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Minimal position and critical martingale convergence
in branching random walks,

and directed polymers on disordered trees

by
Yueyun Hu and Zhan Shi
Université Paris XI1II € Université Paris VI

Summary. We establish a second-order almost sure limit theorem for
the minimal position in a one-dimensional super-critical branching random
walk, and also prove a martingale convergence theorem which answers a
question of Biggins and Kyprianou [[]. Our method applies furthermore to
the study of directed polymers on a disordered tree. In particular, we give a
rigorous proof of a phase transition phenomenon for the partition function
(from the point of view of convergence in probability), already described
by Derrida and Spohn [[L7]. Surprisingly, this phase transition phenomenon
disappears in the sense of upper almost sure limits.

Keywords. Branching random walk, minimal position, martingale con-
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1 Introduction

1.1 Branching random walk and martingale convergence

We consider a branching random walk on the real line R. Initially, a particle sits at the
origin. Its children form the first generation; their displacements from the origin correspond
to a point process on the line. These children have children of their own (who form the
second generation), and behave — relative to their respective positions — like independent
copies of the initial particle. And so on.



We write |u| = n if an individual w is in the n-th generation, and denote its position by
V(u). (In particular, for the initial ancestor e, we have V(e) = 0.) We assume throughout
the paper that for some 6 > 0, 6, > 0 and §_ > 0,

(1.1) E{(Zl)l+6} < oo

u|=1

(1.2) E{ Z e~ (1461)V(w) } +E{ Z -V (W) } < o,

lul=1 lul=1

where E denotes expectation with respect to P, the law of the branching random walk.
Let us define the (logarithmic) moment generating function

W(t) == logE{ Z e’tv(“)} € (—o0, 0], t>0.

Jul=1

By (L2), ¥(t) < oo for t € [-d_, 1 + 0, ]. Following Biggins and Kyprianou [J], we assume

(1.3) $(0) >0, (1) =¢(1)=0.

Since the number of particles in each generation forms a Galton-Watson tree, the assumption
¥(0) > 0 in ([L.3) says that this Galton—Watson tree is super-critical.

In the study of the branching random walk, there is a fundamental martingale, defined
as follows:

(1.4) Wy=> e’™  n=012-- (> :=0)
u|=n 0
Since W,, > 0, it converges almost surely.

When ¢/(1) < 0, it is proved by Biggins and Kyprianou [[f] that there exists a sequence
of constants (a,) such that 12/—: converges in probability to a non-degenerate limit which is
(strictly) positive upon the survival of the system. This is called the Seneta—Heyde norming
in [[q] for branching random walk, referring to Seneta [BJ] and Heyde [BZ] on the rate of
convergence in the classic Kesten—Stigum theorem for Galton—-Watson processes.

The case 1'(1) = 0 is more delicate. In this case, it is known (Lyons [29]) that W,, — 0
almost surely. The following question is raised in Biggins and Kyprianou [g]: are there
deterministic normalizers (a,) such that ‘;V—: converges?

We aim at answering this question.

Theorem 1.1 Assume ([1)), ([.2) and ([[.3)). There exists a deterministic positive sequence
(An) with 0 < liminf,, % < limsup,,_, 73% < 00, such that conditionally on the sys-
tem’s survival, \,W,, converges in distribution to W, with # > 0 a.s. The distribution of W

is given in ([[0.3).



The limit # in Theorem [[.] turns out to satisfy a functional equation. Such func-
tional equations are known to be closely related to (a discrete version of) the Kolmogorov—
Petrovski-Piscounov (KPP) travelling wave equation, see Kyprianou [B5] for more details.

The almost sure behaviour of W, is described in Theorem below. The two theorems
together give a clear image of the asymptotics of W,,.

1.2 The minimal position in the branching random walk

A natural question in the study of branching random walks is about inf},|—, V'(u), the position
of the leftmost individual in the n-th generation. In the literature, the concentration (in terms
of tightness or even weak convergence) of infy,—, V' (u) around its median/quantiles has been
studied by many authors. See for example Bachmann [[f], Bramson and Zeitouni [[4], as
well as Section 5 of the survey paper by Aldous and Bandyopadhyay [B]. We also mention
the recent paper of Lifshits [P, where an example of branching random walk is constructed
such that infj,—, V (u) — median({infj,—, V' (u)}) is tight but does not converge weakly.

We are interested in the asymptotic speed of inf},—, V' (u). Under assumption ([3), it is
known that, conditionally on the system’s survival,

1

(1.5) — ‘i|nf V(u) — 0, a.s.
n |ul=n

(1.6) ‘iﬁf V(u) — o0, a.s.

The “law of large numbers” in ([L.) is a classic result, and can be found in Hammersley [[L9],
Kingman [RJ], Biggins [[]. The system’s transience to the right, stated in ([.6), follows from
the fact that W,, — 0, a.s.

A refinement of ([LH) is obtained by McDiarmid [BI]. Under the additional assumption
E{(>X =1 1)?} < oo, it is proved in [BI] that for some constant ¢; < oo and conditionally
on the system’s survival,

lim sup inf V(u) <¢y, a.s.
n—o00 ogn lu|l=n

We intend to determine the exact rate at which inf},—, V' (u) goes to infinity.

Theorem 1.2 Assume (1), (L2) and (L3). Conditionally on the system’s survival, we
have

3
(1.7) hin—igp log |11L\n=fn V(u) = 27 a.s
1
(1.8) lim inf inf V(u) = =, a.s
n—oo  l0gMN |ul=n 2
3
(1.9) nh_)Ir;O oan |11L‘n:an(u) = 3 in probability.



Remark. (i) The most interesting part of Theorem [.9is ([.7)—(L.§). It reveals the presence
of fluctuations of inf},—, V' (u) on the logarithmic level, which is in contrast with known
results of Bramson [[3] and Dekking and Host [[§ stating that for a class of branching
random walks, @

(i) Some brief comments on ([.3) are in order. In general (i.e., without assuming ¢ (1) =
¢/(1) = 0), the law of large numbers ([[7F) reads + infj,—, V(u) — ¢, a.s. (conditionally on

the system’s survival), where ¢ := inf{a € R : g(a) > 0}, with g(a) := inf;>o{ta + ¢(¢)}. If

(1.10) () = P(t)

for some t* € (0, 0o), then the branching random walk associated with the point process

V(u) := t*V(u) + ¥ (t*)|u| satisfies ([.J). That is, as long as ([.LI0) has a solution (which is

the case for example if /(1) = 0 and ¢'(1) > 0), the study will boil down to the case ([.3).
It is, however, possible that ([.I() has no solution. In such a situation, Theorem [.2

does not apply. For example, we have already mentioned a class of branching random walks

exhibited in Bramson [[J] and Dekking and Host [I6], for which inf},—, V' (u) has an exotic
log logn behaviour.

inf), =, V(u) converges almost surely to a finite and positive constant.

(iii) Under suitable assumptions, Addario-Berry [] obtains a very precise asymptotic
estimate of E[inf|,—, V' (u)], which implies ([C9).

(iv) In the case of branching Brownian motion, the analogue of ([.9) was proved by
Bramson [[J], by means of some powerful explicit analysis.

1.3 Directed polymers on a disordered tree

The following model is borrowed from the well-known paper of Derrida and Spohn [[7]:
Let T be a rooted Cayley tree; we study all self-avoiding walks (= directed polymers) of n
steps on T starting from the root. To each edge of the tree, is attached a random variable
(= potential). We assume that these random variables are independent and identically
distributed. For each walk w, its energy E(w) is the sum of the potentials of the edges
visited by the walk. So the partition function is

Ly = Z e PEW),

where the sum is over all self-avoiding walks of n steps on T, and 3 > 0 is the inverse
temperature.

More generally, we take T to be a Galton—Watson tree, and observe that the energy E(w)
corresponds to (the partial sum of) the branching random walk described in the previous
sections. The associated partition function becomes

(1.11) Wagi=> eVt g0

[ul=n



Clearly, when § =1, W, is just the W, defined in ([.4).

If 0 < @ < 1, the study of W, s boils down to the case ¢'(1) < 0 which was investigated
by Biggins and Kyprianou [[]. In particular, conditionally on the system’s survival, %
converges almost surely to a (strictly) positive random variable.

We study the case § > 1 in the present paper.

Theorem 1.3 Assume (1), (L.2) and (L.3). Conditionally on the system’s survival, we
have
(1.12) W, =n"/2eM g

Theorem 1.4 Assume (1), (L.2) and (L.3), and let 5 > 1. Conditionally on the system’s
survival, we have

log W,
(1.13) liglﬂs;ip % = —g, a.s
log W, 3
(1.14) lim inf —2 70 _ ——ﬁ, a.s.
n—oo  logn 2
(1.15) Wyos = n 30/t in probability.

Again, the most interesting part in Theorem [.4 is ([.13)([.14), which describes a new
fluctuation phenomenon. Also, there is no phase transition any more for W,, 3 at 8 = 1 from
the point of view of upper almost sure limits.

The remark on ([.J), stated after Theorem [[.3, applies to Theorems [[.3 and [[.4 as well.

An important step in the proof of Theorems and [[.4 is to estimate all small moments
of W,, and W, s, respectively. This is done in the next theorems.

Theorem 1.5 Assume ([J)), ([.2) and ([.3). For any v € [0, 1), we have

(1.16) 0 < liminf E{(nl/QWn)“’} < limsup E{(nl/QWn)'y} < 0.

n—oo n—oo

Theorem 1.6 Assume (1)), ([2) and (I.J), and let 3 > 1. For any 0 <1 < %, we have

(1.17) E{W; ,} = n 30/, n — oo.

The rest of the paper is as follows. In Section JJ, we introduce a change-of-measures
formula (Proposition R.1) in terms of spines on marked trees. This formula will be of frequent
use throughout the paper. Section B contains a few preliminary results of the lower tail
probability of the martingale W,,. The proof of the theorems is organized as follows.



e Section f]: upper bound in part ([.§) of Theorem [.2.

e Section [f: Theorem [[.G.

e Section [f: Theorem [7.

e Section []: Theorem [.3, as well as parts ([.14) and ([[.I5) of Theorem [.4.
e Section f: (the rest of) Theorem [[2.

e Section [§: part ([LI3) of Theorem [4.

e Section [[0: Theorem [L.1].

Section [l relies on ideas borrowed from Bramson [[J], and does not require the prelimi-
naries in Sections f] and P}

Sections [ and fj are the technical part of the paper, where a common idea is applied in
two different situations.

Throughout the paper, we write

q := P{the system’s extinction} € [0, 1).

The letter ¢ with a subscript denotes finite and (strictly) positive constants. We also use
the notation ), := 0, [], := 1, and 0% := 1. Moreover, we use a,, ~ b,, n — 00, to denote

limy, o =
n

2 Marked trees and spines

This section is devoted to a change-of-measures result (Proposition B.])) on marked trees in
terms of spines. The material of this section has been presented in the literature in various
forms, see for example Chauvin et al. [[J], Lyons et al. [B{|, Biggins and Kyprianou [J,
Hardy and Harris [20).

There is a one-to-one correspondence between branching random walks and marked trees.
Let us first introduce some notation. We label individuals in the branching random walk by
their line of descent, so if u = i1+, € % = {0} UUpo,(N*)* (where N* := {1,2,---}),
then v is the %,-th child of the 4,,_{-th child of ... of the ¢;-th child of the initial ancestor e.
It is sometimes convenient to consider an element u € % as a “word” of length |u|, with ()
corresponding to e. We identify an individual u with its corresponding word.

If u, v € %, we denote by uv the concatenated word, with ul) = Qu = u.

Let 7 = {(u,V(u)): wu€ %,V :% — R}. Let Q be Neveu’s space of marked trees,
which consists of all the subsets w of % such that the first component of w is a tree. [Recall
that a tree ¢ is a subset of % satisfying: (i) 0 € ¢; (ii) if uj € t for some j € N*, then u € ¢;
(iii) if u € t, then uj € t if and only if 1 < j < v, (¢) for some non-negative integer v, (t).]

Let T : © — Q be the identity application. According to Neveu [BJ], there exists a
probability P on €2 such that the law of T under P is the law of the branching random walk
described in the introduction.



Let us make a more intuitive presentation. For any w € €2, let

(2.1) T“V(w) := the set of individuals ever born in w,
(2.2) T(w) = {(u,V(u)), ue€ Tw), V such that (u,V(u)) € w}.

[Of course, T(w) = w.] In words, TV is a Galton—Watson tree, with the population members
as the vertices, whereas the marked tree T corresponds to the branching random walk. It is
more convenient to write (2.9) in an informal way:

T = {(u,V(u)), ue T"}.
For any u € TV, the shifted Galton—Watson subtree generated by u is
(2.3) TV :={x € % : ux € TV} .
[By shifted, we mean that TSW is also rooted at e.] For any x € TSV, let

|zl = Jua] = ful,
Vi(z) = V(uzx)—V(u).

As such, |z|, stands for the (relative) generation of = as a vertex of the Galton—-Watson tree
TSY, and (Vi(x), x € TSY) the branching random walk which corresponds to the shifted

u )

marked subtree

T, = {(z,Vu(x)), x € TSV} .

Let .7, = o{(u,V(u)), u € T, |u] < n}, which is the sigma-field induced by the first
n generations of the branching random walk. Let .., be the sigma-field induced by the

whole branching random walk.
We assume ([3)). Let Q be a probability on €2 such that for any n > 1,

(2.6) Qlz, =W, eP|z,..

Fix n > 1. Let w\" be a random variable taking values in {u € TV, |u| = n} such that for

any [u| = n,
2.7 I PR S
: wi =u|Foo p = :
(27) Q{ul = u|Fu} = T
We write [e, wi”] = {e = w™,w{™ w{™ .- wi} for the shortest path in TSV relating

the root e to w\”, with |w,(€")| =kforany 1 <k <n.

For any individual v € TV\{e}, let u be the parent of u in TSV, and



For 1 < k < n, we write
(2.8) AR {u eET: |ul =k, u=uwl), us w,(gn)} .

In words, fk(") is the set of children of w,(!i)l except wlg"), or equivalently, the set of the

brothers of w,gn), and is possibly empty. Finally, let us introduce the following sigma-field:

(2.9) 9yi=of 3 oaven V), uf, £ 1<k <0},

mef,in)

where 0 denotes the Dirac measure.
The promised change-of-measures result is as follows. For any marked tree T, we define
its truncation T" at level n by T" := {(z,V (z)), x € TV, |z| < n}, see Figure 1.

Proposition 2.1 Assume ([.3) and fiz n > 1. Under probability Q,
(i) the random variables (3 _ o0 dav(a), AV(w,gn))), 1 <k <n, arei.i.d., distributed as
eI

(% e rm Saviay, AV (wy”);

(ii) conditionally on %,, the truncated shifted marked subtrees ']I'g_‘x‘, forx € nglfk(n),
are independent; the conditional distribution of Ta " (for any x € Uzzlfk(")) under Q given
9., is identical to the distribution of T~ 1| under P.

In general, the (non-truncated) shifted marked subtrees T,, for = € Uzzlfk("), are not
conditionally independent under Q given %,.

Throughout the paper, let ((S;, 0;), ¢ > 1) be such that (S; — S;_1, 0y), for ¢ > 1 (with
So = 0), are i.i.d. random vectors under Q and distributed as (V(wgl)), #fl(l)).

Corollary 2.2 Assume ([.3) and fir n > 1.

(i) Under Q, (V(w™), #2™), 1 < k < n) is distributed as ((Sy,0x), 1 < k <n). In
particular, under Q, (V(w,(cn)), 1 <k <n) is distributed as (Sk, 1 <k <mn).

(ii) We have Eq{S1} = 0. More generally, for any measurable function F: R — R,

(2.10) Eq {F(S)} = E{ 3 e_v(“)F(V(u))}.

lul=1

Corollary B3 follows immediately from Proposition P, and can be found in several
papers (for example, Biggins and Kyprianou [J]). O

We present two collections of probability estimates for (S5,) and for (V(u), |u| = 1),
respectively. They are simple consequences of Proposition R.1], and will be of frequent use in
the rest of the paper.
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Figure 1: Spine;

The truncated shifted subtrees Tgf*'m',TZ*'y‘, Tl are actually rooted at e.

Corollary 2.3 Assume (L)), (L.2) and (L.3). Then

(2.11) Eq{e®'} < oo,  V|a| < e,
2
(2.12) Q{[S.| > 2} < 2exp(—c; min{z, —}),  VYn>1, Vo >0,
n
. Cq
(2.13) Q{ 12}61%15]? > 0} ~ n — oo,
(2.14) supn'/? Eq{edminosi=nSil <« o, Vb >0,

n>1

where ¢y := min{d,, 1 +0_}. Furthermore, for any C > ¢ > 0, we have

(2.15) Q{ max |S; — Sk| > C’logn} < 2c¢n~ @ Vlogn, Vn > 2.

0<j,k<n, |j—k|<clogn

Corollary 2.4 Assume ([.T), ([.2) and ([.3). Let 0 < a < 1. Then

(2.16) EQ{(ZeW(“))p(a)} < o,

u|=1
(2.17) Q{ sup |V (u)| > a:} < cse T Vo >0,
|ul=1
with pla) == —2%— where § and &, are the constants in (1) and ([3), respectively.

1+a5+5+ )

9



Proof of Corollary 2.3. By Corollary (ii), Eq{e®} = E{szle(a*l)v(“)}, which, ac-
cording to ([[.), is finite as long as |a| < co. This proves (B.11)).

Once we have the exponential integrability in (BI1]) for (S,), standard probability es-
timates for sums of i.i.d. random variables yield (B-12), (B-I3) and (P-13), see Petrov [B4]’s
Theorem 2.7, Bingham [[(] and Kozlov [P4]’s Theorem A, respectively.

To check (P-I5), we observe that the probability term on the left-hand side of (E17) is
bounded by 370 pcn kjcciopn QUUISk—j| > Clogn}. By (R13), Q{|Sk—;| > Clogn} <
2n~%¢ for k — j < clogn. This yields (2.15). O

Proof of Corollary 4. Write p := p(a). We have Eq{(>_,_, e VW) = Eq{W{,} =
E{W{,Wi.1}. Let N := Y, _, 1. By Holder’s inequality, Wy, < Wy F NO-atd0)/G400),
whereas Wy ; < Wfﬁ;f*W 0+/(1+0+) " Therefore, by means of another application of Holder’s
inequality, E{W{ W11} < [E(Wy14s,)] 0T/ 000 [B(N1H0)] O+ =an)/05040) - which is finite
(by (L.2) and ([L.1)). This implies (R.16)).

To prove (R.I7), we write A := {sup,_; [V(u)] > x}. By Chebyshev’s inequality,
P(A) < ¢;e % where ¢; = E(E‘M:lecg‘v(“)') < oo as long as 0 < ¢g < min{d_, 1 +
5.} (by ([). Thus QA) = B{Suy eV ™14} < c [P(AFOI+0] where ¢ =

[E{(X2), =y e V)P 0+M) < oo, Now (RI7) follows from (R:16), with ¢ := fipp((ll)).D

3 Preliminary: small values of IV,

This preliminary section is devoted to the study of the small values of W,,. Throughout the
section, we assume ([.1]), ([.2) and ([.3). We define two important events:

(3.1) & := {the system’s ultimate survival } ,
(3.2) = {the system’s survival after n generations } = {WW,, > 0}.

Clearly, .7 C .#,. Recall (see for example Harris 2], p. 16) that for some constant c¢;o and
alln > 1,
(3.3) P{S\S} <ecom,

Here is the main result of the section.

Proposition 3.1 Assume ([.1]), ([.Z) and ([[.3). For any ¢ > 0, there exists 9 > 0 such
that for all sufficiently large n,

(3.4) P {nl/QWn <n

5”} <n7Y.

10



The proof of Proposition B.J] relies on Neveu’s multiplicative martingale. Recall that
under assumption ([[.3), there exists a non-negative random variable £*, with P{&* > 0} > 0,
such that

(3.5) I > eV,
Ju|=1
where, given {(u,V(u)), |u| = 1}, & are independent copies of &*, and W2 stands for

identity in distribution. Moreover, there is uniqueness of the distribution of £* up to a scale
change (see Liu [R7]); in the rest of the paper, we take the version of £* as the unique one
satisfying E{e "} = 1.

Let us introduce the Laplace transform of &*:

(3.6) e (t) :=E{e ™}, t>0.

Let

(3.7) Wy .= H ©*(e”V W), n > 1.
|u|=n

The process (W5, n > 1) is also a martingale (Liu [27]). Following Neveu [BJ], we call W*
an associated “multiplicative martingale”.

The martingale W* being bounded, it converges almost surely (when n — o0) to, say,
W2 . Let us recall from Liu [27] (see also Kyprianou [B5]) that for some ¢* > 0,

(3-8) log E

o9 on( L) ~ (V). o

We first prove the following lemma:

Lemma 3.2 Assume (L), (L) and (L.3). There exist & > 0 and ay > 1 such that
(3.10) E{W_)* WL <1} < a™ ", Va > ay,
(3.11) E{W )1y} < a"+e " Vn > 1, Va > ay.

Proof of Lemma [3.3. We are grateful to John Biggins for fixing a mistake in the original
proof.
We first prove (B.10). In view of (B.§), it suffices to show that

(3.12) E{e [ >0} <a™  a>a

11



Let ¢ € [0, 1) be the system’s extinction probability. Let N := Z\u|:1 1. It is well-known
for Galton—Watson trees that ¢ is the unique solution of E(¢") = ¢ (for ¢ € [0, 1)), see for
example Harris [PT], p. 7. By (BH), ¢*(t) = E{[],, ©*(te”V @)}, Therefore, by (B.9),
P{¢" =0} = ¢"(00) = limyoc E{[ ]}, ©*(te”V ()} which, by dominated convergence, is
= E{(p*(00))V} = E{(P{¢* = 0})"}. Since P{¢* = 0} < 1, this yields P{¢* = 0} = ¢.

Following Biggins and Grey [fj], we note that, for any ¢t > 0,

E{e®}=qg+(1—-q@E{e™ |¢&>0}.

Let & be a random variable such that E{e~#} = E{e*" |£* > 0} for any ¢ > 0. Let Y be a
random variable independent of everything else, such that P{Y =0} =¢=1—-P{Y =1}.
Then £* and Y¢ have the same law, and by (B.J), so do £* and E‘M:le_v(“)Yufu, where,
given {u, |u| =1}, (Yu, ¢,) are independent copies of (Y, f) independent of {V'(u), |u| = 1}.
Since {>_,_; € VWy,g, > 0} = {>_|uj=1 Yu > 0}, this leads to:

ZYu>0}’ t>0.

lul=1

o) = B Sume

Let p(t) := E{e*tg}, t > 0. Then for any ¢ > 0 and ¢ > 0,

—E{ [T #te"™v,)| 3 vu > 0} < B{[B(te ZY >0},

lul=1 lul=1 ul=

where Ne:= 37, ) Liv,=1,|v(u)<c}- By monotone convergence, lim. ..o E{Nc| >>,_, Yu >
0} = E{Zm VYul D01 Yu > 0F > 1 (because P{}°,_, Y, > 2} > 0 by assumption ([.3)).
We can therefore choose and fix a constant ¢ > 0 such that E{N.| >_,_, Y, > 0} > 1. By
writing f(s) := E{s" | > juj=1 Yu > 0}, we have

~

e(t) < f(@(te™)),  VE=0.
Iterating the inequality yields that for any ¢ > 0 and any n > 1,
(3.13) E{c %} < fM(B{e™ ")), ie, E{e "t < JO(B{c}),

where ]?(") denotes the n-th iterate of J? It is well-known for Galton—Watson trees (Athreya
and Ney [, Section 1.11) that for any s € [0, 1), lim, .. 7*"]?(”)(3) converges to a finite
limit, with v == (f)/(0) < P{3> =1 Yu=1] 2,2, Yu > 0} < 1. Therefore, (B.13) yields
(B.19), and thus (B.10).

It remains to check (B.11). Let a > 1. Since ((W;5)*, n > 0) is a bounded submartingale,
E{W;)*1y } <E{(W%)*1y,}. Recall that W2 < 1; thus

E{W;)" 17} SE{(WL)" 15} + P{S\T}.

12



By B3), P{7\} < e 0™ To estimate E{(WZ)*14}, we identify .7 with {WW2 < 1}:
on the one hand, ¢ C {W} = 1, for all sufficiently large n} C {WZX = 1}; on the other
hand, by (Bg), P{W% < 1} = P{¢* > 0} = 1 — ¢ = P(¥). Therefore, ¥ = {WZ% < 1},
P-a.s. Consequently, E{(W})*1s} = E{(WZX)* Liws <1y}, which, according to (B.10), is
bounded by a™", for a > ay. Lemma B.3 is proved. O

We are now ready for the proof of Proposition B.1].

Proof of Proposition [3.]. Let c¢;; > 0 be such that P{¢* < ¢} > % Then ¢*(t) =
E{e ™} > em'P{¢* < ¢11} > e ', and thus log(—=) < ciit + log2. Together with

*(t)
(B.9), this yields, on the event .7,

) - S ()

|lu|=n
< D TwwenerV(@e™ M+ Y Tyaey (ene™ ™ +log2).
lul=n lul=n

Since W,, = Em‘:n e~V we obtain, on .%,, for any A > 1,

1
(3.14) log (W) < 13 \W,, + ¢19 Z 1{V(U)EA}V(u)e_V(“),

*

n lul=n

where c13 := ¢11 4 ¢12 + elog 2. Note that c¢j5 and c;3 do not depend on .
Let 0 <y < 1. Since .¥ C .%,, it follows that for c14 := ¢19 + 13,

P, <y|.7}
< P {log (%) < cpy } S } + P{ Z 1{V(u)2A}V(u)e_V(u) >y ‘ yn}

|lul=n
(3.15) =: RHS@E, + RHS{),

with obvious notation.
Recall that P(.#,) > P(.) = 1 — ¢q. By Chebyshev’s inequality,

C
el4

RES{) < e E{(W)""] 7 } < ——B{(W;)"/15,} .

l—gq
By (B1), forn >1and 0 <y < é, with ¢15 1= e /(1 — q),

(3.16) RHS%&K}) < s (ym + e—cmn) .

13



To estimate RHS?@), we observe that

1 - u
RHSf) < 1—_(]1’{ Y LwaenV(w)e Zy}
lul=n
1
< E{ > 1{V(u>>A}V(U)e*V(“)}
< g >
I-qy 2=
1 V(u)e V™
- el X e 1)
(1—q)y @ IZ V=237
= L o (V)1
 (I—q)y QV(0n") Ly oy

By Corollary 3 (i), Bq{V (") 1y, .} = BalSLis.on) < (Bq{S2)2 (Q{S,
A2, which, by (B.13), is bounded by c16n exp(—c3 min{), )‘72}) Accordingly, RHS@)
AI% exp(—cz min{ A, )‘72}) Together with (B.I7) and (B.I6), it yields that for 0 < y < %,

IN IV

2

arnt exp ( — c3min{\, A—})
n

P {)\Wn <y ’ fn} < g5 (y“ + e_cm") +

Let \ := n'/2y™%/2_ The inequality becomes: for 0 < y < % and n > 1,

indnl/205/2. 1
P w2, <y | 7] < o () 4 S e (- L T h.

This readily yields Proposition B.1. U

Remark. Under the additional assumption that {u, |u| = 1} contains at least two elements
almost surely, it is possible (Liu [2§]) to improve (B.10): E{(WZX)*| WX < 1} < exp{—a™'}
for some k1 > 0 and all sufficiently large a, from which one can deduce the stronger version
of Proposition B-I: for any € > 0, there exists ©; > 0 such that P{n'/?W, < n=¢| %} <
exp(—n’t) for all sufficiently large n.

We complete this section with the following estimate which will be useful in the proof of
Theorem [L.3.

Lemma 3.3 Assume (1)), ([.2) and ([.3). For any 0 < s <1,

(3.17) ,ngE{ ( log %)S } < 00.

n

14



Proof of Lemma B-3. Let © > 1. By Chebyshev’s inequality, P{log(vé*) >z} =P{etW! <

1} < eE{e=*""=}. Since W} is a martingale, it follows from Jensen’s inequality that
E{e ¢""n} < E{e "W} < P{W} < e %2} + exp(—e®/?). Therefore,

(3.18) P{ log(%) > x} <eP{W: <e™®?} +exp (1 - em/2>.

n

On the other hand, by integration by parts, [~ e WP (&* > y)dy = le(:ftE ) = lfﬁ* ®

which, according to (B.9), is < cig log(%) for 0 <t < % Therefore, for a > 2, cigloga >
JCe VP& > y)dy > [ eV P(&* > a)dy = (1 — e ")aP (" > a). That is, P(¢* > a) <
T8y 10%’ or equivalently, P(W}, <e @) < A& 105“, for a > 2. Substituting this in (B.18)

gives that, for any x > 4,

1 2ecig log(x/2 -
P{IOg(W*)Zx}Sl—eli (x/ )+exp<1—e/2).

Lemma follows immediately. t

4 Proof of Theorem [1=2: upper bound in (1=8)

Assume ([.])), ([.2) and ([.3). The section is devoted to proving the upper bound in ([.§):
conditionally on the system’s survival,

1
(4.1) lim inf inf V(u) < 2 a.s.

n—oo logn |ul=n

The proof borrows some ideas from Bramson [[J]. We fix —co < a < b < oo and ¢ > 0.
Let ¢; < 05 < 207 be integers; we are interested in the asymptotic case {1 — oo. Consider
n € [0y, {o] NZ. Let 0 < ¢j9 < 1 be a constant, and let

gn(k) ;= min {Clg kY3, cro(n — k)Y3 4+ alog ty, na}, 0<k<n.
Let L, be the set of individuals € TV with |z| = n such that
gn(k) < V(xg) < cook, VO0<Ek<n, and alogl, <V(x) <blogl,

where g := e, x1, - - -, x, := x are the vertices on the shortest path in T°WV relating the root
e and the vertex z, with |z;| = k for any 0 < k < n. We consider the measurable event

Lo
thb = U U {ZL‘ S Ln}

n=/{1 |z|=n

15



We start by estimating the first moment of #F, o,: E(#Fy, 4,) = Zn . E{> = LzeL.} }-

: e~ V(@ x W,
Slnce E{E|{L’|=n l{IGLn}} = EQ{Z‘;}:‘:n I/I‘;n eV( )1{$€Ln}} = EQ{eV( 1{w£Ln)ELn}}’ we can
apply Corollary P.9 to see that

E(#Fh,fg) = Z EQ{esn 1{9n(k)§5k§c20 k, VO<k<n, aloghSSnSblogh}}

n:h

> Ze Q{gn ) < Sp <ok, VO<k<n, alogl < S, < blogél}.

n=~1

We choose (and fix) the constants cy9 and cog such that Q{cig < S1 < coo} > 0. Then!, the
probability Q{: - -} on the right-hand side is Ef@/ 2+ for £, — 0. Accordingly,

(4.2) E(#F,, 4,) > (ly — {4 + 1)¢ @2+,

We now proceed to estimate the second moment of #Fy, »,. By definition,

E[(#Fu0)"] = 22 Z E{ > 1{x6Ln,y€Lm}}

n=~01 m={1 |z|=n |y|=m
12 {2
S 5 LT D b SR TR
n=~0; m=n |z|=n |y|=m

We look at the double sum 37 >° _  on the right-hand side. By considering z, the

youngest common ancestor of x and y, and writing k := |z|, we arrive at:
n
Z Z ]—{JJELn, yELm} — Z Z Z ]—{zuean, 2VELm }»
|z|=n |y|=m k=0 |z|=k (u,v)

LAn easy way to see why f% should be the correct exponent for the probability is to split the event
into three pieces: the first piece involving Sy for 0 < k < %, the second piece for § < k < 23?, and the
third piece for 2 < k < n. The probability of the first piece is n~(1/2+°() (it is essentially the probability
that Sy being positive for 1 < k < 2, because conditionally on this, Sy converges weakly, after a suitable
normalization, to a Brownian meander, see Bolthausen [@]) Similarly, the probability of the third piece is

n

n~(1/2)+o(1)  The second piece essentially says that after 7 steps, the random walk should lie in an interval

of length of order log n; this probability is also n~(1/2+°(1)  Putting these pieces together yields the claimed
exponent —%.

For a rigorous proof, the upper bound — not required here — is easier since we can only look at the event that
the walk stays positive during n steps (with the same condition upon the random variable S,,), whereas the
lower bound needs some tedious but elementary writing, based on the Markov property. Similar arguments

are used for the random walk (Sy) in several other places in the paper, without further mention.
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where the double sum >, is over u, v € TS such that |u[, = n—k and |v]. = m —k and
that the unique common ancestor of v and v in T§W is the root. Therefore,

E[(#F&,Zz < 2 Z Z ZE{ Z Z ]—{zue]Ln,sz]Lm}} =:2 Z Z ZAknm

n=~¢1 m=n k=0 |z|=k (u,v) n=~¢, m=n k=0

We estimate Ay, according to three different situations.

First situation: 0 < k < |n°]. Let V,(u) := V(zu) — V(z) as in Section f. We have
0 < gn(k) <V(2) <ecgonf, and V(zu;) > 0 for 0 <i <n—Fk and V(zu,_) < blog ¢, where
Up 1= e, Uy, -+ -+, Up_j are the vertices on the shortest path in T¢"W relating the root e and the
vertex u, with |u;|, =i for any 0 < i < n — k. Therefore, V,(u;) > —cgon® for 0 <i <n—k,
and V,(u) < blog ;. Accordingly,

Ak,n,m < E{ Z Z ]—{sz]Lm}Bn—k}a

|z|=k veTSW, |v|.=m—k

where
By x = E{ Z 1y (2)>—cao ne, VO<i<n—k, V(x)gblogzl}}
|z|=n—k
_ V(w" k)
o EQ{ 1{V( (n k))> coo ne, VO<i<n—k, V(w(n k))<blogél}
= EQ{QS""“ 15> coone, vo<i<n—k, Sn_kgblogfl}}
< E?Q{SiZ—@onE VO<i<n-—k, Sn_kgblogfl}
< 6?7(3/2)+6+0(1 < E (8/2)+2¢
Therefore,
—(3/2)+2 —(3/2)+2
N G OPPBEST S Ay b = RS 1pa, )
|2|=k veTEW, |v|.=m—k |z|=m
and thus
by Ly |nf)

(4.3) STUSTS M < G — 0+ 1) (6 + DEF#F 0)-

n=~1 m=n k=0
Second situation: |[n°] +1 < k < min{m — |n°], n}. In this situation, since V(z) >
max{gn(k), g.(k)} > ci9n/?, we simply have V. (u) < blog/; — c19n/3. Exactly as in the

first situation, we get

Ak’n’m < E{ Z ]—{mG]Lm}}E{ Z 1{V(x)§blog€1—019n6/3}}'

|z|=m |x|=n—k
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The second E{---} on the right-hand side is

5/3

_ S, .
= EQ{e kl{sn—kgblogzlfclgng/?,}} < g clgn

and thus
ly Ly min{m—[n®],n} o/
(4.4) >N Z N < Che™ 040 (0y — 0y + D)l B(#F, 4,).
n=~{1 m=n =|nf|+1
Third and last situation: m — |n°] + 1 < k < n (this situation may happen only if
m < n+ |n°| —1). This time, V(2) > gn(k) > alogty, and thus V,(u) < (b — a)logty;
consequently,
Abinim < E{ > 1{9&@%}} { Z Ly (@)<(b-a) logzl}} <4 aE{ > 1{xemm}}
ja/=m j=n— jz/=m
Therefore, in case m < n+ |n°| — 1,
by Lo ly n+|nfl-1
IO DTS S P ORI
n=~_{1 m=n k=m—|nc]+1 n=»{1 |z|=m
Y GOB] Y Lper |
m=£1 n=m—2|m¢e | |z|=m

< 20T B(H#Fy )

Combining this with (3) and (E4), and since E[(#F}, 4,)%] < 2322 o, S S A,
we obtain:
E[(#F,0)7 _ 2072 (- 6+ )5+ 1) + 2608 (G — 6+ 1) + e
[E<#F51752)]2 B E(#F€1,52>

Since £y < 20, we have 200" /P72 (g5 4 1) 4 2ty < (7D g0 all sufficiently
large ¢1. On the other hand, E(#Fy, ¢,) > (lo — {1 + 1)} (9/2)- by ({.3) (for large ¢;).
Therefore, when /; is large, we have

E[(#Fgl,b)Q] < 6?7(3/2)+4€ (62 — 61 + 1) + gb*a+3€
[E(#F51762)]2 B (62 El + 1)£(I (3/2)—¢

1 [E#Fey, )7
AE[(#F¢, e 2]’

By the Paley-Zygmund inequality, P{Fy, ¢, # 0} > thus

} 1 (by — 01 + 1)057B¥/D==

4.5 P in V(x) <blogt :
(4.5) { min V() < blogy 4B (g, g 4 1) 4 (et

01 <|z| <L
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Of course, we can make a close to b, and ¢ close to 0, to see that for any b € R and € > 0,
all sufficiently large ¢; and all ¢ € [¢1, 20;] N Z,

> .
0 (0y — 0y + 1) 4 (/D70

(4.6) P{ min V(z) < blogﬁl} bobrl

01 <|z|<la

(This is our basic estimate for the minimum of V(x). In Section ], we are going to apply

(@) to fg = El)
We now let b > % and take the subsequence n; := 27, j > jy (with a sufficiently large

integer jo). By (f.§) (and possibly by changing the value of ¢),

P{ min  V(z) < blognj} >n;c.

n;<|z|<nji1

Let 7; .= inf{k : #{u: |u| =k} > n3*}. Then we have, for j > jo,

P{Tj < 00, min V(z) > max V(y) + blog nj}
i+ <|z|<Tj+njia ly|=7;
2¢

< P{ min  V{(z) > blogm}) .k

nj<|z|<nji1

< (1—nyo)d,

which is summable in j. By the Borel-Cantelli lemma, almost surely for all large 7, we have
either 7; = 00, Or MiNr, 1, <|o|<rj4n;,, V(T) < maxyy =, V(y) + blogn;.

By the well-known law of large numbers for the branching random walk (Hammers-
ley [[9], Kingman [B3], Biggins []) — of which ([.F) was a special case —, there exists a
constant co; > 0 such that %max‘m:n V(y) — co1 almost surely upon the system’s survival.
In particular, upon survival, max—, V (y) < 2cz; n almost surely for all large n. Conse-
quently, upon the system’s survival, almost surely for all large j, we have either 7; = oo, or
My, ), <|o|<rj4n;. V (T) < 2¢017; + blogny.

Recall that the number of particles in each generation forms a Galton—-Watson tree, which
is super-critical under assumption ([.3) (because m := E{}_,_, 1} > 1). In particular,
conditionally on the system’s survival, W converges a.s. to a (strictly) positive random

8% a5, (j — 00). As a consequence, upon

logm
the system’s survival, we have, almost surely for all large 7,

variable when £ — oo, which implies 7; ~ 2¢

Hec

min  V(z) < —= log n; + blogn;.
nj<|z|<2nji1 logm

Since b can be as close to % as possible, this readily yields ([.1]). O
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5 Proof of Theorem 1§

Before proving Theorem [[.§, we need three estimates.
The first estimate, stated as Proposition b1}, was proved by McDiarmid [B]]] under the
additional assumption E{(},_, 1)*} < oo.

Proposition 5.1 Assume (), (L.3) and (L.3). There exists cos > 0 such that for any
e >0, we can find co3 = co3(e) > 0 satisfying

(5.1) E{ exp (022 inf V(x)) 1yn} < p3n T, n > 1.

|z|=n -

Remark. Since W, > exp[— inf|y—, V ()], it follows from (B.T]) and Holder’s inequality that
for any 0 < s < ¢99 and € > 0,

1 ey 3ic
(5.2) E{W 1%} T

n

This estimate will be useful in the proof of Theorem [L.§ in Section f.
Proof of Proposition [5.1. In the proof, we write, for any k > 0,

V, = |iI\1—fk V(u).

Taking ¢, = ¢ in ([L.) gives that for any € > 0 and all sufficiently large ¢ (say £ > {),
we have P{V, < 2log ¢} > (~=; thus P{V, > 2log(} <1 — (¢ < exp(—(~%), V{ > {,. For
any r € R and integers k > 1 and n > ¢ > {;,, we have

P{yn > glog€+r}

P{#{u ul=n—40, V(u) <r}< k;} + (P{Kg > glogf})k
< P{#{u Cul=n—40, Vu) <r}< k;} + exp(—C k).

VAN

By Lemma 1 of McDiarmid [BI], there exist coy > 0, a5 > 0 and cg6 > 0 such that for any
J> 1L, P{#{u: Jul =7, V(u) <couj} < e} < g+e 7 g being as before the probability

of extinction. We choose j := [=-] and £ := n — || to see that for all n > {; and all
0 S T S CQ4(TL - Eo),

3
P{Mn > 5 logn + 7«} <q+ e C26 |7/c24] + exp ( —nc LeCQ5 V/C24JJ>.
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Note that {V,, > 2logn—+r}N.7¢ = ¢ and that P{.7} > g—e~" (see (B3)), we obtain:
for 0 < r < cou(n —4y),

3
(53) P{L/n > 5 logn +r, yn} < gTeOn | o626 |r/c2a] + exp ( —n¢ Lecz5 |_7"/624JJ>.

This implies that for any 0 < cy; < min{2e, 240

co4’ Co4

E{e®Vn 13 10gney, <20 mnz < Casn?, with cy := (5 + 24¢)cor. Therefore,

}, there exists a constant cog > 0 such that

(5.4) E{ec” ¥n 1{V <2ining, } < 3o, n>1,

where ¢39 := cog + 1.
On the other hand, letting 5 > 0 be as in (L), we have - Vn 1y, <37, oV,
Since ¢(—d-) = log E{}_,_, e~V < o0 by ([F), we can choose and fix c3; > 0 suffi-

ciently large (in particular, c3; > %) such that for any x > ¢,
P{V, > zn, 4.} < e 0-mntv(=o)n < g=0-an/2 Vn > 1.

5_
Therefore, for any c3; < 5, we have

(5.5) sup E{ec32 Yo 1{\_/n>031n}ﬂ,7n} < 0.

n>1

Finally, (B-3) also implies that for n > ¢,

Therefore, for any c33 < mln{i;?, 2002361 ,

eC \%
sg;l)E{ 330 1{024 n<V, <cs n}m/n} < 00,
n

which, combined with (B.4)) and (b.5), completes the proof of Proposition p.1], with gy :=
min{027, C32, C33}. |:|

Lemma 5.2 Let X, Xs, ---, Xy be independent non-negative random variables, and let
Ty = Zfil X;. For any non-increasing function F : (0, co) — R, we have

E{F TN 1{TN>O}} < max E{F( z)‘Xz>O}

1<i<N

Moreover,

E{F(Ty) lirys03} < sz 'E{F(X,) (x>0}

=1

where b := max;<;<y P{X; = 0}.
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Proof. Let 7 := min{i > 1 : X; > 0} (with min) := oo). Then E{F(Ty)l{ry>01} =
Zﬁil E {F(TN) 1{T:i}}. Since F' is non-increasing, we have F(Txn) 1i—iy < F(X;) 17—y =
F(X;) 1ix;>0y Lix,=0, vj<i}- By independence, this leads to

N
E{F(Ty) Lirys0} < Y E{F(X) Lixs0 } P{X; =0, V) < i}

i=1

This yields immediately the second inequality of the lemma, since P{X; =0, Vj < i} < b1
To prove the first inequality of the lemma, we observe that E{F (X;) 11x,501} < P{X; >
0} maxy <<y E{F(X) | Xi > 0}. Therefore,

N

E {F(Ty) Lizys0p} < max B{F(X})| X} >0} ) P{X; > 0}P{X; =0, Vj < i}.

1<k<N -
i=1

The Zf\il .-+ expression on the right-hand side is = Zf\il P{X,>0, X;=0,Vj<i}=
S ¥ P{r =i} = P{Ty > 0} < 1. This yields the first inequality of the lemma. O

To state our third estimate, let w(™ € [e, wﬁln)]] be a vertex such that

(5.6) V(w™)= min V(u).

o u€fe, wil")]]

[If there are several such vertices, we choose, say, the oldest.] The following estimate gives a

(stochastic) lower bound for Wl . under Q outside a “small” set. We recall that W, 3 > 0,

Q-almost surely (but not necessarily P-almost surely).

Lemma 5.3 Assume ([L1), (.3) and (L.3). For any K > 0, there exist > 0 and ng < oo
such that for any n > ng, any § > 0, and any non-decreasing function G : (0,00) — (0, 00),

(5.7) E {G(e_ﬁv(ww)ﬁ }< ! E{G "\ }
. Q Wn76 En = 1 —q Oréllilz(n Wk75 Y% (9

where E,, is a measurable event such that

1
Q{E} > 11— —, n > ng.
n

Proof. Recall from (2.§) that fk(") is the set of the brothers of wlg"). For any pair 0 < k < n,
we say that the level k is n-good if

7 k(n) # (0, and TSY survives at least n — k generations, Yu € fk(n)7
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where TSW is the shifted Galton—Watson subtree generated by u (see (2:3)). By TSW sur-
viving at least n — k generations, we mean that there exists v € TSV such that |v|, =n —k
(see (B-4) for notation).

In words, k is n-good means any subtree generated by any of the brothers of w,gn) has
offspring for at least n — k generations.

Let ¥, be the sigma-field defined in (f29). By Proposition B-J],

Q {k is n-good |¥4,} =1 (P{Yn—k})#j’in) ;

{7 #0}

where ., denotes the system’s survival after n generations (see (B.2)). Since P{.%, .} >
P{.} = 1—¢q, whereas #fk(") and #fl(l) have the same distribution under Q (Proposition

R1)), we have
. (1)
Q {k is n-good} > EQ{l{#jl(l)Zl} (1—¢q)*" } =34 € (0, 1).

As a consequence, for all 1 < ¢ < n, by Proposition again,

Q{ U ﬂ {j is not n—good}} < Z H Q {j is not n-good}

k=1j: 1<j<n, |j—k|<0 k=1 j: 1<j<n, |j—k[<L
S TL(l — 034)£+1

9

which is bounded by ne~®4(*1) (using the inequality 1 —z < e, for > 0). Let K > 0.
We take ¢ = {(n) := |c35logn] with ¢35 == K+2 Let c36 1= Kc—f (where c¢g is as in (.17))
and c37 1= maX{Kc—J;Q, ¢35} (c3 being the Constant in (B-13)). Let

(5.8) EW = ﬂ U {j is n-good},

k=1 j:1<j<n, |j—k|<|csslogn]|

(5.9) E® = { max - sup |V (u) — V(w§’1)1)| < c36log n},
-] n j(")
(3 ._ (n)y _ ONIPS }
(5.10) EY { o< ke I‘r]1a1>6<|<c35logn|V(w] ) = V(w,"”)| < czr logng.
We have

Q {Egl)} Z 1 _ nefcg403510gn — 1 _

K+
On the other hand, by Corollary .32,

Q{(EW)} < nQ{ sup |V (u)| > cs6 logn} < nQ{ sup |V (u)| > e3¢ logn}.

wer™ Jul=1
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Applying (.17) yields that

Q{E,(f)} Z 1— Cs n*(CSGCsfl) -1 Cs

C pE+L
To estimate Q{E,(Lg)}, we note that by Corollary 2.9,

QUEP)}=Q{ _ max_|S;—S>cxlogn},

0<j, k<n, |j—k|<c3s5 logn
which, in view of (2:19), is bounded by 2c3sn~(%7=1) log n. Consequently, if
(5.11) E,=EYNE?NE®,

then Q{E,} > 1 — - for all large n.
It remains to check (5.1). By definition,

(5.12) Was = zn: DR 3 o BVu(@) 4 =BV (wi)

I 2€TGW, Jalu=n—j
D D . (C SIS A0
JEL e g™ 2€TSW | |z|y=n—j
J

for any £ C {1,2,---,n}. We choose £ :={1<j<n: ‘j — \w(")\‘ < c3g5logn}.
On the event E,, for u € fj(") with some j € £, we have V(u) < V(w™) + (c36 +
cs7) logn. Writing 0 := c3¢ + cg7, this leads to: W, 53 > n—08e=BV (™) Zjez Eueﬂ(") Eu,
f

where
T SR

Z‘ETSW7 ‘x‘“:n_j

Since E].Ef Eueﬂ(n) & > 0on E,, we arrive at:
j

e BV (@™) n?8
—— 1p, < LS ice ™ ) €u>0}
Wnﬁ Zj€$ Zuefj(") fu JjEL uey]( )

Let ¢, be the sigma-field in (£.9). We observe that .# and fj(") are ¢,-measurable. More-
over, an application of Proposition P.]] tells us that under Q, conditionally on %,,, the random
variables &,, u € %(n), J € Z, are independent, and are distributed as W,,_; 3 under P. We
are thus entitled to apply Lemma .2, to see that if G is non-decreasing,

Bl ¢(Sr, )t
W3

a) < muele() [ >0}

nfs
< .
< s B{G () | Whs > 0}
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Since P{W;, 3 > 0} = P{.%};} > P{.¥} = 1 — ¢, this yields Lemma [.3. O

We are now ready for the proof of Theorem [[.. For the sake of clarity, the upper and
lower bounds are proved in distinct parts. Let us start with the upper bound.

Proof of Theorem [[.G: the upper bound. We assume ([[.])), ([.7) and ([.3), and fix g > 1.
For any Z > 0 which is #,-measurable, we have E{W, 32} = Eq{}_,,_, 675[;;(”) Z} =
Eq{> u=n 1{w(n):u}e_(5_1)v(“)Z}, and thus

(5.13) E{W, 2} = Eq{e"¢-DV@i") 7},
Let s € (%, 1), and A > 0. (We will choose A = 2.) Then

1-s —(1—s)BXA 1-s
E{(W,;’} < n (1= +E{W, 5 L, yon-m )
~(B-1)V (wi™)
(s e
n (1—s)BA _'_EQ{—WSB 1{Wn”@>n_5>‘}}'

DY (™
eZ BV (wn 1) L ; thus on the event {W,, 5 > n="},

. —ﬁV(wSL"))
Since e < W, 3, we have T < =7
n,B n,B

a1 (™)
n,B -

Let K := [s — (B — D]A+ (1 — s)BA, and let E, be the event in Lemma p.3. Since
Q(E¢) < n~K for all sufficiently large n (see Lemma [-3)), we obtain: for large n,

BV (™
E {Wl*s} < pU=9BA 4 plBs=(B-DIA-K L g M 1
med Q Ws (W s>n=PANE,
n76

~(B-1)V (wi™)
C(1—s e
(5.14) = 2@ W+EQ{W—51{Wn,ﬁ>n*B*}mEn}-
n7ﬁ

We now estimate the expectation expression Eq{---} on the right-hand side. Let a > 0

and ¢ > b > 0 be constants such that (3 — 1)a > sfA + 2 and [fs — (3 — 1)]b > 3.

(The choice of ¢ will be made precise later on.) We recall that w' e e, w,g")]] satisfies
V(w™) = min, e o) V(u), and consider the following events:

E,, = {V(wr(z")) > alogn} U {V(wr(z")) < —blogn},

Ey, = {V(_ ")) < —ologn, V(w,(l")) > —blogn} ,

FEs3, = {V(Q(")) > —plogn, —blogn < V(w™) < alogn} .

Clearly, Q(U_,E;,) = 1.
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On the event Ey, N {W,z > n_m} we have either V(w,(L")) > alogn, in which case

v ™
e WI/)V tn ) < psAA=(6- Da or V( ) < —blogn, in which case we use the trivial inequality
n,B
’LU( n
Whp > e V@) to see that % < elBs=(5= DIV (i) < n~1Bs=(B=Db (recalling that

Bs > [ —1). Since sfA — (8 — 1)a < —3 and [fs — (8 — 1)]b > 2, we obtain:

o= (B=)V () "
(5.15) EQ{—S 1E17nm{ww>n,m}} < 32,
n76
We now study the integral on E, N {W, 3 > n*ﬁ’\} N E,. Since s > 0, we can choose
s1>0and 0 < sy < %2 (where cg9 is the constant in (5-]))) such that s = s; + so. We have,
on By, N{W, 3 >n"}

DV (™ V(w(™ DV (@) —BsaV (w™ —BsaV (w(™
EIVERD) PV @) GOV g BV ) e €0V

Wes W Wes Wi

Therefore, by an application of Lemma .3 to G(z) := x°2, x > 0, we obtain, for all sufficiently

large n,

o—(B=DV (W)
o =, —

n—ﬁsgg—l—(ﬁ—l)b—i—ﬁ)\sl {n8296 L }
W, g

1 —BA } < max E{ ——
E27nﬂ{Wn7B>n NE, = 1_— q 0<ken WISQ 5%

By definition, 52 < exp(Bsy infp= V(2)); thus by (B.1), E{%7e n20 1 5 } < (oo 0Bt 5 B
k6 ks

forall 0 < k < n. We Choose (and fix) the constant g so large that —(3sy0 + (6 — 1)b +

BAs1 + $20 + 25235y < —3. Therefore, for all large n,

(B=D)V (wi) a0
(5.16) Ba{ " Tn,nwon-myom, b <779
n76
We make a partition of Es,,: let M > 2 be an integer, and let a; := )0 <1 <M
By definition,
M-1
U {V ) > —ologn, a;logn < V(w ")) < a1 logn} =: U E3p.i.
i=0

Let 0 < ¢ < M — 1. There are two possible situations. First situation: a; < A. In
. (n)
this case, we argue that on the event Fj, ;, we have W,z > e V() > p=fair1 and

ef(ﬁfl)v(w%n)) S nf(ﬁfl)ai’ thus ‘f(ﬁ;vl)isv(wgln)) S nﬁsaiJrl*(B*l)ai — nﬁsaif(ﬁfl)ai‘f’ﬁs(a‘i’b)/M S
n,3

plBs=(B=DA+0s(a+b)/M = Accordingly, in this situation,

e~ BV (i) [B5—(B—1)]A+s(a+b) /M
EQ{W—S 1E3,n,¢} <n Q(Es ).
n,B
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e~ (B-DV (i)

Second (and last) situation: a; > A. We have, on Es,; N {W, 53 > n~ '}, ¢ W

pPrs=(B-1a:i < plBs—(B-DIA- thus, in this situation,

B-1)V (wi™)

EQ{—s 1E3,n,im{Wn,B>n_B/\}} < n[ﬁs_(ﬁ_l)]AQ(E&n,i)-
n76

We have therefore proved that

—(B-1)V (wi™)
e
EQ{W—S 1E3,nm{wn,ﬁ>n*m}} = Z EQ{
n 6

< n[ﬁs (B—1)]A+Bs(a+Dd) /MQ( 3n>.

—(B-1)V (wi")
1E3’n’iﬁ{Wn’5>n*5>‘} }

By Corollary B2, Q(E5,) = P{minj<x<, Sy > —pologn, —blogn < S, < alogn} =
n~/2+e() " Combining this with (5.14), (£.15) and (5.18) yields

E{W1 s} < o (=98N | 9y =8/2 | [Bs—(B-D)]MHBs(atb)/M—(3/2) +o(1)

We choose \ := % Since M can be as large as possible, this yields the upper bound in

Theorem [[.§ by posing r :=1 — s. g

Proof of Theorem [I.G: the lower bound. Assume ([1]), (I.J) and (). Let 5 > 1 and
s € (1 -3, 1). By means of (5.12) and the elementary inequality (a +0)'~* < a'~* 4+ b'~*
(for a > 0 and b > 0), we have

wy < 3% ef(lfswwu)( 3 eBVu(x))ls_|_e (-8 (@)

=1 yes (™ 2€TGW, [z]u=n—j

_ Ze*“ $)BY () )Y eV V(i )]( 3 e—ﬁvm))

u€I; (n) z€TGW, |z|u=n—j

1-s

o198V (i),
Let ¢, be the sigma-field defined in (B-9), and let

= =5, 8) = 3 e UM @VED) g <icy
ue]].(")

Since V(w](.")) and fj("), for 1 < j < n, are ¥,-measurable, it follows from Proposition P.]]
that

—s - —(1—-s)BV w; — s (n)
Eq {W,5 9.} < Ze (-8 (@)™ 5 SE{W ~ JB} + e~ (1=9)BV(wn™)
j=1
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Let € > 0 be small, and let r := %(1 — 5) — . By means of the already proved upper bound
for E(W;gs), this leads to, with c3g > 1,

(517) EQ{ B |g } < C38 Ze (1-s BV(UJJ 1)<n _ j + 1)77’ E] + ef(lfs)ﬁV(wg")).

7=1

DV (wiM)

Since E(W;ES) = EQ{M;VT} (see (B.13)), we have, by Jensen’s inequality (noticing
that V(wi") is &,-measurable),
o~ (B-1)V (wi™)
{Eq(W, 5" |4)}/0-) }

EW,5) = EQ{

which, in view of (5-17), yields

1 o~ (B-1)V (wi™)

> Eq{ . }
oA ., e~ =BV () 1 1)1, 4 e~ (-9)8V(wl™)}s/(1-s)

E(W,5) 2

By Proposition B, if (S; — S;_1, &;), for j > 1 (with Sp := 0), are i.i.d. random variables
under QQ and distributed as (V(wg)), Y e s e~ =8V W) then the Eq{- -} expression on
the right-hand side is

E e_(ﬁ_l)sn
E Q{ {2ji(n =+ 1) e (179008185 4 em (1) }o/(1=5) }
[637(671)]:5?77,
= EQ{ € T }
(Do) kre(=a88igy 4 1}/0-9)
where
SZ = Sn - Sn,g’ éz = €n+17€7 1 S g S n.
Consequently,

E(W,5) =

1 olBs—(B-1)]Sx
1 s) {{Z re(l—s)ﬁgkgk + 1}8/(1—8)}
Let c39 > 0 be a constant, and define

nf)—1

Eg,l = ﬂ {gk§—039k1/3}ﬂ{—2n5/2§§msj S—n€/2},
k=1
N n—|n®|—1 _ _
ESQ = n {Skg —[kl/?’/\(n—k)l/?’]}ﬂ{—2n5/2 < Spne) < —na/Z},
k=|n®]|+1
n—1
5 ~ 3 —
E;jg = ﬂ {Sk < glogn} N { 1ogn < Sn < 3logn}
k=n—|nc|+1
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Let p:= p((1 — s)/3) be the constant in Corollary P.4, and let
[n®)

B, = () {&<wn),

k=1
i A
EfLZ = ﬂ gk <e" }7
k=|n®]+1
Ef:?, = ﬂ {Ek<n2€/p}
k=n—|n¢|+1

On ﬂle(Eii N Egl), we have > 7', Ere(=985k g, 41 < ¢ion2 (/P while elfs=(B-DISn >
nB=e)Bs=B-11/2 (recalling that Bs > 3 — 1). Therefore, with ¢4 = (2 + %)i

1-s?
(5.18) E (Wéﬁs) > (038640)_8/(1_8) nC41Ee n(3—6)[58—(5—1)]/2 Q{m?zl(E;ii N Efl’z)}

We need to bound Q(ﬂ?:1(E§,¢ N Ef:l)) from below. Let Sy := 0. Note that under Q,
(§g — §g,1, Eg), 1 < ¢ < n, are i.i.d., distributed as (Si, & ). For j < n, let g?; be the sigma-
field generated by (gk, 59), 1<k<j. Then ES, E 2

3 3
w1 By, By and B are 9, |, )-measurable,

whereas thg is independent of ¢, ine|- Therefore,

QM2 (B2, N ES ) [ Do pne)) > [QUES 5 | G e)) + Q(ES ;) — 1] 1

E§,10E§,2OE§L,1QE£,2.
We have ¢y = Eq(&]) < oo (by R10)); thus Q{& > n*/P} < cypn=?, which en-
tails Q(Eﬁ?)) = (Q{& < n¥/PrYHl > (1 — e )" > 1 — c3n®. To estimate
Q(ES, | G, 1ne|), We use the Markov property to see that, if S ine| € I, = [—2n%/2, —n®/?),
the conditional probability is (writing N := |n*|)

3—¢

3 3
> inf Q{Sigilogn—z, Vi<i<N-1, logn—zgSNgilogn—z},

zely,

which is greater than N—(1/2+e(1)  Therefore,

QUES | Fo-ne)) + QUES ) — 1 2 n~C/240) _ gy e — = (e/2)500)
As a consequence,
(5.19) QML (SN ES )} = n P 0Q(ES, N B, N B, N EL).

To estimate Q(Ef1 N E§,2 N Efl,l N Eﬁz), we condition on %NWJ, and note that E§,1 and
Efm are f%ns |-measurable, whereas E,i2 is independent of g?ins . Since Q(E§2|g~ms 1) =
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/4

n—(3—5)/2—|—o(1)7 whereas Q(Eré;Z) — [Q{él < en }]n—Q\_nEJ > [1 — Ca e—pns/4]n—2|_n6J > 1_e—ns/5

(for large n), we have
Q<E51 M ES,2 M Efm N ESL,Q | gLnEJ) > [Q<E52 | gLnEJ) + Q(Efm) - 1] 1

> g 0G=9)/240() 7
- E§,1OE§L,1.

5 ApS
En,lmEn,l

Thus, Q(ES, MBS, N ES, N ES,) > n=G-9/2+0 Q(ES | M ES,). Going back to (BIJ), we
have

QML (BS,NES)} > n @2 0Q(ES, nES,)
> n @RWQES ) + Q(E,,) — 1].

We choose the constant c3g > 0 sufficiently small so that Q( E§1) > n*(€/2)+0(1)7 whereas
Q(ESLJ) = Q(Eig) > 1 — cy3n~°. Accordingly,

QML (B, NES )} 2 n= @920 oo,
Substituting this into (B.1§) yields
B (W)57) > n-eus p@-elss—(3-0)/2 =30/ 2400

Since € can be as small as possible, this implies the lower bound in Theorem [L.6. 0

6 Proof of Theorem 15

The basic idea in the proof of Theorem [[.J is the same as in the proof of Theorem [[.§. Again,
we prove the upper and lower bounds in distinct parts, for the sake of clarity. Throughout

the section, we assume ([[.1]), (L.3) and (L[.3).

Proof of Theorem [[.5: the upper bound. Clearly, n'/?2W, <Y,,, where

Y, = Z (n'2 Vv V(u)t)e V™.

lul=n

Recall W* from (B7)). Applying (B.I4) to A = 1, we see that Y, > ilog(mi*), with
ca = cip + c13. Thus P{Y, < z, 7} < P{log(s=) < cux, S} < eE{(W;)*1,,},

which, according to (B.11]), is bounded by e“4(z" + e~¢10") for 0 < x < i Thus, for any
fixed ¢ > 0 and 0 < 5 < min{“®2, s}, we have supnzlE{% 15, 5e-enyng, b < 00. On the
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other hand, let c3; and css be as in (53); since Y,, > exp{—inf},—, V (u)}, it follows from
(B.5) that sup,,>; E{ﬁ 1%, co-esimpnz, | < 00. As a consequence,

1
(6.1) sup E{:s ].yn} < 00, 0 < s < min{csg, @, K}.
Y, 31

n>1

We now fix 0 < s < min{3, ¢z, 42, k}. Let K > 1 and let E, be the event in (5-I1),

c31’

satisfying Q{E,} > 1 —n~% for n > ny. We write
E{(n'?W,)'*} = E{(n'*W,)' " 15} + E{(n"*W,))' " 15 }.

For n > no, E{W,~*1p.} < [E{W, > }J'2[B{W, 1 }]'? = [E{W,>}]'*[Q{E}}]'? <
[E{W,,}](/2=sn=K/2 which equals n=*/? (since E{W,,} = 1). Therefore, for n — oo,

E{(n'*W,)'*} <E{Y, "1z} +o(1).

Exactly as in (5I3), we have E{Y, "1z} = Eq{(n'? Vv V(w{")*)Y, *1p,}. Thus, for
n — oo,
(6.2) E{(n'?W,)'*} < Eq{(n'? + V(w;")")Y, " 15} + o(1).

For any subset . C {1,2,---,n}, we have

Y, > Z Z Z max {n'/?, V(z)t} e V®

1€ ye s a€TGW, Jalu=n—j

= 3> Y max (et V() + Vi) T} e,

IEZ e s 2€TGW, [alu=n—j

Recall that w™ is the oldest vertex in e, w(”] such that V(w™) = min
¢35 be the constant in (5-§). We choose

V(u). Let

u€le, wﬁﬁ)]]

% (G <n: I 0, w™| < j < |w™|+esslogn}, i n— |[w™]| > 2eslogn,

G<n: 7% 40, W] — elogn < j < w®|}, otherwise,
On the event E,, it is clear that .Z # (), and that for any u € fj(n) (with j € &),
(6.3) [V (u) — V(w™)| < ¢45logn,

where cg5 := c36 + c37, with ¢s6 and c37 as in (p-9) and (p-10), respectively.

We distinguish two possible situations, depending on whether V(w™) > —cu6logn,
where ¢y 1= % + c45. In both situations, we consider a sufficiently large n and an arbitrary
ue 7" (with j € .2).
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V2V Vy(2))

On {V(w™) > —cylogn} N E,, we have max{n'/2, [V (u) + V,(x)]*} > %(
> Valz) = (s +

(this holds trivially in case Vi (z) < n'/?; otherwise [V (u) + V,(2)]
cs5) logn > 1V, ()"), and thus

_ 1 . —Vul(z
Y, > QZ Z eV Z max{(n—j)l/z, Vu(:p)+}e V()

JEZL e 7(”) z€TSW, |z|y=n—j

SR DI

jEZL uej(")

If, however, V(w™) < —cy5logn, then on E,, V(u) < V(w™) + cy5logn < —Llogn, and
since max{n'/2, [V (u) + V,(z)]*} > n'/2, we have, in this case,

Yn > n(1/9)+(1/2) Z Z Z o Vul@) —. (1/8)+(1/2) Z Z T

jez ueyj(") €TV, |z|lu=n—j = uefj(”)

Therefore, in both situations, we have

64 V1 <2(3 3 eV 8) 1 a0 (S0 w)

i€Z ues ™ I€L ues ™

[Since Y i o D e s DonemoW, (gjun—; 1 > 000 Ejy, the (- )7 expressions on the right-hand
J

side are well-defined.]
We claim that there exists 0 < so < 1 such that for any ¢ > 0 and s € (0, so),

(6.5) EQ{( V24V (w (Z Z (u)§u>7s]-En} < e,

]€$u€<¢(n)
(6.6) Eq{(n+ V(" (X 3 nu) g b < cqniti
]egue,ﬂj(")

We admit (6.5) and (6.9) for the time being. In view of (£.4), we obtain: for 0 < s <

Sy 1= min{%u S0, €32, %7 H}v
Ba{ (02 + V() )V, " 15, } < 2%eis + o).

Substituting this in (B-2), we see that sup,~; E{(n'/*W,,)'~*} < oo for any s € (0, s,). This
yields the last inequality in ([.I6) when ~ is close to 1. By Jensen’s inequality, it holds for
all v € [0, 1). This will complete the proof of the upper bound in Theorem [[.5.

It remains to check (B.]) and (£.4). We only present the proof of (6.3), because the proof

of (p-G) is similar and slightly easier, using (5.3) in place of (6.])).
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Recall ¢, from (R.9). By Proposition BT, under Q and conditionally on ¢, the random
variables &,, for u € ﬂj(") and j € £, are independent. We write & := {j(1),---,7(N)},
with j(1) < --- < j(N). It follows from the second part of Lemma (-] that

Faf( ) )

IEZ yeg™
- i1 Ve \
< Db EQ{( > e 5u> Ly ]m)e—wwsuw}’%}v
i=1 wes ) e
72

where b := max;c ¢ Q{Eueﬂ;”) e Ve, =0]%9,}. Wenote that b < max;<j<, P{7y ;} <q,
and that for any ¢ < N, the Eq{---} expression on the right hand-side is, according to the
first part of Lemma .7, bounded by

o5V ()

3

By Proposition B-1], Eq{é Lig, >0 | 9} = E{%_J 1y, ,}, which is bounded in n and j (by
(6.1])). Summarizing, we have proved that

1ie, 20} ) %}.

As a consequence, the expression on the left-hand side of (-) is bounded by c49 Eq{A,},

where
N
A = @7+ V(@))D ¢ max V™ 1y v < togn)
i=1 ueﬂj((’;;
N
< Fum (0 4 V)) S0 ma oV
i=1 ue‘]j((r;;

The proof of () now boils down to verifying the following estimates: there exists 0 < so < 1
such that for any s € (0, sg),

(67) Slrlzp EQ{KH 1{n—\y(")\22cgg logn}} < 0,
(68) nhigo EQ{An 1{n7@(”)\<2035 logn}} = 0.

Let us first check (6.7). Let Sy := 0 and let (S; — S;_1, 05, 4,), 7 > 1, be i.i.d. random
variables under Q and distributed as (V(w®), #.#1, max _ o e’V ™). Let

S = min S, U, =inf{k >0: S, =9,}.

=" 0<i<n
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[The random variable ¥,, has nothing to do with the constant ¥ in Proposition B.1.] Writing
LHSE3) for EQ{As 1w 52055 10gn} }» it follows from Proposition P.1 that

M
LHS(E) = EQ{ [n1/2 + S:] Z qiilessz(i)ilAf(i) 1{n—19n22035 logn}}

= EQ{[ 1/2+S+ Zqz 1 sSaz) 1= S‘“’)]Ag()l{n 0n>2€35logn}}

i=1

where ((i) := inf{k > (i — 1) : o > 1} with £(0) := ¢, and M := sup{i : £(i) <
Uy + c35logn}.
At this stage, we use a standard trick for random walks: let v := 0 and let

yi::inf{k>yi1.5k< min S} 1> 1.

0<]<l/1 1

In words, 0 = vy < 11 < - - - are strict descending ladder times. On the event {vy, <n < g1}
(for k > 0), we have ¥,, = v}, and S, = S,,. Thus LHS§3) equals

Z EQ{l{n v >2c35 logn} 1{Vk<n<uk+1} [ 1/2 + S+ 55 Z qZ ! e’ [Seci -1~ SZ(O)]AK( )}
k=0 =

For any k, we look at the expectation Eq{- - -} on the right-hand side. By conditioning upon
(S, 05, Aj, 1 < j <1y), and since S;F = [S,, + (S, — S, )] < (Sp — S,,)T =5, -5, on
{vr <n < g1}, we obtain:

(69) LHS(6 7) < Z {1{nfl/k22035 logn} esSl,k fn (n — Vk) },
k=0

where, for any 1 < 7 < n,

M/
fa(J) = EQ{l{mw}[nl/z +5,1) qi_less’”("‘lﬁm(i)},
=1

and m(i) := inf{k > m(i—1) : o, > 1} with m(0) := 0, and M’ := sup{i : m(i) < c35logn}.
For brevity, we write L,, := Zi‘il qiilessm(i)*lAm(i) =3¢t e*Sm()- YAy Lim(i)<ess logn}
for the moment. By the Cauchy—Schwarz inequality,

fa(3) < [Q{w > j}"? [Bo{(n'? + 8;)* |11 > j}1"? [Bo{L] 14,5312

By B13), Q{v1 > j} < es0j7Y? for some cso > 0 and all j > 1. On the other hand,
(n*/? 4 5;)* < 2(n+ S?), and it is known (Bolthausen [T]) that EQ{ |1/1 > jt — 5 €
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(0, ) for j — oo. Therefore, Eq{(n'/? + S;)?| 11 > j} < espn for some c5p > 0 and all
n > j > 1. Accordingly, with cz3 := CééQCéQQ, we have

falg) < ez i VIV EQIL2 1,5 Y2 1<j<n.

By the Cauchy—Schwarz inequality, L2 < (>°°, ¢" 1) Y00, qifleQSSm@FIAfn(i) 1 {m(i)<css log n} -
Therefore, for j > 2c¢35 logn,

1 - i— s ;
EQ{L% 1{V1>j}} = 1—g¢q Zq 1EQ{62 Sm(l)_lAgn(i) Lim(iy<ess logn} 1{V1>j}}
=1
1 = i—1 28Sm (i) — 2

For any i > 1, to estimate the expectation Eq{---} on the right-hand side, we apply the
strong Markov property at time m(i), to see that

where g(z,k) := Q{z+S5; >0, V1 <i <k} for any 2 > 0 and k > 1. By (13) of Kozlov [4],
g(z,k) < csa(z + 1) /Y2 for some c54 > 0 and all z > 0 and k > 1. Since 2z + 1 < cg5e* for

all z > 0, this yields, with ¢z := {22,

<. SSm(i)
E L21 e < zflE {2SSm(i)*lA2 1 o e—}
allulispt = 056;‘1 Q° m(i) Hm@<5} (5 (i))1/2

IN

Cs6 = i—1 288 (i) —1F8Sm@) A2
G 0 Balet oo )
=1

o 21/2056 E = i—1.28S,()~1+8Sm(s) AQ
i=1

We observe that Y72, ¢/~ le?Sm@1#s9mm A2 < 372 | gFWT 1288 AR where R(k) :=
#{1 < j <k: o; > 1}. Therefore, with c5; := 212¢56.

[e.9]

Eq{L; 1355} < ]C% D Eq{q"M eSS ALY
k=1
< % Z[EQ{qﬁR(k)fl}}]lﬁ [EQ{e4sSk,1+2sSkAé}]1/2.
k=1

By definition, Eq{¢?®~1} = ¢727* with r := Q(o; = 0) + ¢*?Q(o1 > 1) < 1 (because
g < 1and Q(o; =0) <1). On the other hand,

EQ{e4sSk_1+255’k Ai} _ EQ{GGSSk_l} EQ{GQS(Sk—Sk_l)Ai} — [EQ{863S1 }]k—l EQ{@QSSIA?}.

35



By (R-I1)), there exists sy > 0 sufficiently small such that Eq{e®*'} < % for all 0 < s < s4.

On the other hand, Eq{A}} < oo for 0 < s < £ (by (Z17)), and Eq{e**'} < oo for

0<s<2 (by (BI0)); thus Eq{e**A}} < oo for 0 < s < mm{ £ 2} As a consequence,

%, 21 we have Eq{L? 1,53} < £ iz, for some cs5 > 0 and all

n > 7 > 1 with j > 2c¢35logn, which yields

for any 0 < s < min{sg,

Fulg) < essesy’i ™20l

Going back to (.9), we obtain, for any 0 < s < min{sy, %, 2} and cs9 := C53€5é ,

sSVk
LHS(@) < Cs9 T 1/2 ZEQ{l{n v >2c35 logn}m}.
k=0

By (B.13) again, -5 < cgo Q{11 > j} for all j > 1. Thus, with cg = cs9c60,
y g 717

sSy
LHS(@) < Ce1 n1/2 Z EQ{l{nfl/kZQCgs logn}€ 'k 1{l/k+1>n}}
k=0

oo
Co1 n'/? Z EQ{l{uk§n<uk+1}essyk }7
k=0

VAN

which equals cg; n'/2Eq{e’™osi<nSi} and, according to (R:14), is bounded in n. This com-
pletes the proof of (B.7).
It remains to check (6.§). By definition,

N

Ay < [n1/2 + V(wfl”)) n5ca5 o8V ( (w(™) Z

Since SN ¢! < fq, this leads to, by an application of Proposition P.1}:

SC.
n 45

EQ{An 1{n7@(")\<2035 logn}} < 11— qEQ{[n1/2 + S:Lr]esﬁn 1{n779n<2035 logn}}a

where (S;) is as in Proposition R.1, and as before, S, := ming<;<, S;, ¥, := inf{k > 0: Sy =
S.).

Let 0 < e < 3; let A, := {S, > nzte} and B, = {S, < n3te} = A°.

Since Eq{e®1} < oo for |a] < ¢y (see (1)) and Q(A,) < 2exp(—cz3n?®) (see (R-12)),
the Cauchy—Schwarz inequality yields n*“sEq{[n'/? + S}]e*®n 14, } — 0, n — oo.

On B,, we have n'/? + S+ < 2n%+5' thus Eq{[n'/? + Sfle Sﬁnanm{n In<esslogn} ) <
2n%+€EQ{e5§n1{n 9n<2csslogn} }- It is clear that S, < S|_n/2j i= MiNg<;<n/2 S, and that
{n =¥, < 2esslogn} C {5 — n/2 < 2cz5logn}, where 19n/2 = min{k > 0 : Sk =
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MiNg<i<n—|n/2] §} with § = Sit|ns2) — Sns2), © = 0. Since S 1n/2) and 571/2 are indepen-
dent, we have Eq{e*¥n 1, g, <ocss10an}} < EQ{eSSL"/2J} Q{2 - n/g < 2c35logn}. By (B.14),
l 2
Eq{e®in21} < cgn~'/2; on the other hand, Q{5 — 19n/2 < 2c35logn} < ce3 (loglnm/ (see
Feller [[§, p. 398). Therefore, Eq{[n'/?+ S;]e*S1p - ﬁn<203510gn}} < cgan-2+(logn)V/2.

Summarizing, we have proved that for any s > 0 and 0 < & < =, when n — oo,

C 4 ScC.
Eq{A, 1{n_@(n)|<263510gn}} <o(l)+ 1—iqn 45—5+ (logn)l/Q,

which yields (B.§), as long as 0 < s <

2045

Proof of Theorem [1.5: the lower bound. We start with

nl/QWn > }_/n — Z (n1/2 A V(U)+) e—V(u).

|lu|=n
Let s € (0, 1). Exactly as in (p-13), we have

(6.10) E{Y, ™"} = Eq {(n"? AV (w;")")Y,"}.

By definition,
Y, = 35 S V@ S min (a2, [V(w) + V()] e Ve
=1 e TETGW, |z]=n—j

+min {n'/?, V(w{)"} Vi)

Zefv(wg’j)l) Z o Au Z [V( (n ) A++V( ) Je _V"(x)+@m

=1 wes™  2€TGW, felu=n—j

IA

where A, 1=V (u) — V(w](’i)l) (for u € fj(")), and ©,, = V(w(V)*e Vi),
By means of the elementary inequality (3, ai)*s Z (>, as) tand (30, b))% < >, b8 for
non-negative a; and b;, we obtain Y, * > Zin on .%,, with Z, being defined as

Ze—sv ZefsA{ Ze Vu () s_'_[zvu( + —Vu(z ]}+@

where 37 =370, >0, = Zueﬂ}")’ and >0, 1= > cpaw |y),—n_j- We now condition upon
¢, and note that V(wj(»n)) and fj(") are ¢,-measurable. By Proposition R.1],

—s w(-n) —S8Ay, n s s s S S
Eq{Z.|%,} = e V@5 "em 2 (V(w”))F)* + (AD))E(W;;) + E(U;_,)} + 63,
J

u
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where, for any k > 0, Uy = >, _; V(y)te™V®. By Jensen’s inequality, E(W;_;) <
[E(W,—;)]* = 1. On the other hand, by B9), Uy < cg5log 7, and thus by Lemma B3,
k
E(U;) < cgE{[log 7=]°} < ces. Therefore, the }°, sum on the right-hand side (without ©5,
k

of course) is

IA

ST e A (V@) )+ (AL)® + cor)

u

= V@)Y e+ e (AN + eor )

u

There exists cgs = cgs(s) < oo such that e*{(a™)* + ce7} < ces (€7°¢ +e7%2) for all a € R.

As a consequence,

Eq{Z. |9} < ce Ze S | O o A § S N S L Y CO

J=1 uefj(")

By Jensen’s inequality again, EQ{Z% |9,} > m. Since Y, > Zin on .%,, this leads
to:

C70
n —S w(n) _ _Ss ’
S e VEEL Y (w) )+ P12 e mlem te 25+ O

Eq{Y,* 9.} >

Jj= 1

We apply Proposition R.: if (S; — Sj_1, n;), for j > 1 (with Sy := 0), are i.i.d. random
variables (under Q) and distributed as (V (w™), D e [e=*V (W 4 e=3V(W]) then
“1

n'/2 A St
1 j oo (S
Doy e St [(S )+ 1]y + e s (S )s}

(n VZAS n) 1{min1§j§n S;>0}
> Cr0 EQ{ Y s 55 }
D i @75 (S5_ 4 1)y + eSS,

Eq {(n'? AV (wiMMY, "} > e EQ{

Note that if S; > 0, then =% [S2+1] <cn et with t := 2. Therefore, by writing

QW {-}:=qf

and Eg) the expectation with respect to Q™ and nj == n; + 1 for brevity, we get that

min S; >O}

1<j<n

Bo { (02 A V(@) )y="] > Q S >0 bLE™ n'2 A S,
Q{(n AV )Y, "} > enQqmin S, Q{zy:fetswm}

1/2
En / 1{5 >z—:n1/2}}

n+1 —tS'_ o :
Z] 1 S 7 177]

> ¢ Q {1%i£1n5j > 0} Eg){
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Since Q{min;<;<,S; > 0} > ez3n =2 (see (B13)), this leads to

1 1/2
E 22 AV (Yl > . EE(n){ {Sn>enl/2} }
Q{( ( n ) )—n } - 74 Q Z;L;rlleftsjflﬁj

(n) 1
> Cpu€ [EQ {
>

Let p(s) > 0 be as in Corollary 4. We have EQ{(Zule” e VWPl < oo by
(B.18). Since p(s) < p(3), we also have Eq{(}_ ., o e 2V} < oo, Therefore,

EQ{ﬁf(s)} < o0o. We are thus entitled to apply Lemma [6.1 (stated and proved below)

} Q™8 < 8n1/2}].

J

to see that E%”{HEM% i*tsj—lﬁj} > c¢75 for some 75 € (0, 00) and all n > mgy. Since
i
1 1 . .
ST, > e, this yields
Eq {(n'2 AV (WY, "} > crue [075 - QM{S, <en'?}|, n > ng.

On the other hand, S, /n'/? under Q™ converges weakly to the terminal value of a Brownian
meander (see Bolthausen [[1]); in particular, lim, g lim,, .., Q™{S, < en'/?} = 0. We can
thus choose (and fix) a small ¢ > 0 such that QM™{S, < en'/?} < < for all n > ny.
Therefore, for n > ng + nq,

EQ {(nl/Q A\ V(w;n))—i_)}_/gs} Z C74 € [675 — %} .

As a consequence, we have proved that for 0 < s < 1,

liminf Eq {(n'* AV (w{")")Y,*} >0,
which, in view of (6.10), yields the first inequality in ([.16), and thus completes the proof of
the lower bound in Theorem [[.5. O

We complete the proof of Theorem [[.5 by proving the following lemma, which is a very
simple variant of a result of Kozlov [24].

Lemma 6.1 Let {(Xy, nx), k > 1} be a sequence of i.i.d. random wvectors defined on
(Q, Z,P) with P{m > 0} =1, such that E{n?} < oo for some 6 > 0. We assume E(X;) =0
and 0 < E(X?) < oo. Let Sy :=0 and S, := X; + -+ X,,, forn > 1. Then

. 1 )
(6.11) nll_{go E{ - ZZI} - lg}gléln Sy > 0} = ¢76 € (0, 0).
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Proof. The lemma is an analogue of the identity (26) of Kozlov [B4], except that the dis-
tribution of our n; is slightly different from that of Kozlov’s, which explains the moment
condition E{n?} < co: this condition will be seen to guarantee

(6.12) lim hmsupE{ , L - ! min S > O} =0.
=% nmoo L1430 memSker 14 3 e S | 1sken
The identity (p-13), which plays the role of Kozlov’s Lemma 1 in [4], is the key ingredient
in the proof of (B.I7]). Since the rest of the proof goes along the lines of [24] with obvious
modifications, we only prove (6.17) here.
Without loss of generality, we assume 6 < 2 (otherwise, we can replace 6 by 2). We
observe that for n > j, the integrand in (6.19) is non-negative, and is

_ n+1 —S)_ n+1
Zk 41 ke Sk < < Zk —jt1 e >€/2 < ( Z nke—Sk_1>9/2

TS e = Ly 5 e

)

k=j+1

which is bounded by ZZ+]1+1 Z/Qe_isk 1. Since P{minj<y<, Sy > 0} ~ c4/n'/? (see (B13)),
we only need to check that

n+1
(6.13) ]li)rglohmsupnl/2 Z E{n e85k Lming iz, 50 >0}} =0.
n—00 k=—jt+1

R Let LHS14) denote the nt/? ZZJFJIH E{ -} expression on the left-hand side. Let S; =
Si(k) := Sizx — Sk, © > 0. It is clear that (S,, i>0)is 1ndependent of (mg, X1, Xx), and

is distributed as (5;, ¢ > 0). Write S, _; := minj<<x_1 S; and §n_k = miny<;<,— S;. Then

n+1

og
LHS 13 <n1/2 Z E{U e 2 g 50,8, >S5k I_Xk}}

k=j+1

To estimate E{---} on the right-hand side, we first condition upon (ng, Sk—1, Si_1, X&),
which leaves us to estimate the tail probability of Sn_k At this stage, it is convenient to
recall (see (13) of Kozlov [24]) that P{S, . > —y} < csq
y € R. Accordingly,

Tkt D172 Ij+1 7z for some c¢54 > 0 and all

n+1 +
0/2 _fg, 1+ (Sk—l + Xk)
LHS() < C54n1/2 Z E{T}k e 2k 11{§k71>0} (n—k+1)1/2 }
k=j+1
U, o2 _0 14 Spq + X
2 ¢ -1
< 054,”1/2 Z E{le/ e 2%k-1 1{§k—1>0} (n—k+1)1/; }
k=j+1
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On the right-hand side, (ng, Xj) is independent of (S,_;, Sk—1). We condition upon
(Sk_1, Sk—1): for any z > 1, an application of the Cauchy—Schwarz inequality gives

E{n)* (2 + X;)} < [E@D]2 [E{(= + X,;)?1V2.

Of course, E(n?) = E(n!) < oo by assumption, and E{(z + X;)?} < 2E(z* + X}?) =
2[z% + E(X?)]. Thus E{HZ/Q(Z + X5} < erp 2 for 2 > 1. Consequently, with ez := csscrr,

n+1
1/2 05, 1+ Sp
LHSEm) < esn'? ) E{e 7 s >0 (n—k:+1)1/2}
k=j+1
n+1
1/2 85— 1
< C797’L/ Z E{e 3”k—1 1{§k—1>0} (n_ k+ 1)1/2}7
k=j+1

the last inequality following from the fact that sup,.,(1 + z)e” 6% < o0.
We use once again the estimate (.13), which implies m < cgo P{S; > Si_1, Vk <
i < n}. Since (S; — Sk_1, k¥ < i < n) is independent of (Sk_1, Sj_;), this implies, with

Cg1 = C79Cy0,

n+1

1/2 2 : 85—
LHS( S Cg1 1 / E{e okt 1{§k—1>07 Si>Sk,1,Vk§i§n}}
k=j+1
n+1

< ey nt/? Z E{efgskfl 1{§n>0}}7
k=j+1

where S, := minj<;<,, S;. It remains to check that

n+1
(6.14) lim lim sup n'/? Z E{e_gs’“_l 1{§n>0}} =0.

Jj—00 n—o00 kejt1

This would immediately follow from Lemma 1 of Kozlov [R4], but we have been kindly
informed by Gerold Alsmeyer (to whom we are grateful) of a flaw in its proof, on page 800
line 3 of [P4], so we need to proceed differently. Since E{e~ 351 1is sopt < n- @At (n_fy
2)~1/2 (for n — co) uniformly in k € [2, n+ 1], we have n'/2 Ziiﬂ/% E{e 551 lis so1} —
0, n — co. On the other hand, (36) of Kozlov P4] (applied to § = 5 and n; = 1 there) implies
that lim; lim sup,, n'/2 Z,E’;/ﬁl E{e*%Sk*I 1(s >0y} = 0. Therefore, (6.14) holds: Lemma [.1]
is proved. 0
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7 Proof of Theorem and (I=14)—(@3=15) of Theorem
L

In this section, we prove Theorem [.3, as well as parts ([L.14)—([L.13) of Theorem [.4. We
assume ([[.1)), (L.2) and ([.3) throughout the section.

Proof of Theorem and ([.14)-(L.13) of Theorem [I.]: upper bounds. Let ¢ > 0. By
Theorem and Chebyshev’s inequality, P{W, 3 > n~B8/2+} . 0. Therefore, Whp <
n~B38/2+e() in probability, yielding the upper bound in ([.13).

The upper bound in ([.T4) follows trivially from the upper bound in ([.15).

It remains to prove the upper bound in Theorem [[.3. Fix v € (0, 1). Since W) is a
non-negative supermartingale, the maximal inequality tells that for any n < m and any

A >0,
E(ny) Cg2
7> < <
P{max W) 2 0p < =0 < 0
the last inequality being a consequence of Theorem [.J. Let ¢ > 0 and let ny, := |k*¢]|. Then
>, P{max,, <j<n, , W] > n, "7} < 0o, By the Borel-Cantelli lemma, almost surely for
all large k, max,, <j<n, ., W; < n;(l/QH(E/W). Since = can be arbitrarily small, this yields the

desired upper bound: W, < n=(1/2+e() 5, U

Proof of Theorem [I.3 and ([[.14)-({I-13) of Theorem [I-]: lower bounds. To prove the lower
bound in ([.T4)-([Z17), we use the Paley-Zygmund inequality and Theorem [[6, to see that

(7.1) P{W, 5 > n~B/2+el)1 > poll), n — oo.

This is the analogue of ([L.F]) for W,,. From here, the argument follows the lines in the proof
of the upper bound in ([.§) of Theorem (Section f), and goes as follows: let £ > 0 and
let 7, :=inf{k > 1: #{u: |u| = k} > n*}. Then

P{Tn <00, min Wiy, 3 < n~ 327 exp[—F max V(:c)]}

ke %,n] |z|=Tn
< Z P {Tn < 00, Wigr,5 <0~ G827 exp[—f max V(a:)]}
ke[, n] lel=n
n2s
< Z (P {Wk,ﬁ < n—(sﬁ/z)—e})t J’
ke[, n]

which, according to ([1]), is bounded by nexp(—n=¢|n*]) (for all sufficiently large n), thus
summable in n. By the Borel-Cantelli lemma, almost surely for all sufficiently large n, we
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have either 7, = oo, or minge(zn n Wiir, g > n~B8/2)=¢ exp[—3 max|g|—-, V (¢)]. Condition-
2¢e logn
logm
n — o0, and W, g > mingen ) Wir, g for all sufficiently large n. This readily yields lower

bound in ([14) and ([I9): conditionally on the system’s survival, W, 5 > n~(38/2+o1)
almost surely (and a fortiori, in probability).

ally on the system’s ultimate survival, we have %max‘x‘:n V(z) — co1 as., 7, ~ a.s.,

The lower bound in Theorem is along exactly the same lines, but using Theorem [[.3
instead of Theorem [L.4. O

8 Proof of Theorem

Assume (L)), (L.2) and (L.3). Let 8 > 1. We trivially have W, 3 < W, exp{—(8 —
1)infjy=n, V(u)} and W, g > exp{—Sinf},—, V(u)}. Therefore, % logﬁ < infpy—n V(u) <

ﬁ log w5 on “n. Since 8 can be as large as possible, by means of Theorem [[.J and of

parts ([.14)-(T.13) of Theorem [[.4, we immediately get ([.7) and ([.9).

Since W, > exp{—inf|,=, V(u)}, the lower bound in ([[.§) follows immediately from
Theorem [[.J, whereas the upper bound in ([.§) was already proved in Section . O

9 Proof of part (=13) of Theorem f-4

The upper bound follows from Theorem [.3 and the elementary inequality W, 5 < W/, the
lower bound from ([[.§) and the relation W, 5 > exp{—3inf, =, V(u)}. O

10 Proof of Theorem [I 1

The proof of Theorem relies on Theorem [[LJ and a preliminary result, stated below as
Proposition [[0.1]. Theorem [[.§ ensures the tightness of (n'/2W,,, n > 1), whereas Proposition
[[0.7] implies that WWL:l converges to 1 in probability (conditionally on the system’s survival).

Proposition 10.1 Assume ([L.1), (L.3) and ([.3). For any v > 0, there exists v, > 0 such
that for all sufficiently large n,

(10.1) P{‘M;;“ - 1) >

n

5”} <n M,

Proof. Let 1 < 8 <min{2, 1+ p(1)}, where p(1) is the constant in Corollary P.4.
We use a probability estimate of Petrov B4, p. 82: for centered random variables &, - - -,
& with E(|&]%) < oo (for 1 < i < £), we have E{|20_ &P} <237 E{|&|}.
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By definition, on the set .¥,, we have

n+1 1 Z Z o Val@) _ 1)’

lul=n z€TGW: |a|u=1

V(u

where TV and |z|, are as in (P-]]) and (2-4), respectively. Conditioning on .%,,, and applying
Proposition R.1] and Petrov’s probability inequality recalled above, we see that on .7,

a0z {1 [ 2} <2 3 SER{| e e

n
lul=n

where cg3 1= 2E{| >, e V) — 1|8} < oo (see (B10)), and W, 5 is as in ([[.11)).
Let ¢ > 0 and b > 0. Let s € (%5+, 1). Define D, := {W, > n= /2=y 0 {W, 5 <
—(38/2+01 By Proposition B, P{W, < n~ /2= &} < n~? for some ¢ > 0 and all
large n, Whereas by Theorem [[.§, P{W,5 > n~ 912 T} < pdUm 2O B S =
n~0- ol . Therefore,

e —BV (u)

P {,V\Dn} < nfﬂ + n*(l*S)b‘i’O(l)’ n — 0.

On the other hand, since . C ., it follows from ([[0.9) and Chebyshev’s inequality that
for n — oo,

Wi s
] 1Dnﬂ¢7n

< gy PGB/ 48

IN

P{‘W”“ ~ 1‘ >n"", D, ,7}

Wn n”ﬁ E { Cg3

As a consequence, when n — oo,

P{ ‘ Ros 1‘ >n" y} <70 T Ameb o) oy B Atbes
W, R '

n

We choose ¢ and b sufficiently small such that 78 — 8+ b+ 0 < 0. Proposition is
proved. O

We now have all of the ingredients needed for the proof of Theorem [[1].

Proof of Theorem [[.]. Once Proposition [[0.]] established, the proof of Theorem [[.1 follows
the lines of Biggins and Kyprianou [[].
Assume (1)), ([2) and ([J). Let A, > 0 satisfy E{(\,W,)"/2} = 1. That is,

An = {BWY2)}
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By Theorem [, we have 0 < liminf, o 2% < limsup, ., 3% < oo, and (A\,W,,) is tight.
Let # be any possible (weak) limit of (A\,W,,) along a subsequence. By Theorem [.§ and
dominated convergence, E(#'/?) = 1. We now prove the uniqueness of #'.

Wn+1 — Z e_V(U) Z e—Vv(ﬂﬁ)'

o =1 2€TGW, [a],=n

By definition,

By assumption, A\, W,, — # in distribution when n goes to infinity along a certain sub-
sequence. Thus A, W, converges weakly (when n goes along the same subsequence) to
> jol=1 e~V %, where, conditionally on (v, V(v), |v] =1), #, are independent copies of 7.

On the other hand, by Proposition [[0.1], A,WW,,11 also converges weakly (along the same
subsequence) to . Therefore,

7 VO,

lv]=1

This is the same equation for £* in (B.5). Recall that (B.J) has a unique solution up to a scale
change (Liu [R7)), and since E(7//\1/2) =1, we have # "2 ¢ £, with cgy := [E{(£9)Y/2}]) 72
The uniqueness (in law) of W shows that AW, converges weakly to # when n — oo.

By (B3), P{W,, > 0} = P{#,} — P{¥} = P{&" > 0}. Let # > 0 be a random
variable such that

(10.3) E(e”)=E@e " |# >0), Va>0.

It follows that conditionally on the system’s survival, \,W,, converges in distribution to #'.

O
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