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M ÉTHODESELECTRE AVEC INTERACTION

ENTRE CRITÈRES : UNE GÉNÉRALISATION

DE L’I NDICE DE CONCORDANCE

RÉSUMÉ

Cet article est consacré à une généralisation de l’indice de concordance global pour les mé-
thodes ELECTRE. Une telle généralisation a été conçuepour prendre en compte l’interaction
entre critères. Trois types d’interaction ont été considérés : renforcement mutuel, affaibli-
ssement mutuel et antagonisme. Dans des situations de décision réelles, il est raisonnable de
considérer l’interaction entre un petit nombre de paires de critères. Afin que le nouvel indice
de concordance prenne correctement en compte ces types d’interactions, diverses conditions,
aux limites, de monotonicité et de continuité ont été imposées. On démontre que l’indice
généralisée pend en compte de façon satisfaisante les trois types d’interaction (ou dépendance
entre critères), tout d’abord en présence de quasi-crit`eres puis en présence de pseudo-critères.
On examine également les liaisons entre le nouvel indice deconcordance et l’intégrale de
Choquet.

Mots-clés : Aide Multicritère à la Décision, Méthodes de Surclassement, Interaction entre
Critères, Intégrale de Choquet.

ii



ELECTRE METHODS WITH INTERACTION

BETWEEN CRITERIA: AN EXTENSION

OF THE CONCORDANCE INDEX

ABSTRACT

This paper presents an extension of the comprehensive (overall) concordance index of ELEC-
TRE methods, which takes the interaction between criteria into account. In real-world decision-
making situations, it is reasonable to consider the interaction between a small number of cri-
terion pairs. Three types of interaction have been considered: mutual strengthening, mutual
weakening, and antagonistic. The new concordance index correctly takes into account such
types of interactions, by imposing such conditions as boundary, monotonicity, and continuity
conditions. We demonstrate that the generalized index is able to take the three types of inter-
action, or dependencies, between criteria into account satisfactorily, first using quasi criteria
and then using pseudo criteria. We also examine the links between the new concordance index
and the Choquet integral

Key-words: Multicriteria analysis, Outranking methods, Interaction between criteria, Cho-
quet integral.
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Résuḿe ii

Abstract iii

1 Introduction 1

2 Illustrative Examples 2
2.1 Choosing a site for a new hotel construction project . . . .. . . . . . . . . . . . 2
2.2 Launching a new digital camera model . . . . . . . . . . . . . . . . .. . . . . . 4

3 Concepts: Definitions and notation 5
3.1 Basic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 6
3.3 The notion of pseudo criterion . . . . . . . . . . . . . . . . . . . . . .. . . . . 6
3.4 The criteria weights and the concordance index . . . . . . . .. . . . . . . . . . 7
3.5 Properties ofc(a,b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Types of interactions considered 8
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Practical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 10

5 Extensions of the concordance index 13
5.1 The quasi criterion model . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 13

5.1.1 Definition ofc(a,b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 The pseudo criterion model . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 18
5.2.1 Definition ofc(a,b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.2 Extension of the main theorem . . . . . . . . . . . . . . . . . . . . .. . 19

6 Modeling the interaction effects in the illustrative examples 26
6.1 Choosing a site for a new hotel construction project . . . .. . . . . . . . . . . . 27
6.2 Launching a new digital camera model . . . . . . . . . . . . . . . . .. . . . . . 28

7 Concordance index and Choquet integral 28

8 Conclusion 32

Acknowledgements 33

References 35

iv



1 Introduction

In this article, we are particularly interested in those decision-making situations that can be sup-
ported using an ELECTRE-type method (cf. Figueira et al., 2005 and Roy and Vanderpooten,
1997). This kind of situation implies that a coherent familyF of n criteria has previously been
built (cf. Roy and Bouyssou, 1993 and Roy, 1996).

An important advantage of using outranking methods (e.g., ELECTRE methods) is that they
are able to take purely ordinal scales into account (Martel and Roy, 2006), without needing to
convert the original scales into abstract ones with an arbitrary imposed range, thus maintaining the
original concrete verbal meaning (for another methodologyconsidering purely ordinal scales, see
Greco et al., 2001). Such conversions are used in many multi-criteria methods - for example, AHP
(Saaty, 2005), MACBETH (Bana e Costa and Vansnick, 1994; Bana e Costa et al., 2005), MAUT
(Keeney and Raiffa, 1976), SMART (Edwards, 1977; Von Winterfeldt and Edwards, 1986), TOP-
SIS (Hwang and Yoon, 1981) - as well as in methods based on fuzzy integrals (Grabisch, 1996;
Grabisch and Labreuche, 2005). A second advantage is that indifference and preference thresholds
can be taken into account when modeling the imperfect knowledge of data, which is impossible in
the previous mentioned methods.

When using an ELECTRE-type method (whatever the method considered), the criterion fam-
ily F must be designed so that there is no significant interaction between any criterion pairs. By
definition, we say that there is significant interaction between two criteria if links (whatever their
nature) exist between these criteria that must be taken intoaccount to support the validity, credi-
bility, or intensity of the comprehensive preference relationships built by the model (based onF)
to clarify the decision. In fact, fuzzy integral-based methods were introduced in decision aiding
to allow such interactions to be taken into account. This article proposes and extends ELEC-
TRE methods that allow certain types of interactions to be taken into account very concretely.
Specifically, this paper extends the notion of concordance,as it has been defined for ELECTRE
methods (see Figueira et al., 2005), to three particular types of interaction, designated here as
mutual strengthening, mutual weakening, and antagonistic.

The rest of this paper is organized as follows. Section 2 provides two examples to clarify
the reader’s understanding of the three types of interactions that can occur in real-world decision-
making situations. Section 3 introduces the fundamental concepts, definitions, and notations,
and reviews the general notions of comprehensive concordance index as well as its fundamental
properties. Section 4 defines the three types of interactionconsidered in this paper, as well as
how the decision-maker (DM) can assign numerical values to the parameters characterizing these
interactions. Section 5 presents an extension of the concordance index, starting with the simplest
case in which only quasi criteria are considered, and then moving towards the more complex case
in which pseudo criteria are considered. In Section 6, the examples provides in Section 2 are
discussed in order to assess the contribution of our extension. Section 7 compares our method
with Choquet integral method to evaluate how the two approaches take the interactions between
criteria into account. The last section offers our conclusions and lines for future research.
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2 Illustrative Examples

This section provides two examples in order to clarify the effects of the different interactions dealt
with in this paper. These effects generate additional information that must be taken into account
in the concordance indices. (Section 6 offers a more detailed discussion of how such additional
information can be modeled.) In the criterion descriptions, [min] is assigned to the criteria to be
minimized and[max] to the criteria to be maximized.

2.1 Choosing a site for a new hotel construction project

In this example, a site must be selected for a new hotel, whichbelongs to a multinational group,
in a city where the group is not yet established. Suppose thata consulting company (henceforth,
called the analyst) was asked to support that decision-making process of the CEO of this group
(henceforth, called DM), and that this analyst and the decision-maker’s representative (henceforth,
called DMR) decided to use an ELECTRE-type method. To this end, a family of five criteria
(g1−g5) is built:

g1: land purchasing and construction costs (investment costs) [min];

g2: annual operating costs (annual costs)[min];

g3: personnel recruitment possibilities (recruitment)[max];

g4: target client perceptions of the city district (image)[max];

g5: facility of access for the target clients (access)[max].

Indifference and preference thresholds (see Section 3) areassociated to each one of these
criteria. For the first two criteria, which are quantitative, these thresholds model the “approximate”
character of the financial evaluations, and for the three other criteria, the unavoidable arbitrariness
of the value due to the subjectivity of purely ordinal evaluations. These criteria do not have the
same importance for the DMR. In order to represent these differences, intrinsic relative weights
k j , j = 1, . . . ,5, are associated to the corresponding criteria in the aggregation procedure, using
the SRF (acronym of Simos-Roy-Figueira) technique and software by Figueira and Roy (2002).
When considering two criteria in SRF, the value of each weight is fixed without taking into account
the impact that the other criterion weight can have independently of whether or not belongs to the
concordant coalition; in other words, all the possible interactions between criteria are abstracted.

The following tables given information that would allow theDMR to see how the weights
intervene in the comparison of two sites.

a) The comparison of sitea with the remaining three sitesb, c, andd, in terms of the two
financial criteriag1 andg2, is shown in Table 1.
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b c d
g1 a is better thanb a is worse thanc a is better thand
g2 a is worse thanb a is better thanc a is better thand

Table 1: Evaluations of the three sites with respect to the financial criteria

According to the classic definition of the concordance index(see Section 3), the role that
criteria g1 andg2 should have for supporting the answer to the assertion “a is at least as
good asb (or c or d)” is characterized by the following weights,

k1 in the comparison withb,

k2 in the comparison withc,

k1 +k2 in the comparison withd.

Given the information presented in Table 1, the DMR considers the weightsk1 andk2 as-
signed to criteriag1 andg2 appropriate, when only one criterion,g1 org2, supports a decision
that one action is better than another one. However, he/she judges that the sumk1+k2 is not
sufficient to characterize the role of this criteria pair when both supports the decision that
one action is better than another one, because in this case each criterion is strengthened by
the other given the degree of complementarity between them.The comparisons provided
by the DMR about actionsa, b, c, andd express his/her conviction that, if one action is
better than another one with respect to criteriag1 andg2 conjointly, it would be interesting
to be able to take this mutual strengthening effect into account. As this reasoning shows,
the classic concordance index is not able to take such a mutual strengthening effect into
account (for an illustrative example see Section 6). This effect can be taken into account by
increasing the weightsk1 andk2 for the criteriag1 andg2, respectively in the concordance
index of the assertion “a is at least as good asd”, when both criteria intervene conjointly to
make the assertion valid. In the following sections, the amount that must be added tok1+k2

to model this mutual strengthening effect is denotedk12 = k21.

b) The comparisons of sitea with sitesb, c, d′ in terms of the two purely ordinal criteria,g4

andg5, are presented in Table 2.

b c d′

g4 a is better thanb a is worse thanc a is better thand′

g5 a is worse thanb a is better thanc a is better thand′

Table 2: Evaluations of three sites with respect to the imageand access criteria

Given the information presented in Table 2, the DMR considers the weightsk4 andk5 as-
signed to criteriag4 andg5 appropriate, when only one criterion,g4 org5, supports a decision
that one action is better than another one. However, he/she judges that the sumk4 + k5 is
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too high to characterize the role of this criteria pair when both supports the decision that
one action is better than another one, because in this case each criterion is weakened by
the other due to the degree of redundancy between them. The comparisons provided by the
DMR about actionsa, b, c, andd′ express his/her conviction that, if one action is better
than another one with respect to criteriag4 andg5 conjointly, it would be interesting to be
able to take this mutual weakening effect into account. As this reasoning shows, the classic
concordance index is not able to take such a mutual weakeningeffect into account (for an
illustrative example see Section 6). This effect can be taken into account by decreasing the
weightsk4 andk5 for the criteriag4 andg5, respectively, in the concordance index of the
assertion “a is at least as good asd′”, when both criteria intervene conjointly to make the
assertion valid. In the following sections, the amount thatmust be subtracted fromk4 + k5

to model this mutual weakening effect is denotedk45 = k54.

2.2 Launching a new digital camera model

In this example, a manufacturer wants to introduce a new digital camera model on the market. As
in the previous example, we assume that the DMR and the analyst decided to use an ELECTRE-
type method. For this purpose a family of seven criteria (g1−g7) is built:

g1: purchasing costs (cost)[min];

g2: weaknesses (fragility)[min];

g3: user friendliness of the controls (workability)[max];

g4: image quality (image)[max];

g5: aesthetics[max];

g6: volume[min];

g7: weight [min].

As in the previous example and for the same reasons, indifference and preference thresholds,
as well as weights, were associated to each one of the seven criteria. In discussion, the DMR and
the analyst must again decide how the weights of the criteriacost (g1) and fragility (g2) should
intervene in the comparison of the possible actions or camera models. A digital camera modela
can be compared to the remaining modelsb, c, andd, according to these two criteria (g1 andg2),
as is shown in Table 3.

b c d
g1 a is better thanb a at least as good asc a is better thand
g2 a is better thanb a is better thanc a is worse thand

Table 3: Evaluation of the models with respect to cost and fragility
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According to the classic definition of the concordance index(see Section 3), the role that
criteriag1 andg2 should play in supporting the assertion “modela is at least as good as modelb
(or c or d)” is characterized by the following weights,

k1 +k2 in the comparison withb,

k2 in the comparison withc,

k1 in the comparison withd.

The value of each of these weights was set without taking intoaccount the impact that the other
criterion’s weight could have independent of whether or notit belongs to the concordant coalition;
in other words, all the possible interactions between criteria are abstracted. Given the information
in Table 3, the DMR considers that weightsk1 andk2 adequately characterize the role these two
criteria should play when comparinga with b anda with c; however, he/she considers that the
same is not true when comparinga with d. Based on a customer survey, it seems that when one
model is less fragile than another, the benefit derived from the lower cost is partially masked by
the fact the model is less fragile. This phenomenon can be modeled by decreasing the weight of
criteriong1 in the concordance index of the assertion “a is at least as good asb”. In the following
sections, the quantity that must be subtracted fromk1 to take into account this antagonistic effect
(i.e., masking effect) of criteriong2 with respect to criteriong1 is denotedk′12.

Please note that if the DMR considers that the role ofg2 is adequately taken into account by
the weightk2 in the concordance index of the assertion “a is at least as good asc”, nothing can
make him/her consider the possibility of an antagonistic effect of g1 with respect tog2. On the
other hand, if the results of the customer survey justifies taking such an antagonism into account,
the quantityk′21 that must be subtracted fromk2 to model this interaction effect could be different
from k′12. In other words, there is no symmetry between the two situations.

3 Concepts: Definitions and notation

This section presents some elementary concepts, definition, and the notation used in the rest of
this paper. As for the key concepts and the main features concerning ELECTRE methods (the
context in which they are relevant, modeling with an outranking relation, their structure, the role of
criteria, and how to account for imperfect knowledge) see Figueira et al. (2005). A comprehensive
treatment of ELECTRE methods may be found in Roy and Bouyssou(1993) and Vincke (1992).
Much of the theory developed on this field is presented in these books.

3.1 Basic data

The basic data of a multiple criteria problem is composed of aset or family of coherent criteria, a
set of actions, and an evaluation matrix. Let,

- F = {g1,g2, . . . ,gi , . . . ,gn} denote a family or set ofcriteria; for the sake of simplicity we
shall use alsoF as the set of criteria indices (the same will apply later on for subsets ofF);
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- A = {a,b,c, . . .} denote a finite set ofactionswith cardinalitym;

- gi(a) ∈ Ei denote theevaluationof actiona on criteriongi , for all a∈ A andi ∈ F, whereEi

is the scale associated to criteriongi (no restriction is imposed to the scale type).

In what follows it is assumed that all the criteria are to be maximized, which is not a restrictive
assumption.

3.2 Binary relations

When comparing two actionsa andb, the following comprehensive binary relations can be defined
on the setA. For a pair(a,b) ∈ A×A let,

- P denote thestrict preferencerelation;aPbmeans that “a is strictly preferred tob”;

- I denote theindifferencerelation;aIb means that “a is indifferent tob”;

- Q denote theweak preferencerelation;aQbmeans that “a is weakly preferred tob, which
expresses hesitation between indifference (I ) and preference (P);

- Sdenote theoutrankingrelation;aSbmeans that “a outranksb” or more precisely that “a is
at least as good asb”. Note that,S= I ∪Q∪P.

For a given criteriongi , the same interpretation of the above binary relations is valid, but now
these relations are called partial binary relations,Pi, Ii , Qi , andSi , respectively.

3.3 The notion of pseudo criterion

The concept of pseudo criterion is based on the definition of two preference parameters, called
thresholds. Let

- qi(gi(a)) denotes theindifference thresholdfor criteriongi , for all a∈ A andi ∈ F ;

- pi(gi(a)) denotes thepreference thresholdfor criteriongi , for all a∈ A andi ∈ F.

such thatpi(gi(a)) ≥ qi(gi(a)), for all gi(a) ∈ Ei anda∈ A.

Definition 1 (pseudo criterion). A pseudo criterion is a function gi associated with the two
threshold functions qi(gi(a)) and pi(gi(a)) satisfying the following condition, for all a∈ A (Roy,
1991, 1996): gi(a) + pi(gi(a)) and gi(a) + qi(gi(a)) are non-decreasing monotone function of
gi(a).

By definition, for all pairs(a,b) ∈ A×A with gi(a) ≥ gi(b),

6



aIib ⇔ gi(a) ≤ gi(b)+qi(gi(b));

aQib ⇔ gi(b)+qi(gi(b)) < gi(a) ≤ gi(b)+ pi(gi(b));

aPib ⇔ gi(b)+ pi(gi(b)) < gi(a).

Definition 2 (quasi criterion). If, qi(gi(a)) = pi(gi(a)), for all a ∈ A, then gi is called a quasi
criterion. It is a particular case of a pseudo criterion which is also considered in the rest of the
paper. For a quasi criterion there is no ambiguity zone, thatis, there is no weak preference Qi.

In what followsC(aTb) represents the coalition of criteria in favor of the assertion “aTb”,
whereT ∈ {P,Q,S}

3.4 The criteria weights and the concordance index

In ELECTRE methods, therelative importance coefficientsattached to the criteria refer tointrinsic
weights. For a given criteriongi , the weightki can be interpreted as its voting power when it
contributes to the majority which is in favor of an outranking; it is not a substitution weight. For
more details about the question on how to attribute numerical values to the parameters which must
reflect the relative importance of criteria, see Figueira and Roy (2002), Mousseau (1993, 1995)
and Roy and Mousseau (1996).

ELECTRE Multiple Criteria Aggregation Procedures (MCAPs)are based on aconcordance
index c(a,b) which is used both to validate the assertion “a outranksb” and/or to give a measure
of the credibility of such an assertion. The concordance index can be defined as follows,

c(a,b) = ∑
i∈C(aSb)

ki

K
, where K = ∑

i∈F

ki (1)

where,C(aSb) represents the coalition of criteria in favor of the assertion “a outranksb”, whenF
if composed of quasi criteria.

WhenF contains at least a pseudo criterion, this index should be rewritten in the following
way,

c(a,b) = ∑
i∈F

ki

K
ci(a,b) (2)

where,
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ci(a,b)=



































1, if gi(a)+qi(gi(a)) ≥ gi(b), (aSib),

gi(a)+ pi
(

gi(a)
)

−gi(b)

pi
(

gi(a)
)

−qi
(

gi(a)
) , if gi(a)+qi(gi(a)) < gi(b) ≤ gi(a)+ pi(gi(a)), (bQia),

0, if gi(a)+ pi(gi(a)) < gi(b), (bPia).
(3)

It is easy to see that whenF is composed of quasi criteria, index(2) becomes(1).

Let C̄(bPa) denote the complement ofC(bPa). It should be remarked that whenF comprises
only quasi criteriaC̄(bPa) = C(aSb); if F is composed of at least one pseudo criterionC̄(bPa) =
C(aSb)∪C(bQa). In both cases this set represents the coalition of all the criteria which are not
strongly opposed to the assertionaSb(let us recall thatbQa is not a strong opposition).

3.5 Properties ofc(a,b)

The following properties ofc(a,b) hold for all pairs(a,b) ∈ A×A,

Boundary conditions: 0≤ c(a,b) ≤ 1.

Monotonicity : c(a,b) is a monotonous non-decreasing function of∆i = gi(a)−gi(b), for
all i ∈ F.

Continuity : if pi(gi(a)) > qi(gi(a)), for all i ∈ F and a∈ A, then c(a,b) is a continuous
function of both gi(a) and gi(b).

The proof of the boundary conditions is obvious. The proof ofmonotonicity is based on the
fact that, for eachi, ci(a,b) has the same property. Continuity is not valid for quasi criteria. The
proof for the case of pseudo criteria is also based on the factthat, for eachi, ci(a,b) has the same
property.

4 Types of interactions considered

The above formulae (1) and (2) do not take any type of dependency between the considered crite-
ria into account. Very often, this is justified because the formulae are used to deal with a structural
dependence related to various points concerning distinct stakeholders (Roy and Bouyssou, 1993).
For the sake of the clarity, a coherent criteria family must be defined so as to reduce other types of
dependency as much as possible (see, for example, Bisdorff,2001). It is also necessary to com-
pletely remove any dependencies derived from dispersion orfrom a classical utility approach (Roy
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and Bouyssou, 1993). Consequently, from a practical point of view, the dependencies that really
need to be taken into account are not numerous and in general concern only criteria pairs. Consid-
ering criteria triples or quadruples and so on would be too complicated to be effective in a decision
aiding process because formulating them would involve so many problems of interpretation and
comprehension that their expected added value would vanish(see Roy, 2007).

Therefore, we consider the cases where the only dependencies between criteria which deserve
to be taken into account in MCAPs are related to interactionsbetween criteria pairs. In this paper
we are interested in the situations in which the interactions can be modeled using one of the three
interaction types presented below. These definitions are modifications of formulae (1) and (2).
The conditions in which these modifications take place are related to a given interaction type. This
work is based on the research of Greco and Figueira (2003), inwhich similar interaction types
can be found. Roy (2007) provides a more general formulationof the three types of interaction
proposed in this paper, which is independent of the ways the interactions are taken into account in
the concordance index.

4.1 Definitions

This section provides the definitions of the three interaction types.

a) Mutual strengthening effect
If criteria gi andg j both strongly, or even weakly, support the assertionaSb(more precisely,
gi ,g j ∈ C̄(bPa)), we consider that their contribution to the concordance index must be larger
than the sum ofki +k j , because these two weights represent the contribution of each of the
two criteria to the concordance index when the other criterion does not supportaSb. We
suppose that the effect of the combined presence ofgi andg j among the criteria supporting
the assertionaSbcan be modeled by a mutual strengthening coefficientki j > 0, which in-
tervenes algebraically inc(a,b). (For an example, see the interaction betweeng1 andg2 in
Section 2.1.) Please note thatki j = k ji .

b) Mutual weakening effect
If criteria gi and g j both strongly, or even weakly, support the assertionaSb (more pre-
cisely,gi ,g j ∈ C̄(bPa)), we consider that their contribution to the concordance index must
be smaller than the sum ofki + k j , because these two weights represent the contribution of
each of the two criteria to the concordance index when the other criterion does not sup-
port aSb. We suppose that this effect can be modeled using a mutual weakening coefficient
ki j < 0, which intervenes algebraically inc(a,b). (For an example, see the interaction be-
tweeng3 andg4 in Section 2.1.) Please note thatki j = k ji .

c) Antagonistic effect
If criterion gi strongly, or weakly, supports the assertionaSband criteriongh strongly op-
poses this assertion, we consider that the contribution of the criteriongi to the concordance
index must be smaller than the weightki that was not considered in cases in whichgh does
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not belong toC(bPa). We suppose that this effect can be modeled by introducing anan-
tagonism coefficientk′ih > 0, which intervenes negatively inc(a,b). (For an example, see
the “cost” and “fragility” criteria in Section 2.2., where “cost” is gi and “fragility” is gh.)
Please note that the presence of an antagonism coefficientk′ih > 0 is compatible with both
the absence of antagonism in the reverse direction (k′hi = 0) and the presence of a reverse
antagonism (k′hi > 0).

The antagonism effect does not double the influence of the veto effect; in fact, they
are quite different. If criteriongh has a veto power, it will always be considered, regardless
of whethergi belongs to the concordant coalition. The same is not true forthe antagonism
effect, which occurs only when the criteriongi belongs to the concordant coalition.

4.2 Practical aspects

The four-step procedure presented in this section shows hownumerical values can be assigned to
the parameters introduced below in order to characterize the mutual strengthening, mutual weak-
ening, and the antagonistic effects. The parameters were designed so that these effects could be
taken into account in the ELECTRE methods that use of the concordance index, as mentioned in
Section 3. The four-step procedure is used in the context of aconstructive perspective when using
ELECTRE methods rather than a descriptive one (cf. Roy, 1993, 2005, 2007).

Step 1 As is traditional in the ELECTRE method, step 1 assigns numerical values to the intrinsic
weightski , i = 1, . . . ,n. The revised “pack of cards” method can be used for such a purpose
(see SRF software by Figueira and Roy, 2002). The analyst should, however, point out to the
DMR that the value of the relative weightki should be set without taking into account the
impact that certain criteria, regardless of whether they belong to the concordant coalition,
could have. In other words, the “cards” should be ranked ignoring all the possible kinds of
inter-criteria interaction (cf. Section 2).

Step 2 The analyst should ask the DMR about the possible interactions that he/she thinks must
be taken into account. In order to make sure that the DMR has a good understanding of
the interaction effects, the analyst can use illustrative examples like the ones presented in
Section 1. Then, considering criteriong1 and reviewing the remaining criteriag2,g3, . . . ,gn,
it should be easy (and relatively quick), given the very nature of the criteria, to recognize:

- That considering an interaction betweeng1 and another criterion is not justified, or

- That an interaction betweeng1 and at least one of the remaining criteria must be con-
sidered. In this case, it is also necessary to define which kind of interaction exists:
self-strengthening, mutual weakening, or antagonistic. For our purposes here, we as-
sume that antagonistic interaction excludes the presence of the other two types, in
which case, the sign of the interaction(s) must also be defined (cf. 4.1c).

This procedure is repeated to consider the possible interactions betweeng2 andg3, . . . ,gn,
then betweeng3 andg4, . . . ,gn, and, finally betweengn−1 andgn.
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If the criteria family is appropriately designed, the number of pairs/ordered pairs for
which an interaction effect can be defined should be rather very small.

Step 3 A numerical value is assigned to the interaction coefficientassociated with each pair identi-
fied in the previous step. As stated in the coefficients’ definition (cf. Sections 2 and 4.1), the
larger their absolute value, the more important the interaction effect. By definition, these
coefficients are defined, such that:

If there is a mutual strengthening or a mutual weakening effect between criteria gi et gj ,
then the relative weights of these two criteria in c(a,b) should be ki + k j + ki j instead of
ki +k j (cf. Section 3) as soon as aSib and aSjb is found.

If criterion gh has an antagonistic effect with respect to criterion gi , then the relative weight
of criterion gi in c(a,b) should be ki − k′ih instead of ki (cf. Section 3) as soon as aSib and
bPha is found.

These definitions should be considered to support the analyst’s position on the appropriate
value of each interaction coefficient to take the importanceof the effect the DMR considers
appropriate (cf. Step 2) into account in the model. Let use review the examples presented
in Section 2 to show how the analyst should proceed.

Case 1 (mutual strengthening effect): cf. 2.1a, criteriag1 andg2. Suppose that when using
SRF the result isk1 = 5 andk2 = 4, and thusk1 + k2 = 9. Since there is a mutual
strengthening effect, the relative weights of these two criteria should be larger than 9,
when comparing the two sitesa andd (cf. Table 1). The analyst can ask the DMR to
set the value to be replaced to 9 in this comparison in order toadequately model the
interaction that the DMR wants to take into account. If the answer is 12, for example,
the analyst should conclude thatk12 = 3.

Case 2 (mutual weakening effect): cf. 2.1b, criteria g4 and g5. Suppose that when using
SRF the result isk4 = 3 andk5 = 3, and thusk4 + k5 = 6. Since there is a mutual
weakening effect, the relative weights of these two criteria should be lower than 6,
when comparing the two sitesa andd′ (cf. Table 2). The analyst can ask the DMR to
set the value to be replaced to 6 in this comparison in order toadequately model the
interaction that the DMR wants to take into account. If the answer is 4, for example,
the analyst should conclude thatk45 = −2.

Case 3 (antagonistic effect): cf. 2.2, criteriag1 andg2. Suppose that when using SRF the
result isk1 = 6 andk2 = 4, and thusk1 + k2 = 10. Since criteriong2 is antagonistic
with respect tog1, the weight should be lower than 6, when comparing two digital
camera modelsa andd (cf. Table 3). The analyst can ask the DMR to set the value to
be replaced to 6 in this comparison in order to adequately model the interaction that
the DMR wants to take into account. If the answer is 3.5, for example, the analyst
should conclude thatk′12 = 2.5.

11



Please note that the procedure followed for the latter case is a little bit different from the
other two cases, which only underlines the difference between the antagonistic effect and
the mutual strengthening and mutual weakening effects. This difference is connected to the
fact that whenk′ih 6= 0, it is also possible to havek′hi = 0 or k′hi 6= 0 (cf. 4.1 c), without
requiring thatk′ih = k′hi.

The antagonistic effect that can exist between two criteriagi andgh can be formally
taken into account as a mutual strengthening effect betweenthese two criteria. In this case,
the initial weightski andkh, obtained using SRF, should be replaced with the valueski −k′ih
andkh−k′hi respectively, such thatkih = k′ih +k′hi. However, this ploy, which is very difficult
for those who use it, does not prevent the antagonistic effect from being used to define the
valuesk′ih andk′hi. In addition, as will be shown at the end of Section 5, this equivalence is
not valid for pseudo-criteria.

Step 4 In this step the net balance condition is checked, because, in very specific cases, an improper
result can mean a return to the previous step to modify the value assigned to some interaction
coefficients.

Let ki j be the negative value of the interaction coefficient used to characterize a mutual
weakening effect. Since the interaction can, at most, render the contribution of criteriongi

to c(a,b) null whenaSib andaSjb, the following should be true:

ki −|ki j | ≥ 0

In the same way, since this interaction can, at most, render the contribution of criteriongi

to c(a,b) null whenaSib andbPha, the interaction coefficientk′ih that allows an antagonism
effect to be characterized should be defined such that:

ki −k′ih ≥ 0

Suppose the two previous interactions, where criteriongi is present, were considered.
WhenaSib, aSjb, aSib, andbPha simultaneously occurs, the contribution of the three criteria
to c(a,b) is equal to:

ki −k′ih −|ki j |

This quantity must be positive since the two interactions taken into account cannot
render the contribution ofgi to c(a,b) non negative. Thus, in Step 3, the analyst should
check whether or not the values assigned to the interaction coefficients fulfill the previous
inequalities. However, it does not imply that this quantityshould be non-negative. The dif-
ferent types of interaction considered here withgi can be present not only with one criterion
g j or gh, but with two or even, exceptionally, with three or more. Thus the analyst should
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check that, for each criteriongi that interacts with several criteria, the following net balance
condition is fulfilled:

Condition (positive net balance). For all i ∈ F,
(

ki

)

−
(

∑
{i, j}:ki j <0

|ki j |+∑
h

k′ih
)

> 0

If a criterion gi for which this inequality is not fulfilled, the values of the interaction
coefficients shown in brackets should be questioned. Clearly, the number of pairs of inter-
action criteria is generally small, thus the inequalities that must be verified, if any exist, are
also quite few.

5 Extensions of the concordance index

This section is devoted to the definition of the concordance index, first whenF is composed of
quasi criteria, and then when at least one criterion is a pseudo criterion.

Before presenting the formulae it is useful to introduce thefollowing additional notation. Let,

- L(a,b) denote the set of all pairs{i, j} such thati, j ∈ C̄(bPa);

- O(a,b) denote the set of all ordered pairs(i,h) such thati ∈ C̄(bPa) andh∈C(bPa).

5.1 The quasi criterion model

Let us recall that a quasi criterion is a pseudo criterion such thatqi(gi(a)) = pi(gi(a)), for all a∈A.

5.1.1 Definition ofc(a,b)

The comprehensive concordance index, whenF is composed of quasi criteria, is defined as fol-
lows,

c(a,b) =
1

K(a,b)

(

∑
i∈C̄(bPa)

ki + ∑
{i, j}∈L(a,b)

ki j − ∑
(i,h)∈O(a,b)

k′ih
)

(4)

where,

K(a,b) = ∑
i∈F

ki + ∑
{i, j}∈L(a,b)

ki j − ∑
(i,h)∈O(a,b)

k′ih

Note that, in general,K(a,b) 6= K(b,a).

As for the new definition ofc(a,b), the following properties should be fulfilled
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Coherence: The definition of c(a,b) as in formula (4) should be coherent with the classical
definition of the c(a,b) as it was presented in Section 3.

It means that, when we compare two actionsa andb and when there is no interaction effect
regarding this comparison, the newc(a,b) should be the same as the one of Section 3. The
proof is quite obvious since when there is no interaction effect,L(a,b) = /0 andO(a,b) = /0,
and consequentlyc(a,b) in formula (4) becomes,c(a,b) = 1

K(a,b) ∑i∈F ki with K(a,b) = K.

Boundary conditions: 0≤ c(a,b) ≤ 1.

As for the proof let us consider separately the two inequalities,

1. c(a,b) ≥ 0

This inequality derives from the definition ofc(a,b) and the net balance condition; it
is fulfilled for everyK(a,b). The proof is provided in Theorem 1.

2. c(a,b) ≤ 1

Two cases have to be considered,

(a) C̄(bPa) = F (all the criteria belong to the concordant coalition)
It representsunanimityand the index must be equal to one,

c(a,b) = 1

Since unanimity leads to the absence of antagonism interaction effects,c(a,b) can
be rewritten as follows,

c(a,b) =
1

K(a,b)

(

∑
i∈F

ki + ∑
{i, j}∈L(a,b)

ki j

)

= 1 (5)

(b) C̄(bPa) 6= F (at least one criterion belongs toC(bPa))
In the previous case, the antagonism coefficients were not present. As soon as
these coefficients appear inc(a,b) it becomes strictly lower than 1, i.e.,c(a,b) <
1.

Remark 4. If F is composed of quasi criteria, the function c(a,b) presents a discontinuity when
gi(a) + qi(gi(a)) becomes strictly lower than gi(b). In the case of pseudo criteria, pi(gi(a)) >
qi(gi(a)), for all i ∈ F and a∈ A, this discontinuity will not occur.

5.1.2 Main theorem

Let us consider the pair(a,b) ∈ A×A and calculate the following algebraic sum,

S(a,b) = ∑
i∈C̄(bPa)

ki + ∑
{i, j}∈L(a,b)

ki j − ∑
(i,h)∈O(a,b)

k′ih
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Lemma 1. For all (a,b) ∈ A×A and for all f∈ F, S(a,b) is a monotone non-decreasing function
of ∆ f and S(a,b) ≥ 0.

Proof.
The proof of this lemma is based on the fact that, if the difference∆ f decreases, eitherS(a,b) remains constant or it
decreases. Two cases should be considered.

1. Criterion f belongs toC(bPa).
If f belongs toC(bPa) it cannot belong tōC(bPa). Consequently, the pair{i, f } will not belong toL(a,b). The
decreasing of∆ f does not affect neither the first nor the second summations inthe formula ofS(a,b). Whatever,
it will occur with the existence or not of ordered pairs(i, f ) ∈ O(a,b), the decreasing of∆ f has no influence on
the third summation. Consequently,S(a,b) remains constant.

2. Criterion f belongs toC̄(bPa).

Two subcases have to be considered,

(a) Criterion f stills remain inC̄(bPa).
The decreasing of∆ f will not move f from C̄(bPa). Hence, the three summations in the definition of
S(a,b) will not be affected. Then,S(a,b) remains constant too.

(b) Criterion f moves toC(bPa).
The decreasing of∆ f movesf from C̄(bPa) toC(bPa). This moving has some implications on the result.
The new value ofS(a,b) will become,

S(a,b)New= S(a,b)Old −
(

kf + ∑
{ f , j}∈L(a,b)

kf j − ∑
( f ,h)∈O(a,b)

k′f h

)

The quantity in between big parenthesis is necessarily non-negative according to the net balance condi-
tion. Consequently,S(a,b) cannot increase.

The proof of the monotonicity ofS(a,b) is complete. Let us now show thatS(a,b) ≥ 0.
If C̄(bPa) = ∅, thenS(a,b) = 0. Suppose that we could haveS(a,b) < 0. This implies that at least one criterionf

does not belong tōC(bPa) 6= ∅. Consider that there exists at least one criterion inC̄(bPa). If for all f in C̄(bPa), ∆ f is
forced to decrease till̄C(bPa) = ∅, thenS(a,b) cannot increase. Contradiction!
The proof is now complete.

�

Remembering that̄C(bPa) can be any subsetE ⊆ F, the non-negativity ofS(a,b) proved in
Lemma 1 can be rewritten as follows, for allE ⊆ F,

∑
i∈E

ki + ∑
{i, j}∈E

ki j − ∑
i∈E,h∈F\E

k′ih ≥ 0

Before introducing the main result it is important to establish also the following lemma.

Lemma 2. For all (a,b) ∈ A×A and for all f ∈ F, c(a,b) defined as in (4) is a monotone non-
decreasing function of∆ f if and only if the non-negativity summation condition is fulfilled.

Proof.
The proof of this lemma is based on the fact that, if the difference∆ f decreases, eitherc(a,b) remains constant or it
decreases. Two cases should be considered.
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1. Criterion f belongs toC(bPa).
If f belongs toC(bPa) it cannot belong simultaneously tōC(bPa). Consequently, the pair{i, f } will not pertain
to L(a,b). The value ofK(a,b) does not change. Decreasing of∆ f does not affect neither the first nor the
second summations in (4). Whatever, it will occur with the existence or not of ordered pairs(i, f )∈ O(a,b), the
decreasing of∆ f has no influence on the third summation. Consequently,c(a,b) remains constant.

2. Criterion f belongs toC̄(bPa).

Two subcases have to be considered,

(a) Criterion f stills remain inC̄(bPa).
Decreasing∆ f will make a move off from C̄(bPa) to another coalition. Again, the value ofK(a,b) does
not change. Hence, the three summations will not be affected. Then,c(a,b) remains constant too.

(b) Criterion f moves toC(bPa).
When decreasing∆ f , f moves fromC̄(bPa) toC(bPa). This moving has some implications on the result.
The old value ofc(a,b), i.e., before∆ f decreases is as follows,

c(a,b)Old =
1

K(a,b)Old

(

∑
i∈C̄(bPa)Old

ki + ∑
{i, j}∈L(a,b)Old

ki j − ∑
(i,h)∈O(a,b)Old

k′ih

)

where,

K(a,b)Old = ∑
i∈F

ki + ∑
{i, j}∈L(a,b)Old

ki j − ∑
(i,h)∈O(a,b)Old

k′ih

where,C̄(bPa)Old, L(a,b)Old, andO(a,b)Old represent the sets̄C(bPa), L(a,b), andO(a,b), respectively,
before decreasing∆ f . The new value ofc(a,b), i.e., after decreasing∆ f is as follows,

c(a,b)New=
1

K(a,b)New

(

∑
i∈C̄(bPa)New

ki + ∑
{i, j}∈L(a,b)New

ki j − ∑
(i,h)∈O(a,b)New

k′ih

)

where,C̄(bPa)New, L(a,b)New, andO(a,b)New represent the sets̄C(bPa), L(a,b), andO(a,b), respec-
tively, after decreasing∆ f . Now, we have,

C̄(bPa)New= C̄(bPa)Old \{ f }

L(a,b)New= L(a,b)Old \
{

{i, f } : i ∈ C̄(bPa)Old and ;i 6= f
}

O(a,b)New= O(a,b)Old \
{

( f ,h) : h∈C(bPa)Old
}

∪
{

(i, f ) : i ∈C(bPa)New
}

where,C(bPa)Old andC(bPa)New represent the setC(bPa) before and after, respectively,∆ f decreases,
such that,

C(bPa)New= C(bPa)Old ∪{ f }

Now, if we compare the numerator ofc(a,b)New, NNew, with the numerator ofc(a,b)Old, NOld, the
following difference between them occurs,

NOld −NNew= kf + ∑
i∈C̄(bPa)New

kf i − ∑
h∈C(bPa)Old

k′f h + ∑
i∈C̄(bPa)New

k′i f

Analogously, if we compare the denominator ofc(a,b)New, DNew, with the denominator ofc(a,b)Old,
DOld, the following difference between them occurs,

DOld −DNew= ∆D(a,b) = ∑
i∈C̄(bPa)New

kf i − ∑
h∈C(bPa)Old

k′f h + ∑
i∈C̄(bPa)New

k′i f

Consider the following additional notation,
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α = NNew

β = NNew+ ∑
i∈C(bPa)

ki

γ = ∆D(a,b)

δ = kf

The concordance indicesc(a,b)Old andc(a,b)New can be rewritten as follows,

c(a,b)Old =
α+ γ+δ

β+ γ

and

c(a,b)New=
α
β

Therefore, the monotonicity conditionc(a,b)Old ≥ c(a,b)New becomesα+γ+δ
β+γ ≥ α

β . SinceNNew =

S(a,b), from Lemma 1NNew≥ 0, and consequently,α ≥ 0 too (i). Sinceβ ≥ α (note thatβ−α =

∑i∈C(bPa) ki), β ≥ 0 (ii ). From these conditions, and trough the application of simple algebraic opera-
tions, we get (iii ),

α+ γ+δ
β+ γ

≥
α
β
⇔ (α+ γ+δ)β ≥ (β+ γ)α ⇔ (γ+δ)β ≥ αγ

Taking into account again thatα ≤ β always occurs, thenδ ≥ 0 is sufficient for satisfying the last three
conditions (i), (ii ), and (iii ). Sinceδ ≥ 0 meanskf ≥ 0, this is always true.

The proof is complete.

�

The main result is established in the following theorem.

Theorem 1. Monotonicity and boundary conditions hold for c(a,b) as defined in formula (4).

Proof.
Lemma 2 proves monotonicity. Let us now prove the boundary conditions,

1. c(a,b) ≥ 0
If C̄(bPa) = ∅, thenc(a,b) = 0. Suppose that we could havec(a,b) < 0. This implies that at least one criterion
f does not belong tōC(bPa) 6= ∅. Consider that there exists at least one criterion inC̄(bPa). If for all f in
C̄(bPa), ∆ f is forced to decrease till̄C(bPa) = ∅, thenc(a,b) cannot increase. Contradiction!

2. c(a,b) ≤ 1
From condition (5),c(a,b) = 1, whenC̄(bPa) = F . Suppose that we could havec(a,b) > 1. This implies that
at least one criterionf does not belong tōC(bPa). Consider that there exists at least one criterion that doesnot
belong toC̄(bPa). If for all f , ∆ f is forced to increase tillf becomes an element of̄C(bPa), thenc(a,b) cannot
decrease. Contradiction!

The proof is now complete.

�
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5.2 The pseudo criterion model

When dealing with a pseudo criterion,gi , an ambiguity zone should be taken into account, for all
(a,b) ∈ A×A,

gi(a)+qi(gi(a)) < gi(b) ≤ gi(a)+ pi(gi(a))

5.2.1 Definition ofc(a,b)

The definition ofc(a,b) can be stated in the following manner,

c(a,b)=
1

K(a,b)

(

∑
i∈C̄(bPa)

ci(a,b)ki + ∑
{i, j}∈L(a,b)

Z(ci(a,b),c j (a,b))ki j − ∑
(i,h)∈O(a,b)

Z(ci(a,b),ch(b,a))k′ih
)

(6)
FunctionZ(·, ·) in formula (6) is used to capture the interaction effects in the ambiguity zone. It
should be remarked that in the third summationch(b,a) is always equal to 1.

Remark 5. For the sake of clarity and simplicity, the same function Z(·, ·) is used in both, the
second and the third summations. It would, however, be possible to use different functions.

Let x = ci(a,b) andy = c j(a,b) or y = ch(b,a). Consequently,x,y ∈ [0,1]. FunctionZ(x,y) is
used to get the reduction coefficients forki j andk′ih when, at least one of the arguments ofZ(x,y)
is within the range]0,1[.

What are the properties ofZ(x,y) to guarantee the coherence of formula (6)?

Extreme value conditions: When leaving the ambiguity zonesc(a,b) should regain the
form presented in formula (4). Thus,Z(1,1) = 1 andZ(x,0) = Z(0,y) = 0.

Symmetry: From the fact thatki j = k ji thenZ(x,y) = Z(y,x).

Monotonicity : When the ambiguity diminishes the effect due to the interaction cannot in-
crease. ThenZ(x,y) is anon-decreasing monotone functionof both argumentsx andy.

Marginal impact condition : When the ambiguity diminishes we pass fromx+w to x, the
relative marginal impact of the interactions is bounded from above,

1
w

(

Z(x+w,y)−Z(x,y)
)

≤ 1 x,y,w,x+w∈ [0,1]

We will see the interest of this condition in the proof of Lemma 3.

Continuity : Formula (2) is a continuous function ofgi(a) and gi(b) when pi(gi(a)) >
qi(gi(a)), for all a∈ A. If we want to preserve continuity then it is necessary thatZ(x,y) is
acontinuous functionof each argument.
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Boundary condition: For preserving the net balance condition, it is sufficient thatZ(x,y)≤
min{x,y}.

The boundary condition is a particular case of the marginal impact condition. The proof is as
follows.

1
w

(

Z(x+w,y)−Z(x,y)
)

≤ 1 ⇔ Z(x+w,y)−Z(x,y) ≤ w

Consider now,x = 0

Z(0+w,y)−Z(0,y)≤ w

and, according to the extreme value conditions,

Z(w,y)−0≤ w ⇔ Z(w,y) ≤ w

Now, for symmetry, we get

Z(w,y) ≤ min{w,y}.

Therefore, it is only sufficient to consider the marginal impact condition. However, for the
sake of a better comprehension we keep both conditions; it sounds more intuitive.

Among the multiple forms that can be chosen forZ(x,y), we only present two of them which have
an intuitive and meaningful interpretation.

Z(x,y) = min{x,y};

Z(x,y) = xy.

If x and/or y are equal to 1, both formulae are equivalent. But, whenx andy are both different
from 1, that is, when the two interacting criteria belong to the ambiguity zone, then the impact of
the interaction is weaker withxy than with min{x,y}. Choosing the min{x,y} formula means that
the reduction coefficient is not influenced by what happens inthe other ambiguity zone. For these
reasons the formulaxy seems preferable to min{x,y}.

5.2.2 Extension of the main theorem

This section presents an extension of the previous results when F is composed of at least one
pseudo criterion. The proofs are similar to the ones provided for Lemma 2 and Theorem 1.

Let us consider the pair(a,b) ∈ A×A and calculate the following algebraic sum,

19



S(a,b) = ∑
i∈C̄(bPa)

ci(a,b)ki + ∑
{i, j}∈L(a,b)

Z(ci(a,b),c j (a,b))ki j − ∑
(i,h)∈O(a,b)

Z(ci(a,b),ch(b,a))k′ih

Lemma 3. For all (a,b) ∈ A×A and for all f∈ F, S(a,b) is a monotone non-decreasing function
of ∆ f and S(a,b) ≥ 0.

Proof.
The proof of this lemma is also based on the fact that if the difference∆ f decreases, eitherS(a,b) remains constant or
it decreases. Two cases have to be considered.

1. Criterion f belongs toC(bPa).
For the same reasons as in the absence of pseudo criteria, decreasing∆ f does not affect neither the first nor
the second of the three summations in the definition ofS(a,b). The same holds for the third summation when
there is no ordered pair(i, f ) ∈ O(a,b). If there exist ordered pairs(i, f ) ∈ O(a,b), then decreasing∆ f leads to
cf (b,a) = 1; the third summation will not change. Consequently,S(a,b) remains constant.

2. Criterion f belongs toC̄(bPa).
Now, three subcases have to be considered.

(a) Criterion f belongs toC(aSb).
The decreasing of∆ f does not movesf ; it remains thus inC(aSb). More precisely, the decreasing of∆ f
will not make any change in the three components ofS(a,b), which remains constant.

(b) Criterion f belongs toC(bQa).
After decreasing∆ f , criterion f stills remain inC(bQa), either because it belonged to this coalition
before or because it moved toC(bQa) due to the decreasing of∆ f . All the summations in the definition
of S(a,b) are affected. Let us suppose thatcf (a,b) changes its new value and becomescf (a,b)−∆, with
∆ > 0. We have the following inequality ((i)),

S(a,b)New−S(a,b)Old =

∆kf + ∑
j∈C̄(a,b)

(

Z(cf (a,b)−∆,c j (a,b))−Z(cf (a,b),c j (a,b))
)

kf j+

− ∑
h∈C(bPa)

(

Z(cf (a,b)−∆,ch(b,a))−Z(cf (a,b),ch(b,a))
)

k′f h

≤

∆kf + ∑
j∈C̄(a,b):kf j<0

(

Z(cf (a,b)−∆,c j (a,b))−Z(cf (a,b),c j (a,b))
)

|kf j |+

− ∑
h∈C(bPa)

(

Z(cf (a,b)−∆,ch(b,a))−Z(cf (a,b),ch(b,a))
)

k′f h

Let us remark that for allh∈C(bPa),
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Z(cf (a,b)−∆,ch(b,a))−Z(cf (a,b),ch(b,a)) = −
(

Z(cf (a,b),ch(b,a))−Z(cf (a,b)−∆,ch(b,a))
)

From the marginal impact condition and puttingcf (a,b)−∆ = x, ch(b,a) = y, and∆ = w in the previous
condition we obtain,

1
∆

(

Z(cf (a,b),ch(b,a))−Z(cf (a,b)−∆,ch(b,a))
)

≤ 1

and therefore,

Z(cf (a,b),ch(b,a))−Z(cf (a,b)−∆,ch(b,a)) ≤ ∆

or, in an equivalent way(ii),

Z(cf (a,b)−∆,ch(b,a))−Z(cf (a,b),ch(b,a)) ≥−∆

And, now from this expression we obtain,

∆kf + ∑
j∈C̄(a,b):kf j<0

(

Z(cf (a,b)−∆,c j (a,b))−Z(cf (a,b),c j (a,b))
)

|kf j |+

− ∑
h∈C(bPa)

(

Z(cf (a,b)−∆,ch(b,a))−Z(cf (a,b),ch(b,a))
)

k′f h

≤

∆kf +∆ ∑
j∈C̄(a,b):kf j<0

|kf j |−∆ ∑
h∈C(bPa)

k′f h

)

= −∆
(

kf + ∑
j∈C̄(a,b):kf j <0

|kf j |− ∑
h∈C(bPa)

k′f h

From the net balance condition we have,

kf + ∑
j∈C̄(a,b):kf j<0

|kf j |− ∑
h∈C(bPa)

k′f h ≥ 0

and, therefore, since∆ > 0, we have(iii )

−∆
(

kf + ∑
j∈C̄(a,b):kf j<0

|kf j |− ∑
h∈C(bPa)

k′f h

)

≤ 0

Considering together(i), (ii), and(iii ), we get,

S(a,b)New−S(a,b)Old ≤ 0

and, we can conclude that after decreasing∆ f , S(a,b) cannot increase.
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(c) Criterion f moves toC(bPa).
The decreasing of∆ f will move f to C(bPa). In such a case,cf (a,b)kf can no more be found in the ex-
pression ofS(a,b)New . If there arej such that{ f , j} ∈ L(a,b), then the termsZ(cf (a,b),c j (a,b))kf j will
be removed from the second summation. If there arei such that(i, f )∈O(a,b), thenZ(ci(a,b),cf (b,a))k′i f
will be introduced in the third summation. The new value ofS(a,b), S(a,b)New is equal toS(a,b)Old mi-
nus a certain quantity; it is calculated as follows,

S(a,b)New= S(a,b)Old−

cf (a,b)kf + ∑
{ f , j}∈L(a,b)

Z(cf (a,b),c j (a,b))kf j − ∑
(i, f )∈O(a,b)

Z(ci(a,b),cf (b,a))k′i f

Now, it remains to prove that the quantity between big parenthesis, denoted∆S(a,b), is non-negative.

∆S(a,b) ≥ cf (a,b)kf + ∑
{ f , j}∈L(a,b):kf j <0

Z(cf (a,b),c j (a,b))|kf j |− ∑
(i, f )∈O(a,b)

Z(ci(a,b),cf (b,a))k′i f

which is guarantee by the fact thatZ(x,y) ≤ min{x,y}. Consequently,S(a,b) cannot increase.

The proof of the monotonicity ofS(a,b) is thus complete. The proof ofS(a,b) ≥ 0 can be obtained from the mono-
tonicity of S(a,b) in an analogous way as in the case of quasi criteria.

�

Lemma 4. For all (a,b) ∈ A×A and for all f ∈ F, c(a,b) defined as in (6) is a monotone non-
decreasing function of∆ f .

Proof.
The proof of this lemma is also based on the fact that if the difference∆ f decreases, eitherc(a,b) remains constant or
it decreases. Two cases have to be considered.

1. Criterion f belongs toC(bPa).
For the same reasons as in the absence of pseudo criteria, decreasing∆ f does not affect neither the first nor
the second of the three summations in the numerator of (6). The same holds for the third summation when
there is no ordered pair(i, f ) ∈ O(a,b). If there exist ordered pairs(i, f ) ∈ O(a,b), then decreasing∆ f leads to
cf (b,a) = 1; the third summation will not change. The normalization coefficient,K(a,b), does not change too.
Consequently,c(a,b) remains constant.

2. Criterion f belongs toC̄(bPa).
Now, four subcases have to be considered.

(a) Criterion f belongs toC(aSb) and it remains inC(aSb) after decreasing∆ f .
The decreasing of∆ f does not movef to another coalition. Thus, the decreasing of∆ f will not make
any change in the three components of the numerator ofc(a,b), neither in the normalization coefficient
K(a,b). Consequently,c(a,b) remains constant.

(b) Criterion f moves fromC(aSb) to C(bQa).
After decreasing∆ f , criterion f moves toC(bQa) due to this decreasing. All the summations in the
numerator of (6) are affected. Let us suppose thatcf (a,b) changes its new value and becomescf (a,b)−

∆, with ∆ > 0. Observe that in such a case, the setsC̄(bPa)Old, L(a,b), andO(a,b) remain the same after

22



decreasing∆ f . Let c(a,b) andc(a,b)New denote the values ofc(a,b), before and after decreasing∆ f ,
respectively. These coefficients can be rewritten as follows,

c(a,b)Old =
NOld

DOld
and c(a,b)New=

NNew

DNew

where,

NOld = ∑
i∈C(bPa)

ci(a,b)ki + ∑
{i, j}∈L(a,b)

Z(ci(a,b),c j (a,b))ki j − ∑
(i,h)∈O(a,b)

Z(ci(a,b),ch(b,a))k′ih

DOld = ∑
i∈F

ki + ∑
{i, j}∈L(a,b)

Z(ci(a,b),c j (a,b))ki j − ∑
(i,h)∈O(a,b)

Z(ci(a,b),ch(b,a))k′ih

NNew = NOld −kf ∆− ∑
{ f , j}∈L(a,b)

(

Z(cf (a,b),c j (a,b))−Z(cf (a,b)−∆,c j (a,b))
)

kf j+

+ ∑
( f ,h)∈O(a,b)

(

Z(cf (a,b),ch(b,a))−Z(cf (a,b)−∆,ch(b,a))
)

k′f h

DNew = DOld − ∑
{ f , j}∈L(a,b)

(

Z(cf (a,b),c j (a,b))−Z(cf (a,b)−∆,c j (a,b))
)

kf j+

+ ∑
( f ,h)∈O(a,b)

(

Z(cf (a,b),ch(b,a))−Z(cf (a,b)−∆,ch(b,a))
)

k′f h

Consider the following additional notation,

α = NNew

β = DNew

γ = ∑
{ f , j}∈L(a,b)

(

Z(cf (a,b),c j (a,b))−Z(cf (a,b)−∆,c j (a,b))
)

kf j+

− ∑
( f ,h)∈O(a,b)

(

Z(cf (a,b),ch(b,a))−Z(cf (a,b)−∆,ch(b,a))
)

k′f h

δ = kf ∆

The concordance indices can be rewritten as follows,

c(a,b)Old =
α+ γ+δ

β+ γ
and c(a,b)New=

α
β

From the monotonicity condition,c(a,b)Old ≥ c(a,b)New becomes

α+ γ+δ
β+ γ

≥
α
β

(i)

Note that from the net balance conditionDNew> 0 andDOld > 0, and thereforeβ > 0 andβ+ γ > 0.

Taking into account thatα > 0 andβ+γ > 0, through the application of very simple algebraic operations,
(i) is equivalent to(α+ γ+δ)β ≥ α(β+ γ), from which we obtain

(γ+δ)β ≥ αγ (ii).

Fromβ ≥ α ≥ 0, the inequality(ii) holds ifδ ≥ 0, which is always true.
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(c) Criterion f belongs toC(bQa) and it remains inC(bQa) after decreasing∆ f .
This case is analogous to the previous one becausecf (a,b) changes its new value and becomescf (a,b)−
∆, with ∆ > 0. Thus, when decreasing∆ f , c(a,b) also decreases.

(d) Criterion f moves fromC(bQa) to C(bPa).

Let C̄(bPa)Old, L(a,b)Old, andO(a,b)Old denote the sets̄C(bPa), L(a,b), andO(a,b), respectively, be-
fore decreasing∆ f , and letC̄(bPa)New, L(a,b)New, andO(a,b)New denote the same sets after decreasing
∆ f . We have,

C̄(bPa)New= C̄(bPa)Old \{ f }

L(a,b)New= L(a,b)Old \
{

{ j , f } : j ∈ C̄(bPa)Old \{ f }
}

O(a,b)New= O(a,b)Old \
{

( f ,h) : h∈C(bPa)Old
}

∪
{

(i, f ) : i ∈C(bPa)Old \{ f }
}

Observe also that, in this case, denoting bycf (a,b)Newandcf (b,a)New the value ofcf (a,b) andcf (b,a),
respectively, after∆ f decreases, we have

cf (a,b)New= 0 and cf (b,a)New= 1

Therefore,

c(a,b)New=
NNew

DNew

where,

NNew = NOld −kf ∆− ∑
{ f , j}∈L(a,b)Old

(

Z(cf (a,b),c j (a,b))−Z(cf (a,b)−∆,c j (a,b))
)

kf j+

+ ∑
( f ,h)∈O(a,b)Old

(

Z(cf (a,b),ch(b,a))−Z(cf (a,b)−∆,ch(b,a))
)

k′f h+

∑
j∈C(a,b)Old

Z(c j(a,b),cf (b,a))k′j f

DNew = DOld − ∑
{ f , j}∈L(a,b)Old

(

Z(cf (a,b),c j (a,b))−Z(cf (a,b)−∆,c j (a,b))
)

kf j+

+ ∑
( f ,h)∈O(a,b)Old

(

Z(cf (a,b),ch(b,a))−Z((cf (a,b)−∆,ch(b,a))
)

k′f h+

− ∑
j∈C(a,b)Old

Z(c j(a,b),cf (b,a))k′j f

Sincecf (a,b)New = 0, cf (a,b)− cNew
f (a,b) = cf (a,b) and tanking into account that for allx ∈ [0,1],

Z(x,0) = 0 we can rewriteNNew andDNew as follows.

NNew = NOld −cf (a,b)kf − ∑
{ f , j}∈L(a,b)Old

Z(cf (a,b),c j (a,b))kf j+

+ ∑
( f ,h)∈O(a,b)Old

Z(cf (a,b),ch(b,a))k′f h− ∑
j∈C(a,b)Old\{ f}

Z(c j(a,b),cf (b,a))k′j f

DNew = DOld − ∑
{ f , j}∈L(a,b)Old

Z(cf (a,b),c j (a,b))kf j+

+ ∑
( f ,h)∈O(a,b)Old

Z(cf (a,b),ch(b,a))k′f h− ∑
j∈C(a,b)Old\{ f}

Z(c j(a,b),cf (b,a))k′j f

Consider the following additional notation,
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α = NNew

β = DNew

γ = ∑
{ f , j}∈L(a,b)Old

Z(cf (a,b),c j (a,b))kf j − ∑
( f ,h)∈O(a,b)Old

Z(cf (a,b),ch(b,a))k′f h+

+ ∑
j∈C(a,b)Old\{ f}

Z(c j(a,b),cf (b,a))k′j f

δ = cf (a,b)kf

Thus, we have that

c(a,b)Old =
α+ γ+δ

β+ γ
and c(a,b)New=

α
β

such that from the monotonicity conditionc(a,b)Old ≥ c(a,b)New becomes as follows,

α+ γ+δ
β+ γ

≥
α
β

(iii )

Observe thatβ > 0 andβ+γ > 0. Therefore, through the application of very simple algebraic operations,
(iii ) is equivalent to(α+ γ+δ)β ≥ α(β+ γ), from which we obtain

(γ+δ)β ≥ αγ (iv)

and sinceβ ≥ α ≥ 0, (iv) holds if δ ≥ 0, which is always true.

There is no need to consider the case wheref moves fromC(aSb) to C(bPa) after decreasing∆ f . It results from the
combination of the two cases: movingf fromC(aSb) toC(bQa) and then movingf fromC(bQa) toC(bPa). The proof
is thus complete.

�

Now the main result can be established.

Theorem 2. Boundary conditions, monotonicity, and continuity hold for c(a,b) as defined in
formula (6).

Proof.
Lemma 2 establishes monotonicity. Boundary conditions hold when considering pseudo criteria. And continuity derives
from the fact that,

1. the functionscf (a,b), Z(x,y) are continuous, and

2. the conditionscf (a,b) = 0 if gf (a)+qf (gf (a))−gf (gf (b)) = 0 andZ(0,y) = Z(x,0) = 0 guarantees continuity
when a criterion becomes a member or when it is removed from one of the following sets,̄C(a,b), L(a,b), or
O(a,b).

The proof is thus complete for the general case.

�

We complete this section (cf. end of Step 3 in Section 4.2) by showing that when dealing with
pseudo criteria the antagonistic effect is not mathematically equivalent to mutual strengthening.
Consider two criteriagi andgh and the following three cases:
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a) gi ,gh ∈ C̄(bPa);

b) gi ∈ C̄(bPa) andgh ∈ C(bPa);

c) gh ∈ C̄(bPa) andgi ∈ C(bPa).

Let us consider modeling of casesa), b), andc) in terms of both mutual strengthening, using
the weightski , kk, andkih, and antagonism, using the weightsk̄i , k̄h, k̄′ih, andk̄′hi.

Taking into account modeling in terms of mutual strengthening and considering the numerator
of c(a,b), we have (following the above three cases):

a) kici(a,b)+khch(a,b)+kihZ(ci(a,b),ch(a,b));

b) kici(a,b);

c) khch(a,b).

Taking into account modeling in terms of antagonism and considering the numerator ofc(a,b),
we have (following the above three cases):

a) k̄ici(a,b)+ k̄hch(a,b);

b) k̄ici(a,b)− k̄′ihZ(ci(a,b),ch(b,a));

c) k̄hch(a,b)− k̄′hiZ(ch(a,b),ci(b,a)).

To get an equivalence between modeling in terms of mutual strengthening and antagonism, the
following equations should hold for all the values ofci(a,b) andch(a,b) in the above cases, i.e.,

a) kici(a,b)+khch(a,b)+kihZ(ci(a,b),ch(a,b)) = k̄ici(a,b)+ k̄hch(a,b);

b) kici(a,b) = k̄ici(a,b)− k̄′ihZ(ci(a,b),ch(b,a));

c) khch(a,b) = k̄hch(a,b)− k̄′hiZ(ch(a,b),ci(b,a)).

Notice that the values of the weightski , kh, kih andk̄h, k̄′ih, k̄′hi, ensuring that the above equa-
tions hold, depend on the values ofci(a,b) andch(a,b). This means that there are no weights
ki , kh, kih and k̄h, k̄′ih, k̄′hi giving the same values ofc(a,b) when modeling in terms of mutual
strengthening and when modeling in terms of antagonism, forall the possible values ofci(a,b)
andch(a,b). Therefore, in presence of pseudo criteria, mutual strengthening and antagonism are
not mathematically equivalent.

6 Modeling the interaction effects in the illustrative examples

In this section, the impact on the pairwise comparisons of the three interactions effects illustrated
in Section 2 is shown. When taking such effects into account,the comparisons between actions
can change. In the following sub-sections, it is assumed that there is no veto effect in the pairwise
comparisons of the actions.
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6.1 Choosing a site for a new hotel construction project

Table 4 presents the evaluations of the four sites -a, b, c, d, andd′ - according to the 5 criteria. In
this example,

- The evaluations of criteriong1 (investment costs) are expressed in thousands ofe, des-
ignated Ke. The indifference and the preference thresholds assigned to this criterion are
q1(g1(x)) = 500+0.03g1(x) Ke andp1(g1(x)) = 1000+0.05g1(x) Ke, respectively, where
x is the worst of the two actions (c.f. Section 3.3).

- The evaluations of criteriong2 (annual costs) are also expressed in Ke; the thresholds as-
signed to this criterion areq2(g1(x)) = 50+0.05g1(x) Ke andp2(g1(x)) = 100+0.07g1(x)
Ke, respectively, wherex is the worst of the two actions (c.f. Section 3.3).

- The evaluations of criteriag3 (recruitment),g4 (image), andg5 (access) are expressed on
the following seven-level qualitative scale: very bad, bad, rather bad, average, rather good,
good, and very good. The indifference threshold for each criterion has been set at one on
the seven-level scale and the preference threshold at two levels.

g1[min] g2[min] g3[max] g4[max] g5[max]
a 13 000 Ke 3 000 KKe Average Average Average
b 15 000 Ke 2 500 KKe Good Bad Very Good
c 10 900 Ke 3 400 KKe Good Good Very Bad
d 15 500 Ke 3 500 KKe Good Good Good
d′ 15 000 Ke 2 600 KKe Good Very Bad Bad

Table 4: Some potential sites for the new hotel

Consider again the weights obtained using SRF,k1 = 5, k2 = 4, k3 = k4 = k5 = 3, where
K = 18. The concordance index for the ordered pair(a,b) is c(a,d) = (5+4)

18 = 1
2. Taking into

account the mutual strengthening interaction effect between g1 andg2, whose the value is set at
k12 = 3 as defined in Section 4.2, our normalization coefficientK(a,d) = 18+ 3 = 21. The new
c(a,d) = 12

21 = 4
7. In fact, c(d,a) does not change whether or not the interaction coefficientk12

is taken into account (i.e.,c(d,a) = 9
18 = 1

2). If the concordance thresholds has been defined
ass= 0.55, the mutual strengthening interaction effect make it clear that sitea is better thand,
whereas they were previously incomparable.

For the comparison between sitesa andd′, c(a,d′) = (5+3+3)
18 = 11

18. But, when considering the
mutual weakening interaction effect modeled withk45 =−2, K(a,d′) = 18−2= 16 andc(a,d′) =
(5+3+3−2)

16 = 9
16, the concordance indexc(d′,a) takes always the same value:c(d′,a) = (4+3)

18 = 7
18.

Fors= 0.55,a can no longer be compared tod′, whereas it was the preferred site prior to applying
the mutual weakening effect.
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6.2 Launching a new digital camera model

Table 5 presents the evaluations of the four models- a, b, c, and d-according to the 7 criteria given
in section 2. Let us precise that:

- The evaluations of criteriong1 (price) are expressed ine; the indifference and the preference
thresholds assigned to this criterion areq1 = 25e andp1 = 50e, respectively.

- The evaluations of criteriong6 (volume) are expressed in cubic centimeters; the thresholds
assigned to this criterion areq6 = 10cm3 andp6 = 20cm3, respectively.

- The evaluations of criteriong7 (weight) are expressed in grams; the thresholds areq7 = 10g
andp7 = 20g, respectively.

- The evaluations of criteriag2 (weakness),g3 (workability), g4 (image), andg5 (aesthetics)
are expressed on the following seven-level qualitative scale: very bad, bad, rather bad, aver-
age, rather good, good, and very good; these criteria have anindifference threshold of one
on the seven-level scale and a preference threshold of two.

g1[min] g2[min] g3[max] g4[max] g5[max] g6[min] g7[min]

a 220e Average Average Rather Good Average 190cm3 155g
b 300e Bad Rather Good Average Rather Good 160cm3 145g
c 160e Bad Very Bad Average Rather Bad 140cm3 130g
d 280e Very Good Average Very Good Average 220cm3 170g

Table 5: Some possible digital camera models

Consider again the weights obtained using SRF,k1 = 6, k2 = 4, k3 = k4 = k5 = 1, k6 = k7 =

2, whereK = 17. The concordance index for(a,d) is c(a,d) = (6+1+1+2+1)
17 = 11

17 (criterion g7

is in the ambiguity zone, and it only counts for 50% of its overall weight). Now, consider the
antagonistic effect, wherek′12 = 2.5. The new concordance index takes the valuec(a,d) = 8.5

14.5.

But, c(d,a) remains the same (i.e.,c(d,a) = (4+3+1)
17 = 8

17). If s is defined ats= 0.6, when taking
the antagonism effect into account, the actions become incomparable, althougha was preferred to
d before. This incomparability shows that this effect can imply significant changes.

7 Concordance index and Choquet integral

Choquet integral (see Choquet, 1953) is an aggregation operator permitting to model interactions
between criteria. It is used to build a value function givinga complete preorder, i.e., a transitive and
strongly complete binary relation, rather than simply an outranking relation, being only reflexive
and not transitive and complete, as it is the case in ELECTRE type methods. Moreover, the way in
which Choquet integral is used is questionable especially with respect to two main points as stated
by Roy (2007):
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1. the hypothesis that the evaluation of each criterion is supposed to be expressed on the same
scale and therefore they can be compared each other; and,

2. the way in which the importance of criteria is measured through the Shapley index.

In what follows we will show that the new concordance index offormula (6) can be interpreted
as the classical Choquet integral under two conditions: no antagonistic effect is taken into account,
andZ = min{x,y}. Finally, we will show that for modeling the antagonistic effect we need to use
the bipolar Choquet integral.

The Choquet integral (see Choquet, 1953) of a vectorx = (x1,x2, . . . ,xn) ∈ R
n
+ with respect to

a capacityµ being a functionµ : 2F → [0,1], such that

1. µ(B) ≥ µ(C), for all B⊆C⊆ F

2. µ(∅) = 0 andµ(F) = 1,

is defined

Ch(x,µ) =
n

∑
i=1

(x(i) −x(i−1))µ(B(i))

where,(·) indicates a permutation ofF such thatx(1) ≤ x(2) ≤ . . . ≤ x(n), x(0) = 0 andB(i) =
{(1),(2), . . . ,(i), . . . ,(n)} . The Choquet integral can be interpreted as a generalization of the
weighted average aggregation method when interactions between criteria have to be taken into
account. This is clear understandable after the concept of Möbius transform is introduced and the
Choquet integral is reformulated according to such a transform. Given a capacityµ, its Möbius
transform (see, for example Rota, 1964) is given by the values a(S) ∈ R , S⊆ F , such that

a(S) = ∑
T⊆S

(−1)|S−T|µ(T), S⊆ F

Using the Möbius transform, the capacity can be expressed as

µ(S) = ∑
T⊆S

a(T), S⊆ F

while the Choquet integral can be rewritten as follows,

Ch(x,µ) = ∑
T⊆S

a(T)min{xi : i ∈ T}

Let us remark that the values ofa(S), S⊆ F, are related to the interaction of elements fromS.
Thus if there is no interaction, we havea(S) = 0 for all S⊆ F with |S| > 1, and thus,

µ(S) = ∑
i∈A

a({i}), S⊆ F
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while the Choquet integral becomes,

Ch(x,µ) = ∑
i∈F

a({i})xi = ∑
i∈F

µ({i})xi

that is the Choquet integral collapses to the weighted average method of valuesxi with weights
µ({i}) = a({i}). An interesting case of interaction, often used in the applications of Choquet
integral for its simplicity, is given by 2−additive capacity (see Grabisch, 1996) being a capacityµ
such that for its Möbius transform we have thata(S) = 0 for all S⊆ F with |S| > 2, and thus

µ(S) = ∑
i∈S

a({i})+ ∑
{i, j}⊆S

a({i, j}), S⊆ F

while the Choquet integral becomes,

Ch(x,µ) = ∑
i∈F

a({i})xi + ∑
{i, j}⊆F

a({i, j})min{xi ,x j},

Looking at the concordance index from the point of view of Choquet integral (since in case
of absence of interactions the concordance index of ELECTREmethods is the weighted average
of valuesci(a,b)), it can be seen as the Choquet integral of valuesci(a,b) with a capacityµ(S) =
∑i∈Ski

K for all S⊆ F. Instead, in case of presence of mutual strengthening or mutual weakening
effect, but not the antagonistic effect, then the numeratorof the concordance index we proposed
in the previous sections corresponds to the Choquet integral of valuesci(a,b) with a capacity
µ(S) = ∑i∈Ski + ∑{i, j}⊆Ski j , for all S⊆ F in case ofZ(x,y) = min{x,y}.

The antagonistic effect cannot be taken into account with the above formula. As for taking it
into account we will consider the bipolar Choquet integral.

Given the set or family of criteria,F = {g1,g2, . . . ,gi , . . . ,gn} or simplyF = {1,2, . . . , i, . . . ,n}
consider the setM = {(B,C) : B,C⊆ F, B∩C 6= ∅}.

The antagonistic effect can be modeled in the framework of the bipolar Choquet integral (see
Grabisch and Labreuche, 2005a and Greco et al., Matarazzo 2002). A bicapacity(Grabisch and
Labreuche, 2005a, 2005b) is a functionµb : M → [−1,1] such that,

1) for all B⊆ D ⊆ F andE ⊆C ⊆ F such that(B,C),(D,E) ∈ M, µb(A,B) ≤ µb(C,D),

2) µb(∅,∅) = 0,

3) µb(F,∅) = 1 andµb(∅,F) = −1.

A bipolar capacity(Greco et al, 2002) is a function

µbip : M → [0,1]× [0,1], (B,C) → µbip(B,C) = (µ+
bip(B,C),µ−bip(B,C))

such that,
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4) for all B⊆ D ⊆ F andE ⊆C⊆ F such that(B,C),(D,E) ∈ M, µ+
bip(B,C) ≤ µ+

bip(D,E) and

µ−bip(B,C) ≥ µ−bip(D,E),

5) for all B⊆ F, µ+
bip(∅,B) = 0 andµ−bip(B,∅) = 0,

6) µ+
bip(F,∅) = 1 andµ−bip(∅,F) = 1.

Now, the bipolar Choquet integral (Chb) of xRn, with respect to bicapacityµb, can be defined
as follows (Grabisch and Labreuche, 2005b),

Chb(x,µb) =
n

∑
i=1

(

|x(i)|− |x(i−1)|
)

µb

(

B+
(i),B

−
(i)

)

where,[·] indicates a permutation ofF such that|x(1)|, |x(2)|,≤, . . . ,≤ |x(n)|, |x(0)|= 0, A+
(i) = { j ∈

F : x j ≥ |xi |}, andA−
(i) = { j ∈ F : x j < 0, −x j ≥ |xi |}.

And, the bipolar Choquet integral (Chbip) of xRn, with respect to bipolar capacityµbip, can be
defined as follows,

Chbip(x,µbip) = Ch+
bip(x,µbip)−Ch−bip(x,µbip)

with

Ch+
bip(x,µbip) =

n

∑
i=1

(

|x(i)|− |x(i−1)|
)

µ+
bip

(

B+
(i),B

−
(i)

)

being thepositive componentof the bipolar Choquet integral, and

Ch−bip(x,µbip) =
n

∑
i=1

(

|x(i)|− |x(i−1)|
)

µ−bip

(

B+
(i),B

−
(i)

)

being thenegative componentof the bipolar Choquet integral (Greco et al, 2002).
To calculate the bipolar Choquet integral we have to fix the value ofµb(B,C) for all (B,C)∈M,

while to calculate the positive and the negative componentsof the bipolar Choquet integral we
have to fix the value ofµ+

bip(B,C) andµ−bip(B,C) for all (B,C) ∈ M. Thus, to apply the bipolar
Choquet integral a very large number of parameters should bedefined. To deal with this problem
Grabisch and Labreuche (2005a) proposed the 2-additive bicapacities while Greco and Figueira
(2003) proposed the 2-order decomposable bipolar capacities. The 2-order decomposable bipolar
capacity measure gives us a model to compare the bipolar Choquet integral with the concordance
index in case where the antagonistic effect is present.

A bipolar capacity is 2-order decomposable if there exists,a+({ j},∅), a+({ j,k},∅), a+({ j},
{k}), a−(∅,{ j}), a−(∅,{ j,k}), a−({ j},{k}) ∈ R, j,k∈ F, j 6= k, such that, for all(B,C) ∈ M,

- µ+
bip(B,C) = ∑

j∈B

a+({ j},∅)+ ∑
j,k∈B

a+({ j,k},∅)+ ∑
j∈B, k∈C

a+({ j},{k})
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- µ−bip(B,C) = ∑
j∈B

a−(∅,{ j})+ ∑
j,k∈B

a−(∅,{ j,k})+ ∑
j∈B, k∈C

a−({ j},{k})

The bipolar Choquet integral (Chbip) of x ∈ R
n, with respect to a 2-order decomposable bipolar

capacityµbip, can be defined as follows,

Chbip(x,µbip) = Ch+
bip(x,µbip)−Ch−bip(x,µbip)

with,

Ch+
bip(x,µbip) = ∑

j∈F, xj >0

a+({ j},∅)x j + ∑
j,k∈F, xj ,xk>0

a+({ j,k},∅)min{x j ,xk}+

+ ∑
j,k∈F, xj>0, xk<0

a+({ j},{k})min{x j ,−xk}

being thepositive componentof the bipolar Choquet integral, and

Ch−bip(x,µbip) = ∑
j∈F, xj<0

a−(∅,{ j})(−x j )+ ∑
j,k∈F, xj ,xk<0

a−(∅,{ j,k})min{−x j ,−xk}+

+ ∑
j,k∈F, xj>0, xk<0

a−({ j},{k})min{−x j ,xk}

being thenegative componentof the bipolar Choquet integral (Greco and Figueira, 2003).
Observe that the numerator of the concordance index we propose, in case ofZ(x,y)= min{x,y},

corresponds to the positive part of the bipolar Choquet integral of valuesci(a,b) in case,

µ+
bip(R,S) = ∑

i∈S

ki + ∑
{i, j}⊆S

ki j + ∑
i∈S, h∈R

k′ih, for all (R,S) ∈ M.

which proves the relation between our proposal and Choquet integral for this particular case.

8 Conclusion

In this paper we introduced three types of interaction that allow modeling a large number of depen-
dence situations in real-world decision-making problems.We showed how to take into account
these types of interaction in the concordance index used within the ELECTRE methods frame-
work. Formula (2) can be simply replaced by (6) in all of the ELECTRE methods. We explained
how the extension of the concordance index we are proposing can be used in practice. Neverthe-
less, this extension is appropriate only when the number of pairs of interaction criteria is rather
small. Otherwise, we considere that the family of criteria should be rebuilt since it contains too
many interactions and possibly incoherencies. In addition, we showed the links between our ap-
proach and the Choquet integral. As a line for possible investigation in the future we can mention
the study of the interactive protocol of the decision-makers or their representatives when facing to
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situations with interaction between criteria in real-world problems. A software development and
implementation will also be one of the main concerns in the near future.

AcknowledgementsThe first and the third authors acknowledge the support from Luso-French
PESSOA bilateral cooperation. The authors acknowledges Benedetto Matarazzo and Manuel
Matos for the valuable comments, remarks, and suggestions they made on a draft version of this
paper. This research also partially benefited from the Cost Action 0622 research project on “Algo-
rithmic Decision Theory”.

References

[1] C. Bana e Costa, J-M. De Corte, and J-C. Vansnick. On the mathematical foundations of
MACBETH. In J. Figueira, S. Greco, and M. Ehrgott, editors,Multiple Criteria Decision
Analysis: The State of the Art Surveys, pages 409–442. Springer Science+Business Media,
Inc., New York.

[2] C. Bana e Costa and J. Vansnick. MACBETH - An interactive path towards the construction
of cardinal value functions.International Transactions in Operational Research, 1:489–500,
1994.

[3] R. Bisdorff. Logical foundation of multicriteria preference aggregation. In D. Bouyssou,
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formatiques. PhD thesis, Université Paris-Dauphine, 1993.
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sité Paris-Dauphine, France, 2007.

[24] B. Roy. The outranking approach and the foundations of ELECTRE methods.Theory and
Decision, 31:49–73, 1991.

[25] B. Roy. Decision science or decision-aid science?European Journal of Operational Re-
search, 66:184–203, 1993.

[26] B. Roy. Multicriteria Methodology for Decision Aiding. Nonconvex Optimization and its
Applications. Kluwer Academic Publishers, Dordrecht, 1996.

[27] B. Roy and D. Bouyssou.Aide Multicritère à la Décision : Ḿethodes et Cas. Economica,
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