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METHODESELECTREAVEC INTERACTION
ENTRE CRITERES: UNE GENERALISATION
DE L'l NDICE DE CONCORDANCE

RESUME

Cet article est consacré a une généralisation de €andie concordance global pour les mé-
thodes ELECTRE. Une telle généralisation a été copgue prendre en compte l'interaction
entre criteres. Trois types d'interaction ont été cdéeds : renforcement mutuel, affaibli-
ssement mutuel et antagonisme. Dans des situations deafer@elles, il est raisonnable de
considérer I'interaction entre un petit nombre de paisriteres. Afin que le nouvel indice
de concordance prenne correctement en compte ces typeadtions, diverses conditions,
aux limites, de monotonicité et de continuité ont étasees. On démontre que l'indice
généralisée pend en compte de facon satisfaisant®lesytpes d’interaction (ou dépendance
entre criteres), tout d’abord en présence de quasrestpuis en présence de pseudo-criteres.
On examine également les liaisons entre le nouvel indiceotheordance et I'intégrale de
Choquet.

Mots-clés: Aide Multicritere a la Décision, Méthodes de SurclEment, Interaction entre
Criteres, Intégrale de Choquet.



ELECTRE METHODS WITHINTERACTION
BETWEEN CRITERIA: AN EXTENSION
OF THE CONCORDANCE INDEX

ABSTRACT

This paper presents an extension of the comprehensivegl\@amcordance index of ELEC-
TRE methods, which takes the interaction between critatadccount. In real-world decision-
making situations, it is reasonable to consider the intemadetween a small number of cri-
terion pairs. Three types of interaction have been constlanutual strengthening, mutual
weakening, and antagonistic. The new concordance inderatty takes into account such
types of interactions, by imposing such conditions as banynanonotonicity, and continuity
conditions. We demonstrate that the generalized indexiéstaliake the three types of inter-
action, or dependencies, between criteria into accouisfaetorily, first using quasi criteria

and then using pseudo criteria. We also examine the linkgdset the new concordance index
and the Choquet integral

Key-words: Multicriteria analysis, Outranking methods, Interantioetween criteria, Cho-
quet integral.
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1 Introduction

In this article, we are particularly interested in thoseisiea-making situations that can be sup-
ported using an ELECTRE-type method (cf. Figueira et alg528nd Roy and Vanderpooten,
1997). This kind of situation implies that a coherent fanklyof n criteria has previously been
built (cf. Roy and Bouyssou, 1993 and Roy, 1996).

An important advantage of using outranking methods (e lgE &TRE methods) is that they
are able to take purely ordinal scales into account (Mamel Roy, 2006), without needing to
convert the original scales into abstract ones with anraryiimposed range, thus maintaining the
original concrete verbal meaning (for another methodologysidering purely ordinal scales, see
Greco et al., 2001). Such conversions are used in many oriitiia methods - for example, AHP
(Saaty, 2005), MACBETH (Bana e Costa and Vansnick, 1994aRa€osta et al., 2005), MAUT
(Keeney and Raiffa, 1976), SMART (Edwards, 1977; Von Wiigelt and Edwards, 1986), TOP-
SIS (Hwang and Yoon, 1981) - as well as in methods based ony fazzgrals (Grabisch, 1996;
Grabisch and Labreuche, 2005). A second advantage is thifienence and preference thresholds
can be taken into account when modeling the imperfect krageef data, which is impossible in
the previous mentioned methods.

When using an ELECTRE-type method (whatever the methodaenesl), the criterion fam-
ily F must be designed so that there is no significant intemadietween any criterion pairs. By
definition, we say that there is significant interaction kestwtwo criteria if links (whatever their
nature) exist between these criteria that must be takeracitount to support the validity, credi-
bility, or intensity of the comprehensive preference ietaghips built by the model (based &1
to clarify the decision. In fact, fuzzy integral-based noeth were introduced in decision aiding
to allow such interactions to be taken into account. Thiklarjpproposes and extends ELEC-
TRE methods that allow certain types of interactions to lertainto account very concretely.
Specifically, this paper extends the notion of concordaasét has been defined for ELECTRE
methods (see Figueira et al., 2005), to three particulaesyqf interaction, designated here as
mutual strengthening, mutual weakening, and antagonistic

The rest of this paper is organized as follows. Section 2igesviwo examples to clarify
the reader’s understanding of the three types of intenagtibbat can occur in real-world decision-
making situations. Section 3 introduces the fundamentatepts, definitions, and notations,
and reviews the general notions of comprehensive concoedamlex as well as its fundamental
properties. Section 4 defines the three types of interactimsidered in this paper, as well as
how the decision-maker (DM) can assign numerical valuekdégtarameters characterizing these
interactions. Section 5 presents an extension of the cdanoe index, starting with the simplest
case in which only quasi criteria are considered, and theringdowards the more complex case
in which pseudo criteria are considered. In Section 6, ttemgles provides in Section 2 are
discussed in order to assess the contribution of our extenssection 7 compares our method
with Choquet integral method to evaluate how the two apgrestake the interactions between
criteria into account. The last section offers our conduasiand lines for future research.



2 lllustrative Examples

This section provides two examples in order to clarify tHea$ of the different interactions dealt
with in this paper. These effects generate additional mfdion that must be taken into account
in the concordance indices. (Section 6 offers a more ddtdilgcussion of how such additional
information can be modeled.) In the criterion descriptidnsin] is assigned to the criteria to be
minimized andmax to the criteria to be maximized.

2.1 Choosing a site for a new hotel construction project

In this example, a site must be selected for a new hotel, winédbings to a multinational group,

in a city where the group is not yet established. Supposeatibansulting company (henceforth,
called the analyst) was asked to support that decisionniggiocess of the CEO of this group
(henceforth, called DM), and that this analyst and the dmtisaker’s representative (henceforth,
called DMR) decided to use an ELECTRE-type method. To thi enfamily of five criteria

(91 — gs) is built:
01: land purchasing and construction costs (investment cpsts|;
g2: annual operating costs (annual costsin|;
03: personnel recruitment possibilities (recruitmejntax;
04: target client perceptions of the city district (imadelax;

gs: facility of access for the target clients (accelsspx.

Indifference and preference thresholds (see Section 3asseciated to each one of these
criteria. For the first two criteria, which are quantitatiteese thresholds model the “approximate”
character of the financial evaluations, and for the threerathteria, the unavoidable arbitrariness
of the value due to the subjectivity of purely ordinal evéilmas. These criteria do not have the
same importance for the DMR. In order to represent theserdifices, intrinsic relative weights
ki, ] =1,...,5, are associated to the corresponding criteria in the ggtich procedure, using
the SRF (acronym of Simos-Roy-Figueira) technique andvsoét by Figueira and Roy (2002).
When considering two criteria in SRF, the value of each waggfixed without taking into account
the impact that the other criterion weight can have indepetigl of whether or not belongs to the
concordant coalition; in other words, all the possibleriattions between criteria are abstracted.

The following tables given information that would allow tBMR to see how the weights
intervene in the comparison of two sites.

a) The comparison of sita with the remaining three sitds ¢, andd, in terms of the two
financial criteriag; andgp, is shown in Table 1.



b c d
01 | ais better tharb | ais worse tharc | ais better thard
02 | aisworse tharb | ais better thart | ais better thard

Table 1: Evaluations of the three sites with respect to threnfiial criteria

According to the classic definition of the concordance infl®e Section 3), the role that
criteriag; andg, should have for supporting the answer to the assert#ois ‘at least as
good asb (or c or d)” is characterized by the following weights,

ki in the comparison witlb,
ko in the comparison witlg,
ki + ko in the comparison witlal.

Given the information presented in Table 1, the DMR considkee weightsk; andk, as-
signed to criteriay; andg, appropriate, when only one criteriog, or g», supports a decision
that one action is better than another one. However, haistye$ that the suk + ks is not
sufficient to characterize the role of this criteria pair whmth supports the decision that
one action is better than another one, because in this cesecggerion is strengthened by
the other given the degree of complementarity between thEme. comparisons provided
by the DMR about actions, b, ¢, andd express his/her conviction that, if one action is
better than another one with respect to critgriandg, conjointly, it would be interesting
to be able to take this mutual strengthening effect into astoAs this reasoning shows,
the classic concordance index is not able to take such a istreagthening effect into
account (for an illustrative example see Section 6). THiscetan be taken into account by
increasing the weightk; andk; for the criteriag; andgs, respectively in the concordance
index of the assertiond'is at least as good @B, when both criteria intervene conjointly to
make the assertion valid. In the following sections, the amb¢hat must be added kg + k

to model this mutual strengthening effect is dendtgd= ko1.

The comparisons of site with sitesb, ¢, d’ in terms of the two purely ordinal criteriay
andgs, are presented in Table 2.

b c d
g4 | ais better tharb | ais worse tharc | ais better thard’
gs | ais worse tharb | ais better thart | ais better thard’

Table 2: Evaluations of three sites with respect to the insagkaccess criteria

Given the information presented in Table 2, the DMR considee weightk, andks as-
signed to criteria, andgs appropriate, when only one criteriagy, or gs, supports a decision
that one action is better than another one. However, helslge$ that the surky + ks is



too high to characterize the role of this criteria pair whethbsupports the decision that
one action is better than another one, because in this cabecgterion is weakened by
the other due to the degree of redundancy between them. Tingacisons provided by the
DMR about actionsa, b, ¢, andd’ express his/her conviction that, if one action is better
than another one with respect to critegigandgs conjointly, it would be interesting to be
able to take this mutual weakening effect into account. Asrémasoning shows, the classic
concordance index is not able to take such a mutual weakefiiegt into account (for an
illustrative example see Section 6). This effect can bertaki account by decreasing the
weightsk, andks for the criteriags andgs, respectively, in the concordance index of the
assertion & is at least as good a”, when both criteria intervene conjointly to make the
assertion valid. In the following sections, the amount thast be subtracted froky + ks

to model this mutual weakening effect is denokggl= ksa.

2.2 Launching a new digital camera model

In this example, a manufacturer wants to introduce a newaligamera model on the market. As
in the previous example, we assume that the DMR and the artdgiled to use an ELECTRE-
type method. For this purpose a family of seven critegia<g7) is built:

01: purchasing costs (cosinin;

g2: weaknesses (fragility)miny;

gs: user friendliness of the controls (workabilitypax;
04: image quality (image)max;

0s: aestheticsmax;

Os: Volume[min;

g7: weight[min].

As in the previous example and for the same reasons, inglifter and preference thresholds,
as well as weights, were associated to each one of the satenmacrin discussion, the DMR and
the analyst must again decide how the weights of the critmé# @;) and fragility @) should
intervene in the comparison of the possible actions or cammerdels. A digital camera modal
can be compared to the remaining models, andd, according to these two criterigy(andgy),
as is shown in Table 3.

b C d
01 | ais better tharb | aat least as good as| ais better thard
g2 | ais better tharb ais better tharc ais worse thard

Table 3: Evaluation of the models with respect to cost angilfta



According to the classic definition of the concordance in@ee Section 3), the role that
criteriagy andgp should play in supporting the assertion “modés at least as good as model
(or cord)” is characterized by the following weights,

ki + ko in the comparison witly,
ko in the comparison witlg,
ki1 in the comparison witld.

The value of each of these weights was set without takingaotount the impact that the other
criterion’s weight could have independent of whether oritloélongs to the concordant coalition;
in other words, all the possible interactions between risitere abstracted. Given the information
in Table 3, the DMR considers that weightsandk, adequately characterize the role these two
criteria should play when comparirggwith b anda with c; however, he/she considers that the
same is not true when compariagvith d. Based on a customer survey, it seems that when one
model is less fragile than another, the benefit derived frioenldwer cost is partially masked by
the fact the model is less fragile. This phenomenon can beefaddy decreasing the weight of
criteriongs in the concordance index of the asserti@ris' at least as good @%. In the following
sections, the quantity that must be subtracted fkgrio take into account this antagonistic effect
(i.e., masking effect) of criteriog, with respect to criteriom; is denoted,.

Please note that if the DMR considers that the rolgxaf adequately taken into account by
the weightk; in the concordance index of the asserti@nis at least as good a3, nothing can
make him/her consider the possibility of an antagonistieatfof g; with respect tay,. On the
other hand, if the results of the customer survey justifigggasuch an antagonism into account,
the quantityk,, that must be subtracted froka to model this interaction effect could be different
from kj,. In other words, there is no symmetry between the two sinati

3 Concepts: Definitions and notation

This section presents some elementary concepts, defindiwhthe notation used in the rest of
this paper. As for the key concepts and the main featureseconimgg ELECTRE methods (the
context in which they are relevant, modeling with an outragkelation, their structure, the role of
criteria, and how to account for imperfect knowledge) segi€ira et al. (2005). A comprehensive
treatment of ELECTRE methods may be found in Roy and Bouy&E8®3) and Vincke (1992).
Much of the theory developed on this field is presented inethEoks.

3.1 Basic data

The basic data of a multiple criteria problem is composeds#tar family of coherent criteria, a
set of actions, and an evaluation matrix. Let,

- F={01,02,---,0Gi,--.,0n} denote a family or set diriteria; for the sake of simplicity we
shall use als& as the set of criteria indices (the same will apply later arstdosets ofF);



- A={ab,c,...} denote a finite set aictionswith cardinalitym;

- gi(a) € E; denote theevaluationof actiona on criteriong;, for alla € Aandi € F, whereE;
is the scale associated to criterign(no restriction is imposed to the scale type).

In what follows it is assumed that all the criteria are to bexirmézed, which is not a restrictive
assumption.

3.2 Binary relations

When comparing two actiorssandb, the following comprehensive binary relations can be define
on the sefA. For a pair(a,b) € Ax Alet,

- P denote thestrict preferenceelation;aPbmeans thatd is strictly preferred t®”;

| denote thendifferencerelation;alb means thatd is indifferent tob”;

Q denote thaveak preferenceelation;aQbmeans thatd is weakly preferred td, which
expresses hesitation between indifferedgeaid preferencer);

Sdenote theutrankingrelation;aSbmeans thatd outranksb” or more precisely thatd is
at least as good d8. Note that,S=1UQUP.

For a given criteriorg;, the same interpretation of the above binary relationslid Maut now
these relations are called partial binary relatidfsl;, Q;, andS, respectively.
3.3 The notion of pseudo criterion

The concept of pseudo criterion is based on the definitiorwofgreference parameters, called
thresholds. Let

- gi(gi(a)) denotes théndifference thresholdor criteriong;, for alla € Aandi € F;

- pi(gi(a)) denotes thereference thresholtbr criteriong;, for allae Aandi € F.

such thatp;(gi(a)) > qi(gi(a)), for all gi(a) € E; anda € A.

Definition 1 (pseudo criterion). A pseudo criterion is a function; gassociated with the two
threshold functionsiqg;(a)) and p(gi(a)) satisfying the following condition, for all @ A (Roy,
1991, 1996): ga)+ pi(gi(a)) and g(a) + qi(gi(a)) are non-decreasing monotone function of

gi(a).
By definition, for all pairs(a,b) € Ax Awith gi(a) > gi(b),



alib < gi(a) <g(b)+q(gi(b));
aQb <« gi(b)+ai(gi(b)) <gi(a) <gi(b)+ pi(gi(b));

aRb < gi(b)+ pi(ai(b) < gi(a).

Definition 2 (quasi criterion). If, gi(gi(a)) = pi(gi(a)), for all a € A, then gis called a quasi
criterion. It is a particular case of a pseudo criterion whi¢s also considered in the rest of the
paper. For a quasi criterion there is no ambiguity zone, tisathere is no weak preferencg.Q

In what followsC(aT b) represents the coalition of criteria in favor of the assertiaT 3,
whereT € {P,Q,S}

3.4 The criteria weights and the concordance index

In ELECTRE methods, theslative importance coefficienedtached to the criteria refer watrinsic
weights For a given criteriorg;, the weightk; can be interpreted as its voting power when it
contributes to the majority which is in favor of an outrargirit is not a substitution weight. For
more details about the question on how to attribute numleradaes to the parameters which must
reflect the relative importance of criteria, see Figueird Roy (2002), Mousseau (1993, 1995)
and Roy and Mousseau (1996).

ELECTRE Multiple Criteria Aggregation Procedures (MCARsg based on eoncordance
index da, b) which is used both to validate the asserti@otitranksb” and/or to give a measure
of the credibility of such an assertion. The concordancexrahn be defined as follows,

_ i Sk

c(a,b) = —, whereK = Z: ki (1)
ieC(ash i€

where,C(aSh represents the coalition of criteria in favor of the assertia outranksb”, whenF

if composed of quasi criteria.

WhenF contains at least a pseudo criterion, this index should Wweétten in the following
way,

cab)= ¥ fa(ab) @
le

where,



1, if gi(a)+a(gi(a)>g(b), (aSh),

Glab)={ =S ') , i gi(@)+ai(gi(@) <aib) <gi(@)+p(gi(@), (bQa),

0, it gi(@)+pi(ai(@) <a(b), (bRa).
3

It is easy to see that whéhis composed of quasi criteria, indé) becomeg1).

LetC(bPa) denote the complement 6{bPa). It should be remarked that whéhcomprises
only quasi criteriaC(bPa) = C(aSh); if F is composed of at least one pseudo critef@bPa) =
C(aSh UC(bQa). In both cases this set represents the coalition of all therier which are not
strongly opposed to the assertia8b(let us recall thabQais not a strong opposition).

3.5 Properties ofc(a, b)
The following properties o€(a,b) hold for all pairs(a,b) € Ax A,

Boundary conditions: 0 < c(a,b) < 1.

Monotonicity: c(a,b) is a monotonous non-decreasing functiompt= g;(a) — g;(b), for
alli eF.

Continuity : if pi(gi(a)) > gi(gi(a)), for all i € F and ac A, then ¢a,b) is a continuous
function of both ga) and g(b).

The proof of the boundary conditions is obvious. The proofnoinotonicity is based on the
fact that, for each, c;(a,b) has the same property. Continuity is not valid for quaseddt The
proof for the case of pseudo criteria is also based on theHattfor each, ¢;(a,b) has the same

property.

4 Types of interactions considered

The above formulae (1) and (2) do not take any type of depexydestween the considered crite-
ria into account. Very often, this is justified because thenidae are used to deal with a structural
dependence related to various points concerning distiakebolders (Roy and Bouyssou, 1993).
For the sake of the clarity, a coherent criteria family mwestlbfined so as to reduce other types of
dependency as much as possible (see, for example, Bisd0éfl,). It is also necessary to com-
pletely remove any dependencies derived from dispersifmora classical utility approach (Roy



and Bouyssou, 1993). Consequently, from a practical pdimtesv, the dependencies that really
need to be taken into account are not numerous and in gemerEm only criteria pairs. Consid-
ering criteria triples or quadruples and so on would be toogirated to be effective in a decision
aiding process because formulating them would involve soynpaoblems of interpretation and
comprehension that their expected added value would véséshRoy, 2007).

Therefore, we consider the cases where the only dependdmetieen criteria which deserve
to be taken into account in MCAPs are related to interactimte/een criteria pairs. In this paper
we are interested in the situations in which the interasticem be modeled using one of the three
interaction types presented below. These definitions ardifioations of formulae (1) and (2).
The conditions in which these modifications take place deda@ to a given interaction type. This
work is based on the research of Greco and Figueira (2003yhich similar interaction types
can be found. Roy (2007) provides a more general formulaifathe three types of interaction
proposed in this paper, which is independent of the waysiieedctions are taken into account in
the concordance index.

4.1 Definitions

This section provides the definitions of the three inteoaxctypes.

a) Mutual strengthening effect
If criteria g andg; both strongly, or even weakly, support the asseréiSb(more precisely,
0i,0; € C(bPa)), we consider that their contribution to the concordandexmust be larger
than the sum ok; +k;, because these two weights represent the contributioncof ézthe
two criteria to the concordance index when the other catedoes not suppodSh We
suppose that the effect of the combined presencg @afidg; among the criteria supporting
the assertiomSbcan be modeled by a mutual strengthening coeffidignt 0, which in-
tervenes algebraically io(a,b). (For an example, see the interaction betwgeandgs in
Section 2.1.) Please note thgt=k;; .

b) Mutual weakening effect
If criteria g and g; both strongly, or even weakly, support the assera@b(more pre-
cisely, gi,g; € C(bPa)), we consider that their contribution to the concordanciEinmust
be smaller than the sum &f+-k;j, because these two weights represent the contribution of
each of the two criteria to the concordance index when therathterion does not sup-
portaSh We suppose that this effect can be modeled using a mutu&lener coefficient
kij < 0, which intervenes algebraically 8{a,b). (For an example, see the interaction be-
tweengz andg, in Section 2.1.) Please note thgt= k.

c) Antagonistic effect
If criterion g; strongly, or weakly, supports the asserte®band criteriongy, strongly op-
poses this assertion, we consider that the contributioheottiteriong; to the concordance
index must be smaller than the weidfithat was not considered in cases in whigldoes



not belong toC(bPa). We suppose that this effect can be modeled by introducingnan
tagonism coefficienk), > 0, which intervenes negatively i(a,b). (For an example, see
the “cost” and “fragility” criteria in Section 2.2., wheredst” isg; and “fragility” is gn.)
Please note that the presence of an antagonism coeffigientO is compatible with both
the absence of antagonism in the reverse directifn=(0) and the presence of a reverse
antagonismi; > 0).

The antagonism effect does not double the influence of the eféct; in fact, they
are quite different. If criterioy, has a veto power, it will always be considered, regardless
of whetherg; belongs to the concordant coalition. The same is not truéhpantagonism
effect, which occurs only when the criterignbelongs to the concordant coalition.

4.2 Practical aspects

The four-step procedure presented in this section showsiiorerical values can be assigned to
the parameters introduced below in order to characterizenthtual strengthening, mutual weak-
ening, and the antagonistic effects. The parameters weigrskl so that these effects could be
taken into account in the ELECTRE methods that use of theardance index, as mentioned in
Section 3. The four-step procedure is used in the contextohatructive perspective when using
ELECTRE methods rather than a descriptive one (cf. Roy, 12035, 2007).

Step 1 As is traditional in the ELECTRE method, step 1 assigns nigakvalues to the intrinsic
weightsk;, i = 1,...,n. The revised “pack of cards” method can be used for such aparp
(see SRF software by Figueira and Roy, 2002). The analysidhwowever, point out to the
DMR that the value of the relative weighkt should be set without taking into account the
impact that certain criteria, regardless of whether thdgrgeto the concordant coalition,
could have. In other words, the “cards” should be rankedriggaall the possible kinds of
inter-criteria interaction (cf. Section 2).

Step 2 The analyst should ask the DMR about the possible interstibat he/she thinks must
be taken into account. In order to make sure that the DMR ha®od gnderstanding of
the interaction effects, the analyst can use illustratik@mgples like the ones presented in
Section 1. Then, considering criterign and reviewing the remaining criterig,gs, ..., dn,
it should be easy (and relatively quick), given the very ratf the criteria, to recognize:

- That considering an interaction betwegnand another criterion is not justified, or

- That an interaction betweapn and at least one of the remaining criteria must be con-
sidered. In this case, it is also necessary to define whiath &frinteraction exists:
self-strengthening, mutual weakening, or antagonistar. der purposes here, we as-
sume that antagonistic interaction excludes the presehteether two types, in
which case, the sign of the interaction(s) must also be dificfe 4.1¢).

This procedure is repeated to consider the possible intenacbetweery, andgs,...,gn,
then betweemys andgs, . . ., gy, and, finally between,_1 andgp.
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If the criteria family is appropriately designed, the numbgpairs/ordered pairs for
which an interaction effect can be defined should be rathgrsmall.

Step 3 A numerical value is assigned to the interaction coefficesibciated with each pair identi-
fied in the previous step. As stated in the coefficients’ didimi(cf. Sections 2 and 4.1), the
larger their absolute value, the more important the interaceffect. By definition, these
coefficients are defined, such that:

If there is a mutual strengthening or a mutual weakeningcetbetween criteria get gj,
then the relative weights of these two criteria ifad) should be k+ kj +k;; instead of
ki +k; (cf. Section 3) as soon as;@&nd a$b is found.

If criterion gy has an antagonistic effect with respect to criterigntgen the relative weight
of criterion g in c(a,b) should be k— ki, instead of k(cf. Section 3) as soon as;#Sand
bR,a is found.

These definitions should be considered to support the aisaasition on the appropriate
value of each interaction coefficient to take the importasfaie effect the DMR considers
appropriate (cf. Step 2) into account in the model. Let us&wethe examples presented
in Section 2 to show how the analyst should proceed.

Case 1 (mutual strengthening effect): cf. 2,Xkriteriag; andg,. Suppose that when using
SRF the result i, = 5 andky, = 4, and thusk; + k, = 9. Since there is a mutual
strengthening effect, the relative weights of these twieida should be larger than 9,
when comparing the two sitesandd (cf. Table 1). The analyst can ask the DMR to
set the value to be replaced to 9 in this comparison in ordadéguately model the
interaction that the DMR wants to take into account. If theveer is 12, for example,
the analyst should conclude tHap = 3.

Case 2 (mutual weakening effect): cf. dlcriteriags andgs. Suppose that when using
SRF the result iks = 3 andks = 3, and thusks + ks = 6. Since there is a mutual
weakening effect, the relative weights of these two catestould be lower than 6,
when comparing the two sitesandd’ (cf. Table 2). The analyst can ask the DMR to
set the value to be replaced to 6 in this comparison in ordadéguately model the
interaction that the DMR wants to take into account. If thevear is 4, for example,
the analyst should conclude tHat = —2.

Case 3 (antagonistic effect): cf. 2.2, critegaandg,. Suppose that when using SRF the
result isk; = 6 andk, = 4, and thusk; + k, = 10. Since criteriorg, is antagonistic
with respect tag;, the weight should be lower than 6, when comparing two digita
camera modela andd (cf. Table 3). The analyst can ask the DMR to set the value to
be replaced to 6 in this comparison in order to adequatelyeinthé interaction that
the DMR wants to take into account. If the answer i5,3or example, the analyst
should conclude thd¢, = 2.5.
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Please note that the procedure followed for the latter caselittle bit different from the
other two cases, which only underlines the difference betwbe antagonistic effect and
the mutual strengthening and mutual weakening effectss difference is connected to the
fact that whenkj, # 0, it is also possible to havi§; = 0 or ki; # 0 (cf. 4.1 c), without
requiring thatk, = ki;.

The antagonistic effect that can exist between two critgriand g, can be formally
taken into account as a mutual strengthening effect bettves=re two criteria. In this case,
the initial weightsk; andk, obtained using SRF, should be replaced with the vetpes,
andky — ki, respectively, such th&t, = ki, + k. However, this ploy, which is very difficult
for those who use it, does not prevent the antagonistic tefifea being used to define the
valuesk, andk/;. In addition, as will be shown at the end of Section 5, thisiejence is
not valid for pseudo-criteria.

Step 4 In this step the net balance condition is checked, becausery specific cases, an improper
result can mean a return to the previous step to modify thexedsigned to some interaction
coefficients.

Letkjj be the negative value of the interaction coefficient usedéacterize a mutual
weakening effect. Since the interaction can, at most, retidecontribution of criteriony;
to c(a, b) null whenaSb andaS;b, the following should be true:

ki —[kij| >0

In the same way, since this interaction can, at most, reh@ezdntribution of criteriom
to c(a,b) null whenaSb andbR,a, the interaction coefficierit, that allows an antagonism
effect to be characterized should be defined such that:

ki — ki > 0

Suppose the two previous interactions, where critegas present, were considered.
WhenaS§b, aSb, aSb, andbR,a simultaneously occurs, the contribution of the three gete
to c(a,b) is equal to:

ki — ki — [kij|

This quantity must be positive since the two interactiorkemainto account cannot
render the contribution of; to c(a,b) non negative. Thus, in Step 3, the analyst should
check whether or not the values assigned to the interactefficients fulfill the previous
inequalities. However, it does not imply that this quansihould be non-negative. The dif-
ferent types of interaction considered here vgitkan be present not only with one criterion
g; or gh, but with two or even, exceptionally, with three or more. $libe analyst should
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check that, for each criteriag that interacts with several criteria, the following netdrade
condition is fulfilled:

Condition (positive net balance) Forall i € F,

(k) =(, > kil+3k)>0

{i,j}:kj<0

If a criterion g; for which this inequality is not fulfilled, the values of thetéraction
coefficients shown in brackets should be questioned. @leag number of pairs of inter-
action criteria is generally small, thus the inequalitiesttmust be verified, if any exist, are
also quite few.

5 Extensions of the concordance index

This section is devoted to the definition of the concordamciex, first wherF is composed of
quasi criteria, and then when at least one criterion is adusetiterion.
Before presenting the formulae it is useful to introducefdtiewing additional notation. Let,

- L(a,b) denote the set of all paifg, j} such thai, j € C(bPa);

- O(a,b) denote the set of all ordered paiish) such thai € C(bPa) andh € C(bPa).

5.1 The quasi criterion model

Let us recall that a quasi criterion is a pseudo criteriohshbatq;(gi(a)) = pi(gi(a)), forallac A.

5.1.1 Definition ofc(a,b)

The comprehensive concordance index, wheis composed of quasi criteria, is defined as fol-
lows,

c(@.b) = (3 K+ T k- 3 K) @)

ieC(bPa) {i,j}eL(ab) (i,h)eO(a,b)

where,

K(a7b)=Zki+ > o ki— Y ki
ie {i,j}€L(a,b) (i,h)eO(a,b)

Note that, in generaK(a,b) # K(b,a).

As for the new definition o€(a, b), the following properties should be fulfilled
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Coherence The definition of (a,b) as in formula (4) should be coherent with the classical
definition of the ¢a,b) as it was presented in Section 3.

It means that, when we compare two actiaremdb and when there is no interaction effect
regarding this comparison, the ne¢a,b) should be the same as the one of Section 3. The
proof is quite obvious since when there is no interactioaaft.(a,b) = 0 andO(a,b) = 0,

and consequentlg(a, b) in formula (4) becomesg;(a,b) = m Yier ki with K(a,b) =K.

Boundary conditions: 0 < c(a,b) < 1.

As for the proof let us consider separately the two inegealit

1. c(a,b) >0
This inequality derives from the definition ofa,b) and the net balance condition; it
is fulfilled for everyK(a,b). The proof is provided in Theorem 1.

2. c(a,b) <1
Two cases have to be considered,

(a) C(bPa) = F (all the criteria belong to the concordant coalition)
It representsinanimityand the index must be equal to one,

c(a,b)=1

Since unanimity leads to the absence of antagonism inieneetfects,c(a, b) can
be rewritten as follows,

@b = g (Zht 3 W)=t ©)

(ab)

(b) C(bPa) # F (at least one criterion belongs @jbPa))
In the previous case, the antagonism coefficients were msept. As soon as

these coefficients appeard(a, b) it becomes strictly lower than 1, i.&(a,b) <
1.

Remark 4. If F is composed of quasi criteria, the functiofach) presents a discontinuity when
gi(a) +qi(gi(a)) becomes strictly lower than;(@). In the case of pseudo criteria, (gi(a)) >
gi(gi(a)), foralli € F and ac A, this discontinuity will not occur.

5.1.2 Main theorem

Let us consider the pa{a,b) € A x Aand calculate the following algebraic sum,

Sab= Y k+ Y k- Y K

ieC(bPa) {i,j}eL(ab) (i,h)eO(a,b)

14



Lemma 1 For all (a,b) € Ax Aand for all fe F, Sa,b) is a monotone non-decreasing function
of As and Sa,b) > 0.

Proof.
The proof of this lemma is based on the fact that, if the défifieeA; decreases, eith&(a,b) remains constant or it
decreases. Two cases should be considered.

1. Criterionf belongs taC(bPa). _
If f belongs taC(bPa) it cannot belong t€(bPa). Consequently, the pafi, f } will not belong toL(a,b). The
decreasing of\; does not affect neither the first nor the second summatioteiformula ofS(a, b). Whatever,
it will occur with the existence or not of ordered pafisf) € O(a,b), the decreasing dk; has no influence on
the third summation. Consequent§a, b) remains constant.

2. Criterionf belongs taC(bPa).

Two subcases have to be considered,

(a) Criterionf stills remain inC(bPa). _
The decreasing ok will not move f from C(bPa). Hence, the three summations in the definition of
S(a, b) will not be affected. Thery(a, b) remains constant too.

(b) Criterionf moves toC(bPa). _
The decreasing @t movesf from C(bPa) to C(bPa). This moving has some implications on the result.
The new value o§(a, b) will become,

SabN=s@b—(k+ Y kij- Y Kp)

{f,jteL(ab) (f,h)eO(a,b)

The quantity in between big parenthesis is necessarilynagrative according to the net balance condi-
tion. Consequently§(a, b) cannot increase.

The proof of the monotonicity d§(a, b) is complete. Let us now show th&ta, b) > 0.

If C(bPa) = @, thenS(a, b) = 0. Suppose that we could ha8ga, b) < 0. This implies that at least one criteridn
does not belong t@(bPa) # @. Consider that there exists at least one criterio@(ibPa). If for all f in C(bPa), At is
forced to decrease til(bPa) = @, thenS(a, b) cannot increase. Contradiction!

The proof is now complete.

Remembering that(bPa) can be any subsé& C F, the non-negativity ofa,b) proved in
Lemma 1 can be rewritten as follows, for &IC F,

Zkﬁr > ki— Y kh=>0
i€ {i,j}eE icE,heF\E

Before introducing the main result it is important to essbhlso the following lemma.

Lemma 2. For all (a,b) € Ax A and for all feF, c(a,b) defined as in (4) is a monotone non-
decreasing function df; if and only if the non-negativity summation condition iifield.

Proof.
The proof of this lemma is based on the fact that, if the déffieeA; decreases, eithe(a,b) remains constant or it
decreases. Two cases should be considered.
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1. Criterionf belongs taC(bPa). _
If f belongs taC(bPa) it cannot belong simultaneously @&bPa). Consequently, the paiii, f } will not pertain
to L(a,b). The value ofK(a,b) does not change. Decreasing/of does not affect neither the first nor the
second summations in (4). Whatever, it will occur with thesence or not of ordered paifs f) € O(a,b), the
decreasing of\; has no influence on the third summation. Consequet(idyb) remains constant.

2. Criterionf belongs taC(bPa).

Two subcases have to be considered,

(a) Criterionf stills remain inC(bPa). _
Decreasind\; will make a move off from C(bPa) to another coalition. Again, the value kifa, b) does
not change. Hence, the three summations will not be affedtieein,c(a, b) remains constant too.

(b) Criterionf moves toC(bPa). _
When decreasing;, f moves fromC(bPa) to C(bPa). This moving has some implications on the result.
The old value of(a,b), i.e., beforeA; decreases is as follows,

c(a,b)®'d = ;< >kt > ki— Y kn’h)

K(a b)'d ieC(bPa)Old {i,j}eL(ab)od (i,h)eO(a,b)0'd
where,

Kap=Sk+ Y  kj-
i€ {i,j}eL(a,b)oMd (i,h)eO(a,b)od
where C(bPa)°!d, L(a,b)®'d, andO(a, b)°'? represent the se®(bPa), L(a,b), andO(a, b), respectively,
before decreasings. The new value o€(a,b), i.e., after decreasindys is as follows,
1
clabNW=— ~ ki + kij — Kin
K(ab)Tew icC(bPaNew {i,j}el_z(a,b)New (i,h)eoz(a,b)NeW )

where,C(bPa)Ne¥ L (a,b)Ne™ and O(a, b)N®" represent the se®(bPa), L(a,b), andO(a,b), respec-
tively, after decreasind ;. Now, we have,

C(bPaNew—C(bPa) O\ {f}
L(a,b)New— L(a7b)o'd\{{i7f} - i e C(bPa)®!d and i £ f}
O(a,b)New = O(a, b)°ld \ {(nh) he C(bpa)o'd} U {(i7 f):ie C(bPa)NeW}
where,C(bPa)°'d andC(bPa)Ne" represent the s€(bPa) before and after, respectivelfi; decreases,
such that,
C(bPaN®W=C(bPa)°'? U {f}
Now, if we compare the numerator ofa, b)N®%, NNeW with the numerator ot(a,b)°!d, NO'9, the

following difference between them occurs,

NOI_NNM—ke+ S ki— S Kt S Ky

iC(bPa)New heC(bPa)old icC(bPa)New

Analogously, if we compare the denominatoragé, b)NeW, DNeW with the denominator oé(a, b)°'d,

DO the following difference between them occurs,

Dom_DNew:AD(&b): 72 ke — Ken+ ,Z kit

iC(bPa)New hec(bPa)or ieC(bPa)New

Consider the following additional notation,

16



o= NNew

B: NNEW+ ; k|
ieC(bPa)

y=2°(a,b)
5= ki

The concordance indicega, b)°!d andc(a,b)Ne" can be rewritten as follows,

a+y+9o
c(ab)Od=—""T"
@b B+y
and
a
c a,b New__ ~©
(ab) B
Therefore, the monotonicity conditiot(a,b)°!d > c(a,b)NeW becomes®¥+3 > 4 Since NNew —

B+ty = B
S(a,b), from Lemma INNeW > 0, and consequentlyy > 0 too (). SinceP > a (note thatp —a =
Yiec(bpg i), B > 0 (ii). From these conditions, and trough the application of &nafgebraic opera-
tions, we getifi),

& (a+y+d)B> (B+y)a < (y+O)B > ay

Taking into account again that< 3 always occurs, thed > 0 is sufficient for satisfying the last three
conditions {), (ii), and {ii). Sinced > 0 means; > 0, this is always true.

The proof is complete.

The main result is established in the following theorem.

Theorem 1 Monotonicity and boundary conditions hold fafach) as defined in formula (4).

Proof.
Lemma 2 proves monotonicity. Let us now prove the boundangitions,
1. c(a,b)>0
If C(bPa) = @, thenc(a, b) = 0. Suppose that we could havg, b) < 0. This implies that at least one criterion
f does not belong t€(bPa) # @. Consider that there exists at least one criterio@({hPa). If for all f in
C(bPa), At is forced to decrease til(bPa) = &, thenc(a, b) cannot increase. Contradiction!
2. c(a,b) <1 _
From condition (5)¢(a, b) = 1, whenC(bPa) = F. Suppose that we could haega,b) > 1. This implies that
at least one criteriori does not belong tG(bPa). Consider that there exists at least one criterion that does
belong toC(bPa). If for all f, At is forced to increase tilf becomes an element 6{bPa), thenc(a, b) cannot
decrease. Contradiction!

The proof is now complete.
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5.2 The pseudo criterion model

When dealing with a pseudo criteriog), an ambiguity zone should be taken into account, for all
(a,b) e AxA,

gi(a) +ai(g(@) <ai(b) <gi(a)+ pi(gi(a))

5.2.1 Definition ofc(a,b)

The definition ofc(a,b) can be stated in the following manner,

c(a,b)=

<z c@bk+ > Z(c(ab).cj@b)kj— Z(ci(a,b),ch(b,a))lq’h)

ieC(bPa) {i,j}eL(ab) (i,h)eO(a,b)
(6)

FunctionZ(-,-) in formula (6) is used to capture the interaction effectshim ambiguity zone. It
should be remarked that in the third summatig(b,a) is always equal to 1.

K(a,b)

Remark 5. For the sake of clarity and simplicity, the same functiof, 4 is used in both, the
second and the third summations. It would, however, be Iplests use different functions.

Let x=ci(a,b) andy = cj(a,b) or y = cx(b,a). Consequentlyx,y € [0,1]. FunctionZ(x,y) is
used to get the reduction coefficients kprandk;, when, at least one of the argumentsZgx, y)
is within the rangg0, 1].

What are the properties @f(x,y) to guarantee the coherence of formula (6)?

Extreme value conditions When leaving the ambiguity zonesa, b) should regain the
form presented in formula (4). Thua(1,1) = 1 andZ(x,0) = Z(0,y) = 0.

Symmetry: From the fact thak;; = Kji thenZ(x,y) = Z(y,X).

Monotonicity: When the ambiguity diminishes the effect due to the int@paccannot in-
crease. Thed(x,y) is anon-decreasing monotone functiohboth argumentsg andy.

Marginal impact condition : When the ambiguity diminishes we pass frem w to X, the
relative marginal impact of the interactions is boundednfitbove,

V—]\-/<Z(X+V\/,y)—Z(X,y)> Sl X, Y, W, X+W € [071]

We will see the interest of this condition in the proof of Lea®

Continuity: Formula (2) is a continuous function of(a) and g;(b) when pi(gi(a)) >
gi(gi(a)), for alla€ A. If we want to preserve continuity then it is necessary E@aty) is
acontinuous functiomf each argument.
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Boundary condition: For preserving the net balance condition, it is sufficibatZ (x,y) <
min{x,y}.

The boundary condition is a particular case of the margmglaict condition. The proof is as
follows.

T (zxtwy)-Z(xy) €1 & Z(xtwy) - Z(xy) <w
Consider nowx =0
Z(0+wy)—Z(0,y) <w
and, according to the extreme value conditions,
Z(wy)—0<w & Z(wy) <w
Now, for symmetry, we get
Z(w,y) < min{w,y}.

Therefore, it is only sufficient to consider the marginal anpcondition. However, for the
sake of a better comprehension we keep both conditionsytdsomore intuitive.

Among the multiple forms that can be chosenZdx,y), we only present two of them which have
an intuitive and meaningful interpretation.

Z(x,y) = min{x,y};

Z(X,y) = Xy.

If x and/or y are equal to 1, both formulae are equivalent. But, wkamdy are both different
from 1, that is, when the two interacting criteria belonghe ambiguity zone, then the impact of
the interaction is weaker witky than with min{x,y}. Choosing the mifx,y} formula means that
the reduction coefficient is not influenced by what happenbérother ambiguity zone. For these
reasons the formulbey seems preferable to mir,y}.

5.2.2 Extension of the main theorem

This section presents an extension of the previous restienw is composed of at least one
pseudo criterion. The proofs are similar to the ones pralide Lemma 2 and Theorem 1.
Let us consider the paije,b) € A x Aand calculate the following algebraic sum,
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S(av b) = z Ci(a> b)ki + Z Z(Ci(a> b),Cj (av b))kﬂ - Z Z(Ci(a> b)vch(bva))ki,h
icé(BPa) {i,iYeT (ab) (i,h)E0(ab)

Lemma 3. For all (a,b) € Ax Aand for all fe F, Sa,b) is a monotone non-decreasing function
of As and Sa,b) > 0.

Proof.
The proof of this lemma is also based on the fact that if thieificeAs decreases, eith&(a, b) remains constant or
it decreases. Two cases have to be considered.

1. Criterionf belongs taC(bPa).
For the same reasons as in the absence of pseudo critenieasiegA; does not affect neither the first nor
the second of the three summations in the definitioB(afb). The same holds for the third summation when
there is no ordered pafr, f) € O(a,b). If there exist ordered paif$, f) € O(a,b), then decreasing leads to
ci(b,a) = 1; the third summation will not change. Consequer8{®, b) remains constant.

2. Criterionf belongs taC(bPa).
Now, three subcases have to be considered.

(a) Criterionf belongs taC(aSh.
The decreasing di; does not moves; it remains thus it€(aSh. More precisely, the decreasing &f
will not make any change in the three componentS(afb), which remains constant.

(b) Criterionf belongs taC(bQa).
After decreasing)s, criterion f stills remain inC(bQa), either because it belonged to this coalition
before or because it moved @bQa) due to the decreasing af. All the summations in the definition
of S(a,b) are affected. Let us suppose tbata, b) changes its new value and become&, b) — A, with
A > 0. We have the following inequalityi(),

S(a, b)Newi S(a, b)Old _

B+ Y (Z(er(ab)-b.ci(ab) - Z(cr(ab).ci(ab) kij+
jeC(ab)

— 5 (Zer(ab) - A cnlb,a) - Z(cr(a,b),cn(b,a) ) Ky
heC(bPa)

<

Ok + Z (Z(Cf(a7b)—A7Cj(a7b))—Z(Cf(a7b)70j(a7b))>‘kfj|+
jeC(a,b):ksj<0

— 5 (2cr(ab)~,cn(b.8) ~Z(ct (@b, cn(b.a)) ) Ky
heC(bPa)

Let us remark that for ath € C(bPa),
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Z(ct(a,b) — A,cn(b,a)) — Z(ct (ab), cn(b, ) = — (Z(c (a.b), cn(b. ) Z(ct (a.b) — &,cn(b,a) )

From the marginal impact condition and puttinga,b) — A = x, cy(b,a) =y, andA = win the previous
condition we obtain,

+(2er@b).onb.2) - Z(er(ab) - Acn(b,a)) <1
and therefore,
Z(ct (a,b), cn(b,a)) — Z(cr (a,b) — A,c(b.a) < A
or, in an equivalent wayji ),
Z(ct(a,b) — A,cn(b.a)) - Z(cs (. b).ch(b,a) > ~A
And, now from this expression we obtain,

M+ Y Z(cs(a,b) —A,cj(a b)) — Z(ct (a,b). cj(a, b))) ke |+

jeC(ab):ksj<0

- ; (Z(cr(ab) — 2,cn(b,a) ~ Z(c1 (a.b), cn(b, ) ) Kip
heC(bPa)

<

tj<0 heC(bPa) jeC(a,b):kj<0 heC(bPa)

D W TRV N Y l(fh):—A(kar kil = 3 K
jeC(ab)k i

From the net balance condition we have,

ks + 72 [k¢jl— z K, >0
jeC(a,b):ksj<0 heC(bPa)

and, therefore, sinc& > 0, we haveiii )

A+ Y k- Kin) <0
jeC(a,b):ksj<0 heC(bPa)

Considering togethd(i), (ii), and(iii ), we get,
S(a7 b)NEW_ S(a7 b)OId <0

and, we can conclude that after decreadingS(a, b) cannot increase.
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(c) Criterionf moves taC(bPa).
The decreasing ak¢ will move f to C(bPa). In such a case; (a,b)k; can no more be found in the ex-
pression ofy(a,b)NeW. If there arej such thaf f, j} € L(a,b), then the term&(cy (a, b), cj (@, b))k j will
be removed from the second summation. If theré areh thati, f) € O(a, b), thenZ(ci(a, b), ¢t (b,a))K;
will be introduced in the third summation. The new values@, b), S(a, b)N®Wis equal toS(a, b)°!d mi-
nus a certain quantity; it is calculated as follows,

S(a.7 b)NeW: S(a7 b)OId—

cilabki+ Yy  Z(cr(ab),cilab)kij— Y Z(ci(ab),cr(b,a)ky
{f.jiteL(ab) (i,£)EO(a,b)

Now, it remains to prove that the quantity between big pdresis, denotedS(a, b), is non-negative.
AS(a,b) > ¢ (a b)ks +

; Z(ci(ab),ci(@b)lkijl— > Z(ci(ab),cr(ba))k
{f.iyeL{@b)yk; <0 (i,1)E0(a,b)

which is guarantee by the fact thatx,y) < min{x,y}. ConsequentlyS(a,b) cannot increase.

The proof of the monotonicity o8(a,b) is thus complete. The proof &a,b) > 0 can be obtained from the mono-
tonicity of S(a, b) in an analogous way as in the case of quasi criteria.

Lemma 4. For all (a,b) € Ax A and for all f€ F, ¢(a,b) defined as in (6) is a monotone non-
decreasing function af;.

Proof.
The proof of this lemma is also based on the fact that if thiedihceA; decreases, eithe(a, b) remains constant or
it decreases. Two cases have to be considered.

1. Criterionf belongs taC(bPa).
For the same reasons as in the absence of pseudo critenieasiegAs does not affect neither the first nor
the second of the three summations in the numerator of (6 sBime holds for the third summation when
there is no ordered pafr, f) € O(a,b). If there exist ordered pairs, f) € O(a,b), then decreasings leads to
ct(b,a) = 1, the third summation will not change. The normalizatioeftioient,K(a,b), does not change too.
Consequentlyg(a, b) remains constant.

2. Criterionf belongs taC(bPa).
Now, four subcases have to be considered.

(a) Criterionf belongs taC(aSh and it remains ifC(aSh after decreasind.
The decreasing ah; does not move to another coalition. Thus, the decreasing\efwill not make
any change in the three components of the numeratofapb), neither in the normalization coefficient
K(a,b). Consequentlyg(a, b) remains constant.

(b) Criterionf moves fromC(aSh to C(bQa).
After decreasing\¢, criterion f moves toC(bQa) due to this decreasing. All the summations in the
numerator of (6) are affected. Let us suppose théa, b) changes its new value and becoroe&, b) —
A, with A > 0. Observe that in such a case, the &tsPa)°'?, L (a, b), andO(a, b) remain the same after
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decreasind\s. Let c(a,b) andc(a,b)NeY denote the values af(a,b), before and after decreasirdg,
respectively. These coefficients can be rewritten as fajow

old NOld New NNew
c(a,b) = poid and c(a,b) = DNew

where,

N9= ¥ G@abk+ Y Za(@b).c@b)ki— Y  Z(a(ab)cn(ba)ky
icC(bPa) {i,j}éC(ab) (i,n)EO(a,b)

D=Sk+ ¥ Z@b.cj@b)ki- 5 Z(ci(ab)c(ba)ky
ic {i,j}€L(a,b) (i,h)eO(a,b)

NNew — NO_kA—  § Z(Cf(a7b)7cj(a7b))—Z(Cf(a7b)—A7cj(a7b)))kfj+
{f.i}eL@b)
+ Y (Zer(ab),enlb,a) - Z(cr(ab) ~ A cn(b,a) Ky
(f,h)eO(a,b)

DNeW = DOId - Z(Cf (a7 b)C] (a7 b)) - Z(Cf (a7 b) 7A7 Cj (a7 b))) kf]+
{f.i}eL(ab)

+ Y (Zer@b)enba) ~Z(er(ab) —a,cnb,a) Ky
(f,h)E0(ab)

Consider the following additional notation,

o = NNew
B:DNeW
y=" 5 (Z(Cf(avb)vcj(avb))_Z(Cf(avb)_Avcj(avb)))kfj+
{f,jiteL(ab)
— Y (2er(@b),en(b,a) ~ Z(cr(a,b) — Acn(b,a) Ky
(f,h)E0(ab)
d=ksA

The concordance indices can be rewritten as follows,

a

and c(a b)NeW= =

c(a, b)OId = Lﬁ

From the monotonicity conditior(a, b)°!d > ¢(a, b)Ne"becomes

Note that from the net balance conditib¥¢¥ > 0 andD®'? > 0, and therefor@ > 0 andB +y > 0.

Taking into account that > 0 andfB +y > 0, through the application of very simple algebraic operaj
(i) is equivalent tqa +y+8)B > a(B+Y), from which we obtain

(Y+3)B=ay (ii).

FromB > a > 0, the inequality(ii) holds ifd > 0, which is always true.
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(c) Criterionf belongs taC(bQa) and it remains ifC(bQa) after decreasings.
This case is analogous to the previous one beceg(seb) changes its new value and becorme&, b) —
A, with A > 0. Thus, when decreasiy, c(a,b) also decreases.

(d) Criterionf moves fromC(bQa) to C(bPa).

LetC(bPa)°'d, L(a,b)°'d, andO(a,b)'d denote the se(bPa), L(a,b), andO(a, b), respectively, be-
fore decreasind, and letC(bPa)NeW, L (a,b)NeW. andO(a, b)N®W denote the same sets after decreasing
A¢. We have,

C(bPa)New = C(bPa)©ld\ {f}
L@ bNev=L(a )2\ {{j, } : j e C(bPAO\ {f}}
O(a b)New= 0(a,b)®\ { (f,h) : heC(bPa®} u{(i,f) : i e C(bPAO\ {11}

Observe also that, in this case, denotingba, b)N®Wandcs (b, a)N®Wthe value of (a, b) andcs (b, a),
respectively, afteA; decreases, we have

ci(ab)N®=0 and cf(b,a)N®"=1

Therefore,
NNew
c(@ b= Sew
where,
NNew _  NOId _joa_ Z(Cf(a7b)7cj(a7b))_Z(Cf(a7b)_Avcj(a7b))>kfj+
{f.j}elTab)
+ Y (Zeri(ab)cnb.a) — Z(cr(ab) — A, ca(ba) K+
(f,h)eO(a,b)0'd
Z(cj(a b),ct (b, a))Kjs
jeC(ab)old
phew = pOld— (Z(er(ab).cj(@b)) ~ Z(cr (ab) - ,cj(ab)) krj+

{f.j}eL(ab)o
+ Y (2Zeri(ab)enb,a) ~ Z((cr(ab) —Acn(b,a) Kyt
(f,h)eOlab)or
- z Z(Cj(a,b),Cf (ba))klj
jeC(ab)od
Sincec (a,b)N®W = 0, ¢t (a,b) — c®(a,b) = cf(a,b) and tanking into account that for alle [0, 1],
Z(x,0) = 0 we can rewrittNN®" andDN®" as follows.

NNew — NO—ciabki— Y Z(cr(ab),ci(ab)kej+
{f.j}eL(ab)ord
+ z Z(Cf(a7b)7ch(b7a))k/fh_ Z Z(Cj(avb)7cf(b7a))k/jf
(f,h)e0(ab)ord jeC(ab)od\{f}
pNew — po%9— 3 Z(ct(ab),cj(ab)kej+
{f.i}eL(ab)o
+ S Zler@ableba)Kn— S Z(cj(ab),cr(b.a)K
(f,h)eO(a,b)0d jeC(ab)Old\{f}

Consider the following additional notation,
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o = NNew

B= pNew
y= > Z(ct(a,b),cj(a b))ksj — > Z(ct(a,b),ch(b,a))K,+
{f.i}eL(ab)o (f,h)e0(ab)ord

+ > Z(cj(ab),ci(ba)kis
jeCab)\{f}
d=ct(a b)ks

Thus, we have that

a

and c(a b)NeW= =

oa+y+9o
clab) ===

such that from the monotonicity conditiafa, b)©'4 > c(a, b)N®Wbecomes as follows,
a+y+9d > o
B+y — B

Observe tha > 0 and+y > 0. Therefore, through the application of very simple algaboperations,
(iii) is equivalent tda +y+ ) > a(B+Y), from which we obtain

(iii')

(Y+3)B=ay (iv)
and since3 > a > 0, (iv) holds if > 0, which is always true.
There is no need to consider the case wHeneoves fromC(aSh to C(bPa) after decreasing;. It results from the

combination of the two cases: movifigrom C(aSh to C(bQa) and then moving from C(bQa) to C(bPa). The proof
is thus complete.

Now the main result can be established.

Theorem 2 Boundary conditions, monotonicity, and continuity hold é¢a,b) as defined in
formula (6).

Proof.
Lemma 2 establishes monotonicity. Boundary conditiond idlen considering pseudo criteria. And continuity derives
from the fact that,

1. the function¢(a,b), Z(x,y) are continuous, and

2. the conditiongs (a,b) =0if g¢ (a) + s (g¢ (a)) —9¢ (g¢ (b)) =0 andZ(0,y) = Z(x,0) = 0 guarantees continuity
when a criterion becomes a member or when it is removed froenobithe following setsC(a, b), L(a,b), or
O(a,b).

The proof is thus complete for the general case.

We complete this section (cf. end of Step 3 in Section 4.2howeng that when dealing with
pseudo criteria the antagonistic effect is not mathemltieguivalent to mutual strengthening.
Consider two criteria; andg, and the following three cases:

25



a) gi,0n € C(bPa);
b) g € C(bPa) andg, € C(bPa);
c) on € C(bPa) andg; € C(bPa).

Let us consider modeling of casap b), andc) in terms of both mutual strengthening, using

the weightsk;, k¢, andki,, and antagonism, using the weigkisky, ki, andkhI
Taking into account modeling in terms of mutual strengthgrand considering the numerator
of c¢(a,b), we have (following the above three cases):

a) kici(a,b) +kncn(a,b) +knZ(ci(a,b),cn(a,b));
b) kici(a,b);
) kncn(a,b).

Taking into account modeling in terms of antagonism andidenisig the numerator af{a, b),
we have (following the above three cases):

a) kiGi(a,b) +kncn(a,b);
b) kici(a,b) — K, Z(ci(a,b),cn(b,a));
c) kncn(a,b) —KZ(cn(a,b),ci(b,a)).

To get an equivalence between modeling in terms of mutuahgthening and antagonism, the
following equations should hold for all the valuesapfa, b) andcy(a,b) in the above cases, i.e.,

a) kici(a,b) + kncn(a, b) + knZ(ci(a,b), cn(a,b)) = kici(a, b) + kncn(a, b);
b) kici(a,b) = kici(a,b) — K, Z(ci(a,b),cn(b,a));
c) kncn(a,b) = knch(a,b) — khZ ch(a,b),ci(b,a)).

Notice that the values of the weights kn, kin andkn, kj,, k/,;, ensuring that the above equa-
tions hold, depend on the values @fa,b) andcs(a,b). This means that there are no weights
ki, kn, kin andkn, ki, khI giving the same values af(a,b) when modeling in terms of mutual
strengthening and when modeling in terms of antagonismalfdhe possible values af (a,b)
andcp(a,b). Therefore, in presence of pseudo criteria, mutual sthemgihg and antagonism are
not mathematically equivalent.

6 Modeling the interaction effects in the illustrative exanples

In this section, the impact on the pairwise comparisons @tlinee interactions effects illustrated
in Section 2 is shown. When taking such effects into accatwetcomparisons between actions
can change. In the following sub-sections, it is assumettthieae is no veto effect in the pairwise
comparisons of the actions.
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6.1 Choosing a site for a new hotel construction project

Table 4 presents the evaluations of the four sites; ¢, d, andd’ - according to the 5 criteria. In
this example,

- The evaluations of criteriog; (investment costs) are expressed in thousands, ales-
ignated KE. The indifference and the preference thresholds assignéug criterion are
01(91(x)) =500+ 0.03g; (x) K€ andp1 (g1 (X)) = 1000+ 0.059; (x) K€, respectively, where
x is the worst of the two actions (c.f. Section 3.3).

- The evaluations of criteriog, (annual costs) are also expressed #; Khe thresholds as-
signed to this criterion argy(g1(x)) = 50+ 0.0591 (x) K€ andpz(g1(x)) = 100+ 0.07g; (x)
K€, respectively, wherg is the worst of the two actions (c.f. Section 3.3).

- The evaluations of criterigs (recruitment),gs (image), andys (access) are expressed on
the following seven-level qualitative scale: very bad, bather bad, average, rather good,
good, and very good. The indifference threshold for eadierion has been set at one on
the seven-level scale and the preference threshold at tetsle

g1[min] Ge[min] | gg[maX | gsmax | gs[max
a | 13000 ke | 3000 KKe | Average| Average | Average
b | 15000 k€ | 2500 KKE€ | Good Bad Very Good
c | 10900 ke | 3400 Kke | Good Good Very Bad
d | 15500 ke | 3500 Kk€ | Good Good Good
d | 15000 K€ | 2600 KKE | Good | Very Bad Bad

Table 4: Some potential sites for the new hotel

Consider again the weights obtained using SRF= 5, ko = 4, k3 = k4 = ks = 3, where
K = 18. The concordance index for the ordered gaib) is c(a,d) = % =1, Taking into
account the mutual strengthening interaction effect betvgg andg,, whose the value is set at
ki2 = 3 as defined in Section 4.2, our normalization coefficke(a,d) = 18+ 3 = 21. The new
c(a,d) = 32 = 3. Infact, c(d,a) does not change whether or not the interaction coeffidignt
is taken into account (i.eg(d,a) = 1—98 = %). If the concordance threshoklhas been defined
ass = 0.55, the mutual strengthening interaction effect make @rctbat sitea is better thard,
whereas they were previously incomparable.

For the comparison between sigeandd’, c(a,d’) = (5+138+3) = 1. But, when considering the
mutual weakening interaction effect modeled iifg= —2,K(a,d’) =18—2=16 andc(a,d’') =
% = 1—96 the concordance indexd’, a) takes always the same valugd’, a) = @ = 1—78
Fors=0.55,acan no longer be compareddf whereas it was the preferred site prior to applying

the mutual weakening effect.
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6.2 Launching a new digital camera model

Table 5 presents the evaluations of the four models- a, Imndcdaaccording to the 7 criteria given
in section 2. Let us precise that:

- The evaluations of criteriog, (price) are expressed £ the indifference and the preference
thresholds assigned to this criterion gie= 25€ andp; = 50€, respectively.

- The evaluations of criteriogg (volume) are expressed in cubic centimeters; the threshold
assigned to this criterion agg = 10 cn?® and ps = 20cn?, respectively.

- The evaluations of criteriog; (weight) are expressed in grams; the thresholdgjare10g
andpy = 20g, respectively.

- The evaluations of criterig, (weakness)gs (workability), g4 (image), andys (aesthetics)
are expressed on the following seven-level qualitativéeseery bad, bad, rather bad, aver-
age, rather good, good, and very good; these criteria havuaddference threshold of one
on the seven-level scale and a preference threshold of two.

ga[min] |  go[min] gs[max ga[max gs[max | ge[min] | gr[min]
a| 220€ Average Average | Rather Good Average | 190cn?® | 155¢g
b | 300€ Bad Rather Good Average | Rather Good 160cn? | 145¢g
c| 160€ Bad Very Bad Average Rather Bad | 140cn? | 130g
d | 280€ | Very Good| Average Very Good Average | 220cn? | 170g

Table 5: Some possible digital camera models

Consider again the weights obtained using SRFE-6,ko =4, ks =ks =ks =1, ks = ky =
2, whereK = 17. The concordance index f¢a.d) is c(a,d) = &2 — 1L (criterion gy
is in the ambiguity zone, and it only counts for 50% of its @leweight). Now, consider the

antagonistic effect, wherlg, = 2.5. The new concordance index takes the vai(eed) = 2.

But, c(d,a) remains the same (i.e(d,a) = % = 1%). If sis defined as= 0.6, when taking
the antagonism effect into account, the actions becomeripacable, although was preferred to

d before. This incomparability shows that this effect canlyrgignificant changes.

7 Concordance index and Choquet integral

Choquet integral (see Choquet, 1953) is an aggregatioratmpgrermitting to model interactions
between criteria. Itis used to build a value function givingpmplete preorder, i.e., a transitive and
strongly complete binary relation, rather than simply atramking relation, being only reflexive
and not transitive and complete, as itis the case in ELECTR&methods. Moreover, the way in
which Choquet integral is used is questionable especiatty n@spect to two main points as stated
by Roy (2007):
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1. the hypothesis that the evaluation of each criterion igpesed to be expressed on the same
scale and therefore they can be compared each other; and,

2. the way in which the importance of criteria is measureduph the Shapley index.

In what follows we will show that the new concordance indefooiula (6) can be interpreted
as the classical Choquet integral under two conditions:ntagnistic effect is taken into account,
andZ = min{x,y}. Finally, we will show that for modeling the antagonisti¢eet we need to use
the bipolar Choquet integral.

The Choquet integral (see Choquet, 1953) of a vecter(xy, X, ..., X)) € R with respect to
a capacityu being a functioru: 2F — [0, 1], such that

1. u(B) > p(C),foralBCCCF
2. W(@)=0anduF)=1,

is defined

Ch(x,u) = _i(x(i) — Xi-1))M(B))

where, (-) indicates a permutation ¢f such thatx) < X < ... < Xn), Xy = 0 andB(i) =
{(1),(2),...,(i),...,(n)} . The Choquet integral can be interpreted as a generalizafiaghe
weighted average aggregation method when interactiongelet criteria have to be taken into
account. This is clear understandable after the conceptitidg transform is introduced and the
Choquet integral is reformulated according to such a tmnsf Given a capacity, its Mobius
transform (see, for example Rota, 1964) is given by the ed(®) € R, SC F, such that

a(s) = ; (-1 (), ScF
cs
Using the Mobius transform, the capacity can be expressed a
WS = > a), ScF

2

while the Choquet integral can be rewritten as follows,
Ch(x, ) :12 aT)min{x :ieT}
cs

Let us remark that the values afS), SC F, are related to the interaction of elements frém
Thus if there is no interaction, we haaé€S) = 0 for all SC F with |§ > 1, and thus,

M) = 3 alfip), SCF

IS
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while the Choquet integral becomes,

Ch(x,w) = > a({i})x = » H{i})x
that is the Choquet integral collapses to the weighted geenaethod of values; with weights
u({i}) = a({i}). An interesting case of interaction, often used in the apfibns of Choquet
integral for its simplicity, is given by 2additive capacity (see Grabisch, 1996) being a capacity
such that for its Mobius transform we have thgf) = 0 for all SC F with |§ > 2, and thus

u(S)=25a({i})+ z a({i,j}), SCF
IE {i,]}CS
while the Choquet integral becomes,

Chocw) =3 alli})s + 5 alfi, i} minfx.x).

i€ {i,]}CF

Looking at the concordance index from the point of view of @t integral (since in case
of absence of interactions the concordance index of ELECirREhods is the weighted average
of valuesci(a, b)), it can be seen as the Choquet integral of valygs b) with a capacityu(S) =
Z‘f%'“ for all SC F. Instead, in case of presence of mutual strengthening onahuteakening
effect, but not the antagonistic effect, then the numeratdéhe concordance index we proposed
in the previous sections corresponds to the Choquet intefinealuesci(a,b) with a capacity
U(S) = Yieski + 3 i jycskij, for all SC F in case oZ(x,y) = min{x,y}.

The antagonistic effect cannot be taken into account wethetihove formula. As for taking it
into account we will consider the bipolar Choquet integral.

Given the set or family of criterids = {91,092, ...,0i,...,0n} Or simplyF ={1,2,...,i,...,n}
consider the se¥l = {(B,C) : B,CCF, BNC# g}.

The antagonistic effect can be modeled in the framework@bipolar Choquet integral (see
Grabisch and Labreuche, 2005a and Greco et al., Matarafi).28 bicapacity (Grabisch and
Labreuche, 2005a, 2005b) is a functign: M — [—1,1] such that,

1) forallBC D C F andE C C C F such thatB,C), (D,E) € M, u(A,B) < p(C, D),
2) W(2,2) =0,
3) Ww(F,9)=1andw(ag,F)=—-1.
A bipolar capacity(Greco et al, 2002) is a function
Hoip M — [Ov 1] X [Ov 1]7 (B,C) - Ubip(Bvc) = (p‘;ﬁp(Bvc)vut;p(Bvc))

such that,
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4) forallBC D CF andE C C C F such tha(B,C), (D,E) € M, p;,(B,C) < py;,(D,E) and
I“lt:ip(B7C) 2 I“lt:ip(D7E)'

5) forall BCF, Wy;,(2,B) = 0 andpy,;,(B,2) =0,

6) Hyip(F, @) =1 andp, (2,F) = 1.

Now, the bipolar Choquet integraCfy,) of XR", with respect to bicapacity,, can be defined
as follows (Grabisch and Labreuche, 2005b),

n

Chy(xh) = 3 CORE M EN=
where, || indicates a permutation &f such thatxy|, [X2) |, <. .., < X |, [X0)| = O,Azir) ={je
F x> %} andA ={jeF %<0, =x; > [x}.

And, the bipolar Choquet integraCfyip) of XR", with respect to bipolar capacify;p, can be
defined as follows,

Ch)ip(x7 Ubip) = Chg_ip(xﬂ |Jbip) - Chc:ip(x7 Ubip)

with

Chp (X, Moip) = i (x| = xi-n ) wip (B B5))

1=
being thepositive componerdf the bipolar Choquet integral, and

n

Chyip (% Hoip) = i; <|X(i)| — [Xi-1) |) Hoip (B(f)» B(g)

being thenegative componemif the bipolar Choquet integral (Greco et al, 2002).

To calculate the bipolar Choquet integral we have to fix theesafp,(B,C) for all (B,C) € M,
while to calculate the positive and the negative componehtke bipolar Choquet integral we
have to fix the value oﬂgp(B,C) and ;,(B,C) for all (B,C) € M. Thus, to apply the bipolar
Choquet integral a very large number of parameters shoutbkfieed. To deal with this problem
Grabisch and Labreuche (2005a) proposed the 2-additiapadities while Greco and Figueira
(2003) proposed the 2-order decomposable bipolar cagscitihe 2-order decomposable bipolar
capacity measure gives us a model to compare the bipolaru@hagegral with the concordance
index in case where the antagonistic effect is present.

A bipolar capacity is 2-order decomposable if there ex&st${ j},2), a" ({j,k},2),a" ({j},
{k}),a (&,{j}), a (@,{],k}), a ({j},{k}) €R, j,ke F, j #k, such that, for al(B,C) € M,

- Wyip(B,C) = gBr’f({i},@)Jr J_;B«f({j,k}’@) + ar({j}.{k})

jeB, keC
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- H&p(Bﬁ):gBa*(Q,{J}H_ZEBa*(Q,{J,k})+J_EBZkECa*({J}>{k})

Js

The bipolar Choquet integraCfyip) of x € R", with respect to a 2-order decomposable bipolar
capacitylyip, can be defined as follows,

Chﬂip(x> Ubip) = Ch(J)rip(Xv Ubip) - Ch(;ip(x> Ubip)

with,

Chyip (X, loip) = FZ a'({ihox+ Y a({ikh@)min{x;x}+
jeF, xj>0 j-keF, Xj x>0

Y a i kminkg—xg
j.keF, X;>0, %<0

being thepositive componendf the bipolar Choquet integral, and

Ch(:ip(xﬁl“lbip) = FZ Oa_(@,{j})(_xj)+ Z a‘(@,{j,k})min{—xj,—xk}+
JeEF, Xj<

j-keF, Xj %<0

1 > a ({j}, {k}) min{—x;, %}
j.keF, X;>0, %<0

being thenegative componemif the bipolar Choquet integral (Greco and Figueira, 2003).
Observe that the numerator of the concordance index we pegpocase o (x,y) = min{x,y},
corresponds to the positive part of the bipolar Choquegnaieof valuesci(a,b) in case,

b (RS =S k+ ki + h, forall (RS M.
Hoip(R.S) ; {LJZQSJ ; ERknlh (RS

which proves the relation between our proposal and Chogtegrial for this particular case.

8 Conclusion

In this paper we introduced three types of interaction thetvamodeling a large number of depen-
dence situations in real-world decision-making probleM#& showed how to take into account
these types of interaction in the concordance index usedmihe ELECTRE methods frame-
work. Formula (2) can be simply replaced by (6) in all of theEE2ITRE methods. We explained
how the extension of the concordance index we are proposingpe used in practice. Neverthe-
less, this extension is appropriate only when the numbeaw$ f interaction criteria is rather
small. Otherwise, we considere that the family of critehiawdd be rebuilt since it contains too
many interactions and possibly incoherencies. In additiem showed the links between our ap-
proach and the Choquet integral. As a line for possible tiyaison in the future we can mention
the study of the interactive protocol of the decision-makartheir representatives when facing to
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situations with interaction between criteria in real-wdoproblems. A software development and
implementation will also be one of the main concerns in thar haure.
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