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[1] An evaluation is made of ozone profiles retrieved from measurements of the
nadir-viewing Global Ozone Monitoring Experiment (GOME) instrument. Currently, four
different approaches are used to retrieve ozone profile information from GOME
measurements, which differ in the use of external information and a priori constraints. In
total nine different algorithms will be evaluated exploiting the optimal estimation (Royal
Netherlands Meteorological Institute, Rutherford Appleton Laboratory, University of
Bremen, National Oceanic and Atmospheric Administration, Smithsonian Astrophysical

Observatory), Phillips-Tikhonov regularization (Space Research Organization
Netherlands), neural network (Center for Solar Energy and Hydrogen Research, Tor
Vergata University), and data assimilation (German Aerospace Center) approaches.
Analysis tools are used to interpret data sets that provide averaging kernels. In the
interpretation of these data, the focus is on the vertical resolution, the indicative altitude of
the retrieved value, and the fraction of a priori information. The evaluation is completed
with a comparison of the results to lidar data from the Network for Detection of
Stratospheric Change stations in Andoya (Norway), Observatoire Haute Provence
(France), Mauna Loa (Hawaii), Lauder (New Zealand), and Dumont d’Urville (Antarctic)
for the years 1997—-1999. In total, the comparison involves nearly 1000 ozone profiles and
allows the analysis of GOME data measured in different global regions and hence
observational circumstances. The main conclusion of this paper is that unambiguous
information on the ozone profile can at best be retrieved in the altitude range 15—48 km
with a vertical resolution of 10 to 15 km, precision of 5—10%, and a bias up to 5% or
20% depending on the success of recalibration of the input spectra. The sensitivity of
retrievals to ozone at lower altitudes varies from scheme to scheme and includes

significant influence from a priori assumptions.
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1. Introduction

[2] In this paper we will evaluate different approaches to
retrieve height-resolved ozone information from spectral
data of the Global Ozone Monitoring Experiment
(GOME), which was launched in April 1995 on board
the second European Earth Remote Sensing (ERS-2)
satellite. An evaluation of the currently available retrieval
algorithms becomes increasingly important with the grow-
ing volume of satellite data from past, recent and future
missions. In particular, this involves the ozone profile data
from nadir-viewing instruments like Solar Backscatter
Ultraviolet (SBUV), SBUV/2, GOME, Scanning Imaging
Absorption Spectrometer for Atmospheric Cartography
(SCIAMACHY), GOME-2 and Ozone Monitoring Instru-
ment (OMI). Some of the algorithms provide data products
which include averaging kernels and a priori profile
information, which can be used to characterize the retrieval.
The methods used here are taken from Meijer et al. [2003]
and Connor et al. [1995]. In the paper by Meijer et al. [2003],
different methods were investigated and applied to GOME
data measured around the lidar station in Lauder, New
Zealand, and retrieved by the algorithm of the Royal Nether-
lands Meteorological Institute (KNMI). This paper will
include data from nine different GOME ozone profile re-
trieval algorithms, and they will be compared to lidar data
from five stations selected to represent different global
regions.

[3] In April 2001 the European Space Agency (ESA)
initiated the GOME-1 Ozone Profile Retrieval Working
Group (GOME1-O3P-WG, see also http://earth.esa.int/
gomel/). In five meetings spread over 2.5 years this group
served as a forum for scientists working on the retrieval and
validation of GOME ozone profiles. The main objectives
were to develop and improve retrieval algorithms and
intercomparison methods, which should ultimately enable
long-term ozone trend monitoring and prepare for future
mission data processing. Although in some papers two
satellite retrieval algorithms have been compared [e.g., see
Miiller et al., 2003], this paper is unique in comparing nine
different retrieval algorithms applied to the same satellite
irradiance measurements (level 1 data) to retrieve vertical
profiles of ozone (level 2 data). All groups were provided
with the same set of GOME spectral data which have been
processed to ozone profiles in a uniform format and on a
common altitude grid, which was requested to all partic-
ipants in order to foster intercomparisons and interpretation
studies. The processed data have been evaluated by inde-
pendent groups (i.e., Space Aeronomy Institute of Belgium
(BIRA-IASB) and Dutch National Institute for Public
Health and the Environment (RIVM)) for their retrieval
capabilities, data quality and particular merits. It should be
clear that the scope of this evaluation paper is on charac-
terization of these nine algorithms rather than on ranking.

[4] In section 2 we present the nine different retrieval
algorithms currently available and involved in the GOMEI-
O3P-WG. In section 3 we present the interpretation results
derived from the provided averaging kernel and a priori
information. In section 4 we present intercomparison results
of the GOME data with data from stratospheric ozone lidars
at several strategic locations (northern/southern midlatitude,
tropics, and polar region). In section 5 we present the
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discussion which is followed in section 6 with final con-
clusions and an outlook to future work.

2. GOME Ozone Profile Retrieval Algorithms

[s] The GOME instrument [Burrows et al., 1999a]
measures, in nadir-viewing geometry, scattered sunlight
from the atmosphere in the ultraviolet (UV), visible and
near-infrared spectral regions (237—794 nm at 0.2—0.4 nm
resolution). The GOME spectral range is covered by four
diode array detectors. The ozone profile retrieval methods
use spectral windows within bands la, 1b and 2 (see
Figure 1), covering the range 237—406 nm. GOME scans
the Earth atmosphere using a scan mirror, which rotates
perpendicular to the flight direction in an angle ranging
from 31° to —31° with respect to the zenith direction. This
mirror takes 4.5 s to scan in one direction (forward scan)
and 1.5 s to return in the opposite direction (backward
scan), and during this scanning the GOME detectors are
read out every 1.5 s. Nominally, this results in a swath of
about 960 km covered by the scan mirror. The size of the
ground pixel in the flight direction is governed by the slit
opening and amounts to about 40 km. For the smallest
wavelengths the obtained signal-to-noise ratio is too small
during the 1.5 s integration time. Therefore part of band 1,
named band la, is read out every 12 s corresponding to a
ground pixel of 960 by 80 km?” The upper wavelength
limit of band 1a was at the start of mission set to 307.2 nm,
but in June 1998 it was shifted to 282.9 nm (to obtain
more ozone profile information for smaller ground pixels,
especially tropospheric ozone). In addition, for correction
of its polarization sensitivity, GOME measures the degree
of polarization using three dedicated, broadband polariza-
tion measurement devices (PMDs) covering the spectral
ranges 300—400, 400—600, and 600—800 nm, respectively.
As the PMDs are read out every 93.75 ms, one PMD pixel
covers 1/16th of every nominal pixel. This subpixel
information can be used to estimate the cloud fraction
[Koelemeijer et al., 2001]. GOME spectra, i.e., geolocated,
spectrally and radiometrically calibrated solar irradiances
and earthshine radiances, have been supplied by ESA
through the GOME Data Processor (GDP) [Deutsches
Zentrum fiir Luft- und Raumfahrt, 1996] version 2.0 with
key data version 8.5. The calibration includes a correction
for the polarization sensitivity, which can be turned on or
off in the codelivered extraction software.

[6] Height-resolved information of the ozone concentra-
tion can be derived from GOME measurements by exploit-
ing the steep increase of the ozone absorption cross section
from 350 to 265 nm. This information basically comes from
differences in effective scattering height, as photons at the
short-wavelength side are highly absorbed and carry only
information on the upper altitude layers, while photons with
increasing wavelength reveal information on lower layers of
the atmosphere. Currently, four different approaches are
followed to retrieve ozone profile information from GOME
data, which differ in the use of external information, a priori
constraints and exploited spectral range. Eight algorithms
are based on direct inversion of the GOME measured
spectra using optimal estimation (OE), Phillips-Tikhonov
regularization (PTR), or neural network (NN) techniques.
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Figure 1. Wavelength ranges exploited by the nine different retrieval schemes to retrieve ozone profiles

from GOME measurements (names indicated on the left). The top lines, indicated with GOME, show the
ranges available from the three applicable GOME measurement bands; a change to the next band is
indicated with a vertical step. The lines indicate the situation after June 1998, when the division between
band la and 1b was changed (asterisk denotes its previous position). The DOAS fit window is indicated
in gray for DLR because this algorithm only exploits the ozone column information present in the GOME

spectra and not the profile information.

The ninth scheme is based on assimilation into a three-
dimensional (3-D) atmospheric model of the total column
ozone densities from the GOME operational level 2 product
generated by Deutsches Zentrum fiir Luft- und Raumfahrt
(DLR) on behalf of ESA, i.e., data assimilation (DA)
technique. An overview of the used input parameters and
main algorithm characteristics is shown in Table 1. In Table 1,
coadding of pixels refers to the averaging of all band 1b
and 2 spectra within the band la integration period, which is
then combined with the band la spectrum to get a single
measured spectrum used as input for the retrieval. This
coadding ensures that for all retrieval wavelengths the
detector observed the same ground scene. As the integration
time of the combined spectrum is longer, the resultant
measurement area (or ground pixel) is larger. The disadvan-
tage of this approach is therefore that fewer of the larger
scenes are likely to be cloud-free. Other schemes combine
measurements from the 960 by 80 km? band 1a pixel with
measurements in band 1b and band 2 at native 320 by 40 km?
pixel size. The exploited wavelength region for each algo-
rithm is shown in Figure 1. In Table 1 we have also indicated
which algorithms used the optional GDP polarization cor-
rection or another correction scheme. In the following
sections we will briefly describe the specific features and
implementation method of all nine algorithms, and for further
reading and more specific details the relevant references are
provided.

2.1. Optimal Estimation Approach (Five Algorithms)

[7] Ozone profile retrieval from UV reflectance measure-
ments is an ill-posed problem which can only be solved by
applying suitable constraints. The well-known nonlinear
OE approach outlined by Rodgers [2000] iteratively applies
the linear OE formula to find the cost function minimum.
This method can be used for the inversion of weakly
nonlinear forward models, and solves ill-posed problems
by using a priori information as regularization constraint. In
the retrieval the spectral measurement is related to an
atmospheric profile with a forward model; the use of an a
priori profile and its covariance matrix stabilizes this
inversion by providing suitable constraints for a solution.

[8] The retrieved ozone profile from the optimal estima-
tion method can be regarded as a weighted average between
a priori and measurement information. This is reflected in
[Rodgers, 2000, p. 31]

Xretrieved = AXgrue + (I - A)Xa priori» (1)
with the matrix A having elements of

_ ax(z) retrieved (2)

/
A7) (2 e
and for the OE methods A is given as [Rodgers, 2000,
p. 671

A =S,K"(KS,K" +5.) K. (3)

[9] In these equations, Xyetrieved> Xa priori> aNd Xeeye are
vectors of ozone number densities at the altitude levels
z;—1., of the retrieval algorithm and they correspond to the
values of the retrieved, a priori and true (i.e., observed)
state, respectively. A is the so-called averaging kernel
matrix, or model resolution matrix. Reorganization of
equation (1) shows that A characterizes the mapping
between (1) the difference between the true and the a
priori profile (true anomaly) and (2) the difference between
the retrieved and a priori profile (retrieved anomaly). In
equation (3), S, and S, are the a priori and measurement
error covariance matrices, respectively, and K is the so-
called weighting function matrix, which describes how the
forward model (F(x)), that relates the spectral measure-
ment to the true state vector, is sensitive to changes in the
state vector, i.e., K; = OF(x)/Ox;.

[10] In case of ozone profile retrieval from UV spectra of
nadir-viewing instruments like GOME, the averaging kernel
reflects the limited sensitivity of the spectral measurement
to fine-scale structures and to the profile below the ozone
maximum. In addition, the kernels are dependent on the
detailed specification of the state vector, a priori and
measurement errors which are particular to a specific
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Table 1. Overview of the Main Input Parameters and Algorithm Characteristics®
Algorithm Used A Priori  Correlation  Temperature Cloud O; Cross Pixel Polarization Radiative
Group® Approach® Os3(2)° Length,® km Profile® Information®  Sections®  Coadding  Corrected Spectra’  Transfer Model”
1UP OE F-K 5¢ UKMO albedo FM yes GDP-extractor GOMETRAN
KNMI OE F-K 4-5¢ ECMWEF" FRESCO B-P, O yes GOMECAL LIDORT
RAL OE F-K 6-8' UKMO albedo B-P no GDP extractor GOMETRAN
SAO OE T-v8 6' ECMWF GOMECAT MA yes GOMECAL LIDORT
NOAA OE F-K' ~108 ECMWEF 14 T-v8°¢ B-P no GDP extractor TOMRAD
SRON PTR N/A N/A UKMO FRESCO \Y yes no SRON
uTvV NN trained N/A no no N/A no no N/A
ZSW NN trained N/A UKMO O, A band N/A no GDP extractor N/A
DLR DA column N/A UKMO N/A N/A N/A N/A N/A

?As described in section 2. N/A, not applicable for this approach.

®See the appropriate subsections in section 2 for the used abbreviations (e.g., IUP, OE, UKMO, GOMETRAN, etc.).

°F-K, ozone climatology of Fortuin and Kelder [1998]; T-v8, TOMS version 8 climatology [Bhartia and Wellemeyer, 2002].

dCorrelation length is used to construct the a priori covariance matrix, see equation (4) in section 2.1.

€0, ozone cross sections update of Orphal [2003]; MA, ozone cross sections of Malicet et al. [1995]; V, ozone cross sections of Voigt et al. [1999]. FM,

ozone cross sections measured in laboratory on GOME flight model [Burrows
and Bass [1984].

et al., 1999b]; B-P, ozone cross sections of Bass and Paur [1984] and Paur

{GDP extractor, GOME Data Processor [Deutsches Zentrum fiir Luft- und Raumfahrt, 1996] extractor option; GOMECAL, spectral recalibration tool for

GDP spectra [van Geffen, 2004].
£In equation (4), b = .
?‘Climatological values are used instead of analyses.
'In equation (4), b = 1.
JNormally, SBUV version 8 climatology [McPeters et al., 2003] are used.

retrieval scheme. For example, as evident from equations (1)
and (3), for smaller measurement errors the averaging kernel
matrix tends toward the identity matrix and hence the OE
solution becomes less dependent on the a priori profile. For
larger measurement errors the averaging kernel elements go
to zero and the solution relies more on the a priori. For the a
priori errors the situation is reverse. Therefore the “choice”
for the settings of the input measurement and a priori errors
is important in the design of a retrieval system. Although
there is a consensus for the measurement error, there is no
such thing for the a priori. The complete a priori covariance
matrix is generally constructed assuming an exponential
decrease from the diagonal value (i.e., a priori variance)
using a correlation length. The off-diagonal elements of S,
can then be written as

Si57) = VSiE2) S e @)

[11] with b = 1 or %, depending on whether Rodgers
[1990, equation 16] or Hoogen et al. [1999, equation (3)] is
followed, respectively, for the chosen functional decay. The
more determining factor in equation (4) is the choice for /,
which is the so-called correlation length. The distance at
which the covariance has decreased by e ', from the
variance at the nominal altitude, can be directly compared
between schemes that use equation (4) with different values
for b. This distance is reached when (z—z') equals / and then
allows direct comparison of /.

[12] Equation (1) reflects the deviation between the
true and the retrieved profile, which is especially impor-
tant when comparing the retrieved profile to correlative
measurements. In the two extreme cases when (1) A is
the identity matrix: the retrieved and the true profiles are
equal, and (2) all elements of A are zero: the retrieved
profile equals the a priori values. A detailed analysis of
the averaging kernels is presented in section 3.

2.1.1. IUP Algorithm

[13] The Institute of Environmental Physics at the

University of Bremen in Germany (IUP) has developed

the full retrieval method (FURM) algorithm, and data
presented here stem from version 5.0. This algorithm is
based on the OE method but with the addition that it
includes the information matrix method from Kozlov
[1983], which adapts the number of fit parameters to
the measurement information content [Hoogen et al.,
1999].

[14] The radiative transfer model (RTM) GOMETRAN,
specifically designed for GOME retrieval applications
[Rozanov et al., 1997, 1998], is used for calculating
radiances and weighting functions. Besides ozone eigen-
vectors, other atmospheric parameters such as aerosol,
temperature, NO,, albedo, Rayleigh scattering and the so-
called Ring effect are simultaneously fitted. These param-
eters show negligible correlation among each other. After
each iteration step a shift and squeeze between the wave-
length axes of radiance, irradiance and cross sections is
performed for wavelength adjustments. The Ring effect, or
the filling in of solar absorption lines, can be explained by
rotational Raman scattering and is taken into account by
using look-up tables, for various atmospheric scenarios and
solar zenith angles, to correct the GDP spectra.

[15] Clouds are treated as highly reflecting surfaces at
0-km altitude (clouds as albedo approach), which means
that in the RTM the spherical albedo represents the
weighted mean of surface and cloud albedo, the weight
being the fractional cloud cover. Initially, albedo (and
hence cloud) information is derived from the PMDs, and
then it is further adjusted as part of the fitting process. In
the RTM the Earth’s surface is assumed to be a Lambertian
reflector with wavelength-dependent albedo.

[16] The GDP spectra contain unresolved problems with
the radiometric calibration, particularly between 260 and
290 nm [Hilsenrath et al., 1996]. In the retrieval they appear
as spectral fit residuals with characteristic structures, but
none of the atmospheric fit parameters can account for them
[Hoogen et al., 1999]. An empirical calibration correction
function was derived separately for bands 1 and 2. In the
retrieval algorithm third-order Chebyshev polynomials are
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taken into account as additional fitting parameters using the
coefficients of the correction function. Below 290 nm, there
are also strong NO, spectral features in the measurements
[McPeters, 1989], which cannot appropriately be taken into
account in the RTM. These two reasons lead to the
restriction in the [UP algorithm (version 5.0) of only fitting
wavelengths longer than 290 nm. In a more recent devel-
opment, a new calibration correction scheme has been
introduced that permits adding the wavelength range
275-290 nm to the fit window [Tellmann et al., 2004],
but this new version (6.0) was not available for this
comparison.

[17] The a priori ozone profiles used in the IUP algorithm
are from the global ozone climatology of Fortuin and
Kelder [1998], which is based on ozonesonde and satellite
measurements. This climatology provides monthly zonal
mean ozone profiles in 10° latitude bands. The a priori
variance of these profiles is fixed to 30%. The a priori
covariance matrix is generated following equation (4) with
b = and using a correlation length of 5 km. The tempera-
ture profiles are taken from the UK Met Office (UKMO)
analysis [Swinbank and O’Neill, 1994], and are used to
take into account the temperature dependence of the ozone
Cross sections.

2.1.2. KNMI Algorithm

[18] The Royal Netherlands Meteorological Institute
(KNMI) developed the ozone profile retrieval algorithm
(OPERA), and version 1.3 was used to generate data for this
paper. Note that this algorithm is different from the retrieval
algorithm described in the paper of van der A et al. [2002],
and the main difference is the RTM used. Ozone profiles are
derived from the GOME data in the wavelength range 270—
330 nm, and the spectra are coadded for the data coming
from band 1b and 2. The radiometric and wavelength
calibration of the GDP level 1 data are too inaccurate for
ozone profile retrieval, and therefore several corrections are
applied using the spectral calibration program GOMECAL
(available through http://www.knmi.nl/gome_fd/gomecal/).
This involves an improved wavelength calibration [van
Geffen and van Oss, 2003], an improved correction for
the polarization sensitivity of GOME [Schutgens and
Stammes, 2003] and a radiometric recalibration involving
a time-independent and a time-dependent (degradation)
correction [van der A et al., 2002].

[19] The Sun-normalized radiances are simulated by
constructing an atmospheric model and running the Line-
arized Discrete Ordinate Radiative Transfer model
LIDORTA in six streams [van Oss and Spurr, 2002]; the
number of streams sets the angular resolution of the model.
LIDORTA is a simplified and sped-up version of the full
LIDORT model [Spurr et al., 2001] replacing several
numerical solvers with analytical solutions. LIDORTA is
only applied for the multiple scattered part of the radiance
and runs with a limited set of 20 layers. The single
scattering part is computed with a dedicated, simpler and
therefore faster, single scattering model with the full re-
trieval grid of 40 layers. In the model, the ozone profile
elements that are actually fitted for are layer column
amounts at a fixed vertical grid. In this version of the
algorithm, the layers are chosen in such a way that they
have the required GOMEI1-O3P-WG altitude levels at their
centers.
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[20] LIDORTA treats the sphericity of the atmosphere
both for the solar direct beam and the line of sight by a
pseudospherical approximation. LIDORTA is a scalar
model in the sense that it does not treat polarization
and the vector nature of the radiation field. This gives
errors for the radiance at the top of the atmosphere in the
wavelength range used that can reach 10% for scattering
angles of 90°. This error is corrected for using a
precomputed look-up table containing the scalar error
for the complete range of wavelengths, atmospheric and
viewing conditions. Raman scattering (responsible for the
Ring effect) is not treated in the RTM, but accounted for
using a high-resolution spectrum convolved with the
Raman lines [Chance and Spurr, 1997], and the ampli-
tude for this Ring spectrum is fitted as an auxiliary
parameter.

[21] The atmospheric model used in the KNMI algorithm
treats (fractional) cloud cover as a Lambertian reflecting
layer at the cloud top height for the fraction of the pixel
covered with clouds. The effective cloud fraction and cloud
top height are obtained from the Fast Retrieval Scheme for
Cloud Observables (FRESCO) extracting information from
the oxygen A band [Koelemeijer et al., 2001]. By fitting an
effective cloud fraction, the presence of aerosols is partly
taken into account in the FRESCO retrieval. The error made
with this procedure is smaller than when taking a (random)
guess at the unknown aerosol distribution (confirmed by
Boersma et al. [2004] for GOME NO, retrievals). The
surface albedo is fitted for cloud fractions <0.15, and for
all other cases the albedo of the cloud.

[22] For the ozone cross sections, OPERA uses the
temperature-parameterized data set of Bass and Paur
[1984] and Paur and Bass [1984], corrected according to
Orphal [2003]. Trace gases other than ozone are not treated
and assumed not to affect the retrieval in this spectral range.
The a priori ozone profile information comes from the
global ozone climatology of Fortuin and Kelder [1998],
with covariance information derived from the same data set
[Bhartia, 2002], which corresponds to a correlation length
of 4—5 km in equation (4) with b = ).

2.1.3. RAL Algorithm

[23] The Rutherford Appleton Laboratory (RAL) has
developed a three-step scheme to retrieve ozone profiles
spanning troposphere and stratosphere [Siddans, 2002;
Munro et al., 1998]. Version 2.0 of the retrieval scheme
was used for this paper. In step 1, an ozone profile is
retrieved from Sun-normalized radiances at selected
wavelengths of the ozone Hartley band (GOME band 1)
in the range 265-307 nm. Information from this spectral
range is primarily on stratospheric ozone. A priori ozone
profile comes from the Fortuin and Kelder [1998] clima-
tology except that in the troposphere a fixed value of
10" molecules/m’ is assumed (1.5—2 times larger than the
climatological values). The a priori uncertainty is set by
default to 100% for retrieval levels at 0, 6 and 12 km, 30%
at 16km, 10% from 20—52 km, 50% at 56km, and 100% from
60—80km (retrieval levels are spaced with 4-km intervals
throughout the stratosphere and mesosphere). The default
uncertainty is replaced by the Fortuin and Kelder [1998]
climatological relative variability at altitudes where the latter
exceeds the former. A vertical correlation length of 6 km is
applied to generate the covariance matrix using equation (4)
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with b = 1. The surface albedo, a scaling factor for the Ring
effect and the dark signal are retrieved jointly.

[24] In step 2, the surface albedo for each of the eight
band 2 ground pixels is retrieved from the Sun-normalized
radiance spectrum between 335 and 340 nm. Then, in
step 3, information on lower stratospheric and tropospheric
ozone is added by exploiting the temperature dependence
of the spectral structure in the ozone Huggins bands. The
wavelength range 323—334 nm (GOME band 2) is used in
conjunction with UKMO analyzed temperature profiles
[Swinbank and O’Neill, 1994]. Each direct Sun band 2
spectrum is fitted to a high-resolution (0.01 nm) solar
reference spectrum to improve knowledge of wavelength
registration and slit function width.

[25] In the Huggins bands fit, the log of Sun-normalized
radiance is taken and a low (third) order polynomial is
subtracted, allowing differential structures to be fitted to a
precision of <0.1% root-mean-square (compare ~1% in the
Hartley band). This differential approach in step 3 leads to
improvements in the tropospheric retrieval and results in
less stringent requirements on the absolute radiometric
accuracy. In this step the a priori ozone profile and its error
are the output from step 1, except that an a priori correlation
length of 8 km is imposed.

[26] The RTM is derived from GOMETRAN [Rozanov
et al, 1997], but the original code has been modified
substantially in order to increase its efficiency without
losing accuracy. Within the RTM there is no explicit
representation of clouds, which are treated as highly
reflecting surfaces at 0-km altitude (clouds as albedo
approach, see section 2.1.1). When clouds are present, a
negative bias in retrieved ozone below the actual cloud top
height is therefore to be expected from this scheme.
2.1.4. SAO Algorithm

[27] The Smithsonian Astrophysical Observatory (SAO),
a research institute of the Smithsonian Institution, is a part
of the Harvard-Smithsonian Center for Astrophysics (CfA).
The SAO algorithm, version 0.9, also uses the OE approach
to derive ozone profile information. This algorithm
performs a detailed treatment of (1) variable slit width
in the instrument transfer function, (2) variable wavelength
shift between radiances, irradiances and spectroscopic data,
(3) real-time first-order Ring effect correction [Sioris and
Evans, 2000], (4) undersampling correction [Chance et al.,
2005], and (5) polarization correction.

[28] Ozone profiles are retrieved from GDP data with the
GOMECAL polarization correction only (i.e., not using the
other GOMECAL correction options). To reduce measure-
ment errors and because of relatively broad ozone absorp-
tion structure in 289-307 nm, five neighboring pixels
(i.e., in wavelength grid) are coadded and sampled at
every 2 pixels. LIDORT [Spurr et al., 2001] is used to
simulate radiances and weighting functions with similar
polarization correction to the KNMI algorithm. The state
vector includes ozone number density at 26 levels of 2 km
from 0— to 50—km altitude, surface albedo, scaling
parameters for Ring effect and undersampling correction,
and scaling and shift parameters for other trace gases
(NO,, SO,, BrO).

[29] In the characterization of the atmosphere, the SAO
algorithm uses monthly mean stratospheric aerosol data
from SAGE-Il [Bauman et al., 2003] and tropospheric
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aerosol model fields from the Global Ozone Chemistry
Aerosol Radiation and Transport (GOCART) model [Chin
et al., 2002] as described by Martin et al. [2003]. Clouds are
treated as Lambertian surfaces, and cloud fraction and cloud
top pressure come from the GOME cloud retrieval algo-
rithm (GOMECAT, which was formerly abbreviated as
CRAGQG) [Kurosu et al., 1999]. An initial surface albedo is
derived from the spectral measurements at 370 nm, where
atmospheric absorption is minimal. The SAO algorithm
uses daily European Centre for Medium-Range Weather
Forecast (ECMWF) temperature profiles and National
Centers for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) surface pressure. The
Total Ozone Mapping Spectrometer (TOMS) version 8 ozone
profile climatology [Bhartia and Wellemeyer, 2002]
with Earth-Probe TOMS monthly mean total ozone is
used to initialize a priori ozone profiles. This climatology
has 3—10 profiles for each 10° latitude band and month,
and the Earth-Probe TOMS monthly mean total ozone is
used to select the appropriate a priori ozone profile from
this data set. The a priori standard deviations are based on
a 15 year ozone profile climatology, from SAGE and
ozonesonde data [McPeters et al., 2003], with the follow-
ing changes: the standard deviations at 40—50 km are
assumed to be 70, 60, 50, 40, 30, 20% for 50, 48, 46,
44, 42, 40 km, respectively; and between 0 and 10 km,
the a priori standard deviations are required to be at least
40%. The off-diagonal elements of the covariance matrix
are generated using equation (4) with b = 1 and a
correlation length of 6 km. In addition, the ozone profiles
above 50 km are fixed using climatological values [Bhartia
and Wellemeyer, 2002].

2.1.5. NOAA Algorithm

[30] The National Oceanic and Atmospheric Administra-
tion (NOAA) has applied the version 8 SBUV/2 algorithm,
developed for the SBUV instruments, to the GOME data.
Version 8 was derived from the version 6 algorithm which is
described by Bhartia et al. [1996]. Unlike the previous four
OE algorithms, this algorithm was not specifically designed
for GOME data. The SBUV data are measured at the
following wavelengths (nm): 251.99, 273.51, 283.27,
287.62, 292.26, 297.54, 301.93, 305.80, 312.50, 317.51,
331.23, and 339.84 with a bandwidth of ~1.1 nm. A
triangular filter centered at those values has been used to
convert GOME spectral data to the SBUV band pass.
Because the GOME data have large errors below 270 nm,
an extrapolation was used to provide the standard input for
the SBUV retrieval algorithm at 251.99 nm.

[31] The SBUV algorithm uses a single-scattering forward
model calculation coupled with adjustments from multiple
scattering tables created from the RTM developed for
TOMS, called TOMRAD. This model is based on succes-
sive iteration of the auxiliary equation in the theory of
radiative transfer developed by Dave [1964]. This solution
accounts for all orders of scattering, as well as the effects of
polarization, by considering the full Stokes vector in obtain-
ing the solution. However, the solution is limited to Ray-
leigh scattering only and can only handle reflection by
Lambertian surfaces. Modifications that have been incorpo-
rated into the code include a pseudospherical correction,
molecular anisotropy [Ahmad and Bhartia, 1995], and
rotational Raman scattering [Joiner et al., 1995]. In the
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pseudospherical correction, the incoming and the outgoing
radiation is corrected for changing solar and satellite zenith
angle due to Earth’s sphericity but the multiple scattering
takes place in plane parallel atmosphere. Comparison with a
full-spherical code indicates that this correction is accurate
to 88° solar zenith angle [Caudill et al., 1997]. For the cloud
calculations, the algorithm uses an 1° x 1° climatology of
monthly cloud top pressures [McPeters et al., 2003], and a
similar snow/ice climatology. If snow or ice is present the
clouds are treated as though they are at the surface.

[32] The version 8 SBUV(/2) algorithm has its own a
priori ozone [McPeters et al., 2003] and temperature profile
database, but they were not used for the retrieved data in
this paper. For this study, the NOAA algorithm used the a
priori profiles supplied by KNMI (i.e., from Fortuin and
Kelder [1998] and ECMWEF analysis for ozone and tem-
perature, respectively). The a priori covariance is con-
structed as follows: the diagonal elements correspond to
50% variance and the nondiagonal covariance elements fall
off with a correlation length of approximately two Umkehr
layers (~10 km), using equation (4) with b = ). The
measurement covariance is diagonal and corresponds to
radiance errors of 1% in each band.

2.2. Phillips-Tikhonov Regularization Approach
(One Algorithm)

2.2.1. General Description

[33] The PTR approach [Phillips, 1962; Tikhonov, 1963]
has been little used for the analysis of atmospheric spectra,
e.g., to retrieve ozone profiles. However, it has been
extensively studied in the mathematical field of inversion.
The analysis of the fundamental problem by Hansen and
O’Leary [1993] and Hansen [1994] provides a basis for the
application of PTR to remote sensing problems. In contrast
to the OE approach, the PTR approach does not require a
priori ozone profiles and corresponding covariance matri-
ces, but uses a smoothness constraint to determine the
amount of information that can be retrieved from the
measurement. Nevertheless, the same equations (1) and
(2) are applicable, but here the vector X, priori 1S zero.
2.2.2. SRON Algorithm

[34] The inversion model of the algorithm developed by
the Space Research Organization Netherlands (SRON)
treats the ill-posed problem of ozone profile retrieval using
the PTR approach [Hasekamp and Landgraf, 2001]. In
addition to the least squares minimization between forward
model and measurement, this algorithm includes minimi-
zation of the first derivative norm of the profile as a side
constraint. The minimization of the least squares condition
and the minimization of the first derivative norm are
balanced by a regularization parameter. The rationale
behind the minimization of the first derivative norm as a
side constraint is that the measurement is insensitive to
fine-scale structures of the ozone profile. These vertical
structures do not influence the residual norm but strongly
influence the first derivative norm. The regularization
parameter should be chosen such that the retrieved profile
contains vertical structures that most significantly influ-
ence the measurement, while the structures to which the
measurement is insensitive should be filtered out. Such a
value of the regularization parameter is found from the
L curve [Hansen and O’Leary, 1993], which is a parametric
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plot of the first derivative norm versus the least squares
norm that has an L-shaped corner. The regularization
parameter corresponding to the corner of the L curve yields
a good balance between the two minimizations.

[35] The forward model of the SRON algorithm consists
of a RTM based on the Gauss-Seidel iteration technique,
which fully includes multiple scattering and polarization.
This model simultaneously calculates the four Stokes
parameters at the top of the atmosphere and the
corresponding analytical weighting functions, which are
essential for any physically based retrieval algorithm. The
RTM is described in detail by Landgraf et al. [2001] for the
scalar case and the extension to polarization is described by
Hasekamp and Landgraf [2002a]. The inclusion of polari-
zation in the radiative transfer calculations overcomes errors
of up to 10% made by the commonly used scalar RTMs,
which generally neglect the polarization properties of light.
Another advantage of this RTM is that it allows a direct
modeling of the polarization-sensitive GOME measurement
using the Mueller matrix formalism. Therefore the SRON
algorithm can be directly applied to the GOME measure-
ments, which are thus not corrected for polarization (see
Table 1). In this way the SRON algorithm is independent of
the (optional) polarization correction of the GOME data
processor, which can cause errors in the GOME spectra of
up to 8% [Hasekamp et al., 2002].

[36] The additional fit parameters included in the SRON
algorithm are a Lambertian surface albedo, a wavelength
shift to correct for calibration errors, and the amplitude of a
Ring spectrum precalculated by the code of Landgraf et al.
[2004]. The effect of clouds is accounted for by using the
independent pixel approximation, which separates the radi-
ative transfer calculations for the cloudy and the cloudless
scenes, with cloud fractions and cloud top heights from
FRESCO. The ozone cross sections used in the SRON
algorithm are those described by Voigt et al. [1999].

2.3. Neural Network Approach (Two Algorithms)

[37] The NN approach uses a fully feed forward neural
network, also called multilayer perceptron (MLP)
[Rumelhart et al., 1986], which can be applied to generate
a mapping between GOME spectral data, other supple-
mentary input parameters and the output ozone distribu-
tion. A training data set is used to derive the mapping
between various input parameters and the known collo-
cated ozone distributions. Unlike the other retrieval
schemes, which use a physical approach, this approach
uses all available information in a primarily statistical
way. One of the main advantages of the NN is that once
it is trained, which is a slow process, it is several orders
of magnitude faster than the other approaches. The main
disadvantage, or restriction, is the reliance on the training
data set, which should be large in volume and of the
highest available quality, in terms of accuracy, precision
and vertical resolution. The data quality of the NN output
can never be better than the quality of the training data.
2.3.1. UTYV Algorithm

[38] Tor Vergata University (UTV) has developed a NN
scheme to derive ozone profiles from GOME spectra. The
underlying idea of the algorithm is to train a NN using
already existing RAL retrieved ozone profiles [Munro et al.,
1998] and to use the trained net for new estimations [Del
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Frate et al., 2002]. The method takes advantage of both the
high retrieval accuracy characterizing the profiles provided
by RAL, and of the potentialities of the NN which after the
training process is able to give new estimations in real time.
Although there are better training data sets available and the
data quality of the UTV algorithm will never be better than
the RAL data, the advantage of using these data is its large
volume for training and perfect match in collocation. It
should be noted that the RAL products used in the con-
struction of the UTV algorithm are different (older version)
from those presented by RAL in this paper.

[39] The GOME data used in the scheme consist of
solar irradiance and Earth radiance spectra from GDP. The
solar irradiance spectra are measured daily by GOME and
are used as the reference light source spectra. The selected
wavelength range is 321-325 nm with a spectral resolu-
tion of 0.12 nm, which is based on a spectral calibration
performed using a fourth-order polynomial and has been
chosen according to four requirements. First, in this range,
there is a higher spatial resolution, with respect to the
Hartley ozone absorption band, due to a shorter integra-
tion time. Second, this range is characterized by a high
value of the signal-to-noise ratio. Third, in this range,
there is a high-temperature dependence of the ozone cross
sections [Burrows et al., 1999b]. Fourth, in this range,
there is the possibility to compute the ozone slant path
content using the Temperature Independent Differential
Absorption Spectroscopy (TIDAS) method [Zehner and
Casadio, 2000].

[40] The Earth radiance spectra also undergo a normali-
zation procedure in order to eliminate as much as possible
the effects of instrumental parameters on the spectral shape.
As far as the topology of the NN is concerned, a MLP-type
network with one hidden layer is considered. The input
vector consisted of the 26 selected GOME channels plus the
solar zenith angle and the ozone slant path, and also the
hidden layer has 28 units. Minimization of the error
function has been pursued by a scaled conjugate gradient
(SCQG) algorithm [Miiller, 1993].

2.3.2. ZSW Algorithm

[41] The Center for Solar Energy and Hydrogen
Research (ZSW) in Stuttgart, Germany, has developed a
NN scheme called Neural Network Ozone Retrieval
System (NNORSY), and version 1.2 was used to generate
data for this paper. In contrast to the UTV approach, the
nonlinear regression performed in the ZSW algorithm
infers the vertical distribution of ozone from a combina-
tion of climatological (latitude, season), meteorological
(temperature) and spectral information (GOME spectra,
solar zenith angle, scan angle, sensor age) [Miiller et al.,
2003; Miiller, 2002]. The system effectively learns to
correlate the behavior of atmosphere and sensor, even as
the sensor characteristics slowly change over time due to,
e.g., degradation. Thus only the basic GDP calibration
procedure for level 1 data is performed. ZSW algorithm
employs about 100 GOME spectral values covering the
wavelength ranges 290-325 nm (Hartley/Huggins band),
380—385 nm (atmospheric window), 598—603 nm (Chap-
puis band), and 758—772 nm (oxygen A band) [Miiller et
al., 2003]. Employing additional cloud or ground albedo
information was found to be unnecessary.
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[42] UKMO analyzed temperature profiles [Swinbank
and O’Neill, 1994] were included as a predictor, since the
stratospheric part of the atmospheric temperature field is
known to correlate strongly with ozone. In a NN the effect
of using temperature information is quite different from the
usage in an RTM, where only its comparatively small effect
on ozone absorption can be exploited.

[43] In the ZSW algorithm the MLP is trained by means
of a modified Resilient Propagation algorithm [Riedmiller,
1994], which is a fast heuristic approximation for a second-
order function minimization scheme [Bishop, 1995].
Knowledge about the “true” ozone profile, which is needed
as the MLP training target, is not derived from another
GOME retrieval algorithm, but rather from collocated,
highly accurate ozone measurements taken from different
moments in GOME’s lifetime and geographical coverage.
These measurements stem from ozonesondes provided by
the World Ozone and Ultraviolet Radiation Data Center
(WOUDC) [Hare et al., 2004] and the Southern Hemi-
sphere Additional Ozonesondes (SHADOZ) campaign
[Thompson et al., 2003], as well as from the Polar Ozone
and Aerosol Measurement III (POAM-II) [Lumpe et al.,
2002], Stratospheric Aerosol and Gas Experiment II
(SAGE-II) [Wang et al., 2002] and Halogen Occultation
Experiment (HALOE) [Russell et al., 1993] occultation
sounders.

[44] The data used for the training of this NN are similar
to those that are the basis for the climatologies used as a
priori information in the OE retrieval algorithms (described
in section 2.1). For the ZSW algorithm, unlike the OE
algorithms, there is no need to average them into, e.g.,
monthly means, thereby destroying information. The ill-
posed problem facing classical retrieval schemes is circum-
vented through the use of the nonspectral input data. In
particular, in areas where there is little information from the
satellite spectra (compare section 3.5), the MLP automati-
cally estimates the ozone profile on the basis of its non-
spectral input parameters. In other words, it behaves like a
dynamical, continuous, temperature-dependent climatology,
rather than a fixed a priori data set.

2.4. Data Assimilation Approach (One Algorithm)

2.4.1. General Description

[45] GOME is primarily used to retrieve total ozone
column densities from a spectral window around 330 nm
using the Differential Optical Absorption Spectroscopy
(DOAS) technique. In order to derive ozone profiles and a
daily global three-dimensional (3-D) ozone analysis, the
column observations are assimilated into a 3-D chemical
transport model (CTM). While the CTM is driven by
meteorological wind and temperature fields, the GOME
observations are sequentially assimilated into the model
using an optimal interpolation scheme [e.g., Khattatov et
al., 2000]. The vertically integrated total column contents of
the model are considered as the first-guess values. The
analyzed column values are then vertically distributed
weighted by the corresponding (first-guess) model profile
(i.e., in ozone mixing ratios). The assimilation scheme
accounts for time of observation, for spatial weighting
between observation and grid, and for model and observa-
tion errors. By applying this method a global synoptic 3-D
ozone analysis is available every 6 hours. Unlike the other
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approaches, this approach does not use the profile informa-
tion in the GOME spectra, which makes it an interesting
addition, as it represents the complete a priori knowledge of
the ozone vertical distribution considering all relevant
chemical and physical processes, and the meteorological
analyses.

2.4.2. DLR Algorithm

[46] For the assimilation approach the German Aerospace
Center (DLR) uses the 3-D global CTM called ROSE/DLR.
It is based on the ROSE model described in detail by Rose
and Brasseur [1989]. An updated model version (2.7) was
applied to generate the data presented in this paper [Thomas
et al., 2003]. This model covers all relevant gas-phase
stratospheric chemical processes including oxygen, hydro-
gen, carbon, nitrogen, chlorine, and bromine species. Het-
erogeneous processes on polar-stratospheric clouds and on
sulfate aerosols are also included in the model. For the
assimilation of GOME total ozone column observations,
the model in the DLR algorithm is run with a 5.6° x
5° longitude-latitude spatial discretization, and consists of
37 equally spaced levels covering the altitude range 8—
56 km. The basic time step of the CTM is 1 hour, and
therefore all GOME observations within this interval are
binned. Assimilation is performed using the wind and
temperature fields derived from 24-hour analyses of the
UKMO following Swinbank and O’Neill [1994].

[47] The optimal interpolation applied for the sequential
data assimilation considers the time of observation, the
spatial weighting between observation and grid, the model
errors, and the observation errors. At each assimilation time
step, the model’s volume mixing ratios are integrated to
total column values, which are then interpolated to the
observation space, that is the geolocation of the GOME
total column observations. In a next step the observational
increments (i.e., departures from the model) are determined.
The linear weight matrix operator (or gain operator) trans-
forms the resulting innovations back to the model space
[Daily, 1991], which takes into account the spatial weight-
ing and error information of both the observations and the
model. In the final step, the analyzed total columns are
vertically redistributed weighted by the first-guess model
profiles. For this study, the model’s first guess and GOME
observation errors are set to 18% and 4%, respectively.
Error covariances are parameterized by hyperbolic functions
depending on the horizontal distance between the model
grid point and the observation [Riishojgaard, 1998]. A
correction for the model bias is applied offline, which is
based on zonal mean seasonal comparison results with
SAGE-II data from 1996 [Wang et al., 2002]. Contrary to
the other approaches evaluated in this paper, this method
delivers global synoptic 3-D ozone analyses every 6 hours.
For the results used in this paper, daily mean values are
provided.

2.5. Summary of the Different Algorithms

[48] In this section we have presented four different
approaches to the retrieval of ozone profiles from GOME
spectra. Five of the algorithms exploit the OE approach,
each of which makes distinct assumptions which have
important implications for the final retrieved profile. There
is no OE method with exactly the same a priori ozone
profile and related error covariance matrix. The TUP and
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NOAA methods use relatively large a priori error covarian-
ces everywhere, and RAL only in the troposphere and upper
stratosphere, while KNMI and SAO use smaller error
values.

[49] The OE- and PTR-based algorithms, physical-based
approaches, strongly depend on the accuracy of the spectral
calibration, and we have seen different ways of correcting
the inadequate accuracy of the spectra delivered by GDP,
including both calibration and polarization corrections.
Obviously, these corrections significantly impact the ozone
profile retrieval, and various analyses have been performed
to quantify this effect for GOME and GOME-type instru-
ments [see, e.g., van der A et al., 2002; Bhartia, 2002].
Furthermore, the treatment of clouds, the ozone cross
sections used, the inclusion of other trace gases in the
fitting process, and the exploited wavelength range are
tackled in different ways. In the following sections we will
investigate the implications of some of these assumptions
by evaluating the retrieved data products of all these
algorithms.

[50] We have described two NN-based methods; the UTV
algorithm trained with (RAL retrieved) ozone profile data of
the nadir-viewing instrument GOME, and the ZSW algo-
rithm trained with sonde data and relatively high-resolution
satellite data (from limb-viewing occultation instruments).
The ninth algorithm is based on assimilation of GOME
ozone column data into a chemical transport model driven
by meteorological analyses (wind and temperature fields).

3. Interpretation of GOME Ozone Profiles
3.1. Introduction

[51] The interpretation of the retrieved data products is
nontrivial and requires special attention. Six of the GOME
ozone profile retrievals deliver averaging kernels in their
product of which five also use an a priori profile. This extra
information in the data can help to interpret the retrieved
ozone profiles (for an overview, see Rodgers [1990, 2000]).
For the interpretation presented here, we focus on the three
parameters proposed by Meijer et al. [2003], i.e., looking at
the aspects of vertical resolution, the indicative altitude of
the retrieved value, and the fraction of a priori information.
Although the focus is the same, here a different definition of
a priori fraction is used, following Connor et al. [1995]. The
interpretation parameters are derived for the retrieved
GOME data collocated with the five stations selected for
the intercomparison analysis (section 4). In this paper data
were selected that were measured near the lidar stations of
Andoya (Norway), Observatoire Haute Provence (OHP)
(France), Mauna Loa (MLO) (Hawaii), Lauder (New Zea-
land), and Dumont d’Urville (Antarctic) in the years 1997—
1999 (see Table 2). The location of these five stations is
such that the analysis will include polar, midlatitude and
tropical cases. The conclusions regarding the derived inter-
pretation parameters will be presented in section 3.6.

[52] As the NN and DA schemes considered here do not
supply averaging kernel information, the data from these
approaches will not be considered in this section. Never-
theless, in the paper of Miiller et al. [2003] an attempt was
made to estimate the vertical resolution of the ZSW algo-
rithm, and they found a resolution of 3—5 km in the altitude
range 15-32 km. Above 30-km altitude, they concluded
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Table 2. Details of Lidar Stations Providing Correlative Data, Including Their Principle Investigator®

Location Latitude Longitude Principle Investigator Pairs 1997 Pairs 1998 Pairs 1999
Andoya (C) 69.30° 16.00° G. Hansen 30 19 -
Observatoire Haute Provence (P, R) 43.94° 5.71° S. Godin-Beekmann 135 120 35
Mauna Loa Observatory (P, R) 19.54° —155.58° 1. S. McDermid 17 33 12
Lauder (P, R) —45.04° 169.68° D. P. J. Swart 92 18 13
Dumont d’Urville (P, R) —66.67° 140.01° S. Godin-Beekmann 22 17 —

“The stations are ordered from north to south. P, NDSC primary station; C, NDSC complementary station; R, system equipped with Raman detection

channels for more accurate ozone profile measurements <20-km altitude.

that the resolution was mainly limited by the training data
set used.

3.2. Kernel Transformation of True Profile

[53] As an illustration of the importance of considering
additional information, the same ozone profile has been
transformed using equation (1) with the averaging kernel
and the a priori profile coming from the six different
algorithms (see Figures 2a and 2b). The profile used in
Figure 2 was constituted from collocated lidar and sonde
data measured at Lauder, New Zealand (see section 4.2.3 for
definition and selection of collocated data). An example of
just one data set is shown in Figures 2a and 2c, while
Figures 2b and 2d illustrate the spread obtained from
applying the kernels and a priori profiles from the results
of six different retrieval schemes (on the same GOME data).
Bear in mind that Figure 2 does not show retrieved profiles,
but instead it shows the interpretation or “translation” of
how each algorithm observes the (same) “true” profile.
There are some obvious differences between the trans-
formed profiles, some of which may be attributed to the
use of different a priori information or spectral ranges. In
order to fully understand the observed differences, we will
now look at the three previously mentioned aspects of the
averaging kernels. The matrix elements described in equa-
tion (2) reflect the response of the retrieved quantity to a
unit change in the true state at different altitudes. It is
important to recognize that, although dimensionless, off-
diagonal elements of the kernels depend on the assumed
unit of perturbation. In most of the analysis here, ““fractional”
kernels are used which are expressed in terms of changes at
each altitude relative to a nominal profile, assumed here to be
equivalent to the a priori profile.

x(Z/)nominalA(Z Z/)
x (Z)nominal
Hereafter Agyactional Will be written as Ay, The implication

of this (common) choice of averaging kernel representation
is discussed in section 3.7.

(5)

Afractional (27 Z/) =

3.3. Vertical Resolution

[54] Meijer et al. [2003, section 4] regarded the resolving
length as the most appropriate choice to estimate the vertical
resolution of an averaging kernel. This quantity properly
takes into account both the negative and positive contribu-
tions in the averaging kernel, gives values for all shapes of
kernels, and separates the effect that some kernels have
dislocated centers. The resolving length r(z) or “spread
about the center” is defined as

JIZ = (@) 42 (z,2)dz
(J Ap.(z.7)d=')

r(z)12 , (6)

where the center ¢(z) is given by [Rodgers, 2000, pp. 55
and 77]

/ Z’A‘%’,. (z,7)d?
e2)
/ A}n (z,7)dz".

In these equations, z is the nominal altitude. The quantity
¢(z) can be regarded as the centroid of a kernel, and this is
the subject of section 3.4. We have applied this definition
for vertical resolution and calculated the resolving lengths
for the data of the six algorithms, results are shown in
Figures 3a and 3b. In Figures 3a and 3b the different
algorithms are presented from left to right, and the data
collocated with different stations are presented from the top
to the bottom for locations ranging from the Arctic to the
Antarctic, respectively. Differences in number of coinci-
dences between algorithms at a certain station are due to
different number of successful retrievals, as each algorithm
started with the same set of GOME level 1 data.

3.4. Indicative Altitude of Retrieved Value

[55] In the ideal case, the sensitivity of Xiegieved(2)
would be centered on (and narrowly spread about) the
corresponding nominal altitude, z, but this may however
not always be the case. In particular at low altitudes the
retrieval may be more sensitive to perturbations in the
ozone profile above. Although the averaging kernels
directly reflect the vertical sensitivity of each retrieved
level, it is useful for interpretation purposes to derive a
figure of merit which indicates the altitude to which a
particular retrieved value is predominantly sensitive.
Meijer et al. [2003] proposed the use of the centroid of
a kernel which results from applying equation (7). We
have applied this definition and calculated the centroids for
the data of the six algorithms, and the results are shown in
Figures 4a and 4b. If the kernels are symmetric about their
peak, the centroids will generally coincide with the alti-
tudes of the peaks. However, it should be noted that
kernels are always truncated at zero altitude (there is no
sensitivity to “altitudes” below the surface). For kernels
which correspond to low-altitude retrieval levels, this
truncation means that the centroid will always be above
the nominal retrieval altitude, even in the ideal case of,
e.g., a triangular kernel which peaks at the retrieval
level. The extent of this effect depends upon the width of
the kernel.

(7)

3.5. Contribution of a Priori Information

[s6] All retrieval schemes use regularizing information in
one form or another to arrive at a stable solution or retrieval
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Figure 2. Figures 2a (an example) and 2b (all) show a combined sonde and lidar ozone profile (green)
transformed with averaging kernels and (if applicable) a priori information of GOME data measured on
the same day and processed with six different algorithms. A priori and transformed profiles are plotted
with black and red lines, respectively, and the green dots represent the sonde-lidar data on the common
altitude grid. Errors are plotted with corresponding colors, but with thin lines. Figures 2¢ (an example)
and 2d (all) show for the same day again the sonde-lidar ozone profile (green), but they are now
plotted with the retrieved profiles of the OE method (red), the PTR method (blue), the NN method
(light blue), and the DA method (black) and their corresponding errors (thin lines and the same color)
with the absence of the NN data errors. GOME and correlative data are from single retrievals measured
on 24 March 1997 near Lauder, New Zealand (with a cloud fraction of 0.07); see section 4.2.3 for
collocation criteria.

result. For the DA and NN approaches it is difficult to of a priori information is apparent in the retrieval product in
estimate in which way this additional information, instead two different ways. First, there is a smoothing term which
of the actual measurement information, is in the retrieved arises from the applied regularization parameter for the PTR
product. For the PTR and OE approaches, the contribution methods and the a priori covariance matrix (correlation
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Figure 3a. Resolving lengths (asterisks) for retrieval results of three different algorithms near the lidar
stations at Andoya, Observatoire Haute Provence (OHP), Mauna Loa (MLO), Lauder, and Dumont
d’Urville, shown from the top downward ranging from north to south, respectively. See section 4.1 for
location details and section 4.2.3 for collocation criteria. Black line shows the median values; for
explanation of gray line, see section 3.7.
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Figure 3b. Same as Figure 3a, but now showing the results for three other algorithms.
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Figure 4a.
near the lidar stations at Andoya, OHP, MLO, Lauder, and Dumont d’Urville, shown from the top
downward ranging from north to south, respectively. See section 4.1 for location details and section 4.2.3
for collocation criteria. Black line shows the median values; for explanation of gray line, see section 3.7.
Dotted lines serve as visual references; a vertical line at 15 km and two diagonal lines corresponding to
+4 km shift of the nominal altitude.
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Figure 4b. Same as Figure 4a, but now showing the results for three other algorithms.
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Figure Sa.

A priori fraction (1-sum(A;))

A priori fraction (asterisk) in retrieval results of three different algorithms near the lidar
stations at Andoya, OHP, MLO, Lauder, and Dumont d’Urville, shown from the top downward ranging
from north to south, respectively. See section 4.1 for location details and section 4.2.3 for collocation

A priori fraction (1-sum(A;))

criteria. Black line shows the median values.
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Figure Sb. Same as Figure 5a, but now showing the
results for two other algorithms.

length) for the OE methods. Second, there is a bias toward
the a priori profile used in the OE retrievals, which occurs
when there is not enough measurement information. The
first term has already been dealt with in section 3.3, and
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here the focus will be on the second term, which will
hereafter be called a priori fraction.

[57] Unlike the PTR approach, the retrieval algorithms
based on the OE approach include a fraction of the a priori
profile in the retrieved ozone values. A measure for this
fraction can be estimated by calculating

n_levels

Z [I(z, ;) —Af-r(z,z,-)]
=1

A _priori_fraction(z) = e vl

Z Ap(z,zi) + Z

i=1 i=1

[I(Z, z;) — Az (z, z,-)]

n_levels

=1- Z Afr(zzzi)v (8)
i=1

where Aj(z,zi=12_» 1evets) 15 the fractional kernel of level z.
Equation (8) was used by Connor et al. [1995, section 2.5],
and also Rodgers [2000, section 3.1.5] suggests that it can
be regarded as a rough measure of the a priori fraction in
the retrieval. In equation (1) the retrieved profile is
expressed as a linear combination of the true and a priori
profiles with matrix weights A and (I-A), respectively. In
equation (8) the contribution of the a priori profile element
at level i to one retrieved profile element at level z is
assumed to have a weight of (/(z, z;)-4;(z.z;)) on a total of
(A4(z,z)) + Iz, z)) — Az(zz)); the total weight to one
retrieved element is then given by the summation over all
levels i. Equation (8) has been applied to calculate the a
priori fractions of the five OE-based algorithms and the
results are shown in Figures 5a and 5b.

[s8] Related to the a priori fraction is the quantity
called degrees of freedom for the signal (DFS), which
is defined as the trace of A (i.e., XA4;;, following Rodgers
[2000, p. 37]). The median and the standard deviation of
the DFS values have been printed in each plot of Figures 5a
and 5b.

3.6. Conclusions for Interpretation of OE and
PTR Retrieved Data

[59] On the basis of the results presented in Figures 3a,
3b, 4a, 4b, 5a and 5b, we can now draw conclusions on
how to interpret the results of those retrieval algorithms
delivering data including averaging kernels and (if appli-
cable) a priori information. In the estimation of the vertical
resolution the presented results are in the range 9—13 km
for the OE-based algorithms and for the PTR-based
algorithm, over a limited (between 12 and 32-36 km)
altitude range, about 8 km. The altitude range with better
than 15 km resolution for the OE methods generally starts
at 16—18 km, with some exceptions in the polar regions of
22-25 km (i.e., KNMI, RAL, and SAO algorithms), and
ends at 38—47 km. The lowest altitude is correlated to an
altitude in between the local tropopause and the local
ozone maximum, i.e., in the middle of the lower strato-
sphere. If wavelengths below 290 nm are not used, then a
much lower resolution is found in the altitude range 40—
50 km (i.e., IUP, SAO and SRON algorithms). Some other
striking features appearing from this overview are the
extent to lower altitudes of the SRON algorithm, the small
range with worse resolution around 25- to 28-km altitude
(apparent in some regions for I[UP, KNMI and NOAA),
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and the different results, especially in the polar regions, of
IUP compared to the other OE-based algorithms.

[60] The centroid of the averaging kernel is the second
interpretation parameter that we have investigated. We will
now analyze the results of the derived centroids by exam-
ining over which altitude range the centroids do not deviate
more than 4 km from their nominal altitude (i.e., within
diagonal dotted lines in Figures 4a and 4b). The bottom
altitude of this valid range is around 9—12 km in the polar
regions, about 16 km at midlatitudes and about 19 km in the
tropics. The valid range for this parameter is also limited at
the upper altitude by the lack of exploiting the GOME data
with wavelengths below 290 nm, which then decreases from
48—-50 km to 39—44 km. The RAL retrieval uses larger than
climatological a priori values in the troposphere and this, in
itself, may induce the deviation of the centroids below the
nominal altitude of 25 km, but on the other hand this is the
only retrieval algorithm giving some ‘“valid” centroid
values (i.e., within 4 km of their nominal altitude) lower
than 10 km. This is assumed to be due to fitting the
temperature-dependent structure in the Huggins ozone
bands to higher precision than the other algorithms in
combination with the assumption of a relatively large a
priori error (100%) in the troposphere. In general the lowest
median centroid values range from 14 km in the polar
regions to 19 km at midlatitudes and in the tropics, with
the remarkable exception of 8 km for the RAL retrieval in
the tropical region.

[61] The third interpretation parameter that we have
presented is the a priori fraction. The derived values for
this parameter would be close to zero in the ideal case, and
the values go to one in the case that the retrieval does not
exploit the measurement information in the spectra and
relies completely on the a priori. We have derived over
which altitude range the a priori fractions are smaller than
0.33, which we still regarded to be an acceptable fraction
(nevertheless, retrievals with larger a priori fractions are of
value, provided that this is recognized and accounted for by
the data user). In general this requirement is met between
about 8- and 48-km altitude. However, there are some
exceptions and special features, e.g., the KNMI, RAL and
SAOQ results show larger than 0.33 negative values between
about 11 and 18 km altitude in the tropical and midlatitude
regions. In the IUP retrieval all the information is retrieved
from just below the tropopause up to about 41-km altitude,
and the upper limit is again likely to be correlated to the lack
of using the shortest wavelengths. However, this is not
visible in the SAO results which are also not using the
wavelengths below 290 nm, because it uses large a priori
errors above 40 km. Furthermore, it is quite remarkable that
although the NOAA retrieval only uses parts of the com-
plete GOME spectra, its results compared to the other
retrievals indicate that this algorithm has acceptable frac-
tions over nearly the entire altitude range, which is probably
also here the result of using larger a priori errors in the
retrieval. Finally, the retrieved data from the RAL algorithm
also indicate to sometimes contain (acceptable) tropospheric
information below 8-km altitude, with the exception of
Andoya in the arctic region.

[62] In Figures 5a and 5b we have also provided the DFS,
and when decomposed per altitude level (not shown), this
parameter shows that almost all ozone information present

MEIER ET AL.: GOME O3(Z) ALGORITHM EVALUATION

D21306

in the GOME data is retrieved as stratospheric information,
which is true for almost all the global regions and for all
algorithms. In total there are only four to six independent
pieces of information, or DFS, allowing the retrieval of
(possibly) one point in the troposphere and maximum five
to six points in the stratosphere.

3.7. Effect of Averaging Kernel Representation

[63] The preceding analysis was based on kernels which
were scaled with the a priori ozone values, resulting in
fractional kernels. The derived measures of vertical resolu-
tion and indicative altitude can only be interpreted straight-
forwardly if relative perturbations of similar magnitude can
be expected at all the altitudes to which a particular
retrieved value is sensitive. As might be expected, the
kernels indicate that retrieval for levels below the ozone
peak are strongly sensitive to perturbations in ozone peak
concentration, since at this altitude a given fractional
perturbation has most impact on the measurements. How-
ever, in reality (according to the Fortuin and Kelder [1998]
climatology), ozone concentrations at and above the ozone
peak vary relatively little compared to those in the tropo-
sphere and lower stratosphere. The expected perturbations
in this altitude range in, for example, the subtropics in April
(from the Fortuin and Kelder climatology), are more con-
stant with altitude when expressed in absolute (i.e., number
density) rather than in fractional changes. This statistical
representation of the climatological variation of ozone is
represented in the a priori used in a number of the OE
schemes described here. For these lower altitude levels, it is
therefore often the case that figures of merit derived from
number density averaging kernels provide more insight into
the true performance of the retrieval scheme. The sensitivity
of tropospheric and lower stratospheric levels to higher-
level perturbations will degrade the corresponding estimates
of wvertical resolution and indicative altitude derived for
these lower altitude levels. However, the sensitivity to
nonlocal perturbations is only important if, in reality, such
perturbations actually occur with relative magnitude similar
to their local concentrations.

[64] When assuming equal amplitude perturbations in
terms of number density, rather than in fractional units,
the interpretation of the corresponding averaging kernels
changes. It results in different resolving lengths, centroids
and fractions of a priori information. To demonstrate this
difference for the retrieval levels below 20-km altitude, the
centroids and resolving lengths have also been computed for
the averaging kernels assuming equal number density
perturbations. For these kernels the response to the true
profile has been cut off at 26-km altitude because above this
altitude such a representation is highly unlikely. The alter-
native results are shown in Figures 3a, 3b, 4a and 4b, with
the thick gray lines. As the alternative results for the
fractions of a priori information are quite similar to those
using fractional kernels, these results have not been plotted
in Figures 5a and 5b.

[6s] The conclusions in section 3.6 about the useful
altitude range are dependent on the averaging kernel repre-
sentation used in the analysis. In general, this alternative
interpretation gives better resolving lengths below 20-km
altitude with typical values of 15 km, and centroids indi-
cating that the retrieval system can also have sensitivity in
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Table 3. Errors (Systematic and Random) Expected Within Ozone
Lidar Data of the NDSC?*

Altitude Range, km Accuracy,% Precision,%
<20 5-10 without Raman channels® 5
<20 5 with Raman channels® 5
20-35 2 2
>35 5-10 5-10

“From Keckhut et al. [2004, Table 3].
®See Table 2 for which systems have Raman channels.

the lower atmosphere. For example, in this representation
RAL centroids already lie within 4 km of the nominal
retrieval altitude from the midtroposphere instead of 20-km
altitude previously. The dependence of the figures of merit on
the unit of perturbation highlights the fact that the sensitivity
to the lower atmosphere is mediated by the true anomaly in
the middle (and higher) atmosphere. Therefore the correct
representation and interpretation depends on the true situa-
tion or at least a realistic expected variation, which is in
addition dependent on season and global region.

4. Intercomparison With Lidar Data
4.1. Introduction

[66] For the comparison to GOME ozone profiles, we use
correlative data from the Network for Detection of Strato-
spheric Change (NDSC) stations for the years 1997—1999.
We incorporate lidar data measured at Andoya in Norway,
Observatoire Haute Provence (OHP) in France, Mauna Loa
Observatory (MLO) on Hawaii, Lauder in New Zealand,
and Dumont d’Urville on Antarctica (see Table 2), which
allows the analysis of GOME data measured in different
global regions, including polar, midlatitude and tropical
cases. The aim of this section is to assess the quality of
the GOME ozone profiles in these regions, which have
different atmospheric characteristics and represent different
viewing geometries of GOME. As GOME is in a Sun-
synchronous orbit (with an overpass in the late morning
(local time)), the observations at low latitudes are on
average with small solar zenith angles and the reverse holds
for high latitudes (i.e., generally large solar zenith angles).

4.2. Stratospheric Ozone Lidar Data

4.2.1. Lidar System Description

[67] Stratospheric ozone lidar systems measure the atmo-
sphere between about 10- and 50-km altitude. These
measurements are performed between 1 and 3 times per
week, depending on weather and atmospheric conditions.
Lidar systems are usually operated at night, but some lidars
have been adapted for daytime use in polar regions.
Stratospheric ozone lidar instruments use a special lidar
system which is called a differential absorption lidar (DIAL)
system [Measures, 1984; McDermid et al., 1990]. These
systems simultaneously emit two light pulses at different
wavelengths with different ozone absorption cross sections.
The ratios in light intensity backscattered from different
altitudes can be directly related to the local ozone concen-
trations. Data are provided as ozone number densities as a
function of geometric altitude.
4.2.2. Lidar Data Quality

[68] Validation of data implicitly means the use of reliable
correlative data with known (high) quality for the analysis.
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The correlative data used in this study come from stations
that are part of the NDSC. The initiative for this network
[Network for Detection of Stratospheric Change, 1986]
http://www.ndsc.ws) was based on the need for such world-
wide high-quality measurements, among others for valida-
tion of satellite-based sensors. The NDSC comprises a
number of ground-based measurement stations employing
the full suite of instruments and located at strategic posi-
tions on the globe. They are supplemented with measure-
ments performed at complementary stations (see Table 2).
The NDSC measurements are regularly monitored for their
quality via measurement validation campaigns performed
under the NDSC protocol. For the lidars considered here,
see the following references for the papers about the
MLO95 [McPeters et al., 1999], OPAL [McDermid et al.,
1998a, 1998b], and OHP97 (G. O. Braathen et al., Inter-
comparison of stratospheric ozone and temperature measure-
ments at the Observatoire de Haute Provence during an
NDSC validation campaign from 1-18 July 1997, manu-
script in preparation, 2006) campaigns at the Mauna Loa,
Lauder, and OHP NDSC stations, respectively. In addition,
Keckhut et al. [2004] recently published a review paper of
all these activities, and their general conclusion on the lidar
data quality is provided in Table 3.
4.2.3. Collocation Criteria

[69] The ozone profiles, from the lidar stations men-
tioned above, will be used for comparison to GOME
ozone profiles. As the lidar instruments did not exactly
sample the same atmosphere as the satellite instrument, we
will need to define criteria which allow a certain (maxi-
mum) difference in both location and time between the
two observations. In the GOME1-O3P-WG it was agreed
to use windows of 12 hours and 500 km for the allowed
temporal and spatial differences, respectively, which in the
case of coadding of pixels resulted in a maximum distance
of 800 km. Previous studies [Veiga et al., 1995; Meijer et
al., 2003, 2004] demonstrated that a 20-hour time window
and a circle with an 800-km radius were already appro-
priate collocation criteria, for SAGE I/ll, GOME, and
GOMOS satellite data, respectively. Meijer et al. [2004]
demonstrated in a separate analysis that with stricter
collocation criteria (10 hours and 400 km, respectively),
which are then very similar to those used here, the
standard deviation of the differences can generally be
within 10-13% (20-50 km) and within 15% down to
17-km altitude. Brinksma et al. [2000] showed that allow-
ing a time difference of up to 24 hours, the standard
deviation of the differences between collocated lidar and
sonde observations remained small down to 10-km alti-
tude. Furthermore, we required that a lidar measurement
can only be paired once with GOME data (i.e., data sets
are bijective).

4.3. Comparison Approach

[70] In the GOME1-O3P-WG it was agreed to report all
data as ozone number density versus geometric altitude
with fixed 2-km intervals. However, the comparison of
different data sets also raises other issues about their
comparability. One of the most important issues is how
to deal with differences in vertical resolution. For the
comparison to the GOME data that come with averaging
kernels and (if applicable) a priori information, we have
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transformed the lidar data by substituting the lidar profile
for the vector X¢ye in equation (1). This approach was first
suggested by Connor et al. [1991]. For the averaging
kernel values outside the lidar altitude range, the lidar
profiles are completed with the global ozone climatology
of Fortuin and Kelder [1998]. The “lidar profile” result-
ing from equation (1) is now referred to as “transformed”
lidar data and compared to the GOME retrieved data.
These transformed lidar data are no longer completely
independent from the GOME data [Meijer et al., 2003],
and comparison results should never be regarded without
the interpretation results of section 3, e.g., the analysis
method may give the appearance of good performance in
regions where an algorithm returns the a priori. For the
GOME retrievals using the NN and DA approaches, their
data are compared to the lidar data integrated on a 2-km
altitude grid, which hereafter are referred to as “regridded”
lidar data.

[71] An example of the retrieved data sets, collocated
with Lauder (New Zealand), is shown in Figures 2¢ and 2d,
in which Figure 2d is used to illustrate the spread in the
retrieved data obtained from the same spectral information.
It is important to note that the intercomparison results of the
OE- and PTR-based algorithms cannot be directly compared
to the results of the NN- and DA-based algorithms, because
the comparisons involve transformed and regridded lidar
data, respectively, which typically differ in vertical resolu-
tion by a factor of two (or more). For example, the steep
gradient in the ozone concentrations of the lower strato-
sphere will have a smaller impact on the comparison results
involving transformed lidar data.

[72] From the set of collocated pairs we calculate the
median of their differences; with differences calculated as
GOME minus (transformed or regridded) lidar data in
percentage relative to the latter. We choose to calculate
the median rather than the mean, which was done to
avoid possible disturbance in the results coming from
outliers. In addition the standard deviation of these
relative differences (hereinafter referred to as STD) is
calculated according to

1 N — N2
STD(:) = Jﬁ > (@ -a@)}. o

J=1

where d; is the relative difference in percentage of
(GOME; — lidar))/lidar;, d is the mean of these differences,
and N is the number of pairs.

4.4. Results per Geolocation

[73] The intercomparison results for the five OE-based
algorithms are shown in Figure 6a (IUP, KNMI, and RAL)
and Figure 6b (left and middle) (SAO and NOAA). The
results of the PTR-based algorithm are shown Figure 6b
(right) (SRON). The two NN-based algorithms are shown in
Figure 6¢ (left and middle) (UTV and ZSW) and Figure 6¢
(right) contains the results of the DA-based algorithm
(DLR). Each row in Figures 6a—6c¢ represents the results
coincident with a certain lidar station, which ranges from the
Arctic (Figures 6a—6c, top) to the Antarctic (Figures 6a—6c¢,
bottom) in order of latitude. In Figures 6a—6c we have
also indicated the actual number of intercomparison pairs,
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and hence this shows the number of successfully realized
retrievals.

4.5. Conclusions of Intercomparison Results

[74] The intercomparison results of the IUP, NOAA, and
KNMI retrievals demonstrate qualitatively similar oscilla-
tions in the derived biases (in particular see the OHP, MLO
and Lauder median results), but for KNMI the shape is less
pronounced. RAL, on the other hand, has results with
opposite features and SAO does not demonstrate any such
oscillations. As the NOAA algorithm is not a GOME
“native” algorithm (i.e., its algorithm was designed for
SBUV data), this algorithm completely relies on well-
calibrated spectra. Therefore its relatively worse results are
not entirely unexpected, because we have seen in section 2
that in the other algorithms a substantial effort has been put
in optimizing their input spectra. Both the TUP and the
NOAA algorithm have used a relatively large a priori error
(30% and 50%, respectively) in the retrieval allowing more
freedom to the system to extract more data from the
measurement, but too large errors will introduce noise rather
than more information which seems to be the case. The
SAO and SRON algorithms have little in common, apart
from the exploited wavelength range, nevertheless, their
derived biases are rather similar and generally show a
positive bias at low altitudes linearly changing to a negative
bias higher up. A possible explanation can be that both
algorithms do not apply a wavelength-dependent correction
to the GOME spectra at the shortest wavelengths.

[75] The data quality of the NN-based algorithms cannot
be better than the quality of their training data set. In almost
all cases the STD involving UTV data are larger than the
STD involving RAL data, which was its training set. In
general the features of the RAL and UTV biases are quite
similar, but certainly not in all regions and this might be
caused by the fact that an older version of the RAL data was
used in the training. The intercomparison results of the
ZSW algorithm show a small (~5% positive or negative)
bias close to zero, with a STD of 5%, 5-10%, and 10%
for the results in tropical, midlatitude and polar regions,
respectively. The results of the UTV algorithm are quali-
tatively quite similar to the results of the ZSW algorithm,
but the STD is generally 1.5 times larger. The altitude range
with a relatively low STD is approximately 17—44 km for
both NN-based algorithms. For the DA-based retrieval we
found intercomparison results with generally a larger STD
(about 15%) compared to the other approaches. The altitude
range with relatively low STD is 15—45 km, and here the
bias is negative (15%) at lower and positive (15%) at higher
altitudes. The bias of this algorithm in the Arctic region is
quite small, but with a large STD. Note that the DA
algorithm only uses total column information from GOME
and obtains the profile shape from the model.

5. Discussion

[76] The aim of this paper was to evaluate the nine
different GOME ozone profile retrieval algorithms that are
currently available. We gave an overview of four different
approaches, and briefly described their characteristics and
way of implementation into a retrieval algorithm. We have
confronted these algorithms with the same set of GOME

20 of 28



D21306

MEIER ET AL.: GOME O3(Z) ALGORITHM EVALUATION

IUP, GOME vs transformed LIDAR KNMI, GOME vs transformed LIDAR RAL, GOME vs transformed LIDAR
S0F T T -/' T 50F T .-\.\-\ T ™ S0F T T ( T =
401 R S - 40 B
é 30 ol . o 30 -
. o o
o
2
2 20f B 1 20 B
1l ] ] 10" ]
Andoya Andoya
N= 39 e N= 39 RAL
Okt L L 1 1 Ok L L 14
—40 -20 0 20 40 40 —40 -20 0 20 40
50FT E
40 -
£ ]
s I
°
2
2 201 B
10F 4
OHP OHP OHP
N= 280 P N= 250 KNMI N= 267 RAL
o L L 3 ot L L 14 0 L L 15
-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40
50 50F T T ™
40 40 q
QE‘, 30 30F q
o
°
2
E 20 20 q
10 10 q
MO e RAL
0 o] L L 1
—40 -20 0 20 40
50 S0FT T T ™
sl " 40
é 30 30
o
°
2
E] 20 20
10 10f —— | ]
Louder Louder Louder
N= 121 up N= 117 KNMI N= 109 RAL
s L L M o] L L M o] L L M
—40 -20 0 20 40 -40 -20 [ 20 40 —40 -20 0 20 40
S0FT T T ™ 50FT T T ™ S0FT T T ™
40
é 30
o
o
2
E] 20
10
Dumont d'Urville Dumont d'Urville Dumont d'Urville
Ne 352 [V Ne' 27 KNMI Ne 24 RAL
o] L L M o] L L M Okt L L M
—40 -20 0 20 40 -40 -20 [ 20 40 —40 -20 0 20 40
Difference (%) Difference (%) Difference (%)

Figure 6a. Individual intercomparison results (dots) of three GOME retrievals collocated with lidar
measurements near the NDSC stations at Andoya, OHP, MLO, Lauder, and Dumont d’Urville, shown
from the top downward ranging from north to south, respectively. Differences are calculated as GOME
minus (transformed or regridded) lidar data in percentage relative to the latter. Median (thick line) and
standard deviation (thin line) of the relative differences are also shown.
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Figure 7. Same as Figure 6a, but now showing inter-
comparison results of climatological data, which are used in
some retrievals, compared to lidar data measured at the
NDSC stations of Andoya, OHP, MLO, Lauder, and
Dumont d’Urville, shown from the top downward and from
left to right ranging from north to south, respectively.

spectra, analyzed their response, and compared results to
high-quality ground-based measurements to assess their
quality. For the retrievals that provide averaging kernels
and (if applicable) use a priori information, we have applied
interpretation tools. These tools provide figures of merit for
the retrieved product regarding the vertical resolution, the
actual retrieval altitude and the reliance on a priori infor-
mation. Here the comparison results should never be
regarded without these interpretation results, because the
applied comparison method gives the appearance of good
performance, compared to the transformed lidar data, in
situations where an algorithm basically returns the a priori.

[77] For the OE- and PTR-based algorithms, we can
derive the valid and acceptable altitude range of the re-
trieved data from the interpretation results based on quan-
titative requirements, here assumed to be that the fractional
averaging kernels have a resolution estimate lower than
15 km, a centroid that is within 4 km of its nominal altitude
and an a priori fraction smaller than 0.33. The last require-
ment is not applicable to the PTR-based approach. On the
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basis of these requirements, the valid and acceptable altitude
range is 15—48 km in which the data have an average
resolution of 10 to 15 km. The upper altitude of the range
is determined by whether the shortest wavelengths are taken
into account. Because the ozone absorption cross section
increases below 270 nm, these channels are needed to retrieve
ozone at the higher altitudes where the ozone density is
dropping off rapidly. However, the limitation in using shorter
wavelength is the increasing measurement error, and cur-
rently the highest altitude is 48 km.

[78] The lower boundary of the acceptable range is
mainly related to the altitude at which the ozone concen-
trations are too low, compared to the values at higher
altitudes, such that, if altitude-independent relative changes
in ozone are assumed, the signal from higher-altitude
dominates the retrieval. This generally occurs in the middle
of the (local) lower stratosphere. It is important to note that
the estimate for the lower limit is dependent on the
representation of the averaging kernels that have been
analyzed (see section 3.7). If number density kernels are
analyzed for the lower retrieval levels, rather than fractional
kernels, then the valid and acceptable altitude range extends
downward, which in some cases even reaches down into the
midtroposphere.

[79] For the NN-based algorithms, it is more difficult to
draw similar conclusions, especially as averaging kernels
were not available and therefore it is not explicitly clear
where the retrieved profile information came from. How-
ever, it is possible to derive a valid range by analyzing their
results in the intercomparison with the lidar data. When
assuming that the NN algorithm found the perfect statistical
link between the profile information in the spectra and the
collocated (“true”) ozone profile used in the training, then
the altitude regions with a small STD in the intercomparison
with lidar reflect the presence of profile information in the
GOME measurements. The NN algorithms have this small
STD in the altitude range 17—44 km, and this is almost
exactly the same range as obtained with the OE and PTR
algorithms. Though it should be noted that the 2-km
interpolated grid is ambitiously fine and may have led to
an underestimate of retrieval quality in the lower strato-
sphere, where fine vertical structure is particularly present in
the lidar data which is unlikely to be resolved by GOME.

[so] For the DA-based algorithm, the interpretation can
also be done by looking at the altitude region in which the
STD is small in the comparison results with lidar data. The
DA-based algorithm has this small STD in the altitude range
15—45 km, but it should be noted that its STD is generally
larger than those from the other schemes. The higher STD is
possibly due to the relatively coarse horizontal model
resolution compared to the GOME resolution. A significant
improvement in the 3-D ozone analysis is expected when
ozone profiles, derived by an OE, PTR or NN approach, are
assimilated in the model, instead of ozone columns.

[81] In the derived valid altitude range we can potentially
expect the retrieved data to be acceptable. The next step is
to assess its quality, but before doing so we initially look at
what we already knew, and in Figure 7 we show the
comparison results of the regridded lidar data compared to
the climatology used by IUP (and KNMI and RAL). It
demonstrates the prior knowledge we had regarding bias
and variance compared to the “true” profile, but note that
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this is a comparison based on a higher resolution than the
intercomparison of the retrieved GOME data with the
transformed lidar data. From Figure 7 it becomes clear that
some of the features in the observed biases are introduced
by errors in the GOME level 1 data or the forward model
used by the retrieval algorithms, as they were neither
present in the a priori comparison nor in the intercompar-
ison results of the NNs. As mentioned in section 4.5, this
problem is likely to be related to the inadequate calibration
accuracy, as for ozone profile retrieval from nadir UV
spectra a high accuracy is required.

[s2] The intercomparison results with lidar data demon-
strated that the retrieved data have a precision of 5—-10%
and a bias up to 5% or 20% depending on the success of
recalibration of the input spectra for the physical approaches
and depending on the training data set for the NN-based
algorithms. The NN approach has the advantage that the
retrieval does not rely on well-calibrated GOME spectral
data, and instead it relies on the high quality of the data used
in the training process. This advantage is however lost in the
case of the UTV algorithm, since this algorithm used RAL
data for the training, which requires the calibration accuracy.
Nevertheless, the limited exploited spectral range by the
UTV algorithm might cause it to just return an average
representative RAL profile. Furthermore, from the results
presented in this paper it, too, became clear that OE-based
algorithms strongly depend on the a priori ozone profile
information, and its error covariance matrix, used in the
retrieval. In the OE approach these a priori quantities should
be carefully chosen, and should be regarded as a “fixed” or
known atmospheric property [see also Rodgers, 2000,
chapter 10]. Although some groups indeed use similar
climatologies, they are not the same over the whole atmo-
sphere and the choices applied for the covariance matrix are
also different (i.e., variance and correlation length). Both
settings have their implications for the retrieved ozone
profile and its corresponding averaging kernel matrix.

6. Conclusions and Future Work

[83] In 2003, after the discontinuation of the GOMEI-
O3P-WG, ESA initiated an invitation to tender and finally
funded a 2-year project called CHEOPS-GOME, which
aims to exploit GOME measurements for the provision of
ozone profiles. Within this project two different ozone
profile climatologies will be set up and provided to a broad
user community in atmospheric science. First, there will be
a common climatology generated as a look-up table in
ASCII format. Second, a climatology based on the NN
technique will be built, which should be more flexible
concerning temporal and spatial resolution. Also additional
parameters (e.g., total ozone column, temperature profile)
and other optional user specifications can be considered
with a NN-based climatology. Furthermore, a more accurate
prototype algorithm, based on the OE technique, shall be
developed for future implementation into an operational
processor, which will then be used to process the data of the
complete 8-year GOME mission. This work includes the
development of a new (improved) spectral calibration
algorithm to ensure high-accuracy ozone profile retrieval.
Data from the currently operational algorithms, presented in
this paper, are available on request. A major processing of
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the full mission is underway using the RAL algorithm,
which will be made available through the British Atmo-
spheric Data Centre (BADC, http://badc.nerc.ac.uk/data/
gome).

[s4] The general conclusion of this paper is that ozone
profile information can be retrieved from GOME spectra,
with low a priori contribution, in the altitude range 15—48 km
with a vertical resolution of 10 to 15 km. Outside this altitude
range, more care needs to be taken to interpret retrievals using
the full averaging kernel matrix. Direct, robust determination
oftropospheric ozone, with minimal a priori contribution, has
not been demonstrated in this study. Nevertheless, analysis of
averaging kernels indicates sensitivity to tropospheric ozone
in a number of schemes, and a tropospheric layer number
density can be recovered by optimal estimation, provided that
the true variation of stratospheric ozone conforms to the
assumed a priori variability. In general, the GOME ozone
profile data have a precision of 5—10% and a bias up to 5% or
20%. In addition, the GOME data, for the OE methods, allow
the retrieval on about six independent altitude levels without
adding too much a priori information.

[85s] The conclusions and limitations presented here are
partly driven by physical limitations of the nadir UV
measurement approach for ozone profiling. In general
similar results can be expected for similar retrieval schemes
applied to other moderate resolution, nadir-viewing obser-
vations of instruments like SCIAMACHY, OMI and
GOME-2. It should however be noted that this analysis is
limited to the particular profile retrieval schemes which
have been investigated, each of which seeks to cope with
deficiencies in the GOME level 1 data. The inherent
information content of UV spectra for profile retrieval,
particularly with respect to the lower atmosphere has not
yet been fully exploited by any scheme to date. It is
expected that, because experience from GOME(-1) has
fed into the instrument design and preflight characterization,
new instruments like OMI and GOME-2 will provide more
accurate and potentially better resolved measurements of the
ozone profile. In particular it was noted in the GOME-2
error study [Kerridge et al., 2003] that insufficient knowl-
edge of the instrument spectral response (slit) function
shape was a major limiting factor for tropospheric retrieval
from GOME-1. Both OMI and GOME-2 will be far better
characterized in this respect.

[s6] Exploitation of the tropospheric sensitivity from
nadir-viewing measurements in the UV-visible is a rapidly
evolving field of study. The ozone profile retrieval below
15-km altitude can also be expected to improve when
additional tropospheric information is used, such as exploit-
ing polarization effects [Hasekamp and Landgraf, 2002b],
which will be possible for GOME-2. Upper tropospheric
and stratospheric observations by limb sounders, such as
MIPAS on Envisat and MLS on EOS-Aura, may also help
to constrain retrievals leading to better tropospheric prod-
ucts. Nearby measurements made in both the presence and
absence of clouds can also be used to provide information
on the subcolumn of ozone obscured by the cloud. The
ability to adequately characterize scattering and absorption
by cloud and aerosol will be crucial if the information
content of any of these measurement techniques is to be
usefully exploited.
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