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MINIMAL POSITION AND CRITICAL MARTINGALE
CONVERGENCE IN BRANCHING RANDOM WALKS,

AND DIRECTED POLYMERS ON DISORDERED TREES

By Yueyun Hu and Zhan Shi

Université Paris XIII and Université Paris VI

We establish a second-order almost sure limit theorem for the
minimal position in a one-dimensional super-critical branching ran-
dom walk, and also prove a martingale convergence theorem which
answers a question of Biggins and Kyprianou [Electron. J. Probab.
10 (2005) 609–631]. Our method applies, furthermore, to the study
of directed polymers on a disordered tree. In particular, we give a
rigorous proof of a phase transition phenomenon for the partition
function (from the point of view of convergence in probability), al-
ready described by Derrida and Spohn [J. Statist. Phys. 51 (1988)
817–840]. Surprisingly, this phase transition phenomenon disappears
in the sense of upper almost sure limits.

1. Introduction.

1.1. Branching random walk and martingale convergence. We consider
a branching random walk on the real line R. Initially, a particle sits at the
origin. Its children form the first generation; their displacements from the
origin correspond to a point process on the line. These children have children
of their own (who form the second generation), and behave—relative to their
respective positions—like independent copies of the initial particle. And so
on.

We write |u|= n if an individual u is in the nth generation, and denote its
position by V (u). [In particular, for the initial ancestor e, we have V (e) = 0.]
We assume throughout the paper that, for some δ > 0, δ+ > 0 and δ− > 0,

E

{(
∑

|u|=1

1

)1+δ}
<∞,(1.1)
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E

{
∑

|u|=1

e−(1+δ+)V (u)

}
+ E

{
∑

|u|=1

eδ−V (u)

}
<∞,(1.2)

here E denotes expectation with respect to P, the law of the branching
random walk.

Let us define the (logarithmic) moment generating function

ψ(t) := logE

{
∑

|u|=1

e−tV (u)

}
∈ (−∞,∞], t≥ 0.

By (1.2), ψ(t)<∞ for t ∈ [−δ−,1 + δ+]. Following Biggins and Kyprianou
[9], we assume

ψ(0)> 0, ψ(1) = ψ′(1) = 0.(1.3)

Since the number of particles in each generation forms a Galton–Watson
tree, the assumption ψ(0)> 0 in (1.3) says that this Galton–Watson tree is
super-critical.

In the study of the branching random walk, there is a fundamental mar-
tingale, defined as follows:

Wn :=
∑

|u|=n

e−V (u), n= 0,1,2, . . .

(
∑

∅

:= 0

)
.(1.4)

Since Wn ≥ 0, it converges almost surely.
When ψ′(1) < 0, it is proved by Biggins and Kyprianou [7] that there

exists a sequence of constants (an) such that Wn
an

converges in probability to
a nondegenerate limit which is (strictly) positive upon the survival of the
system. This is called the Seneta–Heyde norming in [7] for branching random
walk, referring to Seneta [35] and Heyde [22] on the rate of convergence in
the classic Kesten–Stigum theorem for Galton–Watson processes.

The case ψ′(1) = 0 is more delicate. In this case, it is known (Lyons
[29]) that Wn→ 0 almost surely. The following question is raised in Biggins
and Kyprianou [9]: are there deterministic normalizers (an) such that Wn

an

converges?
We aim at answering this question.

Theorem 1.1. Assume (1.1), (1.2) and (1.3). There exists a determin-
istic positive sequence (λn) with 0< lim infn→∞

λn

n1/2 ≤ lim supn→∞
λn

n1/2 <∞,
such that, conditionally on the system’s survival, λnWn converges in distri-
bution to W , with W > 0 a.s. The distribution of W is given in (10.3).

The limit W in Theorem 1.1 turns out to satisfy a functional equation.
Such functional equations are known to be closely related to (a discrete ver-
sion of) the Kolmogorov–Petrovski–Piscounov (KPP) traveling wave equa-
tion; see Kyprianou [25] for more details.
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The almost sure behavior of Wn is described in Theorem 1.3 below. The
two theorems together give a clear image of the asymptotics of Wn.

1.2. The minimal position in the branching random walk. A natural
question in the study of branching random walks is about inf |u|=nV (u),
the position of the leftmost individual in the nth generation. In the liter-
ature the concentration (in terms of tightness or even weak convergence)
of inf |u|=n V (u) around its median/quantiles has been studied by many
authors. See, for example, Bachmann [4] and Bramson and Zeitouni [14],
as well as Section 5 of the survey paper by Aldous and Bandyopadhyay
[2]. We also mention the recent paper of Lifshits [26], where an exam-
ple of a branching random walk is constructed such that inf|u|=n V (u) −
median({inf |u|=nV (u)}) is tight but does not converge weakly.

We are interested in the asymptotic speed of inf |u|=n V (u). Under assump-
tion (1.3), it is known that, conditionally on the system’s survival,

1

n
inf

|u|=n
V (u)→ 0 a.s.,(1.5)

inf
|u|=n

V (u)→+∞ a.s.(1.6)

The “law of large numbers” in (1.5) is a classic result, and can be found in
Hammersley [19], Kingman [23] and Biggins [5]. The system’s transience to
the right, stated in (1.6), follows from the fact that Wn→ 0, a.s.

A refinement of (1.5) is obtained by McDiarmid [31]. Under the additional
assumption E{(

∑
|u|=1 1)2}<∞, it is proved in [31] that, for some constant

c1 <∞ and conditionally on the system’s survival,

lim sup
n→∞

1

logn
inf
|u|=n

V (u)≤ c1 a.s.

We intend to determine the exact rate at which inf |u|=nV (u) goes to infinity.

Theorem 1.2. Assume (1.1), (1.2) and (1.3). Conditionally on the sys-
tem’s survival, we have

lim sup
n→∞

1

logn
inf

|u|=n
V (u) =

3

2
a.s.,(1.7)

lim inf
n→∞

1

logn
inf

|u|=n
V (u) =

1

2
a.s.,(1.8)

lim
n→∞

1

logn
inf

|u|=n
V (u) =

3

2
in probability.(1.9)



4 Y. HU AND Z. SHI

Remark. (i) The most interesting part of Theorem 1.2 is (1.7)–(1.8). It
reveals the presence of fluctuations of inf |u|=n V (u) on the logarithmic level,
which is in contrast with known results of Bramson [13] and Dekking and
Host [16] stating that, for a class of branching random walks, 1

log logn inf |u|=nV (u)
converges almost surely to a finite and positive constant.

(ii) Some brief comments on (1.3) are in order. In general [i.e., without as-
suming ψ(1) = ψ′(1) = 0], the law of large numbers (1.5) reads
1
n inf |u|=n V (u)→ c, a.s. (conditionally on the system’s survival), where c :=
inf{a ∈R :g(a)≥ 0}, with g(a) := inft≥0{ta+ψ(t)}. If

t∗ψ′(t∗) = ψ(t∗)(1.10)

for some t∗ ∈ (0,∞), then the branching random walk associated with the

point process V̂ (u) := t∗V (u) + ψ(t∗)|u| satisfies (1.3). That is, as long as
(1.10) has a solution [which is the case, e.g., if ψ(1) = 0 and ψ′(1)> 0], the
study will boil down to the case (1.3).

It is, however, possible that (1.10) has no solution. In such a situation,
Theorem 1.2 does not apply. For example, we have already mentioned a class
of branching random walks exhibited in Bramson [13] and Dekking and Host
[16], for which inf |u|=n V (u) has an exotic log logn behavior.

(iii) Under suitable assumptions, Addario–Berry [1] obtains a very precise
asymptotic estimate of E[inf |u|=n V (u)], which implies (1.9).

(iv) In the case of branching Brownian motion, the analogue of (1.9) was
proved by Bramson [12], by means of some powerful explicit analysis.

1.3. Directed polymers on a disordered tree. The following model is bor-
rowed from the well-known paper of Derrida and Spohn [17]: Let T be a
rooted Cayley tree; we study all self-avoiding walks (= directed polymers)
of n steps on T starting from the root. To each edge of the tree is attached a
random variable (= potential). We assume that these random variables are
independent and identically distributed. For each walk ω, its energy E(ω) is
the sum of the potentials of the edges visited by the walk. So the partition
function is

Zn :=
∑

ω

e−βE(ω),

where the sum is over all self-avoiding walks of n steps on T, and β > 0 is
the inverse temperature.

More generally, we take T to be a Galton–Watson tree, and observe that
the energy E(ω) corresponds to (the partial sum of) the branching random
walk described in the previous sections. The associated partition function
becomes

Wn,β :=
∑

|u|=n

e−βV (u), β > 0.(1.11)
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Clearly, when β = 1, Wn,1 is just the Wn defined in (1.4).
If 0<β < 1, the study of Wn,β boils down to the case ψ′(1)< 0, which was

investigated by Biggins and Kyprianou [7]. In particular, conditionally on

the system’s survival,
Wn,β

E{Wn,β}
converges almost surely to a (strictly) positive

random variable.
We study the case β ≥ 1 in the present paper.

Theorem 1.3. Assume (1.1), (1.2) and (1.3). Conditionally on the sys-
tem’s survival, we have

Wn = n−1/2+o(1) a.s.(1.12)

Theorem 1.4. Assume (1.1), (1.2) and (1.3), and let β > 1. Condi-
tionally on the system’s survival, we have

lim sup
n→∞

logWn,β

logn
=−

β

2
a.s.,(1.13)

lim inf
n→∞

logWn,β

logn
=−

3β

2
a.s.,(1.14)

Wn,β = n−3β/2+o(1) in probability.(1.15)

Again, the most interesting part in Theorem 1.4 is (1.13) and (1.14), which
describes a new fluctuation phenomenon. Also, there is no phase transition
any more for Wn,β at β = 1 from the point of view of upper almost sure
limits.

The remark on (1.3), stated after Theorem 1.2, applies to Theorems 1.3
and 1.4 as well.

An important step in the proof of Theorems 1.3 and 1.4 is to estimate
all small moments of Wn and Wn,β , respectively. This is done in the next
theorems.

Theorem 1.5. Assume (1.1), (1.2) and (1.3). For any γ ∈ [0,1), we
have

0< lim inf
n→∞

E{(n1/2Wn)
γ} ≤ lim sup

n→∞
E{(n1/2Wn)

γ}<∞.(1.16)

Theorem 1.6. Assume (1.1), (1.2) and (1.3), and let β > 1. For any
0< r < 1

β , we have

E{W r
n,β}= n−3rβ/2+o(1), n→∞.(1.17)
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The rest of the paper is as follows. In Section 2 we introduce a change-of-
measures formula (Proposition 2.1) in terms of spines on marked trees. This
formula will be of frequent use throughout the paper. Section 3 contains a
few preliminary results of the lower tail probability of the martingale Wn.
The proofs of the theorems are organized as follows:

• Section 4: upper bound in part (1.8) of Theorem 1.2.
• Section 5: Theorem 1.6.
• Section 6: Theorem 1.5.
• Section 7: Theorem 1.3, as well as parts (1.14) and (1.15) of Theorem 1.4.
• Section 8: (the rest of) Theorem 1.2.
• Section 9: part (1.13) of Theorem 1.4.
• Section 10: Theorem 1.1.

Section 4 relies on ideas borrowed from Bramson [12], and does not require
the preliminaries in Sections 2 and 3.

Sections 5 and 6 are the technical part of the paper, where a common
idea is applied in two different situations.

Throughout the paper we write

q := P{the system’s extinction} ∈ [0,1).

The letter c with a subscript denotes finite and (strictly) positive constants.
We also use the notation

∑
∅ := 0,

∏
∅ := 1, and 00 := 1. Moreover, we use

an ∼ bn, n→∞, to denote limn→∞
an
bn

= 1.

2. Marked trees and spines. This section is devoted to a change-of-
measures result (Proposition 2.1) on marked trees in terms of spines. The
material of this section has been presented in the literature in various forms;
see, for example, Chauvin, Rouault and Wakolbinger [15], Lyons, Pemantle
and Peres [30], Biggins and Kyprianou [8] and Hardy and Harris [20].

There is a one-to-one correspondence between branching random walks
and marked trees. Let us first introduce some notation. We label individuals
in the branching random walk by their line of descent, so if u = i1 · · · in ∈
U := {∅} ∪

⋃∞
k=1(N

∗)k (where N
∗ := {1,2, . . .}), then u is the inth child of

the in−1th child of. . . of the i1th child of the initial ancestor e. It is sometimes
convenient to consider an element u ∈U as a “word” of length |u|, with ∅

corresponding to e. We identify an individual u with its corresponding word.
If u, v ∈U , we denote by uv the concatenated word, with u∅ = ∅u= u.
Let U := {(u,V (u)) :u ∈U , V :U →R}. Let Ω be Neveu’s space of marked

trees, which consists of all the subsets ω of U such that the first component
of ω is a tree. [Recall that a tree t is a subset of U satisfying: (i) ∅ ∈ t; (ii)
if uj ∈ t for some j ∈ N

∗, then u ∈ t; (iii) if u ∈ t, then uj ∈ t if and only if
1≤ j ≤ νu(t) for some nonnegative integer νu(t).]
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Let T :Ω→Ω be the identity application. According to Neveu [32], there
exists a probability P on Ω such that the law of T under P is the law of the
branching random walk described in the Introduction.

Let us make a more intuitive presentation. For any ω ∈Ω, let

T
GW(ω) := the set of individuals ever born in ω,(2.1)

T(ω) := {(u,V (u)), u ∈ T
GW(ω), V such that (u,V (u)) ∈ ω}.(2.2)

[Of course, T(ω) = ω.] In words, T
GW is a Galton–Watson tree, with the

population members as the vertices, whereas the marked tree T corresponds
to the branching random walk. It is more convenient to write (2.2) in an
informal way:

T = {(u,V (u)), u ∈ T
GW}.

For any u ∈ T
GW, the shifted Galton–Watson subtree generated by u is

T
GW
u := {x ∈U :ux ∈ T

GW}.(2.3)

[By shifted, we mean that T
GW
u is also rooted at e.] For any x ∈ T

GW
u , let

|x|u := |ux| − |u|,(2.4)

Vu(x) := V (ux)− V (u).(2.5)

As such, |x|u stands for the (relative) generation of x as a vertex of the
Galton–Watson tree T

GW
u , and (Vu(x), x ∈ T

GW
u ) the branching random walk

which corresponds to the shifted marked subtree

Tu := {(x,Vu(x)), x ∈ T
GW
u }.

Let Fn := σ{(u,V (u)), u ∈ T
GW, |u| ≤ n}, which is the sigma-field in-

duced by the first n generations of the branching random walk. Let F∞ be
the sigma-field induced by the whole branching random walk.

Assume now ψ(0) > 0 and ψ(1) = 0. Let Q be a probability on Ω such
that, for any n≥ 1,

Q|Fn :=Wn •P|Fn .(2.6)

Fix n≥ 1. Let w
(n)
n be a random variable taking values in {u ∈ T

GW, |u|= n}
such that, for any |u|= n,

Q{w(n)
n = u|F∞}=

e−V (u)

Wn
.(2.7)

We write Je,w
(n)
n K = {e=:w

(n)
0 ,w

(n)
1 ,w

(n)
2 , . . . ,w

(n)
n } for the shortest path in

T
GW relating the root e to w

(n)
n , with |w

(n)
k |= k for any 1≤ k ≤ n.

For any individual u ∈ T
GW \ {e}, let ←−u be the parent of u in T

GW, and

∆V (u) := V (u)− V (←−u ).
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For 1≤ k ≤ n, we write

I
(n)
k := {u ∈ T

GW : |u|= k,←−u =w
(n)
k−1, u 6=w

(n)
k }.(2.8)

In words, I
(n)
k is the set of children of w

(n)
k−1 except w

(n)
k or, equivalently, the

set of the brothers of w
(n)
k , and is possibly empty. Finally, let us introduce

the following sigma-field:

Gn := σ

{
∑

x∈I
(n)
k

δ∆V (x), V (w
(n)
k ),w

(n)
k ,I

(n)
k ,1≤ k ≤ n

}
,(2.9)

where δ denotes the Dirac measure.
The promised change-of-measures result is as follows. For any marked tree

T, we define its truncation T
n at level n by T

n := {(x,V (x)), x ∈ T
GW, |x| ≤

n}; see Figure 1.

Proposition 2.1. Assume ψ(0)> 0 and ψ(1) = 0, and fix n≥ 1. Under
probability Q,

(i) the random variables (
∑
x∈I

(n)
k

δ∆V (x),∆V (w
(n)
k )), 1 ≤ k ≤ n, are

i.i.d., distributed as (
∑
x∈I

(1)
1

δ∆V (x),∆V (w
(1)
1 ));

(ii) conditionally on Gn, the truncated shifted marked subtrees T
n−|x|
x , for

x ∈
⋃n
k=1 I

(n)
k , are independent; the conditional distribution of T

n−|x|
x (for

any x ∈
⋃n
k=1 I

(n)
k ) under Q, given Gn, is identical to the distribution of

T
n−|x| under P.

Throughout the paper, let ((Si, σi), i≥ 1) be such that (Si−Si−1, σi), for
i ≥ 1 (with S0 = 0), are i.i.d. random vectors under Q and distributed as

(V (w
(1)
1 ),#I

(1)
1 ).

Corollary 2.2. Assume ψ(0)> 0 and ψ(1) = 0, and fix n≥ 1.

(i) Under Q, ((V (w
(n)
k ),#I

(n)
k ),1 ≤ k ≤ n) is distributed as ((Sk, σk),

1≤ k ≤ n). In particular, under Q, (V (w
(n)
k ),1 ≤ k ≤ n) is distributed as

(Sk,1≤ k ≤ n).
(ii) For any measurable function F :R→R+,

EQ{F (S1)}= E

{
∑

|u|=1

e−V (u)F (V (u))

}
.(2.10)

In particular, we have EQ{S1}= 0 under (1.2) and (1.3).
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Fig. 1. Spine; The truncated shifted subtrees T
n−|x|
x ,T

n−|y|
y , T

n−|z|
z , . . . are actually rooted

at e.

Corollary 2.2 follows immediately from Proposition 2.1, and can be found
in several papers (e.g., Biggins and Kyprianou [9]).

We present two collections of probability estimates for (Sn) and for (V (u),
|u|= 1), respectively. They are simple consequences of Proposition 2.1, and
will be of frequent use in the rest of the paper.

Corollary 2.3. Assume (1.2) and (1.3). Then

EQ{e
aS1}<∞ ∀|a| ≤ c2,(2.11)

Q{|Sn| ≥ x} ≤ 2exp

(
−c3 min

{
x,
x2

n

})

(2.12)
∀n≥ 1,∀x≥ 0,

Q

{
min

1≤k≤n
Sk > 0

}
∼

c4
n1/2

, n→∞,(2.13)

sup
n≥1

n1/2EQ{e
bmin0≤i≤n Si}<∞ ∀b≥ 0,(2.14)

where c2 := min{δ+,1 + δ−}. Furthermore, for any C ≥ c > 0, we have

Q

{
max

0≤j,k≤n,|j−k|≤c logn
|Sj − Sk| ≥C logn

}
≤ 2cn−(c3C−1) logn

(2.15)
∀n≥ 2.
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Corollary 2.4. Assume (1.1), (1.2) and (1.3). Let 0< a≤ 1. Then

EQ

{(
∑

|u|=1

e−aV (u)

)ρ(a)}
<∞,(2.16)

Q

{
sup
|u|=1

|V (u)| ≥ x

}
≤ c5e

−c6x ∀x≥ 0,(2.17)

with ρ(a) := δδ+
1+aδ+δ+

, where δ and δ+ are the constants in (1.1) and (1.2),

respectively.

Proof of Corollary 2.3. By Corollary 2.2 (ii), EQ{e
aS1} =

E{
∑

|u|=1 e
(a−1)V (u)}, which, according to (1.2), is finite as long as |a| ≤ c2.

This proves (2.11).
Once we have the exponential integrability in (2.11) for (Sn), standard

probability estimates for sums of i.i.d. random variables yield (2.12), (2.13)
and (2.14); see Petrov [34]’s Theorem 2.7, Bingham [10] and Kozlov [24]’s
Theorem A, respectively.

To check (2.15), we observe that the probability term on the left-hand side
of (2.15) is bounded by

∑
0≤j<k≤n,k−j≤c lognQ{|Sk−j| ≥C logn}. By (2.12),

Q{|Sk−j| ≥C logn} ≤ 2n−c3C for k− j ≤ c logn. This yields (2.15). �

Proof of Corollary 2.4. Write ρ := ρ(a). We have
EQ{(

∑
|u|=1 e

−aV (u))ρ}= EQ{W
ρ
1,a}= E{W ρ

1,aW1,1}. Let N :=
∑

|u|=1 1. By

Hölder’s inequality, W1,a ≤ W
a/(1+δ+)
1,1+δ+

N (1−a+δ+)/(1+δ+), whereas W1,1 ≤

W
1/(1+δ+)
1,1+δ+

N δ+/(1+δ+). Therefore, by means of another application of Hölder’s

inequality, E{W ρ
1,aW1,1} ≤ [E(W1,1+δ+)](1+aρ)/(1+δ+)[E(N1+δ)](δ+−aρ)/(1+δ+),

which is finite [by (1.2) and (1.1)]. This implies (2.16).
To prove (2.17), we write A := {sup|u|=1 |V (u)| ≥ x}. By Chebyshev’s

inequality, P(A) ≤ c7e
−c8x, where c7 := E(

∑
|u|=1 e

c8|V (u)|) <∞ as long as

0 < c8 ≤ min{δ−,1 + δ+} [by (1.2)]. Thus, Q(A) = E{
∑

|u|=1 e
−V (u)1A} ≤

c9[P(A)]ρ(1)/[1+ρ(1)] , where c9 := [E{(
∑

|u|=1 e
−V (u))1+ρ(1)}]1/(1+ρ(1)) <∞. Now

(2.17) follows from (2.16), with c6 := c8ρ(1)
1+ρ(1) . �

3. Preliminary: small values of Wn. This preliminary section is devoted
to the study of the small values of Wn. Throughout the section, we assume
(1.1), (1.2) and (1.3). We define two important events:

S := {the system’s ultimate survival},(3.1)

Sn := {the system’s survival after n generations}= {Wn > 0}.(3.2)
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Clearly, S ⊂Sn. Recall (see, e.g., Harris [21], page 16) that, for some con-
stant c10 and all n≥ 1,

P{Sn \S } ≤ e−c10n.(3.3)

Here is the main result of the section.

Proposition 3.1. Assume (1.1), (1.2) and (1.3). For any ε > 0, there
exists ϑ > 0 such that, for all sufficiently large n,

P{n1/2Wn < n−ε|S } ≤ n−ϑ.(3.4)

The proof of Proposition 3.1 relies on Neveu’s multiplicative martingale.
Recall that under assumption (1.3), there exists a nonnegative random vari-
able ξ∗, with P{ξ∗ > 0}> 0, such that

ξ∗
law
=

∑

|u|=1

ξ∗ue
−V (u),(3.5)

where, given {(u,V (u)), |u|= 1}, ξ∗u are independent copies of ξ∗, and “
law
= ”

stands for identity in distribution. Moreover, there is uniqueness of the dis-
tribution of ξ∗ up to a scale change (see Liu [27]); in the rest of the paper
we take the version of ξ∗ as the unique one satisfying E{e−ξ

∗
}= 1

2 .
Let us introduce the Laplace transform of ξ∗:

ϕ∗(t) := E{e−tξ
∗
}, t≥ 0.(3.6)

Let

W ∗
n :=

∏

|u|=n

ϕ∗(e−V (u)), n≥ 1.(3.7)

The process (W ∗
n , n ≥ 1) is also a martingale (Liu [27]). Following Neveu

[33], we call W ∗
n an associated “multiplicative martingale.”

The martingale W ∗
n being bounded, it converges almost surely (when

n→∞) to, say, W ∗
∞. Let us recall from Liu [27] (see also Kyprianou [25])

that, for some c∗ > 0,

log
1

W ∗
∞

law
= ξ∗,(3.8)

log

(
1

ϕ∗(t)

)
∼ c∗t log

(
1

t

)
, t→ 0.(3.9)

We first prove the following lemma:

Lemma 3.2. Assume (1.1), (1.2) and (1.3). There exist κ > 0 and a0 ≥ 1
such that

E{(W ∗
∞)a|W ∗

∞ < 1} ≤ a−κ, ∀a≥ a0,(3.10)

E{(W ∗
n)a1Sn} ≤ a

−κ + e−c10n, ∀n≥ 1,∀a≥ a0.(3.11)
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Proof. We are grateful to John Biggins for fixing a mistake in the
original proof.

We first prove (3.10). In view of (3.8), it suffices to show that

E{e−aξ
∗
|ξ∗ > 0} ≤ a−κ, a≥ a0.(3.12)

Let q ∈ [0,1) be the system’s extinction probability. Let N :=
∑

|u|=1 1.
It is well known for Galton–Watson trees that q is the unique solution of
E(qN ) = q (for q ∈ [0,1)); see, for example, Harris [21], page 7. By (3.5),
ϕ∗(t) = E{

∏
|u|=1ϕ

∗(te−V (u))}. Therefore, by (3.6), P{ξ∗ = 0} = ϕ∗(∞) =

limt→∞E{
∏

|u|=1ϕ
∗(te−V (u))}, which, by dominated convergence, is =

E{(ϕ∗(∞))N}= E{(P{ξ∗ = 0})N}. Since P{ξ∗ = 0}< 1, this yields P{ξ∗ =
0}= q.

Following Biggins and Grey [6], we note that, for any t≥ 0,

E{e−tξ
∗
}= q + (1− q)E{e−tξ

∗
|ξ∗ > 0}.

Let ξ̂ be a random variable such that E{e−tξ̂} = E{e−tξ
∗
|ξ∗ > 0} for any

t ≥ 0. Let Y be a random variable independent of everything else, such
that P{Y = 0} = q = 1 − P{Y = 1}. Then ξ∗ and Y ξ̂ have the same law

and, by (3.5), so do ξ∗ and
∑

|u|=1 e
−V (u)Yuξ̂u, where, given {u, |u| = 1},

(Yu, ξ̂u) are independent copies of (Y, ξ̂), independent of {V (u), |u| = 1}.

Since {
∑

|u|=1 e
−V (u)Yuξ̂u > 0}= {

∑
|u|=1Yu > 0}, this leads to

E{e−tξ̂}= E

{
e
−t
∑

|u|=1
e−V (u)Yuξ̂u

∣∣∣
∑

|u|=1

Yu > 0

}
, t≥ 0.

Let ϕ̂(t) := E{e−tξ̂}, t≥ 0. Then for any t≥ 0 and c > 0,

ϕ̂(t) = E

{
∏

|u|=1

ϕ̂(te−V (u)Yu)

∣∣∣∣
∑

|u|=1

Yu > 0

}
≤E

{
[ϕ̂(te−c)]Nc

∣∣∣
∑

|u|=1

Yu > 0

}
,

whereNc :=
∑

|u|=1 1{Yu=1,|V (u)|≤c}. By monotone convergence, limc→∞E{Nc|∑
|u|=1Yu > 0} = E{

∑
|u|=1Yu|

∑
|u|=1Yu > 0} > 1 [because P{

∑
|u|=1Yu ≥

2}> 0 by assumption (1.3)]. We can therefore choose and fix a constant c > 0

such that E{Nc|
∑

|u|=1Yu > 0} > 1. By writing f̂(s) := E{sNc |
∑

|u|=1Yu >
0}, we have

ϕ̂(t)≤ f̂(ϕ̂(te−c)), ∀t≥ 0.

Iterating the inequality yields that, for any t≥ 0 and any n≥ 1,

E{e−tξ̂} ≤ f̂ (n)(E{e−te
−nc ξ̂}), that is, E{e−te

nc ξ̂} ≤ f̂ (n)(E{e−tξ̂}),
(3.13)
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where f̂ (n) denotes the nth iterate of f̂ . It is well known for Galton–Watson
trees (Athreya and Ney [3], Section I.11) that, for any s ∈ [0,1), limn→∞ γ−n×

f̂ (n)(s) converges to a finite limit, with γ := (f̂)′(0) ≤ P{
∑

|u|=1Yu = 1|∑
|u|=1Yu > 0}< 1. Therefore, (3.13) yields (3.12), and thus (3.10).
It remains to check (3.11). Let a≥ 1. Since ((W ∗

n)a, n≥ 0) is a bounded
submartingale, E{(W ∗

n)a1Sn} ≤E{(W ∗
∞)a1Sn}. Recall that W ∗

∞ ≤ 1; thus,

E{(W ∗
n)a1Sn} ≤E{(W ∗

∞)a1S }+ P{Sn \S }.

By (3.3), P{Sn \S } ≤ e−c10n. To estimate E{(W ∗
∞)a1S }, we identify S

with {W ∗
∞ < 1}: on the one hand, S c ⊂ {W ∗

n = 1, for all sufficiently large n} ⊂
{W ∗

∞ = 1}; on the other hand, by (3.8), P{W ∗
∞ < 1}= P{ξ∗ > 0}= 1− q =

P(S ). Therefore, S = {W ∗
∞ < 1}, P-a.s. Consequently, E{(W ∗

∞)a1S } =
E{(W ∗

∞)a1{W ∗
∞<1}}, which, according to (3.10), is bounded by a−κ, for

a≥ a0. Lemma 3.2 is proved. �

We are now ready for the proof of Proposition 3.1.

Proof of Proposition 3.1. Let c11 > 0 be such that P{ξ∗ ≤ c11} ≥
1
2 .

Then ϕ∗(t) = E{e−tξ
∗
} ≥ e−c11tP{ξ∗ ≤ c11} ≥

1
2e

−c11t and, thus, log( 1
ϕ∗(t))≤

c11t+ log 2. Together with (3.9), this yields, on the event Sn,

log

(
1

W ∗
n

)
=
∑

|u|=n

log

(
1

ϕ∗(e−V (u))

)

≤
∑

|u|=n

1{V (u)≥1}c12V (u)e−V (u) +
∑

|u|=n

1{V (u)<1}(c11e
−V (u) + log 2).

Since Wn =
∑

|u|=n e
−V (u), we obtain, on Sn, for any λ≥ 1,

log

(
1

W ∗
n

)
≤ c13λWn + c12

∑

|u|=n

1{V (u)≥λ}V (u)e−V (u),(3.14)

where c13 := c11 + c12 + e log 2. Note that c12 and c13 do not depend on λ.
Let 0< y ≤ 1. Since S ⊂Sn, it follows that, for c14 := c12 + c13,

P{λWn < y|Sn} ≤P

{
log

(
1

W ∗
n

)
< c14y|Sn

}

+ P

{
∑

|u|=n

1{V (u)≥λ}V (u)e−V (u) ≥ y
∣∣∣Sn

}
(3.15)

=: RHS1
(3.15)

+ RHS2
(3.15)

,

with obvious notation.
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Recall that P(Sn)≥P(S ) = 1− q. By Chebyshev’s inequality,

RHS1
(3.15)

≤ ec14E{(W ∗
n)1/y|Sn} ≤

ec14

1− q
E{(W ∗

n)1/y1Sn}.

By (3.11), for n≥ 1 and 0< y ≤ 1
a0

, with c15 := ec14/(1− q),

RHS1
(3.15)

≤ c15(y
κ + e−c10n).(3.16)

To estimate RHS2
(3.15)

, we observe that

RHS2
(3.15)

≤
1

1− q
P

{
∑

|u|=n

1{V (u)≥λ}V (u)e−V (u) ≥ y

}

≤
1

(1− q)y
E

{
∑

|u|=n

1{V (u)≥λ}V (u)e−V (u)

}

=
1

(1− q)y
EQ

{
∑

|u|=n

1{V (u)≥λ}
V (u)e−V (u)

Wn

}

=
1

(1− q)y
EQ{V (w(n)

n )1
{V (w

(n)
n )≥λ}

}.

By Corollary 2.2(i), EQ{V (w
(n)
n )1

{V (w
(n)
n )≥λ}

} = EQ{Sn1{Sn≥λ}} ≤

(EQ{S
2
n})

1/2(Q{Sn ≥ λ})1/2, which, by (2.12), is bounded by

c16n exp(−c3 min{λ, λ
2

n }). Accordingly, RHS2
(3.15)

≤ c17n
y exp(−c3 min{λ, λ

2

n }).

Together with (3.15) and (3.16), it yields that, for 0< y ≤ 1
a0

,

P{λWn < y|Sn} ≤ c15(y
κ + e−c10n) +

c17n

y
exp

(
−c3 min

{
λ,
λ2

n

})
.

Let λ := n1/2y−κ/2. The inequality becomes, for 0< y ≤ 1
a0

and n≥ 1,

P{n1/2Wn < y(κ+2)/2|Sn}

≤ c15(y
κ + e−c10n) +

c17n

y
exp

(
−c3

min{n1/2yκ/2,1}

yκ

)
.

This readily yields Proposition 3.1. �

Remark. Under the additional assumption that {u, |u|= 1} contains at
least two elements almost surely, it is possible (Liu [28]) to improve (3.10):
E{(W ∗

∞)a|W ∗
∞ < 1} ≤ exp{−aκ1} for some κ1 > 0 and all sufficiently large

a, from which one can deduce the stronger version of Proposition 3.1: for
any ε > 0, there exists ϑ1 > 0 such that P{n1/2Wn < n−ε|S } ≤ exp(−nϑ1)
for all sufficiently large n.
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We complete this section with the following estimate which will be useful
in the proof of Theorem 1.5.

Lemma 3.3. Assume (1.1), (1.2) and (1.3). For any 0< s< 1,

sup
n≥1

E

{(
log

1

W ∗
n

)s}
<∞.(3.17)

Proof. Let x > 1. By Chebyshev’s inequality, P{log( 1
W ∗

n
) ≥ x} =

P{exW ∗
n ≤ 1} ≤ eE{e−e

xW ∗
n}. Since W ∗

n is a martingale, it follows from
Jensen’s inequality that E{e−e

xW ∗
n} ≤ E{e−e

xW ∗
∞} ≤ P{W ∗

∞ ≤ e−x/2} +
exp(−ex/2). Therefore,

P

{
log

(
1

W ∗
n

)
≥ x

}
≤ eP{W ∗

∞ ≤ e
−x/2}+ exp(1− ex/2).(3.18)

On the other hand, by integration by parts,
∫∞
0 e−tyP(ξ∗ ≥ y)dy = 1−E(e−tξ∗ )

t =
1−ϕ∗(t)

t , which, according to (3.9), is ≤ c18 log(1
t ) for 0 < t ≤ 1

2 . Therefore,

for a ≥ 2, c18 log a ≥
∫∞
0 e−y/aP(ξ∗ ≥ y)dy ≥

∫ a
0 e

−y/aP(ξ∗ ≥ a)dy = (1 −

e−1)aP(ξ∗ ≥ a). That is, P(ξ∗ ≥ a) ≤ c18
1−e−1

loga
a or, equivalently, P(W ∗

∞ ≤

e−a) ≤ c18
1−e−1

loga
a , for a ≥ 2. Substituting this in (3.18) gives that, for any

x≥ 4,

P

{
log

(
1

W ∗
n

)
≥ x

}
≤

2ec18
1− e−1

log(x/2)

x
+ exp(1− ex/2).

Lemma 3.3 follows immediately. �

4. Proof of Theorem 1.2: upper bound in (1.8). Assume (1.1), (1.2)
and (1.3). This section is devoted to proving the upper bound in (1.8):
conditionally on the system’s survival,

lim inf
n→∞

1

logn
inf
|u|=n

V (u)≤
1

2
, a.s.(4.1)

The proof borrows some ideas from Bramson [12]. We fix −∞< a< b <∞
and ε > 0. Let ℓ1 ≤ ℓ2 ≤ 2ℓ1 be integers; we are interested in the asymptotic
case ℓ1→∞. Consider n ∈ [ℓ1, ℓ2]∩Z. Let 0< c19 < 1 be a constant, and let

gn(k) := min{c19k
1/3, c19(n− k)

1/3 + a log ℓ1, n
ε}, 0≤ k ≤ n.

Let Ln be the set of individuals x ∈ T
GW with |x|= n such that

gn(k)≤ V (xk)≤ c20k, ∀0≤ k ≤ n and a log ℓ1 ≤ V (x)≤ b log ℓ1,
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where x0 := e,x1, . . . , xn := x are the vertices on the shortest path in T
GW

relating the root e and the vertex x, with |xk| = k for any 0 ≤ k ≤ n. We
consider the measurable event

Fℓ1,ℓ2 :=
ℓ2⋃

n=ℓ1

⋃

|x|=n

{x ∈ Ln}.

We start by estimating the first moment of #Fℓ1,ℓ2 : E(#Fℓ1,ℓ2) =
∑ℓ2
n=ℓ1

E{
∑

|x|=n1{x∈Ln}}. Since E{
∑

|x|=n 1{x∈Ln}}= EQ{
∑

|x|=n
e−V (x)

Wn
eV (x)×

1{x∈Ln}}= EQ{e
V (w

(n)
n )1

{w
(n)
n ∈Ln}

}, we can apply Corollary 2.2 to see that

E(#Fℓ1,ℓ2) =
ℓ2∑

n=ℓ1

EQ{e
Sn1{gn(k)≤Sk≤c20k,∀0≤k≤n,a log ℓ1≤Sn≤b log ℓ1}}

≥
ℓ2∑

n=ℓ1

ℓa1Q{gn(k)≤ Sk ≤ c20k,∀0≤ k ≤ n,a log ℓ1 ≤ Sn ≤ b log ℓ1}.

We choose (and fix) the constants c19 and c20 such that Q{c19 <S1 < c20}>

0. Then,1 the probability Q{·} on the right-hand side is ℓ
−(3/2)+o(1)
1 , for

ℓ1→∞. Accordingly,

E(#Fℓ1,ℓ2)≥ (ℓ2 − ℓ1 + 1)ℓ
a−(3/2)+o(1)
1 .(4.2)

We now proceed to estimate the second moment of #Fℓ1,ℓ2 . By definition,

E[(#Fℓ1,ℓ2)
2] =

ℓ2∑

n=ℓ1

ℓ2∑

m=ℓ1

E

{
∑

|x|=n

∑

|y|=m

1{x∈Ln,y∈Lm}

}

≤ 2
ℓ2∑

n=ℓ1

ℓ2∑

m=n

E

{
∑

|x|=n

∑

|y|=m

1{x∈Ln,y∈Lm}

}
.

1An easy way to see why −
3
2

should be the correct exponent for the probability is to
split the event into three pieces: the first piece involving Sk for 0≤ k ≤

n
3
, the second piece

for n
3
≤ k ≤ 2n

3
, and the third piece for 2n

3
≤ k ≤ n. The probability of the first piece is

n−(1/2)+o(1) (it is essentially the probability of Sk being positive for 1 ≤ k ≤
n
3
, because

conditionally on this, Sk converges weakly, after a suitable normalization, to a Brownian
meander; see Bolthausen [11]). Similarly, the probability of the third piece is n−(1/2)+o(1).
The second piece essentially says that after n

3
steps, the random walk should lie in an

interval of length of order log n; this probability is also n−(1/2)+o(1). Putting these pieces
together yields the claimed exponent −

3
2
.

For a rigorous proof, the upper bound—not required here—is easier since we can only
look at the event that the walk stays positive during n steps (with the same condition
upon the random variable Sn), whereas the lower bound needs some tedious but elementary
writing, based on the Markov property. Similar arguments are used for the random walk
(Sk) in several other places in the paper, without further mention.
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We look at the double sum
∑

|x|=n

∑
|y|=m on the right-hand side. By con-

sidering z, the youngest common ancestor of x and y, and writing k := |z|,
we arrive at

∑

|x|=n

∑

|y|=m

1{x∈Ln,y∈Lm} =
n∑

k=0

∑

|z|=k

∑

(u,v)

1{zu∈Ln,zv∈Lm},

where the double sum
∑

(u,v) is over u, v ∈ T
GW
z such that |u|z = n− k and

|v|z =m− k and that the unique common ancestor of u and v in T
GW
z is

the root. Therefore,

E[(#Fℓ1,ℓ2)
2]≤ 2

ℓ2∑

n=ℓ1

ℓ2∑

m=n

n∑

k=0

E

{
∑

|z|=k

∑

(u,v)

1{zu∈Ln,zv∈Lm}

}

=: 2
ℓ2∑

n=ℓ1

ℓ2∑

m=n

n∑

k=0

Λk,n,m.

We estimate Λk,n,m according to three different situations.
First situation: 0 ≤ k ≤ ⌊nε⌋. Let Vz(u) := V (zu) − V (z) as in Section

2. We have 0 ≤ gn(k) ≤ V (z) ≤ c20n
ε, and V (zui) ≥ 0 for 0 ≤ i ≤ n − k

and V (zun−k) ≤ b log ℓ1, where u0 := e,u1, . . . , un−k are the vertices on the
shortest path in T

GW
z relating the root e and the vertex u, with |ui|z = i

for any 0 ≤ i ≤ n − k. Therefore, Vz(ui) ≥ −c20n
ε for 0 ≤ i ≤ n − k, and

Vz(u)≤ b log ℓ1. Accordingly,

Λk,n,m ≤E

{
∑

|z|=k

∑

v∈TGW
z ,|v|z=m−k

1{zv∈Lm}Bn−k

}
,

where

Bn−k := E

{
∑

|x|=n−k

1{V (xi)≥−c20nε,∀0≤i≤n−k,V (x)≤b log ℓ1}

}

= EQ{e
V (w

(n−k)
n−k

)
1
{V (w

(n−k)
i )≥−c20nε,∀0≤i≤n−k,V (w

(n−k)
n−k

)≤b log ℓ1}
}

= EQ{e
Sn−k1{Si≥−c20nε,∀0≤i≤n−k,Sn−k≤b log ℓ1}}

≤ ℓb1Q{Si ≥−c20n
ε,∀0≤ i≤ n− k,Sn−k ≤ b log ℓ1}

≤ ℓ
b−(3/2)+ε+o(1)
1 ≤ ℓ

b−(3/2)+2ε
1 .

Therefore,

Λk,n,m ≤ ℓ
b−(3/2)+2ε
1 E

{
∑

|z|=k

∑

v∈TGW
z ,|v|z=m−k

1{zv∈Lm}

}
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= ℓ
b−(3/2)+2ε
1 E

{
∑

|x|=m

1{x∈Lm}

}

and, thus,

ℓ2∑

n=ℓ1

ℓ2∑

m=n

⌊nε⌋∑

k=0

Λk,n,m ≤ ℓ
b−(3/2)+2ε
1 (ℓ2 − ℓ1 + 1)(ℓε2 + 1)E(#Fℓ1,ℓ2).(4.3)

Second situation: ⌊nε⌋+1≤ k ≤min{m−⌊nε⌋, n}. In this situation, since
V (z)≥max{gm(k), gn(k)} ≥ c19n

ε/3, we simply have Vz(u)≤ b log ℓ1−c19n
ε/3.

Exactly as in the first situation, we get

Λk,n,m ≤E

{
∑

|x|=m

1{x∈Lm}

}
E

{
∑

|x|=n−k

1{V (x)≤b log ℓ1−c19nε/3}

}
.

The second E{·} on the right-hand side is

= EQ{e
Sn−k1{Sn−k≤b log ℓ1−c19nε/3}} ≤ ℓ

b
1e

−c19nε/3

and, thus,

ℓ2∑

n=ℓ1

ℓ2∑

m=n

min{m−⌊nε⌋,n}∑

k=⌊nε⌋+1

Λk,n,m ≤ ℓ
b
1e

−c19ℓ
ε/3
1 (ℓ2 − ℓ1 + 1)ℓ2E(#Fℓ1,ℓ2).(4.4)

Third and last situation: m− ⌊nε⌋+ 1≤ k ≤ n (this situation may hap-
pen only if m≤ n+ ⌊nε⌋ − 1). This time V (z)≥ gm(k)≥ a log ℓ1 and, thus,
Vz(u)≤ (b− a) log ℓ1; consequently,

Λk,n,m ≤E

{
∑

|x|=m

1{x∈Lm}

}
E

{
∑

|x|=n−k

1{V (x)≤(b−a) log ℓ1}

}

≤ ℓb−a1 E

{
∑

|x|=m

1{x∈Lm}

}
.

Therefore, in case m≤ n+ ⌊nε⌋ − 1,

ℓ2∑

n=ℓ1

ℓ2∑

m=n

n∑

k=m−⌊nε⌋+1

Λk,n,m ≤
ℓ2∑

n=ℓ1

n+⌊nε⌋−1∑

m=n

ℓε2ℓ
b−a
1 E

{
∑

|x|=m

1{x∈Lm}

}

≤
ℓ2∑

m=ℓ1

m∑

n=m−2⌊mε⌋

ℓε2ℓ
b−a
1 E

{
∑

|x|=m

1{x∈Lm}

}

≤ 2ℓ2ε2 ℓ
b−a
1 E(#Fℓ1,ℓ2).
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Combining this with (4.3) and (4.4), and since

E[(#Fℓ1,ℓ2)
2]≤ 2

ℓ2∑

n=ℓ1

ℓ2∑

m=n

n∑

k=0

Λk,n,m,

we obtain

E[(#Fℓ1,ℓ2)
2]

[E(#Fℓ1,ℓ2)]
2
≤ (2ℓ

b−(3/2)+2ε
1 (ℓ2 − ℓ1 + 1)(ℓε2 + 1)

+ 2ℓb1e
−c19ℓ

ε/3
1 (ℓ2 − ℓ1 + 1)ℓ2 + 4ℓ2ε2 ℓ

b−a
1 )(E(#Fℓ1,ℓ2))

−1.

Since ℓ2 ≤ 2ℓ1, we have 2ℓ
b−(3/2)+2ε
1 (ℓε2 + 1) + 2ℓb1e

−c19ℓ
ε/3
1 ℓ2 ≤ ℓ

b−(3/2)+4ε
1

for all sufficiently large ℓ1. On the other hand, E(#Fℓ1,ℓ2) ≥ (ℓ2 − ℓ1 +

1)ℓ
a−(3/2)−ε
1 by (4.2) (for large ℓ1). Therefore, when ℓ1 is large, we have

E[(#Fℓ1,ℓ2)
2]

[E(#Fℓ1,ℓ2)]
2
≤
ℓ
b−(3/2)+4ε
1 (ℓ2 − ℓ1 + 1) + ℓb−a+3ε

1

(ℓ2 − ℓ1 + 1)ℓ
a−(3/2)−ε
1

.

By the Paley–Zygmund inequality, P{Fℓ1,ℓ2 6= ∅} ≥ 1
4

[E(#Fℓ1,ℓ2
)]2

E[(#Fℓ1,ℓ2
)2] ; thus,

P

{
min

ℓ1≤|x|≤ℓ2
V (x)≤ b log ℓ1

}
≥

1

4

(ℓ2 − ℓ1 + 1)ℓ
a−(3/2)−ε
1

ℓ
b−(3/2)+4ε
1 (ℓ2 − ℓ1 + 1) + ℓb−a+3ε

1

.(4.5)

Of course, we can make a close to b, and ε close to 0, to see that, for any
b ∈R and ε > 0, all sufficiently large ℓ1 and all ℓ2 ∈ [ℓ1,2ℓ1]∩Z,

P

{
min

ℓ1≤|x|≤ℓ2
V (x)≤ b log ℓ1

}
≥

ℓ2 − ℓ1 + 1

ℓε1(ℓ2 − ℓ1 + 1) + ℓ
(3/2)−b+ε
1

.(4.6)

[This is our basic estimate for the minimum of V (x). In Section 5 we are
going to apply (4.6) to ℓ2 := ℓ1.]

We now let b > 1
2 and take the subsequence nj := 2j , j ≥ j0 (with a suf-

ficiently large integer j0). By (4.6) (and possibly by changing the value of
ε),

P

{
min

nj≤|x|≤nj+1

V (x)≤ b lognj

}
≥ n−εj .

Let τj := inf{k :#{u : |u|= k} ≥ n2ε
j }. Then we have, for j ≥ j0,

P

{
τj <∞, min

τj+nj≤|x|≤τj+nj+1

V (x)> max
|y|=τj

V (y) + b lognj

}

≤

(
P

{
min

nj≤|x|≤nj+1

V (x)> b lognj

})⌊n2ε
j ⌋

≤ (1− n−εj )⌊n
2ε
j ⌋,
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which is summable in j. By the Borel–Cantelli lemma, almost surely for all
large j, we have either τj =∞, or minτj+nj≤|x|≤τj+nj+1

V (x)≤max|y|=τj V (y)+
b lognj .

By the well-known law of large numbers for the branching random walk
(Hammersley [19], Kingman [23] and Biggins [5]), of which (1.5) was a
special case, there exists a constant c21 > 0 such that 1

n max|y|=n V (y)→
c21 almost surely upon the system’s survival. In particular, upon survival,
max|y|=nV (y)≤ 2c21n almost surely for all large n. Consequently, upon the
system’s survival, almost surely for all large j, we have either τj =∞, or
minτj+nj≤|x|≤τj+nj+1

V (x)< 2c21τj + b lognj .
Recall that the number of particles in each generation forms a Galton–

Watson tree, which is super-critical under assumption (1.3) (because m :=

E{
∑

|u|=1 1}> 1). In particular, conditionally on the system’s survival, #{u:|u|=k}
mk

converges a.s. to a (strictly) positive random variable when k→∞, which

implies τj ∼ 2ε
lognj

logm a.s. (j→∞). As a consequence, upon the system’s sur-
vival, we have, almost surely for all large j,

min
nj≤|x|≤2nj+1

V (x)≤
5εc21
logm

lognj + b lognj.

Since b can be as close to 1
2 as possible, this readily yields (4.1).

5. Proof of Theorem 1.6. Before proving Theorem 1.6, we need three
estimates.

The first estimate, stated as Proposition 5.1, was proved by McDiarmid
[31] under the additional assumption E{(

∑
|u|=1 1)2}<∞.

Proposition 5.1. Assume (1.1), (1.2) and (1.3). There exists c22 > 0
such that, for any ε > 0, we can find c23 = c23(ε)> 0 satisfying

E

{
exp

(
c22 inf

|x|=n
V (x)

)
1Sn

}
≤ c23n

(3+ε)/2c22 , n≥ 1.(5.1)

Remark. Since Wn ≥ exp[− inf |x|=n V (x)], it follows from (5.1) and
Hölder’s inequality that, for any 0≤ s < c22 and ε > 0,

E

{
1

W s
n

1Sn

}
≤ c

s/c22
23 n(3+ε)/2s, n≥ 1.(5.2)

This estimate will be useful in the proof of Theorem 1.5 in Section 6.

Proof of Proposition 5.1. In the proof we write, for any k ≥ 0,

V k := inf
|u|=k

V (u).
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Taking ℓ2 = ℓ1 in (4.6) gives that, for any ε > 0 and all sufficiently large
ℓ (say, ℓ≥ ℓ0), we have P{V ℓ ≤

3
2 log ℓ} ≥ ℓ−ε; thus, P{V ℓ >

3
2 log ℓ} ≤ 1−

ℓ−ε ≤ exp(−ℓ−ε), ∀ℓ≥ ℓ0. For any r ∈ R and integers k ≥ 1 and n > ℓ≥ ℓ0,
we have

P{V n >
3
2 log ℓ+ r}

≤P{#{u : |u|= n− ℓ, V (u)≤ r}< k}+ (P{V ℓ >
3
2 log ℓ})k

≤P{#{u : |u|= n− ℓ, V (u)≤ r}< k}+ exp(−ℓ−εk).

By Lemma 1 of McDiarmid [31], there exist c24 > 0, c25 > 0 and c26 > 0
such that, for any j ≥ 1, P{#{u : |u|= j, V (u)≤ c24j} ≤ e

c25j} ≤ q + e−c26j ,
q being as before the probability of extinction. We choose j := ⌊ r

c24
⌋ and

ℓ := n− ⌊ r
c24
⌋ to see that, for all n≥ ℓ0 and all 0≤ r ≤ c24(n− ℓ0),

P{V n >
3
2 logn+ r} ≤ q + e−c26⌊r/c24⌋ + exp(−n−ε⌊ec25⌊r/c24⌋⌋).

Noting that {V n >
3
2 logn + r} ∩S c

n = S c
n and that P{S c

n} ≥ q − e
−c10n

[see (3.3)], we obtain, for 0≤ r ≤ c24(n− ℓ0),

P{V n >
3
2 logn+ r,Sn}

(5.3)
≤ e−c10n + e−c26⌊r/c24⌋ + exp(−n−ε⌊ec25⌊r/c24⌋⌋).

This implies that, for any 0 < c27 <min{ c26c24 ,
2c10
c24
}, there exists a constant

c28 > 0 such that E{ec27V n1{3/2 logn<V n≤c24/2n}∩Sn
} ≤ c28n

c29 , with c29 :=

(3
2 + c24

c25
ε)c27. Therefore,

E{ec27V n1{V n≤c24/2n}∩Sn
} ≤ c30n

c29, n≥ 1,(5.4)

where c30 := c28 + 1.
On the other hand, letting δ− > 0 be as in (1.2), we have eδ−V n1Sn ≤∑
|u|=n e

δ−V (u). Since ψ(−δ−) := logE{
∑

|u|=n e
δ−V (u)}<∞ by (1.2), we can

choose and fix c31 > 0 sufficiently large (in particular, c31 >
c24
2 ) such that,

for any x≥ c31,

P{V n > xn,Sn} ≤ e
−δ−xn+ψ(−δ−)n ≤ e−δ−xn/2, ∀n≥ 1.

Therefore, for any c32 <
δ−
2 , we have

sup
n≥1

E{ec32V n1{V n>c31n}∩Sn
}<∞.(5.5)

Finally, (5.3) also implies that, for n≥ ℓ0,

P

{
V n >

c24
2
n,Sn

}
≤ e−c10n + e−c26⌊n/2−3/(2c24) logn⌋

+ exp(−n−ε⌊ec25⌊n/2−3/(2c24) logn⌋⌋).
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Therefore, for any c33 <min{ c10c31 ,
c26
2c31
},

sup
n≥1

E{ec33V n1{c24/2n<V n≤c31n}∩Sn
}<∞,

which, combined with (5.4) and (5.5), completes the proof of Proposition
5.1, with c22 := min{c27, c32, c33}. �

Lemma 5.2. Let X1,X2, . . . ,XN be independent nonnegative random
variables, and let TN :=

∑N
i=1Xi. For any nonincreasing function F : (0,∞)→

R+, we have

E{F (TN )1{TN>0}} ≤ max
1≤i≤N

E{F (Xi)|Xi > 0}.

Moreover,

E{F (TN )1{TN>0}} ≤
N∑

i=1

bi−1E{F (Xi)1{Xi>0}},

where b := max1≤i≤N P{Xi = 0}.

Proof. Let τ := min{i≥ 1 :Xi > 0} (with min∅ :=∞). Then E{F (TN )×
1{TN>0}}=

∑N
i=1 E{F (TN )1{τ=i}}. Since F is nonincreasing, we have F (TN )×

1{τ=i} ≤ F (Xi)1{τ=i} = F (Xi)1{Xi>0}1{Xj=0,∀j<i}. By independence, this
leads to

E{F (TN )1{TN>0}} ≤
N∑

i=1

E{F (Xi)1{Xi>0}}P{Xj = 0,∀j < i}.

This yields immediately the second inequality of the lemma, since P{Xj =
0,∀j < i} ≤ bi−1.

To prove the first inequality of the lemma, we observe that E{F (Xi)1{Xi>0}} ≤
P{Xi > 0}max1≤k≤N E{F (Xk)|Xk > 0}. Therefore,

E{F (TN )1{TN>0}} ≤ max
1≤k≤N

E{F (Xk)|Xk > 0}
N∑

i=1

P{Xi > 0}P{Xj = 0,∀j < i}.

The
∑N
i=1 · · · expression on the right-hand side is =

∑N
i=1 P{Xi > 0,Xj = 0,

∀j < i}=
∑N
i=1 P{τ = i}= P{TN > 0} ≤ 1. This yields the first inequality of

the lemma. �

To state our third estimate, let w(n) ∈ Je,w
(n)
n K be a vertex such that

V (w(n)) = min
u∈Je,w

(n)
n K

V (u).(5.6)
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[If there are several such vertices, we choose, say, the oldest.] The following
estimate gives a (stochastic) lower bound for 1

Wn,β
under Q outside a “small”

set. We recall that Wn,β > 0, Q-almost surely (but not necessarily P-almost
surely).

Lemma 5.3. Assume (1.1), (1.2) and (1.3). For any K > 0, there exist
θ > 0 and n0 <∞ such that, for any n ≥ n0, any β > 0, and any nonde-
creasing function G : (0,∞)→ (0,∞),

EQ

{
G

(
e−βV (w(n))

Wn,β

)
1En

}
≤

1

1− q
max

0≤k<n
E

{
G

(
nθβ

Wk,β

)
1Sk

}
,(5.7)

where En is a measurable event such that

Q{En} ≥ 1−
1

nK
, n≥ n0.

Proof. Recall from (2.8) that I
(n)
k is the set of the brothers of w

(n)
k .

For any pair 0≤ k < n, we say that the level k is n-good if

I
(n)
k 6= ∅ and T

GW
u survives at least n− k generations, ∀u ∈I

(n)
k ,

where T
GW
u is the shifted Galton–Watson subtree generated by u [see (2.3)].

By T
GW
u surviving at least n − k generations, we mean that there exists

v ∈ TGW
u such that |v|u = n− k [see (2.4) for notation].

In words, k is n-good means any subtree generated by any of the brothers

of w
(n)
k has offspring for at least n− k generations.

Let Gn be the sigma-field defined in (2.9). By Proposition 2.1,

Q{k is n-good|Gn}= 1
{I

(n)
k

6=∅}
(P{Sn−k})

#I
(n)
k ,

where Sn denotes the system’s survival after n generations [see (3.2)]. Since

P{Sn−k} ≥P{S }= 1− q, whereas #I
(n)
k and #I

(1)
1 have the same dis-

tribution under Q (Proposition 2.1), we have

Q{k is n-good} ≥EQ{1{#I
(1)
1 ≥1}

(1− q)#I
(1)
1 }= c34 ∈ (0,1).

As a consequence, for all 1≤ ℓ < n, by Proposition 2.1 again,

Q

{
n⋃

k=1

⋂

j:1≤j≤n,|j−k|≤ℓ

{j is not n-good}

}
≤

n∑

k=1

∏

j:1≤j≤n,|j−k|≤ℓ

Q{j is not n-good}

≤ n(1− c34)
ℓ+1,

which is bounded by ne−c34(ℓ+1) (using the inequality 1−x≤ e−x, for x≥ 0).
Let K > 0. We take ℓ= ℓ(n) := ⌊c35 logn⌋ with c35 := K+2

c34
. Let c36 := K+2

c6
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[where c6 is as in (2.17)] and c37 := max{K+2
c3

, c35} [c3 being the constant in

(2.12)]. Let

E(1)
n :=

n⋂

k=1

⋃

j:1≤j≤n,|j−k|≤⌊c35 logn⌋

{j is n-good},(5.8)

E(2)
n :=

{
max

1≤j≤n
sup

u∈I
(n)
j

|V (u)− V (w
(n)
j−1)| ≤ c36 logn

}
,(5.9)

E(3)
n :=

{
max

0≤j,k≤n,|j−k|≤c35 logn
|V (w

(n)
j )− V (w

(n)
k )| ≤ c37 logn

}
.(5.10)

We have

Q{E(1)
n } ≥ 1− ne−c34c35 logn = 1−

1

nK+1
.

On the other hand, by Corollary 2.2,

Q{(E(2)
n )c} ≤ nQ

{
sup

u∈I
(1)
1

|V (u)|> c36 logn

}
≤ nQ

{
sup
|u|=1

|V (u)|> c36 logn

}
.

Applying (2.17) yields that

Q{E(2)
n } ≥ 1− c5n

−(c36c6−1) = 1−
c5

nK+1
.

To estimate Q{E
(3)
n }, we note that, by Corollary 2.2,

Q{(E(3)
n )c}= Q

{
max

0≤j,k≤n,|j−k|≤c35 logn
|Sj − Sk|> c37 logn

}
,

which, in view of (2.15), is bounded by 2c35n
−(c3c37−1) logn. Consequently,

if

En :=E(1)
n ∩E

(2)
n ∩E

(3)
n ,(5.11)

then Q{En} ≥ 1− 1
nK for all large n.

It remains to check (5.7). By definition,

Wn,β =
n∑

j=1

∑

u∈I
(n)
j

e−βV (u)
∑

x∈TGW
u ,|x|u=n−j

e−βVu(x) + e−βV (w
(n)
n )

(5.12)
≥
∑

j∈L

∑

u∈I
(n)
j

e−βV (u)
∑

x∈TGW
u ,|x|u=n−j

e−βVu(x)

for any L ⊂ {1,2, . . . , n}. We choose L := {1≤ j ≤ n : |j−|w(n)||< c35 logn}.
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On the event En, for u ∈I
(n)
j with some j ∈L , we have V (u)≤ V (w(n))+

(c36 +c37) logn. Writing θ := c36 +c37, this leads to Wn,β ≥ n
−θβe−βV (w(n))×∑

j∈L

∑
u∈I

(n)
j

ξu, where

ξu :=
∑

x∈TGW
u ,|x|u=n−j

e−βVu(x).

Since
∑
j∈L

∑
u∈I

(n)
j

ξu > 0 on En, we arrive at

e−βV (w(n))

Wn,β
1En ≤

nθβ
∑
j∈L

∑
u∈I

(n)
j

ξu
1{
∑

j∈L

∑
u∈I

(n)
j

ξu>0}.

Let Gn be the sigma-field in (2.9). We observe that L and I
(n)
j are Gn-

measurable. Moreover, an application of Proposition 2.1 tells us that under

Q, conditionally on Gn, the random variables ξu, u ∈I
(n)
j , j ∈L , are in-

dependent, and are distributed as Wn−j,β under P. We are thus entitled to
apply Lemma 5.2 to see that, if G is nondecreasing,

EQ

{
G

(
e−βV (w(n))

Wn,β

)
1En |Gn

}
≤max

j∈L
E

{
G

(
nθβ

Wn−j,β

)
|Wn−j,β > 0

}

≤ max
0≤k<n

E

{
G

(
nθβ

Wk,β

)
|Wk,β > 0

}
.

Since P{Wk,β > 0}= P{Sk} ≥P{S }= 1− q, this yields Lemma 5.3. �

We are now ready for the proof of Theorem 1.6. For the sake of clarity,
the upper and lower bounds are proved in distinct parts. Let us start with
the upper bound.

Proof of Theorem 1.6. The upper bound. We assume (1.1), (1.2)
and (1.3), and fix β > 1.

For any Z ≥ 0 which is Fn-measurable, we have E{Wn,βZ} =

EQ{
∑

|u|=n
e−βV (u)

Wn
Z}= EQ{

∑
|u|=n1

{w
(n)
n =u}

e−(β−1)V (u)Z} and, thus,

E{Wn,βZ}= EQ{e
−(β−1)V (w

(n)
n )Z}.(5.13)

Let s ∈ (β−1
β ,1), and λ > 0. (We will choose λ= 3

2 .) Then

E{W 1−s
n,β } ≤ n

−(1−s)βλ + E{W 1−s
n,β 1{Wn,β>n−βλ}}

= n−(1−s)βλ + EQ

{
e−(β−1)V (w

(n)
n )

W s
n,β

1{Wn,β>n−βλ}

}
.
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Since e−βV (w
(n)
n ) ≤Wn,β , we have e−(β−1)V (w

(n)
n )

W s
n,β

≤ 1

W
s−(β−1)/β
n,β

; thus, on the

event {Wn,β > n−βλ}, we have e−(β−1)V (w
(n)
n )

W s
n,β

≤ n[βs−(β−1)]λ.

Let K := [βs− (β − 1)]λ+ (1− s)βλ, and let En be the event in Lemma
5.3. Since Q(Ecn) ≤ n

−K for all sufficiently large n (see Lemma 5.3), we
obtain, for large n,

E{W 1−s
n,β } ≤ n

−(1−s)βλ + n[βs−(β−1)]λ−K

+ EQ

{
e−(β−1)V (w

(n)
n )

W s
n,β

1{Wn,β>n−βλ}∩En

}
(5.14)

= 2n−(1−s)βλ + EQ

{
e−(β−1)V (w

(n)
n )

W s
n,β

1{Wn,β>n−βλ}∩En

}
.

We now estimate the expectation expression EQ{·} on the right-hand
side. Let a > 0 and ̺ > b > 0 be constants such that (β − 1)a > sβλ+ 3

2 and

[βs− (β−1)]b > 3
2 . (The choice of ̺ will be made precise later on.) We recall

that w
(n)
n ∈ Je,w

(n)
n K satisfies V (w(n)) = min

u∈Je,w
(n)
n K

V (u), and consider the

following events:

E1,n := {V (w(n)
n )> a logn} ∪ {V (w(n)

n )≤−b logn},

E2,n := {V (w(n))<−̺ logn,V (w(n)
n )>−b logn},

E3,n := {V (w(n))≥−̺ logn,−b logn< V (w(n)
n )≤ a logn}.

Clearly, Q(
⋃3
i=1Ei,n) = 1.

On the event E1,n ∩ {Wn,β > n−βλ}, we have either V (w
(n)
n )> a logn, in

which case e−(β−1)V (w
(n)
n )

W s
n,β

≤ nsβλ−(β−1)a, or V (w
(n)
n )≤−b logn, in which case

we use the trivial inequality Wn,β ≥ e
−βV (w

(n)
n ) to see that e−(β−1)V (w

(n)
n )

W s
n,β

≤

e[βs−(β−1)]V (w
(n)
n ) ≤ n−[βs−(β−1)]b (recalling that βs > β − 1). Since sβλ −

(β − 1)a <−3
2 and [βs− (β − 1)]b > 3

2 , we obtain

EQ

{
e−(β−1)V (w

(n)
n )

W s
n,β

1E1,n∩{Wn,β>n−βλ}

}
≤ n−3/2.(5.15)

We now study the integral on E2,n ∩{Wn,β >n−βλ}∩En. Since s > 0, we
can choose s1 > 0 and 0< s2 ≤

c22
β [where c22 is the constant in (5.1)] such

that s= s1 + s2. We have, on E2,n ∩ {Wn,β > n−βλ},

e−(β−1)V (w
(n)
n )

W s
n,β

=
eβs2V (w(n))−(β−1)V (w

(n)
n )

W s1
n,β

e−βs2V (w(n))

W s2
n,β
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≤ n−βs2̺+(β−1)b+βλs1 e
−βs2V (w(n))

W s2
n,β

.

Therefore, by an application of Lemma 5.3 to G(x) := xs2 , x > 0, we obtain,
for all sufficiently large n,

EQ

{
e−(β−1)V (w

(n)
n )

W s
n,β

1E2,n∩{Wn,β>n−βλ}∩En

}

≤
n−βs2̺+(β−1)b+βλs1

1− q
max

0≤k<n
E

{
ns2θβ

W s2
k,β

1Sk

}
.

By definition, 1
W

s2
k,β

≤ exp(βs2 inf |x|=k V (x)); thus, by (5.1), E{n
s2θβ

W
s2
k,β

1Sk
} ≤

c
βs2/c22
23 ns2θβ+(3+ε)/2βs2 for all 0≤ k < n. We choose (and fix) the constant ̺

so large that −βs2̺+ (β− 1)b+ βλs1 + s2θβ+ 3+ε
2 βs2 <−

3
2 . Therefore, for

all large n,

EQ

{
e−(β−1)V (w

(n)
n )

W s
n,β

1E2,n∩{Wn,β>n−βλ}∩En

}
≤ n−3/2.(5.16)

We make a partition of E3,n: let M ≥ 2 be an integer, and let ai :=

−b+ i(a+b)
M , 0≤ i≤M . By definition,

E3,n =
M−1⋃

i=0

{V (w(n))≥−̺ logn,ai logn < V (w(n)
n )≤ ai+1 logn}

=:
M−1⋃

i=0

E3,n,i.

Let 0≤ i≤M − 1. There are two possible situations. First situation: ai ≤ λ.

In this case, we argue that, on the event E3,n,i, we have Wn,β ≥ e
−βV (w

(n)
n ) ≥

n−βai+1 and e−(β−1)V (w
(n)
n ) ≤ n−(β−1)ai , thus, e

−(β−1)V (w
(n)
n )

W s
n,β

≤ nβsai+1−(β−1)ai =

nβsai−(β−1)ai+βs(a+b)/M ≤ n[βs−(β−1)]λ+βs(a+b)/M . Accordingly, in this situa-
tion,

EQ

{
e−(β−1)V (w

(n)
n )

W s
n,β

1E3,n,i

}
≤ n[βs−(β−1)]λ+βs(a+b)/MQ(E3,n,i).

Second (and last) situation: ai > λ. We have, on E3,n,i ∩ {Wn,β > n−βλ},

e−(β−1)V (w
(n)
n )

W s
n,β

≤ nβλs−(β−1)ai ≤ n[βs−(β−1)]λ; thus, in this situation,

EQ

{
e−(β−1)V (w

(n)
n )

W s
n,β

1E3,n,i∩{Wn,β>n−βλ}

}
≤ n[βs−(β−1)]λQ(E3,n,i).
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We have therefore proved that

EQ

{
e−(β−1)V (w

(n)
n )

W s
n,β

1E3,n∩{Wn,β>n−βλ}

}

=
M−1∑

i=0

EQ

{
e−(β−1)V (w

(n)
n )

W s
n,β

1E3,n,i∩{Wn,β>n−βλ}

}

≤ n[βs−(β−1)]λ+βs(a+b)/MQ(E3,n).

By Corollary 2.2, Q(E3,n) = P{min0≤k≤nSk ≥−̺ logn,−b logn≤ Sn ≤ a×

logn}= n−(3/2)+o(1). Combining this with (5.14), (5.15) and (5.16) yields

E{W 1−s
n,β } ≤ 2n−(1−s)βλ + 2n−3/2 + n[βs−(β−1)]λ+βs(a+b)/M−(3/2)+o(1).

We choose λ := 3
2 . Since M can be as large as possible, this yields the upper

bound in Theorem 1.6 by posing r := 1− s. �

Proof of Theorem 1.6. The lower bound. Assume (1.1), (1.2) and
(1.3). Let β > 1 and s ∈ (1− 1

β ,1). By means of (5.12) and the elementary

inequality (a+ b)1−s ≤ a1−s + b1−s (for a≥ 0 and b≥ 0), we have

W 1−s
n,β ≤

n∑

j=1

∑

u∈I
(n)
j

e−(1−s)βV (u)

(
∑

x∈TGW
u ,|x|u=n−j

e−βVu(x)

)1−s

+ e−(1−s)βV (w
(n)
n )

=
n∑

j=1

e−(1−s)βV (w
(n)
j−1)

∑

u∈I
(n)
j

e−(1−s)β[V (u)−V (w
(n)
j−1)]

×

(
∑

x∈TGW
u ,|x|u=n−j

e−βVu(x)

)1−s

+ e−(1−s)βV (w
(n)
n ).

Let Gn be the sigma-field defined in (2.9), and let

Ξj = Ξj(n, s, β) :=
∑

u∈I
(n)
j

e−(1−s)β[V (u)−V (w
(n)
j−1)], 1≤ j ≤ n.

Since V (w
(n)
j ) and I

(n)
j , for 1 ≤ j ≤ n, are Gn-measurable, it follows from

Proposition 2.1 that

EQ{W
1−s
n,β |Gn} ≤

n∑

j=1

e−(1−s)βV (w
(n)
j−1)ΞjE{W

1−s
n−j,β}+ e−(1−s)βV (w

(n)
n ).
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Let ε > 0 be small, and let r := 3
2(1 − s)β − ε. By means of the already

proved upper bound for E(W 1−s
n,β ), this leads to, with c38 ≥ 1,

EQ{W
1−s
n,β |Gn}

(5.17)

≤ c38

n∑

j=1

e−(1−s)βV (w
(n)
j−1)(n− j + 1)−rΞj + e−(1−s)βV (w

(n)
n ).

Since E(W 1−s
n,β ) = EQ{

e−(β−1)V (w
(n)
n )

W s
n,β

} [see (5.13)], we have, by Jensen’s

inequality [noticing that V (w
(n)
n ) is Gn-measurable],

E(W 1−s
n,β )≥EQ

{
e−(β−1)V (w

(n)
n )

{EQ(W 1−s
n,β |Gn)}

s/(1−s)

}
,

which, in view of (5.17), yields

E(W 1−s
n,β )≥

1

c
s/(1−s)
38

×EQ

{
(e−(β−1)V (w

(n)
n ))

×

({
n∑

j=1

e−(1−s)βV (w
(n)
j−1)(n− j + 1)−rΞj

+ e−(1−s)βV (w
(n)
n )

}s/(1−s))−1}
.

By Proposition 2.1, if (Sj −Sj−1, ξj), for j ≥ 1 (with S0 := 0), are i.i.d. ran-

dom variables under Q and distributed as (V (w
(1)
1 ),

∑
u∈I

(1)
1

e−(1−s)βV (u)),

then the EQ{·} expression on the right-hand side is

= EQ

{
e−(β−1)Sn

{
∑n
j=1(n− j + 1)−re−(1−s)βSj−1ξj + e−(1−s)βSn}s/(1−s)

}

= EQ

{
e[βs−(β−1)]S̃n

{
∑n
k=1 k

−re(1−s)βS̃k ξ̃k + 1}s/(1−s)

}
,

where

S̃ℓ := Sn− Sn−ℓ, ξ̃ℓ := ξn+1−ℓ, 1≤ ℓ≤ n.

Consequently,

E(W 1−s
n,β )≥

1

c
s/(1−s)
38

EQ

{
e[βs−(β−1)]S̃n

{
∑n
k=1 k

−re(1−s)βS̃k ξ̃k + 1}s/(1−s)

}
.
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Let c39 > 0 be a constant, and define

ES̃n,1 :=

⌊nε⌋−1⋂

k=1

{S̃k ≤−c39k
1/3} ∩ {−2nε/2 ≤ S̃⌊nε⌋ ≤−n

ε/2},

ES̃n,2 :=

n−⌊nε⌋−1⋂

k=⌊nε⌋+1

{S̃k ≤−[k1/3 ∧ (n− k)1/3]} ∩ {−2nε/2 ≤ S̃n−⌊nε⌋ ≤−n
ε/2},

ES̃n,3 :=
n−1⋂

k=n−⌊nε⌋+1

{
S̃k ≤

3

2
logn

}
∩

{
3− ε

2
logn≤ S̃n ≤

3

2
logn

}
.

Let ρ := ρ((1− s)β) be the constant in Corollary 2.4, and let

E ξ̃n,1 :=

⌊nε⌋⋂

k=1

{ξ̃k ≤ n
2ε/ρ},

E ξ̃n,2 :=

n−⌊nε⌋⋂

k=⌊nε⌋+1

{ξ̃k ≤ e
nε/4
},

E ξ̃n,3 :=
n⋂

k=n−⌊nε⌋+1

{ξ̃k ≤ n
2ε/ρ}.

On
⋂3
i=1(E

S̃
n,i∩E

ξ̃
n,i), we have

∑n
k=1 k

−re(1−s)βS̃k ξ̃k+1≤ c40n
2ε+(2ε/ρ), while

e[βs−(β−1)]S̃n ≥ n(3−ε)[βs−(β−1)]/2 (recalling that βs > β− 1). Therefore, with
c41 := (2 + 2

ρ)
s

1−s ,

E(W 1−s
n,β )≥ (c38c40)

−s/(1−s)n−c41εn(3−ε)[βs−(β−1)]/2

(5.18)

×Q

{
3⋂

i=1

(ES̃n,i ∩E
ξ̃
n,i)

}
.

We need to bound Q(
⋂3
i=1(E

S̃
n,i ∩ E

ξ̃
n,i)) from below. Let S̃0 := 0. Note

that, under Q, (S̃ℓ− S̃ℓ−1, ξ̃ℓ), 1≤ ℓ≤ n, are i.i.d., distributed as (S1, ξ1). For

j ≤ n, let G̃j be the sigma-field generated by (S̃k, ξ̃k), 1≤ k ≤ j. Then ES̃n,1,

ES̃n,2, E
ξ̃
n,1 and E ξ̃n,2 are G̃n−⌊nε⌋-measurable, whereas E ξ̃n,3 is independent of

G̃n−⌊nε⌋. Therefore,

Q

(
3⋂

i=1

(ES̃n,i ∩E
ξ̃
n,i)|G̃n−⌊nε⌋

)

≥ [Q(ES̃n,3|G̃n−⌊nε⌋) + Q(E ξ̃n,3)− 1]1
ES̃

n,1∩E
S̃
n,2∩E

ξ̃
n,1∩E

ξ̃
n,2

.
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We have c42 := EQ(ξρ1) < ∞ [by (2.16)]; thus, Q{ξ1 > n2ε/ρ} ≤ c42n
−2ε,

which entails Q(E ξ̃n,3) = (Q{ξ1 ≤ n
2ε/ρ})⌊n

ε⌋ ≥ (1−c42n
−2ε)⌊n

ε⌋ ≥ 1−c43n
−ε.

To estimate Q(ES̃n,3|G̃n−⌊nε⌋), we use the Markov property to see that, if

S̃n−⌊nε⌋ ∈ In := [−2nε/2,−nε/2], the conditional probability is (writing N :=
⌊nε⌋)

≥ inf
z∈In

Q

{
Si ≤

3

2
logn− z, ∀1≤ i≤N − 1,

3− ε

2
logn− z ≤ SN ≤

3

2
logn− z

}
,

which is greater than N−(1/2)+o(1) . Therefore,

Q(ES̃n,3|G̃n−⌊nε⌋) + Q(E ξ̃n,3)− 1≥ n−(ε/2)+o(1) − c43n
−ε = n−(ε/2)+o(1).

As a consequence,

Q

{
3⋂

i=1

(ES̃n,i ∩E
ξ̃
n,i)

}
≥ n−(ε/2)+o(1)Q(ES̃n,1 ∩E

S̃
n,2 ∩E

ξ̃
n,1 ∩E

ξ̃
n,2).(5.19)

To estimate Q(ES̃n,1 ∩ E
S̃
n,2 ∩ E

ξ̃
n,1 ∩ E

ξ̃
n,2), we condition on G̃⌊nε⌋, and

note that ES̃n,1 and E ξ̃n,1 are G̃⌊nε⌋-measurable, whereas E ξ̃n,2 is independent

of G̃⌊nε⌋. Since Q(ES̃n,2|G̃⌊nε⌋) ≥ n
−(3−ε)/2+o(1), whereas Q(E ξ̃n,2) = [Q{ξ1 ≤

en
ε/4
}]n−2⌊nε⌋ ≥ [1− c42e

−ρnε/4
]n−2⌊nε⌋ ≥ 1− e−n

ε/5
(for large n), we have

Q(ES̃n,1 ∩E
S̃
n,2 ∩E

ξ̃
n,1 ∩E

ξ̃
n,2|G̃⌊nε⌋)≥ [Q(ES̃n,2|G̃⌊nε⌋) + Q(E ξ̃n,2)− 1]1

ES̃
n,1∩E

ξ̃
n,1

≥ n−(3−ε)/2+o(1)1
ES̃

n,1∩E
ξ̃
n,1

.

Thus, Q(ES̃n,1 ∩ E
S̃
n,2 ∩ E

ξ̃
n,1 ∩ E

ξ̃
n,2) ≥ n

−(3−ε)/2+o(1)Q(ES̃n,1 ∩ E
ξ̃
n,1). Going

back to (5.19), we have

Q

{
3⋂

i=1

(ES̃n,i ∩E
ξ̃
n,i)

}
≥ n−(3/2)+o(1)Q(ES̃n,1 ∩E

ξ̃
n,1)

≥ n−(3/2)+o(1)[Q(ES̃n,1) + Q(E ξ̃n,1)− 1].

We choose the constant c39 > 0 sufficiently small so that Q(ES̃n,1)≥ n
−(ε/2)+o(1),

whereas Q(E ξ̃n,1) = Q(E ξ̃n,3)≥ 1− c43n
−ε. Accordingly,

Q

{
3⋂

i=1

(ES̃n,i ∩E
ξ̃
n,i)

}
≥ n−(3+ε)/2+o(1), n→∞.
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Substituting this into (5.18) yields

E(W 1−s
n,β )≥ n−c41εn(3−ε)[βs−(β−1)]/2n−(3+ε)/2+o(1).

Since ε can be as small as possible, this implies the lower bound in Theorem
1.6. �

6. Proof of Theorem 1.5. The basic idea in the proof of Theorem 1.5
is the same as in the proof of Theorem 1.6. Again, we prove the upper
and lower bounds in distinct parts, for the sake of clarity. Throughout the
section, we assume (1.1), (1.2) and (1.3).

Proof of Theorem 1.5: The upper bound. Clearly, n1/2Wn ≤ Y n,
where

Y n :=
∑

|u|=n

(n1/2 ∨ V (u)+)e−V (u).

Recall W ∗
n from (3.7). Applying (3.14) to λ= 1, we see that Y n ≥

1
c44

log( 1
W ∗

n
),

with c44 := c12 + c13. Thus, P{Y n < x,Sn} ≤ P{log( 1
W ∗

n
) < c44x,Sn} ≤

ec44E{(W ∗
n)1/x1Sn}, which, according to (3.11), is bounded by ec44(xκ +

e−c10n) for 0< x≤ 1
a0

. Thus, for any fixed c > 0 and 0< s <min{ c10c , κ}, we

have supn≥1 E{ 1
Y

s
n
1{Y n≥e−cn}∩Sn

}<∞. On the other hand, let c31 and c32

be as in (5.5); since Y n ≥ exp{− inf |u|=nV (u)}, it follows from (5.5) that

supn≥1 E{ 1
Y

c32
n

1{Y n<e−c31n}∩Sn
}<∞. As a consequence,

sup
n≥1

E

{
1

Y
s
n

1Sn

}
<∞, 0< s<min

{
c32,

c10
c31

, κ

}
.(6.1)

We now fix 0< s<min{1
2 , c32,

c10
c31
, κ}. Let K ≥ 1 and let En be the event

in (5.11), satisfying Q{En} ≥ 1− n−K for n≥ n0. We write

E{(n1/2Wn)
1−s}= E{(n1/2Wn)

1−s1En}+ E{(n1/2Wn)
1−s1Ec

n
}.

For n≥ n0, E{W
1−s
n 1Ec

n
} ≤ [E{W 1−2s

n }]1/2[E{Wn1Ec
n
}]1/2 = [E{W 1−2s

n }]1/2×

[Q{Ecn}]
1/2 ≤ [E{Wn}]

(1/2)−sn−K/2, which equals n−K/2 (since E{Wn}= 1).
Therefore, for n→∞,

E{(n1/2Wn)
1−s} ≤E{Y

1−s
n 1En}+ o(1).

Exactly as in (5.13), we have E{Y
1−s
n 1En}= EQ{(n

1/2∨V (w
(n)
n )+)Y

−s
n 1En}.

Thus, for n→∞,

E{(n1/2Wn)
1−s} ≤EQ{(n

1/2 + V (w(n)
n )+)Y

−s
n 1En}+ o(1).(6.2)
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For any subset L ⊂ {1,2, . . . , n}, we have

Y n ≥
∑

j∈L

∑

u∈I
(n)
j

∑

x∈TGW
u ,|x|u=n−j

max{n1/2, V (x)+}e−V (x)

=
∑

j∈L

∑

u∈I
(n)
j

e−V (u)
∑

x∈TGW
u ,|x|u=n−j

max{n1/2, [V (u) + Vu(x)]
+}e−Vu(x).

Recall that w(n) is the oldest vertex in Je,w
(n)
n K such that V (w(n)) =

min
u∈Je,w

(n)
n K

V (u). Let c35 be the constant in (5.8). We choose

L :=






{j ≤ n :I
(n)
j 6= ∅, |w(n)|< j < |w(n)|+ c35 logn},

if n− |w(n)| ≥ 2c35 logn,

{j ≤ n :I
(n)
j 6= ∅, |w(n)| − c35 logn < j < |w(n)|},

otherwise.

On the event En, it is clear that L 6= ∅ and that, for any u ∈I
(n)
j (with

j ∈L ),

|V (u)− V (w(n))| ≤ c45 logn,(6.3)

where c45 := c36 + c37, with c36 and c37 as in (5.9) and (5.10), respectively.
We distinguish two possible situations, depending on whether V (w(n))≥

−c46 logn, where c46 := 1
s + c45. In both situations, we consider a sufficiently

large n and an arbitrary u ∈I
(n)
j (with j ∈L ).

On {V (w(n)) ≥ −c46 logn} ∩ En, we have max{n1/2, [V (u) + Vu(x)]
+} ≥

1
2 (n1/2∨Vu(x)

+) [this holds trivially in case Vu(x)≤ n
1/2; otherwise [V (u)+

Vu(x)]
+ ≥ Vu(x)− (c46 + c45) logn≥ 1

2Vu(x)
+] and, thus,

Y n ≥
1

2

∑

j∈L

∑

u∈I
(n)
j

e−V (u)
∑

x∈TGW
u ,|x|u=n−j

max{(n− j)1/2, Vu(x)
+}e−Vu(x)

=:
1

2

∑

j∈L

∑

u∈I
(n)
j

e−V (u)ξu.

If, however, V (w(n))<−c46 logn, then on En, V (u)≤ V (w(n)) + c45 logn<
−1
s logn and, since max{n1/2, [V (u)+Vu(x)]

+} ≥ n1/2, we have, in this case,

Y n ≥ n
(1/s)+(1/2)

∑

j∈L

∑

u∈I
(n)
j

∑

x∈TGW
u ,|x|u=n−j

e−Vu(x)

=: n(1/s)+(1/2)
∑

j∈L

∑

u∈I
(n)
j

ηu.
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Therefore, in both situations we have

Y
−s
n 1En ≤ 2s

(
∑

j∈L

∑

u∈I
(n)
j

e−V (u)ξu

)−s

1En

(6.4)

+ n−(s/2)−1

(
∑

j∈L

∑

u∈I
(n)
j

ηu

)−s

1En .

[Since
∑
j∈L

∑
u∈I

(n)
j

∑
x∈TGW

u ,|x|u=n−j 1> 0 on En, the (·)−s expressions on

the right-hand side are well defined.]
We claim that there exists 0 < s0 < 1 such that, for any ε > 0 and s ∈

(0, s0),

EQ

{
(n1/2 + V (w(n)

n )+)

(
∑

j∈L

∑

u∈I
(n)
j

e−V (u)ξu

)−s

1En

}

(6.5)
≤ c48,

EQ

{
(n1/2 + V (w(n)

n )+)

(
∑

j∈L

∑

u∈I
(n)
j

ηu

)−s

1En

}

(6.6)
≤ c47n

1/2+(3+ε)/2s.

We admit (6.5) and (6.6) for the time being. In view of (6.4), we obtain,
for 0< s < s∗ := min{1

2 , s0, c32,
c10
c31
, κ},

EQ{(n
1/2 + V (w(n)

n )+)Y
−s
n 1En} ≤ 2sc48 + o(1).

Substituting this in (6.2), we see that supn≥1 E{(n1/2Wn)
1−s}<∞ for any

s ∈ (0, s∗). This yields the last inequality in (1.16) when γ is close to 1. By
Jensen’s inequality, it holds for all γ ∈ [0,1). This will complete the proof of
the upper bound in Theorem 1.5.

It remains to check (6.5) and (6.6). We only present the proof of (6.5),
because the proof of (6.6) is similar and slightly easier, using (5.2) in place
of (6.1).

Recall Gn from (2.9). By Proposition 2.1, under Q and conditionally on

Gn, the random variables ξu, for u ∈ I
(n)
j and j ∈ L , are independent.

We write L := {j(1), . . . , j(N)}, with j(1)< · · ·< j(N). It follows from the
second part of Lemma 5.2 that

EQ

{(
∑

j∈L

∑

u∈I
(n)
j

e−V (u)ξu

)−s

1En

∣∣∣Gn

}
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≤
N∑

i=1

bi−1EQ

{(
∑

u∈I
(n)

j(i)

e−V (u)ξu

)−s

1{
∑

u∈I
(n)

j(i)

e−V (u)ξu>0}

∣∣∣Gn

}
,

where b := maxj∈L Q{
∑
u∈I

(n)
j

e−V (u)ξu = 0|Gn}. We note that b ≤

max1≤j≤nP{S c
n−j} ≤ q, and that, for any i≤N , the EQ{·} expression on

the right-hand side is, according to the first part of Lemma 5.2, bounded by

1

1− q
max
u∈I

(n)

j(i)

EQ

{
esV (u)

ξsu
1{ξu>0}|Gn

}
.

By Proposition 2.1, EQ{
1
ξs
u
1{ξu>0}|Gn}= E{ 1

Y
s
n−j

1Sn−j
}, which is bounded

in n and j [by (6.1)]. Summarizing, we have proved that

EQ

{(
∑

j∈L

∑

u∈I
(n)
j

e−V (u)ξu

)−s

1En

∣∣∣Gn

}
≤ c49

N∑

i=1

qi−1 max
u∈I

(n)

j(i)

esV (u).

As a consequence, the expression on the left-hand side of (6.5) is bounded
by c49EQ{Λn}, where

Λn := (n1/2 + V (w(n)
n )+)

N∑

i=1

qi−1 max
u∈I

(n)

j(i)

esV (u)1{|V (u)−V (w(n))|≤c45 logn}

≤ Λ̃n := (n1/2 + V (w(n)
n )+)

N∑

i=1

qi−1 max
u∈I

(n)

j(i)

esV (u).

The proof of (6.5) now boils down to verifying the following estimates: there
exists 0< s0 < 1 such that, for any s ∈ (0, s0),

sup
n

EQ{Λ̃n1{n−|w(n)|≥2c35 logn}}<∞,(6.7)

lim
n→∞

EQ{Λn1{n−|w(n)|<2c35 logn}}= 0.(6.8)

Let us first check (6.7). Let S0 := 0 and let (Sj − Sj−1, σj ,∆j), j ≥ 1,

be i.i.d. random variables under Q and distributed as (V (w(1)),#I
(1)
1 ,

max
u∈I

(1)
1

esV (u)). Let

Sn := min
0≤i≤n

Si, ϑn := inf{k ≥ 0 :Sk = Sn}.

[The random variable ϑn has nothing to do with the constant ϑ in Propo-

sition 3.1.] Writing LHS(6.7) for EQ{Λ̃n1{n−|w(n)|≥2c35 logn}}, it follows from
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Proposition 2.1 that

LHS(6.7) = EQ

{
[n1/2 + S+

n ]
M∑

i=1

qi−1esSℓ(i)−1∆ℓ(i)1{n−ϑn≥2c35 logn}

}

= EQ

{
[n1/2 + S+

n ]esSn

M∑

i=1

qi−1es[Sℓ(i)−1−Sℓ(0)]∆ℓ(i)1{n−ϑn≥2c35 logn}

}
,

where ℓ(i) := inf{k > ℓ(i−1) :σk ≥ 1} with ℓ(0) := ϑn, andM := sup{i : ℓ(i)<
ϑn + c35 logn}.

At this stage, we use a standard trick for random walks: let ν0 := 0 and
let

νi := inf

{
k > νi−1 :Sk < min

0≤j≤νi−1

Sj

}
, i≥ 1.

In words, 0 = ν0 < ν1 < · · · are strict descending ladder times. On the event
{νk ≤ n < νk+1} (for k ≥ 0), we have ϑn = νk and Sn = Sνk

. Thus, LHS(6.7)

equals

∞∑

k=0

EQ

{
1{n−νk≥2c35 logn}1{νk≤n<νk+1}[n

1/2 + S+
n ]esSνk

×
M∑

i=1

qi−1es[Sℓ(i)−1−Sℓ(0)]∆ℓ(i)

}
.

For any k, we look at the expectation EQ{·} on the right-hand side. By con-
ditioning upon (Sj, σj ,∆j,1≤ j ≤ νk), and since S+

n = [Sνk
+(Sn−Sνk

)]+ ≤
(Sn − Sνk

)+ = Sn − Sνk
on {νk ≤ n < νk+1}, we obtain

LHS(6.7) ≤
∞∑

k=0

EQ{1{n−νk≥2c35 logn}e
sSνkfn(n− νk)},(6.9)

where, for any 1≤ j ≤ n,

fn(j) := EQ

{
1{ν1>j}[n

1/2 + Sj ]
M ′∑

i=1

qi−1esSm(i)−1∆m(i)

}
,

andm(i) := inf{k >m(i−1) :σk ≥ 1} withm(0) := 0, andM ′ := sup{i :m(i)<

c35 logn}. For brevity, we write Ln :=
∑M ′

i=1 q
i−1esSm(i)−1∆m(i) =

∑∞
i=1 q

i−1×

esSm(i)−1∆m(i)1{m(i)<c35 logn} for the moment. By the Cauchy–Schwarz in-
equality,

fn(j)≤ [Q{ν1 > j}]1/2[EQ{(n
1/2 + Sj)

2|ν1 > j}]1/2[EQ{L
2
n1{ν1>j}}]

1/2.

By (2.13), Q{ν1 > j} ≤ c50j
−1/2 for some c50 > 0 and all j ≥ 1. On the

other hand, (n1/2 +Sj)
2 ≤ 2(n+S2

j ), and it is known (Bolthausen [11]) that



MINIMAL POSITION, BRANCHING RANDOM WALKS 37

EQ{
S2

j

j |ν1 > j} → c51 ∈ (0,∞) for j→∞. Therefore, EQ{(n
1/2 + Sj)

2|ν1 >

j} ≤ c52n for some c52 > 0 and all n ≥ j ≥ 1. Accordingly, with c53 :=

c
1/2
50 c

1/2
52 , we have

fn(j)≤ c53j
−1/4n1/2[EQ{L

2
n1{ν1>j}}]

1/2, 1≤ j ≤ n.

By the Cauchy–Schwarz inequality, L2
n ≤ (

∑∞
i=1 q

i−1)
∑∞
i=1 q

i−1e2sSm(i)−1∆2
m(i)×

1{m(i)<c35 logn}. Therefore, for j ≥ 2c35 logn,

EQ{L
2
n1{ν1>j}} ≤

1

1− q

∞∑

i=1

qi−1EQ{e
2sSm(i)−1∆2

m(i)1{m(i)<c35 logn}1{ν1>j}}

≤
1

1− q

∞∑

i=1

qi−1EQ{e
2sSm(i)−1∆2

m(i)1{m(i)≤j/2}1{ν1>j}}.

For any i≥ 1, to estimate the expectation EQ{·} on the right-hand side, we
apply the strong Markov property at time m(i) to see that

EQ{·}= EQ{e
2sSm(i)−1∆2

m(i)1{m(i)≤j/2}1{ν1>m(i)}g(Sm(i), j −m(i))},

where g(z, k) := Q{z + Si ≥ 0,∀1≤ i≤ k} for any z ≥ 0 and k ≥ 1. By (13)
of Kozlov [24], g(z, k) ≤ c54(z + 1)/k1/2 for some c54 > 0 and all z ≥ 0 and
k ≥ 1. Since z + 1≤ c55e

sz for all z ≥ 0, this yields, with c56 := c55
1−q ,

EQ{L
2
n1{ν1>j}} ≤ c56

∞∑

i=1

qi−1EQ

{
e2sSm(i)−1∆2

m(i)1{m(i)≤j/2}
esSm(i)

(j −m(i))1/2

}

≤
c56

(j/2)1/2

∞∑

i=1

qi−1EQ{e
2sSm(i)−1+sSm(i)∆2

m(i)}

=
21/2c56
j1/2

EQ

{
∞∑

i=1

qi−1e2sSm(i)−1+sSm(i)∆2
m(i)

}
.

We observe that
∑∞
i=1 q

i−1e2sSm(i)−1+sSm(i)∆2
m(i) ≤

∑∞
k=1 q

R(k)−1e2sSk−1+sSk∆2
k,

where R(k) := #{1≤ j ≤ k :σj ≥ 1}. Therefore, with c57 := 21/2c56,

EQ{L
2
n1{ν1>j}} ≤

c57
j1/2

∞∑

k=1

EQ{q
R(k)−1e2sSk−1+sSk∆2

k}

≤
c57
j1/2

∞∑

k=1

[EQ{q
2[R(k)−1]}]1/2[EQ{e

4sSk−1+2sSk∆4
k}]

1/2.

By definition, EQ{q
2[R(k)−1]}= q−2rk, with r := Q(σ1 = 0) + q2Q(σ1 ≥ 1)<

1 [because q < 1 and Q(σ1 = 0)< 1]. On the other hand,

EQ{e
4sSk−1+2sSk∆4

k}= EQ{e
6sSk−1}EQ{e

2s(Sk−Sk−1)∆4
k}

= [EQ{e
6sS1}]k−1EQ{e

2sS1∆4
1}.
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By (2.11), there exists s# > 0 sufficiently small such that EQ{e
6sS1}< 1

r for
all 0< s < s#. On the other hand, EQ{∆

8
1}<∞ for 0< s < c6

8 [by (2.17)],

and EQ{e
4sS1}<∞ for 0< s≤ c2

4 [by (2.11)]; thus, EQ{e
2sS1∆4

1} <∞ for
0 < s <min{ c68 ,

c2
4 }. As a consequence, for any 0 < s <min{s#,

c6
8 ,

c2
4 }, we

have EQ{L
2
n1{ν1>j}} ≤

c58
j1/2 , for some c58 > 0 and all n ≥ j ≥ 1 with j ≥

2c35 logn, which yields

fn(j)≤ c53c
1/2
58 j

−1/2n1/2.

Going back to (6.9), we obtain, for any 0 < s <min{s#,
c6
8 ,

c2
4 } and c59 :=

c53c
1/2
58 ,

LHS(6.7) ≤ c59n
1/2

∞∑

k=0

EQ

{
1{n−νk≥2c35 logn}

esSνk

(n− νk)1/2

}
.

By (2.13) again, 1
j1/2 ≤ c60Q{ν1 > j} for all j ≥ 1. Thus, with c61 := c59c60,

LHS(6.7) ≤ c61n
1/2

∞∑

k=0

EQ{1{n−νk≥2c35 logn}e
sSνk 1{νk+1>n}}

≤ c61n
1/2

∞∑

k=0

EQ{1{νk≤n<νk+1}e
sSνk},

which equals c61n
1/2EQ{e

smin0≤i≤n Si}, and, according to (2.14), is bounded
in n. This completes the proof of (6.7).

It remains to check (6.8). By definition,

Λn ≤ [n1/2 + V (w(n)
n )+]nsc45esV (w(n))

N∑

i=1

qi−1.

Since
∑N
i=1 q

i−1 ≤ 1
1−q , this leads to, by an application of Proposition 2.1,

EQ{Λn1{n−|w(n)|<2c35 logn}} ≤
nsc45

1− q
EQ{[n

1/2 + S+
n ]esSn1{n−ϑn<2c35 logn}},

where (Si) is as in Proposition 2.1 and, as before, Sn := min0≤i≤n Si, ϑn :=
inf{k ≥ 0 :Sk = Sn}.

Let 0< ε< 1
2 ; let An := {Sn >n1/2+ε} and Bn := {Sn ≤ n

1/2+ε}=Acn.

Since EQ{e
aS1}<∞ for |a|< c2 [see (2.11)] and Q(An)≤ 2exp(−c3n

2ε)

[see (2.12)], the Cauchy–Schwarz inequality yields nsc45EQ{[n
1/2 + S+

n ]×
esSn1An}→ 0, n→∞.

On Bn, we have n1/2 + S+
n ≤ 2n1/2+ε; thus, EQ{[n

1/2 + S+
n ]esSn ×

1Bn∩{n−ϑn<2c35 logn}} ≤ 2n1/2+εEQ{e
sSn1{n−ϑn<2c35 logn}}. It is clear that

Sn ≤ S⌊n/2⌋ := min0≤i≤n/2 Si, and that {n− ϑn < 2c35 logn} ⊂ {n2 − ϑ̃n/2 <
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2c35 logn}, where ϑ̃n/2 := min{k ≥ 0 : S̃k = min0≤i≤n−⌊n/2⌋ S̃i}, with S̃i :=

Si+⌊n/2⌋ − S⌊n/2⌋, i ≥ 0. Since S⌊n/2⌋ and ϑ̃n/2 are independent, we have

EQ{e
sSn1{n−ϑn<2c35 logn}} ≤EQ{e

sS⌊n/2⌋}Q{n2− ϑ̃n/2 < 2c35 logn}. By (2.14),

EQ{e
sS⌊n/2⌋} ≤ c62n

−1/2; on the other hand, Q{n2 − ϑ̃n/2 < 2c35 logn} ≤

c63
(logn)1/2

n1/2 (see Feller [18], page 398). Therefore, EQ{[n
1/2 + S+

n ]esSn ×

1Bn∩{n−ϑn<2c35 logn}} ≤ c64n
−1/2+ε(logn)1/2.

Summarizing, we have proved that, for any s > 0 and 0 < ε < 1
2 , when

n→∞,

EQ{Λn1{n−|w(n)|<2c35 logn}} ≤ o(1) +
c64

1− q
nsc45−1/2+ε(logn)1/2,

which yields (6.8), as long as 0< s < 1
2c45

. �

Proof of Theorem 1.5. The lower bound. We start with

n1/2Wn ≥ Y n :=
∑

|u|=n

(n1/2 ∧ V (u)+)e−V (u).

Let s ∈ (0,1). Exactly as in (5.13), we have

E{Y 1−s
n }= EQ{(n

1/2 ∧ V (w(n)
n )+)Y −s

n }.(6.10)

By definition,

Y n =
n∑

j=1

∑

u∈I
(n)
j

e−V (u)
∑

x∈TGW
u ,|x|u=n−j

min{n1/2, [V (u) + Vu(x)]
+}e−Vu(x)

+ min{n1/2, V (w(n)
n )+}e−V (w

(n)
n )

≤
n∑

j=1

e−V (w
(n)
j−1)

∑

u∈I
(n)
j

e−∆u
∑

x∈TGW
u ,|x|u=n−j

[V (w
(n)
j−1)

+ + ∆+
u + Vu(x)

+]

× e−Vu(x) + Θn,

where ∆u := V (u)− V (w
(n)
j−1) [for u ∈I

(n)
j ], and Θn := V (w

(n)
n )+e−V (w

(n)
n ).

By means of the elementary inequality (
∑
i ai)

−s ≥ (
∑
i a
s
i )

−1 and (
∑
i bi)

s ≤∑
i b
s
i for nonnegative ai and bi, we obtain Y −s

n ≥
1
Zn

on Sn, with Zn being
defined as

∑

j

e−sV (w
(n)
j−1)

∑

u

e−s∆u

{
[(V (w

(n)
j−1)

+)s + (∆+
u )s]

(
∑

x

e−Vu(x)

)s

+

[
∑

x

Vu(x)
+e−Vu(x)

]s}
+ Θs

n,
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where
∑
j :=

∑n
j=1,

∑
u :=

∑
u∈I

(n)
j

, and
∑
x :=

∑
x∈TGW

u ,|x|u=n−j . We now

condition upon Gn, and note that V (w
(n)
j ) and I

(n)
j are Gn-measurable. By

Proposition 2.1,

EQ{Zn|Gn}=
∑

j

e−sV (w
(n)
j−1)

∑

u

e−s∆u{((V (w
(n)
j−1)

+)s + (∆+
u )s)

×E(W s
n−j) + E(U sn−j)}+ Θs

n,

where, for any k ≥ 0, Uk :=
∑

|y|=k V (y)+e−V (y). By Jensen’s inequality,

E(W s
n−j) ≤ [E(Wn−j)]

s = 1. On the other hand, by (3.9), Uk ≤ c65 log 1
W ∗

k

and, thus, by Lemma 3.3, E(U sk) ≤ c
s
65E{[log

1
W ∗

k
]s} ≤ c66. Therefore, the

∑
u sum on the right-hand side (without Θs

n, of course) is

≤
∑

u

e−s∆u{(V (w
(n)
j−1)

+)s + (∆+
u )s + c67}

= [V (w
(n)
j−1)

+]s
∑

u

e−s∆u +
∑

u

e−s∆u{(∆+
u )s + c67}.

There exists c68 = c68(s) < ∞ such that e−sa{(a+)s + c67} ≤ c68(e
−sa +

e−sa/2) for all a ∈R. As a consequence,

EQ{Zn|Gn} ≤ c69

n∑

j=1

e−sV (w
(n)
j−1){[V (w

(n)
j−1)

+]s + 1}

×
∑

u∈I
(n)
j

[e−s∆u + e−s/2∆u ] + Θs
n.

By Jensen’s inequality again, EQ{
1
Zn
|Gn} ≥

1
EQ{Zn|Gn}

. Since Y −s
n ≥

1
Zn

on

Sn, this leads to

EQ{Y
−s
n |Gn}

≥
c70

∑n
j=1 e

−sV (w
(n)
j−1){[V (w

(n)
j−1)

+]s + 1}
∑
u∈I

(n)
j

[e−s∆u + e−
s
2
∆u] + Θs

n

.

We apply Proposition 2.1: if (Sj−Sj−1, ηj), for j ≥ 1 (with S0 := 0), are i.i.d.

random variables (under Q) and distributed as (V (w(1)),
∑
u∈I

(1)
1

[e−sV (u) +

e−s/2V (u)]), then

EQ{(n
1/2 ∧ V (w(n)

n )+)Y −s
n }

≥ c70EQ

{
n1/2 ∧ S+

n∑n
j=1 e

−sSj−1[(S+
j−1)

s + 1]ηj + e−sSn(S+
n )s

}
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≥ c70EQ

{ (n1/2 ∧ Sn)1{min1≤j≤n Sj>0}∑n
j=1 e

−sSj−1(Ssj−1 + 1)ηj + e−sSnSsn

}
.

Note that if Sj > 0, then e−sSj [Ssj + 1]≤ c71e
−tSj with t := s

2 . Therefore, by
writing

Q(n){·} := Q

{
·| min

1≤j≤n
Sj > 0

}
,

and E
(n)
Q the expectation with respect to Q(n), and η̂j := ηj + 1 for brevity,

we get that

EQ{(n
1/2 ∧ V (w(n)

n )+)Y −s
n } ≥ c72Q

{
min

1≤j≤n
Sj > 0

}
E

(n)
Q

{
n1/2 ∧ Sn∑n+1
j=1 e

−tSj−1 η̂j

}

≥ c72Q

{
min

1≤j≤n
Sj > 0

}
E

(n)
Q

{εn1/21{Sn>εn1/2}∑n+1
j=1 e

−tSj−1 η̂j

}
.

Since Q{min1≤j≤nSj > 0} ≥ c73n
−1/2 [see (2.13)], this leads to

EQ{(n
1/2 ∧ V (w(n)

n )+)Y −s
n }

≥ c74εE
(n)
Q

{
1{Sn>εn1/2}∑n+1
j=1 e

−tSj−1 η̂j

}

≥ c74ε

[
E

(n)
Q

{
1

∑n+1
j=1 e

−tSj−1 η̂j

}
−Q(n){Sn ≤ εn

1/2}

]
.

Let ρ(s)> 0 be as in Corollary 2.4. We have EQ{(
∑
u∈I

(1)
1

e−sV (u))ρ(s)}<∞

by (2.16). Since ρ(s)≤ ρ( s2 ), we also have EQ{(
∑
u∈I

(1)
1

e−s/2V (u))ρ(s)}<∞.

Therefore, EQ{η̂
ρ(s)
1 }<∞. We are thus entitled to apply Lemma 6.1 (stated

and proved below) to see that E
(n)
Q {

1

1+
∑n+1

j=1
e−tSj−1 η̂j

} ≥ c75 for some c75 ∈

(0,∞) and all n≥ n0. Since 1∑n+1

j=1
e−tSj−1 η̂j

≥ 1

1+
∑n+1

j=1
e−tSj−1 η̂j

, this yields

EQ{(n
1/2 ∧ V (w(n)

n )+)Y −s
n } ≥ c74ε[c75 −Q(n){Sn ≤ εn

1/2}], n≥ n0.

On the other hand, Sn/n
1/2 under Q(n) converges weakly to the terminal

value of a Brownian meander (see Bolthausen [11]); in particular,
limε→0 limn→∞Q(n){Sn ≤ εn

1/2}= 0. We can thus choose (and fix) a small
ε > 0 such that Q(n){Sn ≤ εn

1/2} ≤ c75
2 for all n ≥ n1. Therefore, for n ≥

n0 + n1,

EQ{(n
1/2 ∧ V (w(n)

n )+)Y −s
n } ≥ c74ε

[
c75 −

c75
2

]
.
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As a consequence, we have proved that, for 0< s < 1,

lim inf
n→∞

EQ{(n
1/2 ∧ V (w(n)

n )+)Y −s
n }> 0,

which, in view of (6.10), yields the first inequality in (1.16), and thus com-
pletes the proof of the lower bound in Theorem 1.5. �

We complete the proof of Theorem 1.5 by proving the following lemma,
which is a very simple variant of a result of Kozlov [24].

Lemma 6.1. Let {(Xk, ηk), k ≥ 1} be a sequence of i.i.d. random vectors
defined on (Ω,F ,P) with P{η1 ≥ 0} = 1, such that E{ηθ1} <∞ for some
θ > 0. We assume E(X1) = 0 and 0 < E(X2

1 ) <∞. Let S0 := 0 and Sn :=
X1 + · · ·+Xn, for n≥ 1. Then

lim
n→∞

E

{
1

1 +
∑n+1
k=1 ηke

−Sk−1

∣∣∣∣ min
1≤k≤n

Sk > 0

}
= c76 ∈ (0,∞).(6.11)

Proof. The lemma is an analogue of the identity (26) of Kozlov [24],
except that the distribution of our η1 is slightly different from that of Ko-
zlov’s, which explains the moment condition E{ηθ1}<∞: this condition will
be seen to guarantee

lim
j→∞

lim sup
n→∞

E

{
1

1 +
∑j
k=1 ηke

−Sk−1

(6.12)

−
1

1 +
∑n+1
k=1 ηke

−Sk−1

∣∣∣∣ min
1≤k≤n

Sk > 0

}
= 0.

The identity (6.12), which plays the role of Kozlov’s Lemma 1 in [24], is the
key ingredient in the proof of (6.11). Since the rest of the proof goes along
the lines of [24] with obvious modifications, we only prove (6.12) here.

Without loss of generality, we assume θ ≤ 2 (otherwise, we can replace θ
by 2). We observe that, for n > j, the integrand in (6.12) is nonnegative,
and is

≤

∑n+1
k=j+1 ηke

−Sk−1

1 +
∑n+1
k=1 ηke

−Sk−1
≤

( ∑n+1
k=j+1 ηke

−Sk−1

1 +
∑n+1
k=1 ηke

−Sk−1

)θ/2
≤

( n+1∑

k=j+1

ηke
−Sk−1

)θ/2
,

which is bounded by
∑n+1
k=j+1 η

θ/2
k e−θ/2Sk−1 . Since P{min1≤k≤nSk > 0} ∼

c4/n
1/2 [see (2.13)], we only need to check that

lim
j→∞

lim sup
n→∞

n1/2
n+1∑

k=j+1

E{η
θ/2
k e−θ/2Sk−11{min1≤i≤n Si>0}}= 0.(6.13)
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Let LHS(6.13) denote the n1/2∑n+1
k=j+1 E{·} expression on the left-hand

side. Let Ŝi = Ŝi(k) := Si+k − Sk, i ≥ 0. It is clear that (Ŝi, i ≥ 0) is inde-
pendent of (ηk,X1, . . . ,Xk), and is distributed as (Si, i≥ 0). Write Sk−1 :=

min1≤j≤k−1Sj and Ŝn−k := min1≤i≤n−k Ŝi. Then

LHS(6.13) ≤ n
1/2

n+1∑

k=j+1

E{η
θ/2
k e−θ/2Sk−11

{Sk−1>0,Ŝn−k>−Sk−1−Xk}
}.

To estimate E{·} on the right-hand side, we first condition upon (ηk, Sk−1, Sk−1,

Xk), which leaves us to estimate the tail probability of Ŝn−k. At this stage,

it is convenient to recall (see (13) of Kozlov [24]) that P{Ŝn−k > −y} ≤

c54
1+y+

(n−k+1)1/2 for some c54 > 0 and all y ∈R. Accordingly,

LHS(6.13) ≤ c54n
1/2

n+1∑

k=j+1

E

{
η
θ/2
k e−θ/2Sk−11{Sk−1>0}

1 + (Sk−1 +Xk)
+

(n− k+ 1)1/2

}

≤ c54n
1/2

n+1∑

k=j+1

E

{
η
θ/2
k e−θ/2Sk−11{Sk−1>0}

1 + Sk−1 +X+
k

(n− k+ 1)1/2

}
.

On the right-hand side, (ηk,Xk) is independent of (Sk−1, Sk−1). We condi-
tion upon (Sk−1, Sk−1): for any z ≥ 1, an application of the Cauchy–Schwarz
inequality gives

E{η
θ/2
k (z +X+

k )} ≤ [E(ηθk)]
1/2[E{(z +X+

k )2}]1/2.

Of course, E(ηθk) = E(ηθ1)<∞ by assumption, and E{(z+X+
k )2} ≤ 2E(z2 +

X2
k) = 2[z2 +E(X2

1 )]. Thus, E{η
θ/2
k (z+X+

k )} ≤ c77z for z ≥ 1. Consequently,
with c78 := c54c77,

LHS(6.13) ≤ c78n
1/2

n+1∑

k=j+1

E

{
e−θ/2Sk−11{Sk−1>0}

1 + Sk−1

(n− k+ 1)1/2

}

≤ c79n
1/2

n+1∑

k=j+1

E

{
e−θ/3Sk−11{Sk−1>0}

1

(n− k+ 1)1/2

}
,

the last inequality following from the fact that supx>0(1 + x)e−θ/6x <∞.
We use once again the estimate (2.13), which implies 1

(n−k+1)1/2 ≤ c80P{Si >

Sk−1,∀k≤ i≤ n}. Since (Si−Sk−1, k ≤ i≤ n) is independent of (Sk−1, Sk−1),
this implies, with c81 := c79c80,

LHS(6.13) ≤ c81n
1/2

n+1∑

k=j+1

E{e−θ/3Sk−11{Sk−1>0,Si>Sk−1,∀k≤i≤n}}
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≤ c81n
1/2

n+1∑

k=j+1

E{e−θ/3Sk−11{Sn>0}},

where Sn := min1≤i≤n Si. It remains to check that

lim
j→∞

lim sup
n→∞

n1/2
n+1∑

k=j+1

E{e−θ/3Sk−11{Sn>0}}= 0.(6.14)

This would immediately follow from Lemma 1 of Kozlov [24], but we have
been kindly informed by Gerold Alsmeyer (to whom we are grateful) of a flaw
in its proof, on page 800, line 3 of [24], so we need to proceed differently. Since
E{e−θ/3Sk−11{Sn>0}} ≤ n

−(3/2)+o(1)(n− k+2)−1/2 (for n→∞) uniformly in

k ∈ [n2 , n+ 1], we have n1/2∑n+1
k=⌊n/2⌋ E{e−θ/3Sk−11{Sn>0}}→ 0, n→∞. On

the other hand, (36) of Kozlov [24] (applied to δ = 1
2 and ηi = 1 there)

implies that limj lim supn n
1/2∑⌊n/2⌋

k=j+1 E{e−θ/3Sk−11{Sn>0}} = 0. Therefore,

(6.14) holds: Lemma 6.1 is proved. �

7. Proof of Theorem 1.3 and (1.14)–(1.15) of Theorem 1.4. In this sec-
tion we prove Theorem 1.3, as well as parts (1.14)–(1.15) of Theorem 1.4.
We assume (1.1), (1.2) and (1.3) throughout the section.

Proof of Theorem 1.3 and (1.14) and (1.15) of Theorem 1.4.
Upper bounds. Let ε > 0. By Theorem 1.6 and Chebyshev’s inequality, P{Wn,β >

n−(3β/2)+ε}→ 0. Therefore, Wn,β ≤ n
−(3β/2)+o(1) in probability, yielding the

upper bound in (1.15).
The upper bound in (1.14) follows trivially from the upper bound in

(1.15).
It remains to prove the upper bound in Theorem 1.3. Fix γ ∈ (0,1). Since

W γ
n is a nonnegative supermartingale, the maximal inequality tells that, for

any n≤m and any λ > 0,

P

{
max
n≤j≤m

W γ
j ≥ λ

}
≤

E(W γ
n )

λ
≤

c82
λnγ/2

,

the last inequality being a consequence of Theorem 1.5. Let ε > 0 and

let nk := ⌊k2/ε⌋. Then
∑
kP{maxnk≤j≤nk+1

W γ
j ≥ n

−(γ/2)+ε
k } <∞. By the

Borel–Cantelli lemma, almost surely for all large k, maxnk≤j≤nk+1
Wj <

n
−(1/2)+(ε/γ)
k . Since ε

γ can be arbitrarily small, this yields the desired up-

per bound: Wn ≤ n
−(1/2)+o(1) a.s. �

Proof of Theorem 1.3 and (1.14) and (1.15) of Theorem 1.4.
Lower bounds. To prove the lower bound in (1.14) and (1.15), we use the
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Paley–Zygmund inequality and Theorem 1.6 to see that

P{Wn,β > n−(3β/2)+o(1)} ≥ no(1), n→∞.(7.1)

This is the analogue of (4.5) for Wn. From here, the argument follows the
lines in the proof of the upper bound in (1.8) of Theorem 1.2 (Section 4),
and goes as follows: let ε > 0 and let τn := inf{k ≥ 1 :#{u : |u|= k} ≥ n2ε}.
Then

P

{
τn <∞, min

k∈[n/2,n]
Wk+τn,β ≤ n

−(3β/2)−ε exp

[
−β max

|x|=τn
V (x)

]}

≤
∑

k∈[n/2,n]

P

{
τn <∞,Wk+τn,β ≤ n

−(3β/2)−ε exp

[
−β max

|x|=τn
V (x)

]}

≤
∑

k∈[n/2,n]

(P{Wk,β ≤ n
−(3β/2)−ε})⌊n

2ε⌋,

which, according to (7.1), is bounded by n exp(−n−ε⌊n2ε⌋) (for all suffi-
ciently large n), thus summable in n. By the Borel–Cantelli lemma, almost
surely for all sufficiently large n, we have either τn =∞, or mink∈[n/2,n]Wk+τn,β >

n−(3β/2)−ε exp[−βmax|x|=τn V (x)]. Conditionally on the system’s ultimate

survival, we have 1
n max|x|=n V (x)→ c21 a.s., τn ∼

2ε logn
logm a.s., n→∞, and

Wn,β ≥ mink∈[n/2,n]Wk+τn,β for all sufficiently large n. This readily yields
lower bounds in (1.14) and (1.15): conditionally on the system’s survival,
Wn,β ≥ n

−(3β/2)+o(1) almost surely (and a fortiori, in probability).
The lower bound in Theorem 1.3 is along exactly the same lines, but using

Theorem 1.5 instead of Theorem 1.6. �

8. Proof of Theorem 1.2. Assume (1.1), (1.2) and (1.3). Let β > 1. We
trivially have Wn,β ≤Wn exp{−(β− 1) inf |u|=n V (u)} and Wn,β ≥ exp{−β×

inf |u|=nV (u)}. Therefore, 1
β log 1

Wn,β
≤ inf |u|=n V (u) ≤ 1

β−1 log Wn
Wn,β

on Sn.

Since β can be as large as possible, by means of Theorem 1.3 and of parts
(1.14) and (1.15) of Theorem 1.4, we immediately get (1.7) and (1.9).

Since Wn ≥ exp{− inf |u|=n V (u)}, the lower bound in (1.8) follows imme-
diately from Theorem 1.3, whereas the upper bound in (1.8) was already
proved in Section 4.

9. Proof of part (1.13) of Theorem 1.4. The upper bound follows from
Theorem 1.3 and the elementary inequality Wn,β ≤W

β
n , the lower bound

from (1.8) and the relation Wn,β ≥ exp{−β inf |u|=nV (u)}.

10. Proof of Theorem 1.1. The proof of Theorem 1.1 relies on Theorem
1.5 and a preliminary result, stated below as Proposition 10.1. Theorem
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1.5 ensures the tightness of (n1/2Wn, n ≥ 1), whereas Proposition 10.1 im-

plies that Wn+1

Wn
converges to 1 in probability (conditionally on the system’s

survival).

Proposition 10.1. Assume (1.1), (1.2) and (1.3). For any γ > 0, there
exists γ1 > 0 such that, for all sufficiently large n,

P

{∣∣∣∣
Wn+1

Wn
− 1

∣∣∣∣≥ n
−γ |S

}
≤ n−γ1 .(10.1)

Proof. Let 1 < β ≤ min{2,1 + ρ(1)}, where ρ(1) is the constant in
Corollary 2.4.

We use a probability estimate of Petrov [34], page 82: for centered random
variables ξ1, . . . , ξℓ with E(|ξi|

β)<∞ (for 1≤ i≤ ℓ), we have E{|
∑ℓ
i=1 ξi|

β} ≤
2
∑ℓ
i=1 E{|ξi|

β}.
By definition, on the set Sn, we have

Wn+1

Wn
− 1 =

∑

|u|=n

e−V (u)

Wn

(
∑

x∈TGW
u :|x|u=1

e−Vu(x) − 1

)
,

where T
GW and |x|u are as in (2.1) and (2.4), respectively. Conditioning

on Fn, and applying Proposition 2.1 and Petrov’s probability inequality
recalled above, we see that, on Sn,

E

{∣∣∣∣
Wn+1

Wn
− 1

∣∣∣∣
β

|Fn

}
≤ 2

∑

|u|=n

e−βV (u)

W β
n

E

{∣∣∣∣∣
∑

|y|=1

e−V (y) − 1

∣∣∣∣∣

β}

(10.2)

= c83
Wn,β

W β
n

,

where c83 := 2E{|
∑

|v|=1 e
−V (v) − 1|β} <∞ [see (2.16)], and Wn,β is as in

(1.11).

Let ε > 0 and b > 0. Let s ∈ (β−1
β ,1). Define Dn := {Wn ≥ n

−(1/2)−ε} ∩

{Wn,β ≤ n
−(3β/2)+b}. By Proposition 3.1, P{Wn < n−(1/2)−ε,S } ≤ n−ϑ for

some ϑ > 0 and all large n, whereas, by Theorem 1.6, P{Wn,β >n−(3β/2)+b} ≤

n3β(1−s)/2−(1−s)bE{W 1−s
n,β }= n−(1−s)b+o(1). Therefore,

P{S \Dn} ≤ n
−ϑ + n−(1−s)b+o(1), n→∞.

On the other hand, since S ⊂Sn, it follows from (10.2) and Chebyshev’s
inequality that, for n→∞,

P

{∣∣∣∣
Wn+1

Wn
− 1

∣∣∣∣≥ n
−γ ,Dn,S

}
≤ nγβE

{
c83

Wn,β

W β
n

1Dn∩Sn

}

≤ c83n
γβ−(3β/2)+b+[(1/2)+ε]β .
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As a consequence, when n→∞,

P

{∣∣∣∣
Wn+1

Wn
− 1

∣∣∣∣≥ n
−γ ,S

}
≤ n−ϑ + n−(1−s)b+o(1) + c83n

γβ−β+b+εβ.

We choose ε and b sufficiently small such that γβ − β + b+ εβ < 0. Propo-
sition 10.1 is proved. �

We now have all of the ingredients needed for the proof of Theorem 1.1.

Proof of Theorem 1.1. Once Proposition 10.1 is established, the
proof of Theorem 1.1 follows the lines of Biggins and Kyprianou [7].

Assume (1.1), (1.2) and (1.3). Let λn > 0 satisfy E{(λnWn)
1/2}= 1. That

is,

λn := {E(W 1/2
n )}−2.

By Theorem 1.5, we have 0< lim infn→∞
λn

n1/2 ≤ lim supn→∞
λn

n1/2 <∞, and

(λnWn) is tight. Let Ŵ be any possible (weak) limit of (λnWn) along a

subsequence. By Theorem 1.5 and dominated convergence, E(Ŵ 1/2) = 1.

We now prove the uniqueness of Ŵ .
By definition,

Wn+1 =
∑

|v|=1

e−V (v)
∑

x∈TGW
v ,|x|v=n

e−Vv(x).

By assumption, λnWn→ Ŵ in distribution when n goes to infinity along a
certain subsequence. Thus, λnWn+1 converges weakly (when n goes along the

same subsequence) to
∑

|v|=1 e
−V (v)Ŵv , where, conditionally on (v,V (v), |v|=

1), Ŵv are independent copies of Ŵ .
On the other hand, by Proposition 10.1, λnWn+1 also converges weakly

(along the same subsequence) to Ŵ . Therefore,

Ŵ
law
=

∑

|v|=1

e−V (v)
Ŵv.

This is the same equation for ξ∗ in (3.5). Recall that (3.5) has a unique

solution up to a scale change (Liu [27]), and since E(Ŵ 1/2) = 1, we have

Ŵ
law
= c84ξ

∗, with c84 := [E{(ξ∗)1/2}]−2. The uniqueness (in law) of Ŵ shows

that λnWn converges weakly to Ŵ when n→∞.
By (3.3), P{Wn > 0} = P{Sn} → P{S } = P{ξ∗ > 0}. Let W > 0 be a

random variable such that

E(e−aW ) = E(e−aŴ |Ŵ > 0), ∀a≥ 0.(10.3)

It follows that, conditionally on the system’s survival, λnWn converges in
distribution to W . �



48 Y. HU AND Z. SHI

Acknowledgments. We are grateful to Bruno Jaffuel, Gerold Alsmeyer,
John Biggins and Alain Rouault for pointing out errors in the first versions
of the manuscript, and to John Biggins for fixing Lemma 3.2. We also wish to
thank two referees for their careful reading and for very helpful suggestions,
without which we would not have had enough courage to remove the uniform
ellipticity condition in the original manuscript.

REFERENCES

[1] Addario-Berry, L. (2006). Ballot theorems and the heights of trees. Ph.D. thesis,
McGill Univ.

[2] Aldous, D. J. and Bandyopadhyay, A. (2005). A survey of max-type recursive
distributional equations. Ann. Appl. Probab. 15 1047–1110. MR2134098

[3] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Die Grundlehren der
mathematischen Wissenschaften 196. Springer, New York. MR0373040

[4] Bachmann, M. (2000). Limit theorems for the minimal position in a branching
random walk with independent logconcave displacements. Adv. in Appl. Probab.
32 159–176. MR1765165

[5] Biggins, J. D. (1976). The first- and last-birth problems for a multitype age-
dependent branching process. Adv. in Appl. Probab. 8 446–459. MR0420890

[6] Biggins, J. D. and Grey, D. R. (1979). Continuity of limit random variables in the
branching random walk. J. Appl. Probab. 16 740–749. MR549554

[7] Biggins, J. D. and Kyprianou, A. E. (1997). Seneta-Heyde norming in the branch-
ing random walk. Ann. Probab. 25 337–360. MR1428512

[8] Biggins, J. D. and Kyprianou, A. E. (2004). Measure change in multitype branch-
ing. Adv. in Appl. Probab. 36 544–581. MR2058149

[9] Biggins, J. D. and Kyprianou, A. E. (2005). Fixed points of the smoothing
transform: The boundary case. Electron. J. Probab. 10 609–631 (electronic).
MR2147319

[10] Bingham, N. H. (1973). Limit theorems in fluctuation theory. Adv. in Appl. Probab.
5 554–569. MR0348843

[11] Bolthausen, E. (1989). A central limit theorem for two-dimensional random walks
in random sceneries. Ann. Probab. 17 108–115. MR972774

[12] Bramson, M. D. (1978). Maximal displacement of branching Brownian motion.
Comm. Pure Appl. Math. 31 531–581. MR0494541

[13] Bramson, M. D. (1978). Minimal displacement of branching random walk. Z.
Wahrsch. Verw. Gebiete 45 89–108. MR510529

[14] Bramson, M. D. and Zeitouni, O. (2009). Tightness for a family of recursion
equations. Ann. Probab. 37 615–653.

[15] Chauvin, B., Rouault, A. and Wakolbinger, A. (1991). Growing conditioned
trees. Stochastic Process. Appl. 39 117–130. MR1135089

[16] Dekking, F. M. and Host, B. (1991). Limit distributions for minimal displace-
ment of branching random walks. Probab. Theory Related Fields 90 403–426.
MR1133373

[17] Derrida, B. and Spohn, H. (1988). Polymers on disordered trees, spin glasses, and
traveling waves. J. Statist. Phys. 51 817–840. MR971033

[18] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol.
II, 2nd ed. Wiley, New York. MR0270403

[19] Hammersley, J. M. (1974). Postulates for subadditive processes. Ann. Probab. 2
652–680. MR0370721

http://www.ams.org/mathscinet-getitem?mr=2134098
http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=1765165
http://www.ams.org/mathscinet-getitem?mr=0420890
http://www.ams.org/mathscinet-getitem?mr=549554
http://www.ams.org/mathscinet-getitem?mr=1428512
http://www.ams.org/mathscinet-getitem?mr=2058149
http://www.ams.org/mathscinet-getitem?mr=2147319
http://www.ams.org/mathscinet-getitem?mr=0348843
http://www.ams.org/mathscinet-getitem?mr=972774
http://www.ams.org/mathscinet-getitem?mr=0494541
http://www.ams.org/mathscinet-getitem?mr=510529
http://www.ams.org/mathscinet-getitem?mr=1135089
http://www.ams.org/mathscinet-getitem?mr=1133373
http://www.ams.org/mathscinet-getitem?mr=971033
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=0370721


MINIMAL POSITION, BRANCHING RANDOM WALKS 49

[20] Hardy, R. and Harris, S. C. (2004). A new formulation of the spine approach to
branching diffusions. Mathematics Preprint, Univ. Bath.

[21] Harris, T. E. (1963). The Theory of Branching Processes. Die Grundlehren der
Mathematischen Wissenschaften 119. Springer, Berlin. MR0163361

[22] Heyde, C. C. (1970). Extension of a result of Seneta for the super-critical Galton–
Watson process. Ann. Math. Statist. 41 739–742. MR0254929

[23] Kingman, J. F. C. (1975). The first birth problem for an age-dependent branching
process. Ann. Probab. 3 790–801. MR0400438

[24] Kozlov, M. V. (1976). The asymptotic behavior of the probability of non-extinction
of critical branching processes in a random environment. Teor. Verojatnost. i
Primenen. 21 813–825. MR0428492

[25] Kyprianou, A. E. (1998). Slow variation and uniqueness of solutions to the func-
tional equation in the branching random walk. J. Appl. Probab. 35 795–801.
MR1671230

[26] Lifshits, M. A. (2007). Some limit theorems on binary trees. (In preparation.)
[27] Liu, Q. S. (2000). On generalized multiplicative cascades. Stochastic Process. Appl.

86 263–286. MR1741808
[28] Liu, Q. S. (2001). Asymptotic properties and absolute continuity of laws stable by

random weighted mean. Stochastic Process. Appl. 95 83–107. MR1847093
[29] Lyons, R. (1997). A simple path to Biggins’ martingale convergence for branching

random walk. In Classical and Modern Branching Processes (Minneapolis, MN,
1994). IMA Vol. Math. Appl. 84 217–221. Springer, New York. MR1601749

[30] Lyons, R., Pemantle, R. and Peres, Y. (1995). Conceptual proofs of L log L cri-
teria for mean behavior of branching processes. Ann. Probab. 23 1125–1138.
MR1349164

[31] McDiarmid, C. (1995). Minimal positions in a branching random walk. Ann. Appl.
Probab. 5 128–139. MR1325045

[32] Neveu, J. (1986). Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré
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Université Paris VI
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