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Abstract

We propose a general study of the convergence of a Hermite subdivision
scheme H of degree d > 0 in dimension 1. This is done by linking Hermite sub-
division schemes and Taylor polynomials and by associating a so-called Taylor
subdivision (vector) scheme S§. The main point of investigation is a spectral
condition. If the subdivision scheme of the finite differences of S is contractive,
then S is C° and H is C% We apply this result to two families of Hermite
subdivision schemes, the first one is interpolatory, the second one is a kind of
corner cutting, both of them use Obreshkov interpolation polynomial.

1 Introduction

A Hermite subdivision scheme H of degree d is a recursive scheme for computing
a function ¢ : R — R and its d derivatives ¢',...,¢@. The initial state of the
scheme is a vector function fy : Z — RY*!. The first component of f; is a control
value for ¢, the second component, for ¢’ and so on. The sequence of refinements
fn i Z — R n > 0, is recursively defined through a family of (d + 1) x (d + 1)
matrices {A(a) = (a;;(a))i j=o,. d}acz, & finite number of them being non-zero, by

D™ fria(@) =Y Al = 28)D"fo(B), a € Z,n >0, (1)
BEZL
where D is the diagonal matrix whose diagonal elements are 1,1/2,...,1/2%

Another way of writing the previous equation is

£ (e) /210D = Zz%a—zﬁ )2 i=0,1,....d (2)

BEZ j=0



for o € Z, where f,, (o) = ( D), ..., fr(Ld)(oz))T € Rt

The family of matrices {A(«)}aez is called the mask of the Hermite subdivision
scheme H. The support of H is the smallest interval [0, 0'] containing {«a € Z : A(«) #
0}.

The analysis of interpolatory Hermite subdivision schemes of degree 1 has been ini-
tiated by Merrien [13] and by Dyn and Levin [7]. The first investigations of Hermite-
type subdivision schemes of degree larger than 1 have been proposed by Merrien [14],
Dyn and Levin [8], Zhou [18], Han [9] and Yu [17]. They have given the theory and
the tools (through Fourier transforms for the last three) for analyzing the convergence
and smoothness of Hermite-type interpolatory schemes. However, there has been no
such analysis for noninterpolatory Hermite subdivision schemes. In this paper, we
expect to cover this gap.

The paper is divided into seven sections including the introduction. In Section 2,
we define the notion of C¢ convergence for a Hermite subdivision scheme H of degree
d and the Taylor condition about the refinements of H. The main result of Section
3 is that a nondegenerate Hermite subdivision scheme H satisfying a weak form of
the Taylor condition always satifies a spectral condition. This spectral condition
has many implications such as the reproduction of polynomials. In Section 4, with
every Hermite subdivision scheme H satisfying the spectral condition, we associate a
vector subdivision scheme &, the so-called Taylor subdivision scheme. In Section 5,
we propose a sufficient condition for C'¢ convergence of a Hermite subdivision scheme
of degree d. This criterion is that the subdivision matrix 7" of the finite differences
arising from the Taylor subdivision scheme is contractive. When this is the case,
the Taylor subdivision scheme is C° and the Hermite subdivision scheme is C?. In
Section 6, for every positive integer d, we consider two specific Hermite subdivision
schemes HIS¢ and HCC?. The first one is interpolatory by solving a basic Hermite
problem whose solution is a piecewise Hermite polynomial. The second one is non
interpolatory and is a kind of corner cutting which is a generalization of the well
known Chaikin’s algorithm. For each of these schemes, for d = 1,2,3, we compute
the subdivision matrix 7" and we check that its spectral radius is < 1.

2 Convergence and Taylor Condition

We define the notion of C% convergence for a Hermite subdivision scheme H of degree
d and the Taylor condition about the refinements of H.

Definition 1 We say that a Hermite subdivision scheme of degree d is C% if for
every sequence of refinements f, : Z — R there exists a C?-function ¢ : R — R
for which for every e > 0 and for every L > 0, there exists N such that for every
n > N, for every a € [—L2", L2"], \f,(lo)(oz) — o(a/2")| <, \f,(ll)(oz) — ¢ (a)2™)| <,
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..,]fy(ld) () — oD (a/2™)| < €. The function ¢ is called the limit function associated to
the refinements f,.

Definition 2 Let d be a positive integer, we say that a sequence of f, : Z — RI*!
fulfills the Taylor condition if for every e > 0 and for every L > 0, there exists N
such that for everyn > N,

d
. , 1
FOa+1)/2m =3
| / Jz:: (J —i)!
fori =0,...,d, for every a € [—L2", L2"]. The Taylor condition is satisfied by
a Hermite subdivision scheme if every sequence of its refinements fulfills the Taylor
condition.

FP() /277 < /2™ (3)

Lemma 1 Let ¢ : R — R be a C? function. If for every o € 7Z, we set f}lo)(a) =
o(a/2v), fV(a) = ¢ (a)27),..., fiP(a) = ¢D(a/2"), then the Taylor condition (3)

18 satisfied by the sequence f, = (f,(lo), fy(ll), - ,(ld))T

Proof: Let i € {0,1,...,d}, the Taylor expansion gives the existence of 0; €]0,1]|
such that

d-1 @) (a/2m) @ ((a n
¢(Z a+1/2n ZQZ)]_/ZQ /2n] 1) ¢) (((di_f))/Q )/2n

j=i

or equivalently

¢ ((a +1)/2") Z D(a/2) _ ¢D((a+6;)/2") — §D(a/2")

2in = (j —i)l2in (d — i)!12dn

From that, for every L > 0, since ¢? is uniformly continuous on [—~L, L + 1], for
i=0,....d,

d

60 ((a+1)/27) /27 = 3 (j%i)!¢<j><a/2”>/zj" — o(1/2%)

=i
uniformly for every a € [-L2", L2"] as n — oo.
O

A Hermite subdivision scheme is interpolatory if A(0) = D and for all a € Z with
a# 0, A(2a) = 0. In this case, for a € Z, fn(a) = foi1(2a).

Corollary 2 In a given interpolatory C¢ Hermite subdivision scheme of degree d, the
Taylor condition (3) is satisfied.



3 Spectral properties of Hermite schemes

The main result of this section is that a nondegenerate Hermite subdivision scheme
'H satisfying a weak form of the Taylor condition will verify a spectral condition. This
spectral condition has many implications, in the first instance the determination of
the behavior of the refinements of H. Before reaching the main result, some lemmas
are required. We use the notation P, for the space of polynomials of degree inferior
or equal to d.

Lemma 3 Let p(z) € Py and f(a) = (p(a),p' (), ...,p' D ()T, for a € Z, then

d

O+ 1) =3 D)/ (=)t =0

j=i

fori=0,1,....d, for every a € Z.

Proof: Let p(z) € Py, then pl*(z) = 0. Let i € {0, 1,...,d}, the Taylor expansion
of p (the ith derivative of p) is p®(x) = Z 0V (a) (x —a)l~ Z/(] — ). We set

a=a,r=a+1, we obtain f@(a+1) = Zj:if(] ()/(G =)L

Lemma 4 Let f = (f©, fO . f T where f@ : [a,b)NZ — R, i =0,1,...,d and
where b —a > 1, we assume that for i =0,1,...,d, for every o € [a,b— 1] NZ,
d

Fa+1)=> " f9a)/(j—i) =0, (4)

j=i

then there exists a polynomial p of degree less than or equal to d such that f(a) =
(p(@), (@), .., pD ()T for every a € [a,b] NZ.

Proof: Ifa ¢ Z, we substitute a by min[a, bjNZ and we set p(z) = S¢_, f¥)(a) /! (z—
a)* and v(a) = (p(a),p'(a), ..., p?(a))” and h(a) = f(a) —v(a) for a € [a,b] N Z.
We define the linear map Qf = g where g : [a,b— 1] NZ — R is defined as follows

d(a) = fP(a+1) ij) )/ (=19, i=0,1,..,4d.

From Lemma 3, Qv = 0. By hypothesis, Qf = 0, thus Qh = 0. It follows that for
every a € [a,b— 1], and for i = 0,1, ...,d, we get h®D(a + 1) = Z;.l:i h9) (a) /(5 — ).
Since h(a) = 0, by induction, we get that for every « € [a, b], h(a) = 0 so that f = v.
O

The two previous lemmas provide a characterization of the finite difference equa-
tion (4). We recall a lemma (Proof can be found in [5] Lemma 20)
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Lemma 5 Let zg, 29, ..., zqg be d+1 distinct complex numbers and pg, p1, ..., pqg be d+1
nonzero vector polynomaials with values in the same finite vector space, we assume that
the sequence of vectors ZZ:O pr(n)zp converges to c. If ¢ # 0, then there exists an
integer j € [0,d] such that z; =1 and p;(n) = ¢ and for every other integer k € [0, d|,
|zk] < 1. If ¢ =0, then for every integer k € [0,d], |zx| < 1.

Lemma 6 Let H be a Hermite subdivision scheme of degree d with mask {A(c) }aez
whose support is contained in [0, 0']. Let E be the set of vectorsv = (v oM )T
where v : [—o',—0] — C, i = 0,1,...,d. We consider the linear operator T in E:
Tv(a) =257, Ala —28)v(B). Letv € E and let f, be a sequence of refinements
fn such that Vo € [—o’, —a] fo(a) = v(a), then Va € [—0', —a] D" f,(a) = T"v(«).

Proof: We set v, = T"v for n = 0,1,2,.... We prove by induction that Va &
[—o’, —0c] D™ f,,(a) = v,(a). By hypothesis, this is the case for n = 0. Let us assume
that for a given integer n, Va € [—o’, —a] D" f,(a) = v, (). If a € Z, then we obtain

Dn+1fn+1(04) = Z A(a - 2ﬁ)ann(ﬂ)
BeZ

If « € [-0',—0] and B ¢ [-0', —0], then a — 203 ¢ [—0',—0]| and A(a — 25) = 0. It
follows that

D () = S Al — 28)D"fo(8) = Tu(a) = vua(a)
=o'

whenever a € [—0', —c]. O

Definition 3 A Hermite subdivision scheme of degree d is nondegenerate if for each
i €{0,1,...,d}, there exists an integer a; and a sequence f, of refinements such that

Theorem 7 Let 'H be a nondegenerate Hermite subdivision scheme of degree d with
mask {A(@) }aez. We also assume the following condition is satisfied: for every se-
quence of refinements f, : 7 — R,

d

ICESIEAEDS

j=i

ﬁféﬂ(a)/?" =0(1/2™) a€Z,i=0,1,...d. ()

Then for every k = 0,...,d, there is a unique polynomial py(x) of degree k with its
leading coefficient equal to 1/k! such that the vector function vy : Z — R where

vp() = (pe(a), . .. ,p,(gd)(oz))T is an eigenvector of (A(a —203))a,pez for the eigenvalue
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1/2%. Moreover, if f, is a sequence of refinements of H, then there exist constants
Co, C1,, ---, Cq Such that for every a € 7Z,

o) /2" = chpk (a)/2"" + o(1/2%), i=0,1,...,d. (6)

In particular, lim,, o f,(f) () =¢; fori=0,1,...,d.

Proof: Forie€ {0,...,d}, let f, be a sequence of refinements and a; € Z such that
lim_f{"(a;) =1 (7)
(H is nondegenerate).

Let 0,0’ € Z be such that the support of H is contained in [o,0'] and a; €
[—0, —0']. If E is the set of vectors v = (v@, v . v @) where v® : [0’ —0] — C,
i =0,1,...,d, we define the linear operator T"in £ by Tv(a) = > 57, A(a—28)v(3).
Let us denote m(z) = [[r_,(z — Ax)* the minimal polynomial of T where the )\, are
distinct, then we define Ej as the kernel of (T"— Apl)**. According to the primary
decomposition of a vector space (see Theorem 4.2 in Lang [10]), E is the direct sum
of Eki E = @szlEk'

Let F be the set of vectors w = (w®,w®, ..., w®)T for which there exists a
polynomial p € Py satisfying for i = 0,...,d, for all a € [~0', —o] w¥(a) = p@(a).
If )\, is an eigenvalue such that |\,| > 1/24, let us show that Ej, C F.

For v € Ej, we define the sequence: vy = v, vp1 = (T — M)y, € > 0 and
finally we set v = min{f > 0 : vo41 = 0}. Let f; : Z — R be defined by Va €
[—o’, —0], fola) = v(«a) (for any a ¢ [—0’, —0o], the choice of fy(«) may be arbitrary),
we consider the sequence of refinements generated by f,. By Lemma 6, we obtain
D" f (o) = T™v(a) for n = 0,,1,2,... and Vo € [—0’, —0]. Since Tvy = vpq1 + A0y
and v, = 0 for ¢ > v, we can prove recursively that T"v = Y ,_, (?))\Z’ew with
(Tg) = 0if n < £. This can be written

v

@ =3 (@ im0 daeldiod ()
(=0
From (5) and (8), we obtain

v

Tim > (6)2‘“% P(a+1) -y E’;_((;))!] ~0 (9)

=0 j=i

for any a € [—0’,—0—1], and i = 0,1, ...,d. From (9) and Lemma 5, since 24| \;| > 1,

we get v (a+1)— Z W) _

P 0. From Lemma 4, there exists a polynomial p; € Py
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such that v© () = pi(a), vV (a) = pi(a), ..., v (a) = pi?(a), a € [~0’, —0]. Thus
E, C F. From this inclusion of sets, we obtain the inequality

Y dimE, <dimF=d+1. (10)
[Ag|>1/24
Let i € {0,...,d}, a; € [—0’,—0o] and let f, be a sequence of refinements such

that (7) is satisfied. We set w(a) = fo(a), @ € [—0’,—0c]. The vector w has a
unique decomposition in E: w = Zf:o wg with w, € E,. For k = 1,..., K, we
define the sequence: wyy = wy, Wrer1 = (T — Ml)wyy, ¢ > 0 and finally we set
v, = min{f > 0 : wg 41 = 0}. Then T"w = Zk 0Dt ( )wkg/\” ‘. More precisely,
we get

@) /2 = ZZ( )/\” ‘wi(a), Vael-o',—0],i=0,1,...d (11)

k=0 ¢=0

From (7), (11) and from Lemma 5, we deduce that 1/2° is an eigenvalue of T

Since this is true for i = 0,...,d, from (10), we obtain that dim Ey, = 1 if A\, =
1/2¢, this means that v 0 The eigenvector corresponding to eigenvalue Ay is
the vector vy = (pg, D, -- ,pk ) Any eigenvalue not in {1/2°:4i =0,1,...,d} is in
the disk |A\| < 1/2%. If we reorder the eigenvalues in such a way that \, = 1/2F
for k = 0,1, ...d, then Equation (11) becomes Equation (6) where ¢ is the number
defined by wy = cxvg.

Let us show that the degree of p; is k for £k = 0,1,...,d. In (6) let us use the
sequence of refinements f,, for which (7) is satisfied. From Lemma 5, we get cipgi) (a;) #
0 and cjpg-i)(ai) = 0 for for i = 0,1,...,d and j < i. We obtain that ¢; # 0 for
1 =0,1,....d, pgi)(ai) # 0 and pg-i)(ai) = 0 for j < i. The degree of py is max{¢ :

pi(a;) # 0} = k since we know that p,(f)(ai) =0for k < /.
Since the degree of pk is k, then for i, k € {0, 1, ...,d}, the limit of p,(f)(@)2(i_k)" is
0;r and the limit of fn () is ¢; as n — o0.

As o and ¢’ may be chosen arbitrarily large in absolute values and that the
polynomials p are unique up to a multiplicative factor, the proof is complete. O

Remark 1 If the Taylor condition is satisfied by a sequence of vector function f, :
Z — R then its weak form (5) is valid.

We put the main statement of the previous theorem in the form of a definition.

Definition 4 A Hermite subdivision scheme of degree d satisfies the spectral condi-
tion if for k =0,...,d, there is a polynomial p of degree k with its leading coefficient



equal to 1/k! such that for all « € Z

S Ao — 268)u(8) = vila) /2" (12)

BEZ
where vg(a) = (pr(a), pi(a), . .. ,p,(gd) (a))T.

Definition 5 A C? function ¢ is reproduced by a C? Hermite subdivision scheme if
it 1s the limit function associated with a sequence of refinements f, of this scheme.

Theorem 8 We consider a Hermite subdivision scheme of degree d which satisfies the
spectral condition, then any polynomial of degree less than or equal to d is reproduced
by the scheme.

Proof: For k € {0,...,d}, let pi(x) be the polynomial defined in Theorem 7 which
provides the eigenvector v;, appearing in (12). Weset fo(a) = (p,. (@), pi(@), . .. ,p,(cd)(oz))T,
then by (1) and (12), we get by induction that D"f, = f,/2"" and fy(f)(a)/Qm =
p,(:)(oz)/Qk", i =0,1,...d, for n = 1,2,3,.... Let Y5_, cez’/f! be the Taylor expan-
sion of pg, we will show that the limit function associated with the refinements f,, is
o(x) = cpxk /k!. We distinguish 3 cases.

Case i > k: fi7(a) = pl? (@)20-Pm = 0, 6 (a/2") = 0 so that f1”(a) — ¢ (a/2") =
0,

Case i = k: f{7(a) = pP (@) = e, ™ (a/2") = ¢, and again, {7 (a) — ¢ (a/2") =
0,

Case i < k: then f{(a) = 20-Rnpl) (o) = 2R Sk 0 0f=i/(p — i), @ (a/2m) =
20-kney 0h =t /(K — i)l and £ () — ¢ (a/27) = 26=Pn KL e 0f=i /(¢ — 4)!. Finally
(@) = 6D (a/27) = O(1/27) uniformly for o € [~L2", L2"] as n — co.

According to Definition 1, ¢ is the limit function associated with the refinements
fn. The polynomial z* is reproduced and by linearity, any polynomial of degree less
or equal to d is reproduced by the scheme. O

Corollary 9 A Hermite subdivision scheme of degree d which satisfies the spectral
condition 1s nondegenerate.

The function z¢ is the associated limit function of refinements f,. In Definition
3, take these refinements and a = 1.



4 Associated subdivision scheme

Given a Hermite subdivision scheme H satisfying the spectral condition, we will
associate a vector subdivision scheme S, the so-called Taylor subdivision scheme. We
begin by recalling what a vector subdivision scheme is and when it is affine.

Definition 6 A vector subdivision matrix of order p is a matriz function S : Z* —
RP*P for which there exists an interval [0, 0’|, 0,0’ € Z, 0 < o’ such that S(«,3) =0
whenever o — 23 ¢ [o,0']. If go : RP — R, then the recursive formula

Inr1(a) = Z S(a, B)gn(B)

BEZ

generates the refinements of gy and defines a vector subdivision scheme S of order p.
The interval [o, 0’| is a support of S. If there exists a matriz function B : Z — RP*P

such that S(a, B) = B(a — 23), then B is the mask of S.

Definition 7 A vector subdivision matriz S (and its corresponding vector subdivision
scheme) is affine if >, Z?Zl sijf(a, ) =1, o« € Z, i = 1,2, ..., p, where s;j(c, )
are the entries of S(a, 3). The subdivision scheme is scalar if p = 1.

For f = (fO,..., f)7 where f) : Z — C, i =0,...,d, we define the operator
Pf=g=(g",. .., ¢ where

90 (a) = [ ()

, , L =) (g

If Py, P; are the respective square matrices of order d + 1

d—2)! d—2)! , : : : , (13
0 - 0!2) _gd%! 0 0 (d—2)! 0 (13)
d—1)! d—1)! d—1)!
_ o) e 0 (d-1)! 0 0 0
_d _d _db __d 0 d! 0 0 0 0
ol 1 2)] @1
then
Pfla) = Ff(a)+ Pifla+1). (14)



Theorem 10 Let ‘H be a Hermite subdivision scheme of degree d which satisfies the
spectral condition cmd whose mask A(a) = (a;j(c))ij=0,..a has support included in
lo,0']. Let f, = (fn , ¢ ,...,fn ) ,n=0,1,2,... be the refinements of a H, we
set g, = 2" PD" f,, and C(a) = 2%(PyA(a) + PLA(a+ 1)) where P, Py, P, are defined
n (13-14). If we define the matriz function B(a) = (bij(@))ij=o,..a by

pUI—"
bra-i(@) = 772 'ZZczk 20 G = 0ed (15)
] B=1 k=0 J ’

bio(a) = cia(e) (16)
fori=0,...,d, then the support of B is contained in [0 — 1,0’ and the sequence g,

1s the sequence of refinements of an affine vector subdivision scheme S whose mask
1s B.

Proof: Let us find a condition that a matrix function B should satisfy in order that

the functions g, = 2"¢PD"f, are the refinements of a vector subdivision scheme of
mask B.

gosi(a) =D Bla—28)g.(8) = 2" > Bla —28)PD" f,(5)

BeZ BEZ
Gnyr(a) = 20HDdppntl e () = 2 Fd Z PA(a —26)D" f,.(5).
BEL
Since
> " Bla—28)PD"f,(8) =Y _ Bla—2B)[PyD" fo(B) + PLD" (B + 1)]
BeZ BEZ
= Z a—2B)Ry + Bla+2 —28)P|D" f,.(8),
BEL

such a condition is
B(a)Py + B(a+2)P, = C(a) = 24 PyA(a) + Pl A(a + 1)).

Let us remark that the support of C'is included in [0 — 1, ¢”].

When comparing the jth column of B(a) Py+ B(a+2) P, with that of C' and using
the definition of Fy and P;, we get the following equations:

. CZ"]'(O() J d k -
big (o +2) = ) +Z (d_ )bzd pa), j=0,1,.,d—1, (17)
bip(@) = ¢ia(c). (18)

10



Both Equations (16) and (18) are the same. In order to solve (17), we note
that C(a) = 0 if @« < 0 — 1 and we set B(a) = 0 for & < 0 — 1. Obviously, the
functions b; 4—j(a@+2), i =0,1,...,d, 7 = 0,1,...,d — 1 can be computed recursively
forao =0 —1,0,0+1,.... Let us check that (15) is a solution of (17).

We define the matrix function B by (15-16). Matrix B is well defined and has the
property that B(a) = 0 for @« < 0 —1since C'(a) =0if o« < o —1. Let i € {0,1....,d},
j€40,1.....,d— 1} and « € Z, then, as the support of C' is bounded,

B=1 £=0 k=0 (j — € —k)K! priar G=0)

_¢ )
since Jz: ﬂ(ﬁ —1)F=(B—1+17"= 3" (from binomial theorem)
= (j — L~ k)'k! .

Consequently, we get

o~ (d—k _OO " cio(a—26)57t
cij(a) + (d —5)! O(d_ )zdk —Z G= o)

=0 (=0

> - cigla+2—28)(3 — 1)
—y oyl ,

(G —0) = (d = j)bja—j(a +2).

B=1 =0

(17) is satisfied and the sequence g, is the sequence of refinements of the vector
subdivision scheme whose mask is B.

Before studying the support of B, let us show that

ZZ _1jkclk(Q Qﬂ):()a]:()??d_l (19)

BEZ k=0

We use the basis of P;_; composed with the polynomials p, of degree k, k =
0,...,d — 1 such that the vector function vg(a) = (pg(c),... ,p,(cd)(a))T is an eigen-
vector of the supermatrix H = (A(a — 203))a.gez for the eigenvalue 1/2%. We have

L (Pyn() + Pogla + 1)).

Fy ZA(O( —2B)up(B) + P ZA(Q +1—28)v(B) = 5

BEL BEZ
From Lemma 3, we obtain Pyvg(«a)+Pivg(a+1) = 0 and ZﬂeZ C(a—28)vi(B) = 0.

11



For j € {0, 1, ...,d—1}, the vector function w;(a) = (q(), ¢'(a), ..., ¢Y(a))T where
0, ie. (19) is satisfied.

Let us study the support of B. Since the support of C' is included in [0 — 1,07],
from (15)-(16),we deduce that the support of B is included in [0 —1, +00). Let a > o’
then ¢;;(a—23) =0fori,5 =0,1,...,d and for 5 < 1. jFrom that and from (15)-(19)
we obtain b; 4_j(o) = 0 for j = 0,...,d — 1 and for i« = 0,...,d. Moreover, from
(16), we obviously get b;o(cr) = 0 for i = 0, ...,d. The support of B is contained in
o —1,0'].

To prove that the vector subdivision scheme S whose mask is B is affine, we
use the eigenvalue 1/2% of H and the associated eigenvector built from the vector
function vg(«) = (pa(@), ..., pfid)(a))T where p, is a polynomial of degree d which can

be chosen such that its leading coefficient is 1/d!.
If we define fy = vy, then for all o € Z,

Dfi(e) = Ala—28)fo(B) = fola)/2"

BEZ

We get g1(a) = 2¢PDfi(a) = Pfo(a) = go(r). From Lemma 3, we deduce go(a) =
Pvg(a) = (1,...,1)T. Since gi(@) = 3 5c5 Bla = 20)go(a) = go(ex), we obtain the
last result of the Theorem. O

Definition 8 The vector subdivision scheme with mask B is called the Taylor subdi-
vision scheme associated with H.

5 Criterion of convergence for a Hermite scheme

We will propose a sufficient condition for C¢ convergence of a Hermite subdivision
scheme of degree d. This criterion is that the subdivision scheme of the finite differ-
ences arising from the Taylor subdivision scheme is contractive. Before reaching the
main theorem, we need a lemma.

Lemma 11 Let f,, : Z — R be a sequence of functions. We assume thatlim,, ., f,(0) =
¢ and that there exists a continuous function 1 : R — R such that for every L > 0,
2"Afp(a) =1 (a/2") = o(1) uniformly for a € [—L2", L2"] asn — oo. Then for every

a/2n

L>0, fala) —c— [,7 (t)dt = o(1) uniformly for o € [-L2", L2"] as n — oo.

Proof: Let ¢ > 0 and let L > 0, there exists an integer N; > 0 such that
(Vn > Ny) (VB e ZN[—L2", L2"]) |2"Af.(B) — ¥ (6/2")] < e. (20)

12



Now since ¢ is uniformly continuous on [—L, L], there exists Ny > N; such that
(Vn > No) (VB € ZN [—L2™, L2" — 1]),

(B+1)/2™
'W/z”)/zn - /ﬂ ()t < /2" (21)

/2"

For n > Ny, let a € [0,L2"| N Z. As fu(a) = fu(0) + > 5= s Af(B), with (20), we
obtain

Q
H

fala) —c— w(ﬁ/T)/?"

0

< |fu(0) — | + Le.

T

From (21), we get

a/2" -1
ey [ wmal <3l
0 =0

It follows from both previous inequalities that

< Le.

(B+1)/2"
sy = [

B/2n

/2™
fala) —c— /0 WY(t) dt| < |fu(0) —c| + 2Le.

We have a similar result for o € [—-L2",0]NZ. Let N > N, be such that |f,(0)—c| < ¢
whenever n > N. We have proved (Vn > N) (Va € [-L2", L2"| N Z)

a/2™
() — c—/o O() dt] < (21 + 1)z

and the conclusion can easily be deduced. O

Definition 9 We say that a vector subdivision scheme S of order p is C° if for
every sequence of refinements f, : Z — RP of S, there is a continuous function
¢ : R — RP such that for every e > 0 and for every L > 0, there exists N such that
|| fu(a) —d(a/2M)|| < € for everyn > N and every a € [—L2™, L2"]. The function ¢ is
called the limit function associated with the refinements f,. If for any limit function,
all its components are the same, we say that S is C° with equal components.

Theorem 12 Let ‘H be a Hermite subdivision scheme of order d which satisfies the
spectral condition. Let B(a) = (bij())ij=01,..a be the mask of the Taylor subdivision
scheme S associated with H. We define the functions s,t: Z?> — R

S((d—Fl)Od—l-Z,(d—l-l)ﬂ—}—]):b”(Od—2ﬂ), Q,BGZ,Z,]:O,L,CZ, (22)

13



B 0

Ha,f) == Y Isla+ly)=s(ay)]= Y [sla+1l7) —s(ay)).  (23)

Y=—00 y=B+1

If, moreover, there is an integer n such that

max{) _[tu(a, B)] : v € [0, (d+1)2" — 1]} < 1 (24)
BEZ

where (t,(a, ) is the n-th power of the subdivision matriz T = (t(, 3))a,pez, then
the Taylor subdivision scheme S is C° with equal components and the Hermite subdi-
vision scheme H is C?.

Proof: In the first part, we show that the Taylor subdivision scheme S is CV.
Let g, = (gr(lo),gr(ll), o ,gr(ld))T, n =0,1,2,... be the refinements of S, we define the
sequence h,, : Z — R by setting h, ((d+1)a+1i) = gr(f)(a), a€Z,i=0,1,...,d. There
is no essential difference between g, and h,. h, is the sequence of refinements of a
non-uniform binary subdivision scheme whose subdivision matrix S = (s(«, ))a.gez
is given by (22). The refinement rule is hy,y1(a) = 325 s(, B)h,(B). We still call
this scheme §. From Theorem 10, the subdivision matrix is affine: for every a € Z,

Zﬁ 8(047 B) =1
Since S is affine, we can define the subdivision matrix 7' = (t(a, #)) with (23)
(see Equations (3.7) and (3.8) of [1] or Proposition 10 of [3]). As it is shown in [3],

the sequence of the finite differences Ah,, = h,(a + 1) — h,(«) is the sequence of
refinements of the subdivision scheme whose subdivision matrix is 7.

The subdivision matrix T' (like S) is periodic of period d+ 1, i.e. t(a+2d+2, 5+
d+ 1) = t(a, ). Let t,(«, 3) the entries of the matrix 7", then T" is periodic with
the following meaning

thla+(d+1)2",+d+1) =t,(a, 5). (25)

We verify this periodicity recursively through the following equations:

torr(a+ (d+ 127 B+d+1)) = Y tHa+ (d+ 12" Y)ta(v,8+d+1)
YEZ

= Zt(a,v —(d+1)2")ta(y, B+ d+1)

YEZ

= ) HoNta(y+ (d+1)2",8+d+1)

YEZ

— Zt(a,v)tn(% B) = tna(a, B)

YEZ

14



From (24) and from (25), we obtain that the matrix 7™ is contractive:

17| = sup Y _ [ta(a, )] s 0 € Z} < 1.
Bez

This inequality is a criterion for the C° convergence of S (see Theorem 3.3 of [1],
Theorem 2.4 of [11], Theorem 3.2 of [12] or Theorem 4 of [6]). The subdivision
scheme S is C°.

Let @ be the limit function of the refinements h, and let L > 0, then h,(a) —
0(a/2™) = o(1) uniformly for a € [—L2", L2"]. We set ¢(z) = 0((d + 1)z) and we
get that for i = 0,1,...,d, g4 (a) — 1(a/2") is the sum of the two terms h,((d +
Da+14) —0(((d+ 1)a +14)/2") and 0(((d + )a + 7)/2") — 6((d + 1)a/2"). Let
L > 0, then g,(a) — ¥(a/2") = o(1) uniformly for o € [—L2", L2"]. The limit of
the sequence of refinement g, is the vector function (¢ (z), ¥ (z), ..., ¥ (z))T with d +1
equal components. The Taylor subdivision scheme S associated with H is C° with
equal components.

In this second part of the proof, we prove that the Hermite subdivision scheme
His CL Let f, = ( fr(Ll), . fr(Ld))T be a sequence of refinements of H and let
Gn = (gﬁo), g,g ),. . gﬁd)) = 2"PD"f. be the corresponding sequence of refinements

of §, we have

gr(ld )( )_an( i)! <f()(a+1 ) /2 — Z%), 1=0,...,d—1
gn’ (@) = fi (@)

Since S is C with equal components, there exists a continuous function ¢ : R — R
such that for every L > 0, gr(f) () —(a/2™) = 0(1), i =0,1,...,d uniformly for every
€ [-L2" L2"] as n — oo.

7

Then
F0(0) — vl/2°) = o(1), (26
and for i =0,...,d—1,
d—1
0+ 1)/2 = 3 g 0(a) /2" — bl (- = o(1/2%)  (21)

uniformly for every a € [—L2", L2"] as n — 0.

By Theorem 7, for i = 0,1, ...d, the sequence fy(f)(O) converges as n — 00, and we
set ¢; = lim,, ., f\" (0). Then we define

T (d_l 5 /Ox(x—t)dlw(t) dt
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Let k € {0,1,...,d}, we consider Property (P,) : for every € > 0 and for every
L > 0, there exists N such that \f,gk)(oz) — o™ (a/2")| < € for every n > N and for
every o € [—L2" L2"]. We proceed with a backward finite recursion, first showing
(P,), then (P, ,), ..., down to (P,).

(P,) is (26) since ¥(z) = ¢ ().

For Property (P, ,), we use (27) with ¢ = d — 1 and we obtain that the sequence

ALV (@) —h(a/2™) = o(1). Since the sequence fr(Ld_l)(O) converges, using Lemma
11, we conclude that the sequence

/2™
HE@) = e = [ 00 = [0 - 6V a/2) = o)

uniformly for every a € [-L2", L2"] as n — oo.

Now let us assume (P,),...,(P,, ) for k € {0,...,d—1}. Again, we use (27) with
1 = k and we obtain that the sequence

Af(k an . Z f /2n] _ ¢(E)‘d/in3€/)'2 ! = 0(1/2dn)

Jj=k+1

uniformly for every a € [—L2", L2"]. We multiply the previous sequence by 2(k+1)n
and we know from the recursion hypotheses that the sequences fr(zj )(a) are uniformly
bounded for 7 > k + 1 and fnkJr1 (@) = prr1(a/2") = o(1) uniformly for every a €
[—L2™, L2"] as n — 0o. We deduce that the sequence A fP) () — d(a/27) is o(1).
Since the sequence fr(ldfl)(()) converges, using Lemma 11 again, we conclude that
9 () — ¢®) (a/2m) = o(1) uniformly for every a € [—L2", L2"] as n — oo, which is
Property (P,).

Then (P,) is true for k =0,...,d, i.e. His C% O

6 Examples of Hermite subdivision schemes

For every positive integer d, we consider two specific Hermite subdivision schemes, the
first one is interpolatory and is obtained by solving a Hermite problem, the second one
is a kind of corner cutting. For each of these schemes, we consider the corresponding
Taylor subdivision scheme S and the subdivision scheme of finite differences 7 with
their subdivision matrices S, T'.

Before the definitions, we recall the Obreshkov interpolation polynomial [15]. Let
d,e > 0and let y = (y©@,yM . y@) and z = (2@, 2. 2(9) be two vectors, one
from R*! the other from R®!, the polynomial p of degree 2d + 1 that satisfies

p(Z)( ) y 2_0717‘“7da p(z)(b):Z(Z), iZO,l,...,e
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is the Obreshkov interpolation polynomial

Z (J (z —_b)e;l1 dzﬂ (e J,; k) %

k=0
Z (J av—a)dJrl i d+k\ (z —b)it*
(b — a)d+t P k (a—b)k

This formula is also given in the contribution of Sendov and Andrew [16], p.403. We
limit ourselves to the case e = d. We define

d—j
1 d+k\ . | ,
j(t)ZEE ( L )t”k(l—t)d“, vi(t) = (=1)u;(1—¢), j=0,1,...,d
" k=0

By substitution and differentiation, with ¢t = (x — a)/(b — a), we obtain

PP a+ 0 —a)t)b—a) = [yPu (1) + 2D @) (b —a), i=0,1,..d.

Jj=0

If we define the two matrices U(t) = (ugl) (t))ij=01,. aand V(t) = (vj(-i) (t))ij=01....ds

the matrix form of the previous equation is
Db—a)f(a+(b—a)t)=Ul)D(0b—a)y+V(t)D(b—a)z (28)

where f = (p,p/, ..., p)T and D(h) is the diagonal matrix whose diagonalis 1, h, ..., h¢,
(here h = b — a). We also remark that

V(t) = SU(1 - t)S (29)

where S is the diagonal matrix whose diagonal is 1, —1, ..., (—1).

6.1 Hermite interpolation scheme: HIS

Let d > 0 and let w : Z — R*! be a family of Hermite data. Let us consider the
unique piecewise polynomial ¢ : R — R such that on every interval [o, v + 1], o € Z,
¢ is a polynomial of degree < 2d + 1 and

o(a) = w(o)(a), ¢ (a) = w(l)(oz), ey D) =w'Y(a), acl. (30)

Figure 1 is about the degree d = 2. Three piecewise polynomials ¢g, ¢1, ¢o are
considered for three Hermite problems:

¢O( ) — Va0 ¢6(04) = 0? g(Oé)
VaoeZq ¢i(a) =0, ¢\ (a) =0da0, ¢f(c)
ng(Oé) = 07 ¢/2(a) = 07 ¢g(a)

17
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Figure 1: Basic Hermite interpolation functions and their derivatives of order 1 and
2 in the Hermite interpolation scheme of degree 2

Figure 1 provides the graphs of these functions with their two first derivatives.

Let us come back to the general Hermite problem (30). By sampling ¢ and its
derivatives, we define a sequence of functions f, : Z — R4,

fal@) = (6(a/2"), ¢ (/2"), ..., 9D (@) 2")T. (31)
In (28), we set a = /2", b= (a+1)/2", y = fu(®), z = fu(aw+ 1) and we obtain
two equations by choosing ¢t = 0 then ¢t = 1/2:
ann+1(204) = ann(&)a
D" foi1(2a+1) = U1/2)D"fuo(a) + V(1/2)D" fr(a + 1).

If we multiply each left side of these equations by D , we get a Hermite subdivision
scheme of degree d. The nonzero matrices of its mask are A(0) = D, A(1) = DU(1/2),
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A(—1) = DV(1/2) and we obtain

D™ fra(a) =Y Ala = 28)D" fu ().
B

We call it the Hermite polynomial interpolation scheme of degree d, HIS?. It is an
interpolatory scheme. Obviously the limit function of the refinements f,, is ¢.

For d = 1,2, 3, the respective values of A(1) = DU(1/2) are

384 132 18 1

1( 4 1) 1 _23 _12 _i 1] -840 —228 —24 -1
8\ -6 -1 /764 0 _o4 _4 | 768 0 —360 —84 —6

2520 5040 360 18

The ij-entry of A(—1) = DV(1/2) is (—1)"™7 times the corresponding entry of A(1)
as it can be seen by (29).

As already said, the scheme HI1S? is C?, but this is also implied by Theorem 12
as we will see. Before this, we verify that the spectral condition is satisfied.

Lemma 13 Let {A(a)} be the mask of HIS® with d > 0, then fork =0,1,...,2d + 1,
the vector function vg(a) = (pr(a), pi(a), ...,pggd)(oz))T where pp(x) = 2% is an eigen-

vector of the supermatrizc H = (A(a — 283))a ez with the eigenvalue 1/2%.

Proof: Let p be a polynomial of degree less than or equal to 2d + 1. If we sample
p and its derivatives on 2d + 1 data, then the Hermite interpolating polynomial is p
again by unicity. We set v(a) = (p(a),p'(a), ..., p¥(a))T, v is a vector function from
Z to RUY . Let V = (v())acz. If we define W = (w())aez = HV then

w(a) =) Ala—28)v(B).

BEZ

From (31), we deduce that w(a) = (q(a),q' (@), ...,q?(a))” where ¢(z) = p(x/2).
For k € {0,1,...,2d + 1}, if p(z) = 2 then ¢ = 2*/2* and the corresponding vector
Vi = (vp(@))aez is an eigenvector of H with the eigenvalue 1/2%. O

From Lemma 13 and Theorem 10, we can associate to HIS? the corresponding
Taylor subdivision scheme S;. The mask of the subdivision scheme S, is B and can
be computed by Theorem 10. From B, we get the subdivision matrix S. Since Sy is
affine, we define the subdivision scheme AS,; of the finite differences whose subdivision
matrix is 7. From Theorem 12, a criterion for the C¢ convergence of HPPd is that
there exists an integer n for which ||7"||o < 1. We apply this criterion for the first
schemes HIS!, HIS? and HIS?.
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For the scheme HIS!, the subdivision matrices S = (s(a, 3)) and T = (t(cv, 8))
are both periodic s(a +4, 5+ 2) = s(a, ) and t(a + 4, 5+ 2) = t(a, B) for o, f € Z.
The respective matrices (s(«, 3)) and (t(a, 3)) for a =0,1,2,3 and = 0,1,2 are

4
1] 1
4| -1
~1

0 3
-1 1] 2
-1 41| 0
1 -1

= O = O
o O OO

The entries s(a, (), t(a, §) are 0 if o = [0,3] and 5 ¢ [0, 2]. With this information, S
and T are entirely known. After computations, we obtain ||T|| = 1 and ||T?|| =
5/8. Since ||T?||o < 1, HIS" is C".

For the scheme HIS?, the subdivision matrices S and T are both periodic s(a +
6,0+ 3) = s(a, ) and t(a+ 6,3+ 3) = t(«a, ) for o, § € Z. The respective matrices
(s(a, B)) and (t(c, B)) for a € [0,5] and 5 € [0, 4] are

6 0 0 0 17 31 1 0
~1 —-14 30 1 -3 3 1 0
1|2 —20 32 2 116 -38 -6 0
6]-4 24 0 —4|" 16|-5 —-27 3 0
1 46 —30 —1 1 -1 =30
0 48 -—28 —4 0 48 20 0O

The entries s(«, (), t(«, 3) are zero if a = [0,5] and 3 ¢ [0,4]. The five first norms
T™||oo, m = 1,...,5, are 4.25, 4.75, 3.2422, 1.8643, 0.9962. Since ||T°|| < 1, the
Hermite scheme HIS? is C2.

In a similar way, it is possible to verify that the Hermite scheme HIS? is C? by
checking that ||T7||o = 0.7486 < 1 for the corresponding subdivision matrix 7.

6.2 Hermite corner cutting: HCC?

For every integer d > 0, we define another Hermite subdivision scheme of degree d.
Let us denote fy : Z — R a given family of control vectors. For n = 0,1,2, ..., we
will define recursively f,.1 from f, by considering the unique piecewise polynomial
¢n : R — R such that for every a € Z

dn(a/2") = f7(0). d(a/2) = f(e), .. o(a/2") = fi(a)

and ¢, is a polynomial of degree < 2d + 1 in [a/2", (a4 1)/2"]. The refined family
of control vectors is set according to the rule

9 (@) = 6D (a/2v T +1/272), i=0,...d, a€l. (32)
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Figure 2: Hermite corner cutting of degree one

In Figure 2, we illustrate the refinement f,,; of f,, according to (32) with d = 1.
Small black squares are related to f,, and dots, to f,11.

In (28), we set a = /2", b= (a+1)/2", y = fu(a), 2 = fo(a+ 1) and we obtain
two equations by choosing ¢t = 1/4 and t = 3/4:
D" o1 (20) = U(1/4) D" fu(a) + V(1/4) D" fu (e + 1),
D" fri1(2a+1) = U(3/4)D" fo() + V(3/4) D" fo(ar + 1).

If we multiply each left side of these equations by D, we get a Hermite subdivision
scheme of degree d. The nonzero matrices of its mask are A(0) = DU(1/4), A(—2) =
DV (1/4), A(1) = DU(3/4), A(—1) = DV (3/4) and we obtain

D™ fria(a) =Y Ala = 28)D" fu ().
B

We call it the Hermite corner cutting scheme of degree d, HCC“.

If d = 0, the previous formula becomes

far1(20) = 3/4fn(@) +1/4fn( + 1)
for1(2a+ 1) =1/4f,(a) + 3/4fn(a+ 1)

In this case this scheme is precisely Chaikin’s algorithm [2], which belongs to a class
of algorithms described by G. de Rham [4]. The name of corner cutting has been
given to the class of de Rham’s algorithms.
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Let us look at the mask of HCC'. The matrices A(0) = DU(1/4), A(l) =
DU (3/4) respectively are

1/ 549\ 1/ 10 3
64\ —36 6 )7 64\ —36 —10 /°
The matrices A(—2) = DV(1/4) and A(—1) = DV (3/4) can be computed from (29).

The ij-entry of A(—1) is (—1)"™/ times the corresponding entry of A(1), the ij-entry
of A(=2) is (—1)" times the corresponding entry of A(0).

In the case of HCC? the respective matrices A(0) = DU(1/4) and A(1) =
DU(3/4) of its mask are

X 1836 378 27 X 212 78 9
[ —1080 324 54 ). —— [ —1080 —380 —42
2048\ 9880 —2016 —144 2048 \ ' 5950 864 80

A computation by symmetry provides A(—1) and A(—2).

The fact that the scheme HCC? satisfies the spectral condition comes from the
following lemma.

Lemma 14 Let {A(«)} be the mask of the Hermite corner cutting of degree d > 0,
then for k = 0,1,...,2d + 1, the vector function vi(a) = (pr(), pi(a), ...,pggd)(oz))T
where pp(z) = (x — 1/2)* is an eigenvector of the supermatriz H = (A(a — 28))a.pez
with the eigenvalue 1/2F.

Proof:  We use a similar proof to the one of Lemma 13. With the same no-
tations, from v(a) = (p(a),p'(a),...,p(a))?, with (32), we obtain that w(a) =
(q(a),d'(a),...,q¥D(a))? where q(x) = p(x/2 + 1/4). For k € {0,1,...,2d + 1}, if
p = (z —1/2)% then ¢ = (x — 1/2)%/2% and V}, is an eigenvector of H with the
eigenvalue 1/2%. O

From Lemma 13 and Theorem 10, we can associate with HCC? the corresponding
Taylor subdivision scheme S;. We consider the subdivision scheme AS, of the finite
differences whose subdivision matrix is 7. From Theorem 12, HCC? is C? if there

exists an integer n for which ||T7"||s < 1. We apply this criterion for the first schemes
HCC', HCC? and HCC®.

For the scheme HCC"!, the subdivision matrices S = (s(a, 3)) and T = (t(«, 3))
are both periodic s(a +4, 5+ 2) = s(a, ) and t(a + 4, 5+ 2) = t(a, B) for o, f € Z.
The respective matrices (s(a, 3)) and (t(«, 3)) for @« = 0,1,2,3 and § = 0, 1,2, 3,4
are

6 36 —10 0 0 12 4 0 0
1 -6 4 -6 0 0 1[4 12 0 0
32(-103 6 0 0] 32|-7 19 7 -3

-3 10 18 10 -3 -3 7 19 —7
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The entries s(a, (), t(a, B) are 0 if o = [0,3] and 5 ¢ [0,4]. With this information, S
and T are entirely known. After computations, we obtain ||T'|| = 9/8 and ||T?||

5/8. Since ||T?|| < 1, HCC' is C*.

For Figure 3, let j € {0,1,2}, we consider the initial state of HCC?, fo(«)

da0(6j0, 0;1, (5j2)T for a € Z. The corresponding sequence of refinements f,, converges
to a vector function: (¢, ¢}, ¢” ;)T. Figure 3 provides the graphs of these functions.
The support of each function ¢, is [—1,2].

0.02
1 2
0.1 0.01
05 0
-0.1 0
0 -0.2
-0.01
-1 0 1 2 -1 0 1 21 0 1
2 1 oy 0.05
1 05 1
0 0
7 0 1
_1 _
‘DO 0.05 (I)2
5 -05
-0.1
-1 0 1 2 -1 0 1 2 =] 0 1
5 1 0.5 1
5
¢ 9,
0 0 0
q)fl
0
- -5 -05
-1 0 1 2 -1 0 1 2 -1 0 1

Figure 3: Basic limit functions and their derivatives of order 1 and 2 in the Hermite

corner cutting of degree 2

2

For the scheme HCC?, the subdivision matrix T is periodic t(a+6, 3+3) = t(«, 3)

for a, f € Z. The matrix (t(«, 3)) for a € [0,5] and § € [0, 5] is

1

256

—24
24
—112
19
—12
33

—308
296
—1040
677
—228
299

—38
24
—48
227
—64
165

0

0

0
101
—64
291

0
0
0
291
—176
645

0
0
0
21
—12
31

The entries t(a, ) are zero if « = [0, 5] and § ¢ [0,5]. The five first norms ||7" ||,
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n=1,..,5, are 6.8906, 5.2480, 2.8572, 1.4597, 0.7342. Since ||T®||, < 1, HCC? is
2.
In a similar way, it is possible to verify that the Hermite corner cutting of degree 3

is C® by checking that ||T7||o = 0.6840 < 1 for the corresponding subdivision matrix
T.

7 Conclusion

Our goal was to get a criterion for the C¢ convergence of a Hermite subdivision
scheme H of degree d > 0 in dimension 1. Under the spectral condition, we trans-
formed the Hermite subdivision scheme H into the Taylor subdivision scheme & and
the C?convergence of H has been reduced to the C°-convergence of S with equal
components. This criterion has been applied to two families of Hermite subdivision
schemes, the first being interpolatory, the second being the extension of corner cut-
ting to Hermite subdivision schemes. Noninterpolatory schemes seem to be smoother
than interpolatory ones.
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