be linked, and denote κ ∈ E6/P5 an element such that
α, β ∈ Iκ. According to subsection 1.2, α and β represent 2-dimensional sub-
spaces of a 5-dimensional subspace of V1 denoted Wκ; we have denoted Lα, Lβ

these spaces.
Assume first that dim(Lα ∩ Lβ) = 1. It is proved in [Ch 06, proposition

3.6] that the linear span of all the affine tangent spaces at the points of the
projective plane generated by Lα and Lβ is 24-dimensional and equal to the span
of affine tangent spaces at points in lα ∪ lβ. Thus (α, β) defines a projective
plane in E6/P6 and also in E6/P5. Moreover Iα,β = IG(2,Lα+Lβ) ≃ P2 and
L(α, β) = G(2, Lα + Lβ) ≃ P2.

Assume finally that Lα and Lβ don’t meet. Let L ⊂ Lα ⊕ Lβ be any 3-
dimensional subspace; the linear span SL of the affine tangent spaces at points
of PL is again 24-dimensional, and any element in Iα,β must contain it. Assume
that Iα,β contains two points κ, λ ∈ G/Q. These points would correspond
to codimension 2 subspaces Lκ, Lλ of V1 containing SL; therefore Lκ and Lλ

would be contained in a common hyperplane of V1. Since α, β ∈ Iκ,λ, by the case
considered above, this would in turn imply that Lα and Lβ meet in dimension
1, which we have excluded. Therefore we have proved that Iα,β = {κ}, so
L(α, β) = Iκ is isomorphic with G(2, 5). �

Theorem 3.1. Let h ∈ G/Q and let X ⊂ G/P such that X ⊂ Ih. Then X is
suitable and XQ is a cone over h.
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Remark : In fact, as the proof will show, in all the cases but in type A,
a stronger result holds : for any k ∈ XQ, there is a certain homogeneous
subvariety q(C.f + N∗

xIh) ⊂ G/Q, of type given by lemmas 3.4, 3.5, 3.6, and
3.7, containing (eventually stricly) L(h, k), and included in XQ. Although the
idea of proof of this theorem is uniform, this proof unfortunately ends up with
a case by case analysis.

Proof : If x ∈ X , then N∗
xX contains N∗

xIh on which q is well-defined generi-
cally, so X is suitable. Assume X ⊂ Ih and let k be a generic element in XQ. By
definition of XQ there is an element x ∈ X and f ∈ N∗

xX such that k = q(f).
Since x ∈ X ⊂ Ih, we have h ∈ Ix. By corollary 3.1, k ∈ Ix; therefore h and k
are linked. Moreover, we have f 6∈ N∗

xIh (otherwise we would have q(f) = h).
Therefore it follows from the inclusion q(C.f + N∗

xIh) ⊂ XQ and the following
lemmas 3.4, 3.5, 3.6 and 3.7 that L(h, k) ⊂ XQ. �

Lemma 3.4. Let x ∈ G(r, V ), h 6= k ∈ G(r, V ∗) such that h, k ∈ Ix. Let
f ∈ N∗

xIh such that q is defined at f . Then q(C.f + N∗
xIk) = L(h, k).

Proof : Let (ei) be a base of V and (e∗i ) the dual base. Up to the action
of SL(V ), we may assume that Lx is the span of e1, . . . , er, Lh is the span
of e∗n−r+1, . . . , e

∗
n, Lk that of e∗n−r+1−l, . . . , e

∗
n−r, e

∗
n−r+1, . . . , e

∗
n−l, and finally

that f ∈ N∗
xIh ≃ Hom(L∗

x, Lh) is defined by f(e∗j ) = e∗n−r+j. Since N∗
xIk =

Hom(L∗
x, Lk), a straightforward computation proves the lemma. �

Lemma 3.5. Let x ∈ G+
Q(2p + 1, 4p + 2), h 6= k ∈ G−

Q(2p + 1, 4p + 2) such that
h, k ∈ Ix. Let f ∈ N∗

xIh such that q is defined at f . Then q(C.f + N∗
xIk) ≃

P2p−1.

This lemma implies theorem 3.1 in this case since q(C.f + N∗
xIk) is a linear

space containing h and k, and will therefore contain the line through h and k.

Proof : We may assume that x represents the isotropic subspace Lx generated
by e+

1 , . . . , e+
2p+1. Since Lk meets Lx along a hyperplane, we may further assume

that this hyperplane is generated by e+
2 , . . . , e+

2p+1. We therefore have N∗
xIk =

∧2〈e+
2 , . . . , e+

2p+1〉 ⊂ ∧2Lx = T ∗
x G+

Q(2p+1, 4p+2). Let f ∈ T ∗
x G+

Q(2p+1, 4p+2);
since f 6∈ N∗

xIk (otherwise we would have h = k), the class of f modulo N∗
xIh

is the same as that of some form e+
1 ∧ e, with e ∈ 〈e+

2 , . . . , e+
2p+1〉, and we may

assume that e = e+
2 .

Recall that Ix ≃ PL∗
x : I claim that q(C.f + N∗

xIk) is the orthogonal of
e+
2 in PL∗

x. In fact, let ∧p(C.f + N∗
xIk) ⊂ ∧2pLx ≃ L∗

x be the linear span of
all the forms in ∧2pLx which can be written as a wedge product of p forms in

C.f ⊕ N∗
xIk. We have ∧p(C.f + N∗

xIk) ⊂ (e+
2 )

⊥
; therefore q(C.f + N∗

xIk) ⊂

P(e+
2 )

⊥
.

On the other hand, let f0 = Σp
i=1e

+
2i−1∧e+

2i; we have f
∧(p−1)
0 = Σp

i=1e
+
2i−1

∗
∧

e+
2i

∗
∧ e∗2p+1, from which is follows that the rational map C.f + N∗

xIk 99K

P(e+
2 )

⊥
, g 7→ [g∧p] is submersive at f0, which implies the claim and the lemma.

�

Lemma 3.6. Let x ∈ E6/P1, h 6= k ∈ E6/P6 such that h, k ∈ Ix. Let f ∈ N∗
xIh

such that q is defined at f . If there passes a line through h and k in E6/P6 then
q(C.f + N∗

xIk) ≃ P4, otherwise q(C.f + N∗
xIk) = Ix
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Proof : We adopt the same strategy of proof as for lemma 3.5. Let x ∈ E6/P1

be fixed. In subsection 1.2, we saw that T ∗
xX identifies with OC ⊕ OC, Ix with

the projective quadric in P(C ⊕ OC ⊕ C) defined by tu − N(z) = 0. We can
assume that k ∈ Ix is the class of (0, 0, 1). Therefore, N∗

xIk = q−1(k) = {(0, z) :
z ∈ OC}.

Write f = (z0, z1). Since q((z0, z1)) = [N(z0) : z0z1 : N(z1)], there will be
a line through q(f) and k in the quadric Ix if and only if N(z0) = 0. If this
occurs, then

q(C.f + N∗
xIk) = {[(0, u, t)] : t ∈ C, u ∈ L(z0)},

where L(z0) denotes the set of right multiples of z0 : L(z0) = {z0z : z ∈ OC}. It
is a linear subspace of OC of dimension 4, so q(C.f + N∗

xIk) is isomorphic with
P4, as desired. If N(z0) 6= 0, then left multiplication by z0 is invertible, so that
q : C.f + N∗

xIk 99K Ix is dominant, and the lemma again holds. �

Lemma 3.7. Let α ∈ E6/P2, κ, λ ∈ E6/P5 such that κ, λ ∈ Iα. Let f ∈ N∗
αIκ

such that q is defined at f . Then q(C.f + N∗
αIκ) = Iα.

Proof : We fix α ∈ E6/P2. Let f∗
1 , . . . , f∗

5 be a base of Q∗
α and assume that κ

corresponds to the linear subspace generated by f∗
4 , f∗

5 . Recall that there is a
natural surjective map π : T ∗

αE6/P2 → Hom(L∗
α,∧2Q∗

α). Moreover, π(N∗
αIκ) =

Hom(L∗
α, L) ⊂ Hom(L∗

α,∧2Q∗
α), where L ⊂ ∧2Q∗

α is generated by f∗
1 ∧ f∗

4 , f∗
1 ∧

f∗
5 , f∗

2 ∧ f∗
4 , f∗

2 ∧ f∗
5 , f∗

3 ∧ f∗
4 , f∗

3 ∧ f∗
5 , f∗

4 ∧ f∗
5 (for example, this follows from the

fact that for any ϕ ∈ Hom(L∗
α, L), q(ϕ), if defined, equals κ).

Let M ⊂ ∧2Q∗
α be generated by f∗

1 ∧ f∗
2 , f∗

1 ∧ f∗
3 , f∗

2 ∧ f∗
3 , so that L ⊕

M = ∧2Q∗
α; the class of π(f) modulo π(N∗

αIκ) is the class of a unique f ∈
Hom(L∗

α, M). Assume first that the rank of f is 1. We can therefore assume
that f(e∗1) = f∗

1 ∧ f∗
2 and f(e∗2) = 0, where e∗1, e

∗
2 is a suitable basis of L∗

α.
In the array below we give, for ω ∈ ∧2Q∗

α, the value of the derivative dqf (ϕ),

for ϕ : L∗
α → ∧2Q∗

α given by ϕ(e∗1) = ω and ϕ(e∗2) = 0 :

f∗
1 ∧ f∗

2 7→ 0 f∗
1 ∧ f∗

3 7→ 0 f∗
1 ∧ f∗

4 7→ 0 f∗
1 ∧ f∗

5 7→ 0
f∗
2 ∧ f∗

3 7→ 0 f∗
2 ∧ f∗

4 7→ f∗
3 ∧ f∗

4 f∗
2 ∧ f∗

5 7→ f∗
1 ∧ f∗

4 + f∗
3 ∧ f∗

5

f∗
3 ∧ f∗

4 7→ 0 f∗
3 ∧ f∗

5 7→ 0 f∗
4 ∧ f∗

5 7→ f∗
1 ∧ f∗

5 .

The following gives similar values for ϕ defined by ϕ(e∗1) = 0 and ϕ(e∗2) = ω :

f∗
1 ∧ f∗

2 7→ 0 f∗
1 ∧ f∗

3 7→ 0 f∗
1 ∧ f∗

4 7→ 0 f∗
1 ∧ f∗

5 7→ 0
f∗
2 ∧ f∗

3 7→ 0 f∗
2 ∧ f∗

4 7→ f∗
2 ∧ f∗

3 f∗
2 ∧ f∗

5 7→ f∗
3 ∧ f∗

4 + f∗
1 ∧ f∗

2

f∗
3 ∧ f∗

4 7→ 0 f∗
3 ∧ f∗

5 7→ 0 f∗
4 ∧ f∗

5 7→ f∗
1 ∧ f∗

4 .

It follows from these computations that q(C.f +π(N∗
αIκ)) has dimension at least

6, so q(C.f + π(N∗
αIκ)) = Iα in this case.

In case f has rank 2, the dimension of q(C.f + π(N∗
αIκ)) will not vary if f

is replaced by g.f , where g ∈ SL(Lα)×SL(Qα) preserves κ. Using a C∗-action
we can degenerate f ∈ Hom(L∗

α, M) to some element f0 of rank one, for which
we have already seen that dim q(C.f0 + π(N∗

αIκ)) = 6. Since this dimension
is lower semi-continuous, we have dim q(C.f + π(N∗

αIκ)) = 6 and the lemma is
proved. �
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3.3 The cotangent space and the tangent cone of a variety

Definition 3.6. Let x ∈ X be suitable.

• The embedded cotangent space of X at x is NxX := q(N∗
xX) ⊂ G/Q.

• The embedded tangent space of X at x is TxX = NxX
P
.

• X ⊂ G/P is a linear subvariety if TxX does not depend on x suitable in
X.

Remarks :

• The notion of (co)-tangent space (and therefore of linear varieties) of X ⊂
G/P could be defined for non maximal parabolic P , but then it would
depend on the choice of a parabolic subgroup Q.

• An equivalent definition of linear subvarieties is that NxX does not depend

on suitable x in X , since NxX = TxX
Q

.

• By definition, XQ = ∪x∈XsNxX.

• In projective spaces, the tangent cone is the usual embedded tangent space
and linear varieties are linear subspaces. Linear varieties will be classified
in the next subsection.

Example 3.7. Let x ∈ G/P and X = {x}. Then TxX = {x}.

Proof : In fact, NxX = q(T ∗
xG/P ) = XQ, so this follows from theorem 2.1. �

Lemma 3.8. For x ∈ Xs, TxX is a cone over x and therefore x ∈ TxX.

Proof : In fact, for x ∈ Xs, we have NxX ⊂ Ix, so TxX = NxX
P

is a cone
over x by theorem 3.1.

3.4 Linear subvarieties

In this subsection, we classify linear subvarieties.

Proposition 3.3. The following array gives the list of all linear subvarieties :

G/P Linear varieties
G(r, n) G(r, p), r ≤ p ≤ n

G+
Q(2p + 1, 4p + 2) {pt}; Ih, h ∈ G−

Q(2p + 1, 4p + 2)

E6/P1 {pt}; Ih, h ∈ E6/P6

E6/P2 {pt}; Iκ, κ ∈ E6/P5

Proof : Let X ⊂ G/P be linear. First, we prove that ∀x ∈ X, TxX = X , and

that XQ is linear. Let x ∈ Xs. Then XQ = ∪y∈XsNyX = NxX, since for all

y ∈ Xs, NyX = NxX . Therefore, X = NxX
P

= TxX by corollary 2.1. Let

h ∈ XQ and x ∈ X . Then, by biduality theorem again, x ∈ NhXQ if and only
if h ∈ NxX = XQ. Therefore, NhXQ = X and XQ is linear and the claim is
proved. Since X = TxX for all x ∈ X , X is a cone over all of its points by
theorem 3.1.

21



We finish the proof case by case. In the case of Grassmannians, if we denote
W =

∑
x∈X Lx, since X is a cone over all of its points, we have G(r, W ) ⊂ X ,

and so X = G(r, W ).
In the case of spinor varieties, any x, y ∈ X must be linked, which implies

that the line through x and y is in X , so X is a linear subspace. As a consequence
of the following proposition 4.9, the only linear subspaces which dual variety is
again a linear subspace are the point and maximal linear subspaces. Since we
have seen that XQ must be a linear variety, the proposition follows in this case.

Let X ⊂ E6/P1 be linear. Let h ∈ XQ. If there are two points x, y ∈ X
such that there is no line through x and y, then by lemma 3.6 L(x, y) = Ih.
Since X ⊂ Ih and L(x, y) ⊂ X , we have X = Ih (and XQ is a point).

Otherwise, by theorem 3.1, X is a linear subspace. If XQ is not a linear

subspace, by the argument above, X = (XQ)
P

is a point. Assume now that
both X and XQ are linear subspaces, not reduced to a point. By lemma 3.6,

XQ and X = (XQ)
P

contain a P4. But this implies that XQ ⊂ IX is at most
1-dimensional (see the proof of theorem 3.1), and we get a contradiction.

Let finally X ⊂ E6/P3 be linear. Assume X is not reduced to a point. Let
h ∈ XQ; we have X ⊂ Ih. On the other hand, since X is not a point, by lemma
3.7, it must contain Ih. Therefore, X = Ih. �

4 Examples of dual varieties

4.1 Dual varieties of isotropic Grassmannians

Let V be a vector space, B : V → V ∗ a bilinear form. If ǫ = ±1 and
tB = ǫB, we say that B is ǫ-symmetric. Assume that this is the case. Let r
be an integer; we consider the variety GB(r, V ) of isotropic subspaces of V of
dimension r. The aim of this subsection is to describe the dual of GB(r, V ) in
G(r, V ∗) in case 2r < dim V (the other cases would be similar). Note that we
don’t assume that B is an isomorphism.

We have a rational map GB(r, V ) 99K G(r, V ∗) which maps a linear subspace
to its orthogonal, and which is well-defined at the point α if and only if Lα does
not meet the kernel of B. Assuming there are such points, we call co-isotropic
Grassmannian the image of this rational map.

Proposition 4.1. Assume ǫ = 1. Then GB(r, V ) is suitable if and only if
and r ≤ rk(B). In this case, the dual variety of the isotropic Grassmannian
GB(r, V ) is the co-isotropic Grassmannian.

Proposition 4.2. Assume ǫ = −1. Then GB(r, V ) is suitable if and only if r is
even and r ≤ rk(B). In this case, the dual variety of the isotropic Grassmannian
GB(r, V ) is the co-isotropic Grassmannian.

Proof : We prove propositions 4.1 and 4.2 simultaneously. Let x ∈ GB(r, V ) be
generic. Under the natural isomorphism TxG(r, V ) ≃ Hom(Lx, V/Lx), we have
the inclusion TxGB(r, V ) ⊃ Hom(Lx, L⊥

x /Lx), where L⊥
x denotes the orthogonal

of Lx with respect to B. It follows that if codim L⊥
x < r, then N∗

xGB(r, V )
does not meet the open orbit in T ∗

x GB(r, V ). If r > rk(B), this occurs for all
x ∈ GB(r, V ), hence GB(r, V ) is not suitable.
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Assume r ≤ rk(B). Now, let x ∈ GB(r, V ) such that codim L⊥
x = r. De-

note Qx = V/Lx; we have a morphism Qx → L∗
x, induced by B. Clearly,

TxGB(r, V ) ⊂ Hom(Tx, Qx) is the subspace of linear maps such that the com-
position Lx → Qx → L∗

x is (−ǫ)-symmetric. Therefore, the normal space of
GB(r, V ) at x identifies with ǫ-symmetric maps L∗

x → Lx. Since GB(r, V ) will
be suitable if and only if there are such maps of rank r, this occurs in all cases
if ǫ = 1 and exactly when r is even when ǫ = −1.

Now, the computation of the dual variety is straightforward : since we have
already remarked that TxGB(r, V ) ⊃ Hom(Lx, L⊥

x /Lx), the image of a generic
conormal form at x under the rational map q : T ∗

x G(r, V ) 99K G(r, V ∗) is the
element in G(r, V ∗) corresponding to L⊥

x . �

4.2 Schubert varieties and quivers in the fundamental case

In this subsection, I recall that to a cominuscule homogeneous space one can
naturally associate a quiver, such that Schubert cells are parametrised by some
subquivers. I also recall the Hasse diagram of a representation, and show how
the quiver of a cominuscule homogeneous space can be identified with the Hasse
diagram of a tangent space. This identification is due to Nicolas Perrin and
Laurent Manivel. Then, I show that this identification behaves well as far as
Schubert subvarieties are concerned. Finally, I extend these results to E6/P3,
which is not a cominuscule homogeneous space.

The quiver of a cominuscule homogeneous space has been first introduced
by N. Perrin [Pe 06, definition 3.2]; here we use the slightly different definition
[CMP 06, definition 2.1]. Recall that G(r, V ), G+

Q(2p+1, 4p+2) and E6/P1 are
cominuscule spaces (in fact even minuscule). The quiver is defined using a re-
duced expression of wG/P , the shortest element in the class of w0 in W/WP (w0

is the longest element in W ). Choose a reduced expression wG/P = sβ1
· · · sβN

,
with N = dimG/P ; the vertices of the quiver QG/P are in bijection with
[1, . . . , N ], and we refer to [CMP 06, definition 2.1] for the definition of the
arrows. The quivers may be illustrated by relevant examples as follows :

G(3, 7) G+
Q(5, 10) E6/P1

In these pictures, all arrows are going down. Moreover, we will use the definition
of height of a vertex of such a quiver. More or less by definition (see [Pe 06,

23



definition 4.7]), it is the height of the vertex in the above drawing, where by
convention the lowest vertex has height 1 (so the highest vertex has height
respectively 6,7,11 for G(3, 7), G+

Q(5, 10), E6/P1).

Later we will have to identify this quiver with a Hasse diagram. Let V be a
representation of a semi-simple group Λ. Let us recall that the Hasse diagram
of V is a quiver defined as follows. The vertices of this quiver are the weights
of V , and there is an arrow from λ1 to λ2 if and only if λ2 −λ1 is a simple root.
For example, the Hasse diagram of the 8-dimensional representation of Spin8 is
given on the left :

−ǫ1

ǫ1

−ǫ2

ǫ2

−ǫ3

−ǫ4

ǫ3

ǫ4

ǫ0 + ǫ1

ǫ0 − ǫ1

ǫ0 + ǫ2

ǫ0 − ǫ2

ǫ0 + ǫ3

ǫ0 + ǫ4

ǫ0 − ǫ3

ǫ0 − ǫ4

Spin8 Roots for Q8

Proposition 4.3. Let G/P be cominuscule and let x ∈ G/P be the base point.
Let Λ be a Levi factor of the stabilisor of x. Then the quiver QG/P of G/P is

isomorphic with the Hasse diagram HG/P of the Λ-module T̂xX/Lx.

If G/P ⊂ V , recall that T̂xG/P ⊂ V is the affine tangent space at x; it contains
the line Lx ⊂ V represented by x ∈ PV , so that it makes sense to consider

the quotient T̂xG/P/Lx. We have stated this result without proof in [CMP 06,
proposition 7]. In this article I need the explicit isomorphism, this is why I
sketch the proof, leaving details to the reader.

Proof : It is known that to each vertex of the quiver one can associate a root
of G. In fact, choose a reduced expression wG/P = sβ1

. . . sβN
and set

αi = sβN
◦ . . . ◦ sβi+1

(βi).

Since two different reduced expressions for wG/P only differ by commutation
relations, it is easy to check that the induced map from the set of vertices of
the quiver to the set of roots is well-defined (it does not depend on the reduced
expression). In the following, we consider that a reduced expression is chosen,
thus identifying this set of vertices with [1, N ].

For example, if G/P is a smooth 8-dimensional quadric, then its quiver,
and the corresponding roots, are given above (here we have shitfted the indices,
denoting (ǫ0, . . . , ǫ4) a basis of the weight lattice of Spin10). Note that the
highest weight of the corresponding Spin10-representation is ǫ0, and that we
recover the Hasse diagram of Spin8 by considering the weights ǫ0 − αi.

By [Pe 06, proposition 4.9], we may reduce the proof of our proposition to
the particular case of a quadric of any dimension, as above, because if there is
an arrow i → j in the quiver of G/P , then i and j belong to a subquiver of
QG/P isomorphic with the quiver of a quadric. It is also possible (and probably
shorter) to check directly in each case that if ω denotes the highest weight of
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Γ(G/P,O(1)), then the set {ω −αi : 1 ≤ i ≤ N} is exactly the set of weights of
the tangent space at the base point of G/P , and that the bijection i 7→ ω − αi

is an isomorphism of quivers QG/P → HG/P . �

Given [w] ∈ W/WP , we associate the Schubert subvariety C[w] ⊂ G/P which
is the B-orbit closure of [w] ∈ G/P . Assuming that w is the minimal length
representative of its class, we choose a reduced decomposition of w, and this
defines a subquiver Qw of the quiver QG/P which is an order ideal (this means
that if i → j is an arrow in QG/P and i ∈ Qw, then j ∈ Qw : see [Pe 06,
proposition 4.5]). We can also consider the subset Hw of HG/P which elements
are the weights of w−1.T[w]C[w] ⊂ T[e]G/P . The following proposition will be
useful to compute the dual variety of C[w], because it describes the tangent
bundle of C[w] :

Proposition 4.4. Under the isomorphism QG/P ≃ HG/P of proposition 4.3,
we have Qw = Hw.

Proof : Recall that ω denotes the highest weight of Γ(G/P,O(1)). All the

weights of T̂xG/P/Lx are of the form ω + α, where α are all the roots not in
p = Lie(P ) (therefore α is a negative root). All the weights of T[w]C[w] are of
the form w.ω + β, with β a positive root. Therefore, if ω + α is a weight of
w−1.T[w]C[w], w.α must be a positive root. So α must be a negative root sent
by w to a positive root. Denote l(w) the length of w; there are l(w) such roots,
namely {−αi : 1 ≤ i ≤ l(w)}. Since l(w) is also the dimension of C[w], it follows
that Hw is exactly the set of weights of the form ω − αi, 1 ≤ i ≤ l(w), so the
proposition follows. �

We now consider the case of E6/P3. Let [w] ∈ W/W3; we want to define a
quiver QE6/P3

and a subquiver Qw which pictures the tangent bundle of C[w].
Since E6/P3 is not cominuscule, the quiver defined as in [Pe 06, definition 3.2]
is not well-defined (it depends on a reduced expression of wE6/P3

), and as we
have already seen, the cotangent bundle T ∗E6/P3 is no longer irreducible, so
its Hasse diagram is not suitable neither.

But our luck is that for f ∈ T ∗
αE6/P3, q(f) only depends on π(f) ∈ Lα ⊗

∧2Q∗
α; therefore, what we care for is not really the conormal bundle of C[w],

but rather its projection to the bundle L ⊗ ∧2Q∗. This is why we consider the
following :

Definition 4.1.

• Let [e] ∈ E6/P3 be the base point, and let Λ denote a Levi factor of P3.

• Let QE6/P3
denote the Hasse diagram of the Λ-module L∗

[e] ⊗ ∧2Q[e] ⊂

T[e]E6/P3.

• For [w] ∈ W/W3 with w the minimal length representative, let Qw ⊂
QE6/P3

denote the set of weights of w−1.T[w]C[w] ∩ (L[e] ⊗ ∧2Q∗
[e]).

Proposition 4.5. For [w] ∈ W/W3, Qw ⊂ QE6/P3
is an order ideal.
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Proof : For a ∈ {−2,−1, 0, 1, 2}, let gk ⊂ e6 denote
⊕

α =
∑

j kjαj

k3 = a

gα (by

this I mean that the Cartan subalgebra is included in g0). We have g = g−2 ⊕
g−1 ⊕ g0 ⊕ g1 ⊕ g2 and Lie(P3) = g0 ⊕ g1 ⊕ g2. The tangent space T[e]E6/P3

decomposes as g−2 ⊕ g−1; let P denote the weights of ̂T[e]E6/P3/L[e] which
are of the form ω + α, with α a root of g−1 (P is also the set of weights of
L[e] ⊗ ∧2Q∗

[e]). I claim that w induces an increasing bijection between P and
its image. The proposition follows from this claim because Q[w] is the set of
weights of w−1.T[w]C[w] which are in P ; arguing as in the proof of proposition
4.4, this is the set of roots of g−1 which are mapped to a positive root by w,
and this is obviously an order ideal since w is increasing.

To prove the claim, we note that L[e]⊗∧2Q∗
[e] is a minuscule Λ-representation,

since Λ contains SL2 × SL5. Therefore WP permutes transitively the roots
in g−1. Let α0 be the highest root of g−1, let α1, α2 be roots of g−1 and
assume α1 ≤ α2. We can find w1, w2 ∈ WP such that αi = wi.α0, assume
moreover that w1, w2 are minimal such elements. Since α1 ≤ α2, we have
w1 ≥ w2 for the Bruhat order, so that we may assume that a w2 is a product
of reflexions appearing in a reduced expression of w1. Since w is a minimal
length representative in W/W3, the product w.w1 is still a reduced expression,
so w.w1 ≥ w.w2, and so w.α1 ≤ w.α2, as claimed. �

Remark : The same proof works for any G/P , as soon as g−1 is a minuscule
Λ-representation, with the notations of the proof.

4.3 Schubert varieties and dual varieties

The usual dual variety of a linear subspace is again a linear subspace. The
goal of this section is to generalise this result for Schubert varieties.

Proposition 4.6. Let X ⊂ G/P be a suitable Schubert variety. Then XQ ⊂
G/Q is a Schubert variety.

Proof : In fact, XQ is a B-stable (proposition 1.3) irreducible closed subvariety
of G/Q.

Recall that B-stable Schubert varieties in G/P are parametrised by the
quotient set W/WP . For [w] ∈ W/WP (resp. [x] ∈ W/WQ), we denote as in the

previous subsection C[w] = B.[w] ⊂ G/P the corresponding Schubert subvariety

(resp. D[x] = B.[x] ⊂ G/Q). In the rest of this article, I give a description of the
[w]’s such that the C[w] is suitable, and of the element in W/WQ corresponding
to the dual Schubert variety, in the fundamental cases. According to section 2,
this is enough to describe all dual varieties of Schubert varieties. The strategy
for this description is first to use a T -fixed point argument, to reduce the task to
a purely combinatorial one. In the types A and D, I then give an explicit solution
of this combinatorial problem. For the exceptional cases, my description of the
dual Schubert varieties is not really explicit, but to compute them there is in
principal only a finite number of computations to make.

So we fix the minimal G-representation V such that G/P ⊂ PV . We denote
V = ⊕Vλ (resp. V ∗ = ⊕V ∗

µ ) the weight decomposition of V (resp. V ∗). Let
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C[w] = B.[w] be a Schubert variety. Recall that N[w]C[w] denotes the variety of
y’s in G/Q which are tangent to C[w] at [w], see definition 3.6.

Lemma 4.1. Let [x] ∈ W/WQ such that CQ
[w] = B.[x]. We have [x] ∈ N[w]C[w].

Proof : First, notice that CQ
[w] = B.N[w]C[w]. In fact, B.N[w]C[w] contains the

set of y’s in G/Q which are tangent at a point in B.[w], therefore at a generic
point of C[w].

Let µ0 be the highest weight of V ∗ and denote µ = x.µ0. Let y ∈ V ∗

such that [y] ∈ CQ
[w] ⊂ PV ∗. Use the weight decomposition of V ∗ to write

y =
∑

µ′ yµ′ . Since [y] ∈ CQ
[w] which is the closure of the B-orbit of the weight

line of weight µ, yµ′ = 0 if µ′ 6≥ µ. Assume that ∀[y] ∈ N[w]C[w], yµ = 0. It

would then follow from the first point that ∀y ∈ CQ
[w], yµ = 0, contradicting

[x] ∈ CQ
[w].

Therefore, there exists [y] in N[w]C[w] such that yµ 6= 0. Since N[w]C[w] is

T -stable and Vµ is one-dimensional, we have [x] ∈ N[w]C[w]. �

I now explain how to compute the element [x] of the previous lemma. We
want to take into account the case of E6/P3, which cotangent bundle is not
irreducible. Recall that in this case there is a natural bundle morphism π :
T ∗E6/P3 → L⊗∧2Q∗. To have uniform notations, in the other cases we denote
π : T ∗G/P → T ∗G/P the identity and q = q.

Decompose π(T ∗
[e]G/P ) as a sum of weight spaces for the action of a Levi

subgroup of P : π(T ∗
[e]G/P ) = ⊕T ∗

τ , and write similarly 〈I[e]〉 = ⊕νNν , where

if [w′] ∈ W/WP , 〈I[w′]〉 ⊂ V ∗ denotes the linear span of the Schubert variety
I[w′] ⊂ G/Q ⊂ PV ∗ (see notation 1.9). It can be easily checked directly on the
examples that all the weight spaces T ∗

τ and Nν have dimension 1. The rational
map q : π(T ∗

[e]G/P ) 99K G/Q ⊂ PV ∗ is given by a list of polynomial functions

π(T ∗
[e]G/P ) → Nν of the same degree d and with values in the complex line Nν .

The polarisations of these polynomials yield d-linear maps T ∗
τ1
×· · ·×T ∗

τd
→ Nν ,

which will be denoted Pτ1,...,τd;ν ; remark that the space of such d-linear maps has
dimension 1. Given w ∈ W , we denote Pw the set of weights ν such that there
exist weights τ1, . . . , τd of π(w−1.N∗

[w]C[w]) ⊂ π(T ∗
[e]G/P ) such that Pτ1,...,τd;ν

does not vanish.

Proposition 4.7. Let [w] ∈ W/WP , with w its minimal length representative.
The variety C[w] is suitable if and only if Pw is not empty. In this case, if we

denote [x] ∈ W/WQ such that CQ
[w] = C[x], then x.µ0 equals w.µ1, where µ1 is

the lowest weight in Pw.

Proof : In fact, by lemma 4.1 and its proof, x.µ0 is the lowest weight µ, if any,
such that the µ-component of the restriction of the rational map π(T ∗

[w]G/P ) 99K

G/Q to N∗C[w] does not vanish identically.
The weights of 〈I[w′]〉 for [w′] ∈ W/WP are some weights of V ∗, a set on which

W acts; therefore it makes sense to talk of w′′.µ′, for w′′ ∈ W and µ′ a weight
of 〈I[w′]〉. I claim that w induces an increasing bijection between the weights
of 〈I[e]〉 and those of 〈I[w]〉. The argument is similar to that of proposition 4.5.
In fact, a weight of 〈I[e]〉 can be written as v.µ0, with v ∈ WP and µ0 the
highest weight of V ∗. Given two such weights v1.µ0 ≥ v2.µ0, we can assume
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that v2 is the minimal length representative of its class in WP /WP∩Q. Thus
v1 can be written as a product of some reflections which occur in a reduced
expression of v2. Since v2 ∈ WP and w is a minimal length representative,
l(wv2) = l(w) + l(v2). Therefore wv1 ≤ wv2 for the Bruhat order, and thus
w.(v1.µ0) ≥ w.(v2.µ0). This proves the claim.

Since the rational map q : π(T ∗G/P ) 99K G/Q is G-equivariant, the weight
µ of the proof of lemma 4.1 is also w.µ1, where µ1 is the lowest weight such
that the µ1-component of the restriction of the rational map T ∗

[e]G/P 99K G/Q

to w−1.N∗
[w]C[w] does not vanish identically. Obviously µ1 is the lowest weight

ν such that some Pτ1,...,τd;ν with τ1, . . . , τd weights of w−1.N∗
[w]C[w], does not

vanish, so the proposition is proved. �

We illustrate our method with the easy example G/P = PV . Let (e1, . . . , en)
be a basis of V , let k be an integer and let Lk = V ect(e1, . . . , ek), Mk =
V ect(ek+1, . . . , en). We consider the Schubert variety X = PLk ⊂ PV and
compute its dual variety. The corresponding element of the Weyl group is the
transposition w = (1k). We have T[w]X ≃ Hom(ek, Lk/ek), so w−1.T[w]X ≃
Hom(e1, Lk/e1) and so w−1.N∗

[w]X ≃ Hom(Mk, e1). Since q is defined taking

the kernel, the lowest weight in q(w−1.N∗
[w]) is µ1 = −ǫk+1. We have w.µ1 = µ1,

so that the dual variety of X is the B-orbit closure of e∗k+1, as expected. Note
that in this example it would have been easier to compute directly the lowest
weight in q(N∗

[w]C[w]), instead of applying first w−1 and then w. In fact, this
is what we will do to compute dual varieties of Schubert varieties in the cases
G/P = G(r, V ) and G/P = G+

Q(2p + 1, 4p + 2).

Recall from subsection 4.2 the definition of height of a vertex of the quiver
QG/P = HG/P . We denote h0 the maximal h such that there exist τ1, . . . , τd ∈
HG/P , ν a weight of I[e] such that h(τi) ≥ h and Pτ1,...,τd;ν 6= 0. We have the
following values for h0 (I have also indicated the height hmax of the heighest
element of QG/P ) :

G/P G(r, n) G+
Q(2p + 1, 4p + 2) E6/P1 E6/P3

hmax n − 1 4p − 1 11 8
h0 max(r, n − r) 2p + 1 8 5

Theorem 4.1. The Schubert subvariety C[w] is suitable if and only if all the
vertices of Qw have height at most h0 − 1.

Proof : Unfortunately, I don’t know how to prove in a uniform way this theo-
rem. It will follow from propositions 4.8, 4.9, 4.10 and 4.11. The proof of these
propositions also imply the above given values of h0. �

4.4 Case of Grassmannians

Recall that V is an n-dimensional vector space. We will parametrise Schubert
varieties in G(r, V ) by increasing lists of r integers, instead of partitions, because
duality will appear easier to formulate in this way. The list (li) will correspond
to the Schubert variety Cl ⊂ G(r, V ) (resp. in Dl ⊂ G(r, V ∗)) which is the B-
orbit closure of the linear space spanned by the li’s T -eigenvectors in V (resp.
in V ∗). For x ∈ {1, . . . , n}, we will write x ∈ l to mean that there exists i such
that x = li. The T -fixed points in V (resp. V ∗) will be denoted ei (resp. e∗i ).
The T -fixed point whose B-orbit is dense in Cl (resp. Dl) will be denoted xl
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(resp. yl). The Bruhat order on Schubert cells is given by l ≤ m if and only
if ∀i, li ≤ mi. If x1, . . . , xr are distinct integers not necessarily increasing, we
denote the list obtained reordering the xi as [x1, . . . , xr].

Let Tl denote V ect(ei : i ∈ l) and let Ql denote V ect(ei : i 6∈ l). The tangent
space at xl identifies with Hom(Ql, Tl). A weight in this space is given by a
couple (x, y) : x ∈ l, y 6∈ l. Recall that the rational map

T ∗
xl

G(m, n) ≃ Hom(Ql, Tl) 99K G(r, V ∗)

is given by ϕ 7→ kerϕ. Thus the degree of q is r and with the notations before
proposition 4.7, we have :

Fact 4.2. The multilinear form P(x1,y1),...,(xr,yr);l′ does not vanish if and only
if the xi’s and the yi’s are all distinct, and l′ is the set of the yi’s.

Given a list l, we consider the list l∗ defined inductively by

l∗i = min{y : y > yi−1, y > xi, ∀j, y 6= xj}.

Lemma 4.3. We have ∀i, l∗i ≤ n if and only if ∀i ∈ {1, . . . , r}, li < n + 2i− 2r.

In terms of partitions, this means that the i-th part must be at least r + 1 − i.

Proof : Let i be an integer. The integers lj for j > i and l∗j for j ≥ i are
strictly greater than li and distinct, so the lemma follows. �

As the following proposition shows, l 7→ l∗ is the combinatorial model for the
duality of Schubert varieties in Grassmannians :

Proposition 4.8. Cl is suitable if and only if ∀i ∈ {1, . . . , r}, li < n + 2i − 2r.

If Cl is suitable then CQ
l = Dl∗ .

Proof : With the previous notations, the weights of the conormal space N∗
xl

Cl

are the couples (x, y) with x ∈ l, y 6∈ l, and y > lx.
By proposition 4.7 and the comment after it, Cl is suitable if and only

if there are lists [y1, . . . , yr] and x1, . . . , xr with (xi, yi) a weight of N∗
xl

Cl

and P(x1,y1),...,(xr,yr);l′ 6= 0. In this case, if we denote l′ the list such that

CQ
l = Dl′ , then l′ is the minimal possible such list. Moreover, in order that

P(x1,y1),...,(xr,yr);l′ 6= 0, all xi must be distinct and we must have {xi} = l, so
we may assume by symmetry that xi = li. It is easy to check that the set of
such l′ is not empty if and only if ∀i ∈ {1, . . . , r}, li < n + 2i − 2r. In fact, if
li ≥ n + 2i − 2r, then the values yj and xj for i ≤ j ≤ r must be distinct and
between n + 2i − 2r and n, a contradiction. Conversely, if ∀i, li < n + 2i − 2r,
one may choose yi = l∗i .

We now show that l∗ is indeed the minimal list. Let [y1, . . . , yr] be any list
with ∀i, yi > li and ∀i, j, yi 6= lj . Let (z1, . . . , zr) be the corresponding ordered
list (ie {y1, . . . , yr} = {z1, . . . , zr} and z1 < z2 < · · · < zr). Then we have
z1 > l1 and ∀j, z1 6= lj , so z1 ≥ l∗1 . Say zi = yσ(i). If z1 < l2 then σ(1) = 1.
Thus in any case z2 > l2, so z2 ≥ l∗2 . By induction it follows that ∀i, l∗i ≤ zi, so
l∗ is the minimal possible list, and proposition 4.7 finishes the proof. �

We illustrate this proposition with two examples. The array below computes
two dual varieties in G(3, 8). It pictures the fact that for l = (2, 4, 5) we have
l∗ = λ = (3, 6, 7), and that for m = (2, 4, 6) we have m∗ = µ = (3, 5, 7) :

l λ
l λ

l λ

m µ
m µ

m µ
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Note that we have Cl ⊂ Cm but we don’t have Dl∗ ⊃ Dm∗ : contrary to the
case G/P = PV , duality of Schubert cells is no longer decreasing.

4.5 Case of spinor varieties

Schubert cells in G+
Q(2p+1, 4p+2) (resp. G−

Q(2p+1, 4p+2)) are parametrised
by lists of + and − signs, with an odd number of + (resp. −) signs. The generic
T -fixed point corresponding to the list (ηi) is the subspace generated by eηi

i , and
will be denoted xη. Schubert cells are also parametrised by strict partitions of
size 2p (or subsets of {1, . . . , 2p}), the correspondance being that we set x ∈ λ
(1 ≤ x ≤ 2p) if η2p+1−x = − .

Definition 4.2.

• If (ηi), 1 ≤ i ≤ 2p+1, is a sequence of signs and j is an integer, we denote
ϕ(η, j) the sequence η′ of signs such that η′

i = ηi for exactly all i’s but j.

• A sequence (ηi), 1 ≤ i ≤ 2p + 1, of signs is admissible if

∀i ∈ {1, . . . , p}, #{j : 1 ≤ j ≤ 2i, ηj = +} ≥ i.

Assume that η is admissible :

• If there exists i ≤ p + 1 such that #{j : 1 ≤ j ≤ 2i − 1, ηj = +} = i − 1,
then let i0 be the minimal such i, and set η∗ = ϕ(η, 2i0 − 1).

• Otherwise there exists i such that

∀k ≥ i, #{j : j ≤ k, ηj = +} > #{j : j ≤ k, ηj = −}.

Let i0 be the minimal such i and set η∗ = ϕ(η, i0).

If there does not exist i ≤ p+1 such that #{j : 1 ≤ j ≤ 2i−1, ηj = +} = i−1,
then #{j : 1 ≤ j ≤ 2p + 1} ≥ p + 1, so i = 2p + 1 satisfies the condition of the
last point of this definition.

Let η be fixed. Since the positive roots are ǫi ± ǫj with i < j, the restriction
of the Bruhat order on the set of ϕ(η, j) is given by :

Fact 4.4. We have ϕ(η, i) ≤ ϕ(η, j) for the Bruhat order if and only if

or





ηi = ηj = + and i ≤ j
ηi = + and ηj = −
ηi = ηj = − and i ≥ j.

Proposition 4.9. Cη is suitable if and only if η is admissible, and in this case
CQ

η = Dη∗ .

Proof : Recall that xη ∈ G/P denotes the linear space spanned by eηi

i . It
is well-known that Txη

G/P identifies with ∧2V ect(eǫi

i )∗. Moreover, N∗
xη

Cη ⊂

∧2V ect(eǫi

i ) is generated by eηi

i ∧ e
ηj

j for (i, j) such that ηi = + and i < j.
In fact, with the notations of [Bou 68, PLANCHE IV], the weight of xη is
ρη = 1

2

∑
ηiǫi, and the weights of Txη

Cη are the weights of the form 1
2

∑
η′

iǫi

which can be expressed as ρη + α, where α is a positive root. Therefore the
claim follows from the fact that the positive roots are ǫi ± ǫj with i < j.
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The weights of T ∗
xη

G/P ≃ ∧2V ect(eǫi

i ) are parametrised by couples (x, y) of
integers, with x < y. Now let xk, yk, 1 ≤ k ≤ p, be integers with xk < yk. With
the notations of subsection 4.3, µ is given by a set of polynomials of degree p
and the p-multilinear map P(xk,yk);η′ does not vanish if and only if the xk’s and
the yk’s are all distinct and η′

i = ηi for exactly all i’s which belong to the set
U := {xk} ∪ {yk}.

Given the previous description of N∗
xη

Cη, the Schubert variety Cη will be
suitable if and only if we can find (xk, yk) such that

xk < yk, the xk, yk are all distinct, and ηxk
= +. (2)

Therefore, for all i’s with 1 ≤ i ≤ p, we have the inequality

2i − 1 ≤ #(U ∩ [1, 2i]) ≤ 2#{j : 1 ≤ j ≤ 2i, ηj = +}.

This implies that η should be admissible.
Conversely, assuming that η is admissible, let us consider the following al-

gorithm which produces a list of distinct elements (xk, yk) with ηxk
= + and

xk < yk. If ∀i > 1, ηi = +, set xk = 2p and yk = 2p+1. Otherwise, let i0 be the
minimal i > 1 such that ηi = −; set x1 = i0 − 1 (the fact that η is admissible
garanties that even in the case i0 = 2, we have ηi0−1 = +) and y1 = i0. Remove
ηx1

and ηy1
from the list η : this new list is again admissible, as one checks

readily. Therefore, it is possible to define (xk, yk) for k ≥ 2 inductively.

We therefore have proved that Cη is suitable if and only if η is admissible.
Let us now compute the dual variety. Assume first that there exists i ∈ {1, p+1}
such that

#{j : 1 ≤ j ≤ 2i − 1, ηj = +} = i − 1. (3)

Let i0 be the minimal such i. Admissibility of η implies that #{j : 1 ≤ j ≤
2i0 − 2, ηj = +} = i0 − 1 and so η2i0−1 = −. Therefore, if (xk, yk) is any
sequence satisfying (2) and U = {xk} ∪ {yk}, there exists j ≤ 2i0 − 1 such
that ηj = − and j 6∈ U . Thus if there exists (xk, yk) such that P(xk,yk);η′ 6= 0
for some η′, this implies η′ ≥ ϕ(η, 2i0 − 1) (recall fact 4.4). Conversely, the
previous algorithm produces a sequence (xk, yk) for which it is easy to see that
P(xk,yk);ϕ(η,2i0−1) 6= 0. Thus η∗ = ϕ(η, 2i0 − 1) is the lowest list one can obtain
in this way, so that CQ

η = Dη∗ as claimed in this case.
Assume finaly that (3) holds for no i ∈ {1, p + 1}. Therefore, as we have

seen, there exists i (for example i = 2p + 1) such that

∀k ≥ i, #{j : j ≤ k, ηj = +} > #{j : j ≤ k, ηj = −}.

Let i0 be the minimal such i. Obviously, if i is any integer, and (xk, yk) satisfies
(2) and xk, yk 6= i, then

∀k ≥ i, #{j : j ≤ k, ηj = +, j 6= i} ≥ #{j : j ≤ k, ηj = −, j 6= i},

so that i ≥ i0. So P(xk,yk);η′ 6= 0 implies η′ ≥ ϕ(η, i0). Again, the explicit algo-
rithm provides a sequence (xy, yk) such that P(xk,yk);ϕ(η,i0) 6= 0, and therefore
Dϕ(η,i0) is the dual variety of Cη. �
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4.6 Case of E6,I

We now consider the exceptional cases when G is of type E6. Recall that
there are two possibilities for (P, Q) : either they correspond to the roots (α1, α6)
or (α3, α5). In each case I explain in which case Pτ1,...,τd;ν does not vanish. Using
subsection 4.3, this describes in principle all dual varieties to Schubert varieties,
although I will not give a simple combinatorial recipy for this correspondance
(note however that to give such a description there is “only” a finite number
of computations to do). My description of which Pτ1,...,τd;ν don’t vanish will
however yield a simple caracterisation of the suitable Schubert varieties.

As we have seen in subsection 1.2, a Levi factor L of P1 is isomorphic
with C∗ × Spin10, and T[e]E6/P1 identifies with a 16-dimensional spinor rep-
resentation of L. Moreover, the closed L-orbit in PT ∗

[e]G/P identifies with
a L-homogeneous spinor variety : it is a connected component of the vari-
ety parametrising isotropic linear spaces of dimension 5 in a certain quadratic
vector space of dimension 10 that we will denote M . It is proved in [Ch 06,
corollary 3.2] that I[e] ⊂ PM is the corresponding 8-dimensional quadric acted
upon by L and that the rational map T ∗

[e]E6/P1 99K I[e] is induced by the

unique L-equivariant quadratic map T ∗
[e]G/P → M . The polarisation P :

T ∗
[e]E6/P1 × T ∗

[e]E6/P1 → M of this equivariant map has the following geo-

metric interpretation : for x, y ∈ T ∗
[e]E6/P1 representing points of the spinor

variety corresponding to the isotropic linear spaces Lx, Ly, the class of P(x, y)
in PM is the intersection of Lx and Ly if this intersection has dimension 1, and
P(x, y) = 0 otherwise.

Denote as in subsection 4.5 (e+
1 , . . . , e+

5 , e−1 , . . . , e−5 ) a base of M such that
the quadratic form Q satisfies Q(

∑
x+

i e+
i +

∑
x−

i e−i ) =
∑

x+
i x−

i . An L-weight
of M can therefore be denoted ν ∈ {1+, . . . , 5+, 1−, . . . , 5−}, and a weight η =
(η1, . . . , η5) in T ∗

[e]G/P corresponds to a list of plus or minus signs, with an odd
number of plus signs. The condition for Pη,η′;ν not to vanish is thus that η and
η′ have exactly one sign in common which is ν.

From this description we can describe the suitable Schubert varieties. In
the array below, I recall the quiver of E6/P1 and I define an element [wmax] ∈
W/WP by its subquiver :

Quiver of E6/P1 Subquiver of [wmax]
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We have the following proposition :

Proposition 4.10. Let [w] ∈ W/WP . Then the Schubert variety C[w] is suitable
if and only if [w] ≤ [wmax].

Proof : Below we give the Hasse diagram H (resp. H∗) of the L-module
T[e]E6/P1 (resp. T ∗

[e]E6/P1), which, by proposition 4.3, is isomorphic with the

quiver of E6/P1 :

+ − − − +

+ + + + −

− + − − +

+ − − + −

+ + + − +

− − + − +

− − + + −

− + − + −

+ − + − −

+ + − − −

+ + − + +

− − − + +

− + + − −

+ − + + +

− − − − −

− + + + +

+ − − − −

+ + + + +

− + − − −

+ − − + +

+ + + − −

− − + − −

− − + + +

− + − + +

+ − + − +

+ + − − +

+ + − + −

− − − + −

− + + − +

+ − + + −

− − − − +

− + + + −

H H∗

Let ι : H → H∗ be induced by the map η 7→ −η (in terms of quivers,
this corresponds to the obvious symmetry). Let [w] ∈ G/P and Q[w] ⊂ H
the corresponding subquiver, marking the weights of w−1.T[w]C[w]. Thanks
to proposition 4.7, the proposition amounts to the fact that we can find two
weights η, η′ ∈ H∗ − ι(Q[w]) and which have only one sign in common if and
only if Q[w] ⊂ Q[wmax]. This may be seen as follows :

• If Q[w] ⊂ Q[wmax], we can set η = (+ + − − +) and η′ = (+ − + + −)
to check that the corresponding Schubert variety is suitable (below the
subset ι(Q[wmax]) is drawn).

• If Q[w] contains the vertex corresponding to the weight (−+−−+) , ι(Q[w])
contains the subset drawn below. Thus η and η′ are weights which begin
with ++, so they have two common signs. The corresponding Schubert
variety is not suitable.

• The last case is that the subquiver contains the vertex corresponding to
the weight (− − + + −). Thus η and η′ have at least 3 plus signs among
the 4 first signs, and therefore have at least 2 common signs.
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ι(Q[wmax]) (− + −− +) ∈ Q[w] (−− + + −) ∈ Q[w]

�

Example 4.3. Let X ⊂ E6/P1 be a linear subspace of maximal dimension 5.
Then XQ ⊂ E6/P6 is also a linear subspace of dimension 5.

Therefore, this provides, in our setting, a new example of a variety which is
isomorphic to its dual. Similar examples in the usual setting X ⊂ Pn are
projective subspaces, quadrics, G(2, 2p + 1), and the spinor variety G+

Q(5, 10).

Proof : Let X ⊂ E6/P1 be a linear subspace of dimension 5. The variety
parametrising linear subspaces of maximal dimension 5 is given by Tits shadows,
according to [LM 03, theorem 4.3]. In particular, it is a homogeneous variety,
and so we can assume that X is the Schubert variety corresponding to the Weyl
group element w = s6s5s4s3s1. The corresponding quiver Qw and ι(Qw) follow;
we have also drawn the quiver Qw∗ of the dual variety.

Qw ι(Qw) Qw∗

According to proposition 4.7, we must look for two weights of H∗ not in
ι(Qw) which have only one common sign. If this common sign is a minus sign,
then among these two weights there are 6 minus signs. Therefore one of the
weight has 4 minus signs which is impossible given ι(Qw) and the Hasse diagram

34



H∗. Since (− − + + +) and (+ + − − +) are weights not in ι(Qw), the lowest
weight is 5+. Note that this weight is obtained applying w6 = s3s4s5s6 to the
highest weight. Therefore, proposition 4.7 shows that the dual variety to X
corresponds to the class of w.w6 = s6s5s4s3s1s3s4s5s6 modulo W6. Modulo
W6, we have

s6s5s4s3s1s3s4s5s6 = s6s5s4s1s3s1s4s5s6 = s6s5s4s1s3s4s5s6s1

≡ s6s5s1s4s3s4s5s6 = s6s5s1s3s4s3s5s6 ≡ s6s5s1s3s4s5s6

= s6s1s3s5s4s5s6 ≡ s6s1s3s4s5s6 ≡ s1s3s4s5s6.

This proves the claim. �

4.7 Case of E6,II

Let α ∈ E6/P3 be the base point. Recall that there is a surjection π :
T ∗

αE6/P3 → Lα ⊗ ∧2Q∗
α and that the rational map q : T ∗

αE6/P3 99K Iα is
induced by a rational map q : Lα ⊗ ∧2Q∗

α 99K Iα = G(2, Q∗
α).

The description of q given in subsection 1.2 implies that q has degree 6.
Consider as in subsection 4.3 its polarisation, with coordinates denoted P . In
order to give a non-vanishing criterium for P , let us introduce some notation.
Let e1, e2 be a basis of Lα and f∗

1 , . . . , f∗
5 a basis of Q∗

α. The weight of the
vector e1 ⊗ (f∗

i ∧ f∗
j ) with i < j will be denoted ij, and the weight of the vector

e2 ⊗ (f∗
i ∧ f∗

j ) will be denoted ij. Finally, the weight of f∗
i ∧ f∗

j will be denoted
ij∗.

Let τ1, . . . , τ6 be weights of Lα⊗∧2Q∗
α and ν a weight of ∧2Q∗

α, if Pτ1,...,τ6,ν 6=
0, then #{k : τk ∈ {ij} } = #{k : τk ∈ {ij} } = 3. So we assume that this is
the case and that τ1, τ2, τ3 (resp. τ4, τ5, τ6) are of the form ij (resp. ij).

With this setting, Pi1j1,i2j2,i3j3,k1l1,k2l2,k3l3;mn∗ will not vanish if and only
if, up to permuting the three first weights and the three last, we have that
i1, j1, i2, j2 (resp. k1, l1, k2, l2) are all dinstinct; say they take all values in
{1, . . . , 5} except u (resp. v). Moreover we must have u ∈ {k3, l3} (resp.
v ∈ {i3, j3}), say {k3, l3} = {u, u′} (resp. {i3, j3} = {v, v′}). Finally, we
must have u′ 6= v′ and {u′, v′} = {m, n}.

In principle, this combinatorial rule describes dual varieties of Schubert cells
in this case. However, as in the case of E6,I , we can be more precise as far as
suitability is concerned. The Hasse diagram H of L∗

α ⊗∧2Qα is given below, as
well as a subquiver denoted Qmax. I have also indicated the Hasse diagram H∗

of Lα ⊗ ∧2Q∗
α :
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15

15

14

14

25

25

13

13

24

24

35

35

12

12

23

23

34

34

45

45

H Qmax H∗

In these pictures and the following, the weights ij are drawn in red and the
weights ij are drawn in blue. Given a Schubert cell C[w], with w the minimal
length representative of [w] ∈ W/WP , recall that we associated (not injectively)
to this Schubert cell a subquiver Q[w] of H in subsection 4.2.

Proposition 4.11. The Schubert cell C[w] is suitable if and only if we have
Q[w] ⊂ Qmax.

Proof : As in the preceeding subsection, we define ι : H → H∗ given by
η 7→ −η. The weights of H∗ have been given above.

Since q is induced by q, a Schubert variety C[w] will be suitable if and only if
the rational map q : Lα⊗∧2Q∗

α 99K Iα is defined generically on π(w−1.N∗
[w]C[w]);

equivalently, q should be defined on the orthogonal of w−1.T[w]C[w]∩L∗
α⊗∧2Qα

in Lα ⊗ ∧2Q∗
α. Equivalently again, we should be able to find 6 weights τk not

in ι(Q[w]) and some integers i, j such that Pτk;ij∗ does not vanish.
In case Q[w] is included in Qmax, we can consider the weights 34, 25, 34, 15,

24, 15 (the corresponding subset ι(Qmax) is drawn below), which satisfy the
relation P34,25,34,15,24,15;45∗ 6= 0 and do not belong to ι(Q). Otherwise, there
are four cases :

• If Q[w] contains the weight 15, by proposition 4.5, ι(Q[w]) contains the
corresponding subset in the array below. The remaining weights are of
the form ij or ij with 1 < i < j, so the Schubert variety cannot be
suitable.

• If Q[w] contains the weight 14, the remaining weights are of the form ij
or kl with 2 < i < j (see the array below), so again the Schubert variety
cannot be suitable.

• If Q[w] contains the weight 24, let i1j1, i2j2, i3j3, i4j4, i5j5, i6j6 be a list of

weights not in ι(Q[w]). Note that we have ikjk ∈ {12, 13, 14, 15, 34} for all
k. Assume that there exists kl∗ such that Pi1j1,i2j2,i3j3,i4j4,i5j5,i6j6;kl∗ 6= 0.

This implies that the only integer x (resp. y) which does not belong to
the set {i1, j1, i2, j2} (resp. {i4, j4, i5, j5}) is either 2 or 5. This integer
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must therefore belong to the set {i3, j3} (resp. {i3, j3}), so we must have
{i3, j3} = {1, x} (resp. {i6, j6} = {1, y}). This implies that k = l = 1, a
contradiction.

• Assume finaly that Q[w] contains the weight 23. In this case all the weights
which are not in ι(Q[w]) and of the form ij satisfy j = 5. Again, the
Schubert variety is not suitable.

Case ι(Qmax) Case 15 ∈ Q[w] Case 14 ∈ Q[w]

Case 24 ∈ Q[w] Case 23 ∈ Q[w]

�
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