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Abstract

We address the problem of filling missing entries in a kernglnematrix, given a related full Gram ma-
trix. We attack this problem from the viewpoint of regressiassuming that the two kernel matrices can be
considered as explanatory variables and response vemjab#pectively. We propose a variant of the regression
model based on the underlying features in the reproducintgkélilbert space by modifying the idea of kernel
canonical correlation analysis, and we estimate the ngssitries by fitting this model to the existing samples.
We obtain promising experimental results on gene netwdgtc@mce and protein 3D structure prediction from
genomic datasets. We also discuss the relationship witentkegorithm based on information geometry.

1 Introduction

Kernel methods such as support vector machines (SVM) etladblese of powerful statistical analysis for various
datasets as soon as kernel matrices for the dataset arabéwdil]. When a dataset containé objects, theN
objects are represented as&nx N positive semidefinite matrix whose elements can be thoufas @bjects-
object similarities. An advantage of kernel methods is thay can be applied not only to real-valued data but
also to complex structured objects such as strings, tregéggeaphs [2]. The kernel matrix not only plays an
important role as the input to kernel methods, but also ples/important information regarding the similarity
between objects.

In this paper we consider the problem of estimating missinigies in a kernel matrix. More precisely we
assume that two datasets describing the same objects debkeyadhowever, although all data are available for the
first dataset, only part of the second dataset is available¢hi$ case, a full kernel Gram matrix can be obtained
for the first dataset, while only a partial kernel Gram maisixbtained for the second dataset, that is, a matrix
with missing entries. If we are more interested in the sedatdset rather than in the first dataset, it is natural to
think of estimating the missing part of the second kernelrixat.g., by looking for correlations between the two
kernels.

This problem arises commonly in applications such as eométics, where informative data for a given
classification task is expensive to produce while less infdive data are easily available. As an example, the
DNA sequences of all proteins of a given organism are eabilgioned from the sequenced genome, while the 3D
structures of most proteins are still unknown and difficalbbtain. In this case, we want to know the 3D structure
information for the proteins whose structure have not besterchined. As another example, high-throughput
genome-wide data (e.g., gene expression data) are aeditatthe full genes of an organism, while the metabolic
network information is known only for a limited number of gan In this case, we want to predict the unknown
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part of gene network using the fully available genome-widéad A variety of methods have been proposed in
order to tackle such problems related to kernel matrix cetiggl. Examples include the use of kernel canonical
correlation analysis (kernel CCA) for gene classificatiBhdnd gene network inference [4], and the use of the
em-algorithm based on information geometry for protein 3Micture prediction [5].

In this paper we attack the kernel matrix completion probfesm the viewpoint of regression, considering
the two kernel matrices represent inner products betweplamatory and response variables, respectively. We
propose a variant of the regression model based on the yimdeféatures in the reproducing kernel Hilbert space
by modifying the idea of kernel CCA, and we estimate the mg@ntries by fitting this model to the existing
samples. In the experiment, we show promising results orptédiction of missing edges in a gene network
from genome-wide data and on the prediction of protein 3Dcttire information from their sequences. We also
discuss the mathematical and numerical relationshipsdeiihe proposed methods and ¢healgorithm based
on information geometry.

2 Formalism of the question

Suppose that we have an explanatory random variabfeR¢ and a response random varialgles R'. Let us
now consider the situation where the data is available fahalV objects for the explanatory variabte while the
data is available for the first objects and unavailable for the remaining ¢ n) objects for the response variable
y. We refer to the first objects adraining set, and we refer to the remaininy — n objects adest set below.

Let k andg be symmetric positive definite kernels definedRfandR!, respectively. When we compute the
kernel matrix for the explanatory variabte we obtain anV x N kernel matrixi’, where(K);; = k(x;,x;) (1 <
i,7 < N), x; belongs to a set’ andN is the number of all objects. On the other hand, when we coartpetkernel
matrix for the response variabje we obtain anV x N kernel matrixG, where(G);; = ¢(yi,y;) (1 <i,j <n),

y; belongs to a sey, andn is the number of available objects (< N). Note thatG contains in fact missing
values for all entriegG);; with max(i, j) > n. We want to estimate the missing part@fusing full Gram matrix
K, taking into account a form of correlation between the twnkis.

In this study we express each kernel matrix by splitting thadrix into four parts. We denote bi;; (resp.
G) then x n kernel matrix for thetraining set versus itself,K,; (resp.Gy:) the (N — n) x n kernel matrix for
thetest set versus theraining set, and K, (resp.G,,) the (N —n) x (N — n) kernel matrix for theiest set versus

itself: . .
K = Ktt Kpt ’ G = Gtt Gpt (l)
Kpt Kpp Gpt Gpp
Note thatK,; and K,,, are known, while-,; andG),, are unknown. The goal is to predict,; and G, from K
andGy.

3 Methods

In this section we describe four approaches that can be usetid problem of kernel matrix completion: the
direct approach (Sectidn B.1) is a baseline straightfaiveguproach, the kernel CCA approach (Secfioh 3.2) has
been proposed in previous work [4], while the kernel mateigression (Sectign 3.3) and penalized kernel matrix
regression (Sectidn 3.4) are new.

3.1 Direct approach

A straightforward approach is to directly plug the entriethe kernel matrixi’ for the explanatory variable into
the missing entries of the kernel mattkfor the response variabjg that is, to choos€/,; = K, andG, = K.
We refer to this approach as the direct approach.



3.2 Kernel CCA (KCCA)

The use of kernel canonical correlation analysis (kCCA)lteesn proposed to estimate the unknown part of the
metabolic network form genomic data [4]. We make a briefeavof this approach in this subsection.

This approach amounts to searching low-dimensional feapaces derived from both kernels that are maxi-
mally correlated during the training phase. The reconstrnof missing entries i is then obtained by projecting
the corresponding points onto the feature space for theek&fnand computing their inner product in this feature
space as an approximation of the kerGelMore formally, let us write a feature : R¢ — R for the explanatory
variablex, and a feature : R! — R for the response variablg in the reproducing kernel Hilbert spaces as
follows:

u(x) = k(x,xj)a;, v(y)=Y_g(y.y;)B 2
j=1 j=1
and use the notatioty = (o, oo, -, )" @andB = (B1, B2, -, Bn) . The objective is to find featuresandv
that are as correlated as possible, that is, which maxirhzédllowing correlation
Cov(u,v)
p orr(u,v) Var(u)Y/2Var(v)t/2’ ®

whereCov(u,v) = E(uv) — E(u)E(v) andVar(u) = E(u?) — E(u)?. For theoretical and practical reasons [6]
it is better to compute featuresandv which maximize the following penalized canonical correlat

. aTKtthtﬁ
p - T 9
\/aT(Ktt + /\;c[)za\/,@ (G + N\ 1)%P

(4)

where! is an identity matrix, and\, and )\, are positive regularization parameters, and the matd¢gsand
Gy are assumed to be centered. Whendifferent featuresu(?) and vY) associated then largest canonical
correlationspl?), j = 1,2, -- -, m are obtained, they can be merged into feature veat(x$ andv(y) asu(x) =
(uM(x),- -, u™ (x))T andv(y) = (v (y),---,v™(y))T. The missing entries i are then estimated as
9(y,y') = ux)"u(x).

3.3 Kernd matrix regression (KMR)

An apparent drawback of the kCCA approach is that the obgdtinction of kCCA is different from that of
correctly predicting the values of the kerrggl In particular, by computing featuresfor the response variabjg,
the notion of similarity between response variaples changed. In the problem of kernel matrix completion, we
do not want to change the similarity space for the respongablay. We want instead to change the object-object
similarity space only for the explanatory variabteto make it fit the the object-object similarity space for the
response variablg. In this section we propose a variant of the regression muaked on the underlying features
in the reproducing kernel Hilbert space by modifying thesidé kernel CCA.

The ordinary regression model between an explanatoryhtasac R¢ and a response variabjec R can be
formulated as follows:

y:f(x)—l-e, (5)

wheref : RY — R ande is a noise term. By analogy we propose to regardk’) € R? x R? as an explanatory
variable andy(y,y’) € R as a response variable in our context. Assuming the undgrfgatureu(x) € R™ in
the reproducing kernel Hilbert space, we formulate a vawathe regression model as follows:

9(y,y') = f(x,x) +e=u(x) ux) +e, (6)

wheref : R x R? — R. We refer to this model as kernel matrix regression model.ndfe that imposingf
to be of the formf(x,x’) = u(x) "u(x’) for some featurar : R¢ — R'™ ensures that the regression function is
positive definite and the number of dimensiarof the featureu is allowed to be infinite.
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Following a classical approach in kernel methods, we cendehtures in the reproducing kernel Hilbert space
of the kernelK that possess an expansion of the form:

u(x) = k(x,x;)wj, ()
j=1

wherew = (wy,ws, -, wy,) ' is aweight vector and is the number of objects in the training set. Wherdif-
ferent features are considered, we express them by a featci@u asu(x) = (v (x), u? (x), - - -, u(™(x))T.

In order to represent the set of features for all the objeatsjefine feature score matridégx) = [u(x1), u(xza), - - -, u(xp,
for the training set and,(x) = [u(x,+1), u(x,12), -, u(xy)] " for the test set.

In the matrix form, we can actually compute the feature sowa&ices a$/; = K, W for the training set and
U, = KW for the test set, wherd” = [w1) w® ... w(™].

The inner products of the feature vectors between two abret;(x, x') = u(x) ' u(x’). To represent all the
object-object similarities in the feature space, we defigesimilarity matrixQ as

(Q)ij = q(xi,x5) = u(XZ’)Tu(Xj)> 1<4,5<N.
Splitting the matrix@ into several parts according to the training set, test seettagir interaction, we can compute

them as follows:
Training set versusTraining set:

Qu = UiU," = KuWW K (8)
Test set versusTraining set:

Qpt = UU, = Ky WW 'K, (9)
Test set versusTest set:

Qpp = UpU,) = Ky WWTK), . (10)

Here we want to find thes x m weight matrix W such thatQ, fits Gy as much as possible. If we set
A = WWT, this problem can be replaced by findidgwhich minimizes the difference betwee¥, and Q.
It means that, this enables us to avoid considerable cortiqmeia burden for computingV’ itself, even ifm is
infinite. Therefore, we attempt to find(= W W T) which minimizes

L=| Gy — KuAKy |7 (11)
where|| - || ¢ indicates the Frobenius norm. We can rewrite the above iequiatthe trace form as
L=t {(Gu — KuAK}})(Gu — Ky AK}})' }. (12)

The derivative ofL with respect toA is obtained as
10L
394 — —KuGu Ky + KftAKtzt,
From setting% = 0, the solution is analytically obtained by
A=WW' = K;'GuK;*.
Then, the feature score matiixcan be computed for training set and test set, respectagfipllows:
U, = KuK;' G, U, = KuK;'Gl>. (13)
Therefore, we can compute the feature-based similarityixn@tinvolving the test set as follows:
Test set versusTraining set:
Qpt = UpUy| = Kpi Ky Gy, (14)
Test set versusTest set:
Qup = UpU, = KpKy'Gu Ky K. (15)
By using the@,; and@,,,, we can predict the missing entries in the kernel maifjxvhich correspond t6r,,; and
Gpp-



3.4 Penalized kernel matrix regression (PKMR)

Here we consider introducing the idea of regularizatiorhim KMR proposed in the previous section. To do so,
we attempt to findd(= W W ) which minimizes the following penalized loss function:

L =| Gu — KyAKy |3 +APEN(A), (16)

where \ is a regularization parameter aitE N (A) is a penalty term ford defined as follows. Each positive
semidefinite matrix4 can be expanded at = >"1" ; winT , Where the(w;);=1, ., form an orthogonal basis of
eigenvectors. To eack; is associated a featute : R — R by ([f), whose norm in the RKHS df is given by:

i lkrcms= D wijwirk(xj,xg) = tr(wiw] K) .
3k=1
To enforce regularity of the global mapping we therefore define the following penalty fdr
PEN(A) = 22 | wi % prs= 2 Ztr(wiwiTKtt) = 2tr(AKy) .
i=1 i=1

In this case, the optimization problem is reduced to finddngrhich minimizes
L =+tr {(Gtt - KttAKt—tr)(Gtt — KttAKt—tr)T} + 2)\1}1‘ {AKtt} . (17)

The derivative ofL with respect taA4 is

10L
58_14 — —Ktththt + Kt%AKtzt + )‘Ktt-

Therefore, the solution of the above penalized optimizatimblem is obtained by
A=K Gy — \K Ky

We note that the justification for the penalty used is onlydvédr positive semidefinite matrices, which will be
obtained at least for small enough Therefore, we can compute the feature-based similarityixn@ involving
the test set as follows:

Test set versusTraining set:

Qu = UpU) = KK (Gy — AK Y, (18)
Test set versusTest set:
Qpp = UpUpT = Kpthzl(Gtt - )‘Ktzl)KﬁlK;t- (19)
By using the@,,; andQ@,,,, we can predict the missing entries in the kernel maifjxvhich correspond t6r,,; and
Gpp-
4 Relationship with the emralgorithm

For the kernel matrix completion problem, the use of ¢healgorithm based on information geometry has been
proposed [7]. There the kernel matrix completion problemefned as finding missing entries that minimize the
Kullback-Leibler divergence between the resulting cortrgalematrix and a spectral variant of the full matrix.

It is interesting to observe that the final algorithms betwea and KMR are very similar. Them algorithm
results in the following equations for estimating the in@bete partss,; andG,, in G:



Test set versusTraining set:
Qpt = KptKﬁthta (20)

Test set versusTest set:

Qup = Kpp + K K ' Ky + Ky K ' G K K, (1)

We note that the&),; of the em-algorithm is equivalent to that of the kernel matrix regies. On the other
hand, the®,,, of the em-algorithm isnot equivalent to that of the kernel matrix regression. It dgfey K, +
KptKgleTt. This stems from the difference of the geometry space betweetwo methods. Them-algorithm
is based on the information geometry, while the proposed K$Abtised on the Euclidean geometry.

5 Experiments

In this section we report an empirical comparison of différmethods: 1) direct method, 2) kCCA method, 3)
emmethod, 4) KMR method, 5) PKMR method applied to the probtdrgene network inference and protein 3D
structure prediction.

5.1 Estimation of missing edgesin the metabolic gene network

The metabolic gene network is an important biological nekwoHowever, most parts of the metabolic gene
network remain unknown, and many enzyme genes are stilimgiss our current knowledge. Determining new
enzyme genes and their position in the metabolic networki iexpensive and painstaking process that requires
many wet experiments. On the contrary, we can easily obtiows genome-wide genomic datasets representing
gene/protein information, such as gene expression daitgiprocalization data, and phylogenetic profiles. We
therefore attempt to predict missing edges in the metalgeli® network by using such genomic data.

We gathered a kernel matrix of the genomic data (consistii@® genes) by combining three kernel matrices
obtained from three datasets: gene expression data, rptotglization data, and phylogenetic profiles, and we
regard this matrix as an explanatory kernel mafix We used the same datasets and corresponding kernels as
those used by [4]. We obtained a kernel matrix for the genwarktfrom the graph information of the gene
network by using the diffusion kernel [8] with parameter= 1, and we regard this matrix as a response kernel
G. The kernel matrix is invertible in this case. The kernel similarity valueirn(transformed by the diffusion
kernel from the graph of the gene network) are expected r@sept the intensity of graphical association between
genes, which can be considered as a possibility of the existef the edge. Therefore, if the gene pairs sharing
similarities higher than a threshold, they are predictedtiract with each other.

To compare the performance between different methods, pkedhe direct approach, the kCCA, ther
algorithm, the KMR, and the penalized KMR (PKMR) to the gentwork prediction. We tested their performance
by cross-validation. In each cross-validation iteratime, randomly split the genes in the gold standard data into
training set and test set. We learned the model based oreihintr dataset only and we applied the model to the
test set in order to predict the missing edges involving élseéget on the metabolic network. We are also interested
in the effect of the rate of the test samples against theimgsamples, so we carried out the same experiment with
different percentages of the test samples in the dataisglittocess in each cross-validation iteration.

As a measure of the performance, we used the AUC score (atleatine ROC curve), because the performance
depends on the threshold given in advance. The ROC curvéinedes a function of the true positive rates against
the false positive rates based on several threshold valliase positive” means that the predicted gene-pairs are
actually present in the gold standard network, while "fgdesitive” means that the predicted gene-pairs are absent
in the gold standard network. In the case of the KCCA, we setabularization parameteks and\, as 0.1 and
0.1, and we used 30 features, as suggested by [4]. In the tdse BKMR, the regularization parametgris
optimized by applying the internal cross-validation witlthe training set with the AUC score as a target criterion,
which provides us withh = 0.1.



Table 1: Comparison of AUC scores with varying rates of frajrset: Qy, (training versus test).

RATE DIRECT KCCA EM KMR PKMR
90% 0.598 0.840 0.889 0.889 0.892
80% 0.570 0.824 0.844 0.844 0.848
70%  0.580 0.783 0.805 0.805 0.814
60% 0.575 0.780 0.786 0.786 0.801
50% 0.579 0.772 0.783 0.783 0.772
40% 0.569 0.714 0.760 0.760 0.758
30% 0.571 0.682 0.732 0.732 0.738
20% 0.565 0.633 0.674 0.674 0.676
10% 0.593 0.669 0.672 0.672 0.676

Table 2: Comparison of AUC scores with varying rates of trairset:,,, (test versus test).

RATE DIRECT KCCA EM KMR PKMR
90 % 0.531 0.785 0.766 0.774 0.787
80% 0.593 0.727 0.724 0.723 0.743
70% 0.602 0.680 0.686 0.700 0.703
60% 0.558 0.673 0683 0.678 0.675
50% 0.581 0.661 0.644 0.651 0.662
40% 0.569 0.646 0.635 0.635 0.642
30% 0.583 0.610 0.621 0.627 0.637
20% 0.579 0587 0587 0.567 0.576
10% 0.568 0.591 0.585 0.573 0.589

All the result of the experiments are summarized in Tablead 2 Table 1 shows the result in estimating
Qpt, While Table 2 shows the result in estimati@yg,,. In each table, the rows correspond to the percentage of the
training samples against the test samples and the columrespond to the methods. It appears that the direct
approach performs significantly worse than the other sigeshearning based methods. It seems that, the kCCA
performs worse than them-algorithm, the KMR and PKMR in estimatin@,, while the kCCA performs better
than theem-algorithm and the KMR, and at competitive level with the PRNh estimating,,. Focusing on the
comparison of the performance betweendmealgorithm and the KMR, both them-algorithm and the KMR show
the same performance in estimatifdg;, as expected from the mathematical relationship betwesenttalgorithm
and the KMR. On the other hand, teeralgorithm and the KMR behave differently in estimatiyg,,, but their
performances are at competitive level. The penalized KMRMR) slightly outperforms the other methods in
estimating bott@Q,; and@,,,, suggesting that the introduction of regularization cameaningful in this context.

5.2 Prediction of protein 3D structures from their sequences

Protein 3D structures are strongly associated with exanatiy history and biological functions, compared with
protein sequences. Here we attempt to classify proteimssuperfamilies based on the structure information.
However, the number of proteins whose structures are ditedris limited even nowadays and the structure
information of most proteins is almost unknown. Therefawe, performed protein classification by predicting
missing similarity elements of protein 3D structures.

The sequence similarities are obtained by marginalizeagkg®] and the 3D structural similarities are obtained
by the result of MATRAS [10]. We used the same datasets angsponding kernel matrices used in previous
work [5], whereK corresponds to the similarity matrix for protein sequeren@sG corresponds to the similarity
matrix for protein 3D structures. The kernel mat#iX is invertible in this case. We applied the support vector
machine (SVM) to the dataset of TIM beta/alpha-barrel pnofeld (18 classes, 90 proteins), and conducted



one-versus-other supervised classifications for clasdlckass 3, respectively. The reason why we selected the
above two classes is that they have more than 10 membershincéss. The leave-one-out cross-validation is
conducted and the performance is evaluated by using setysaind specificity, where sensitivity is defined as
#TP/(#FN + #TP) and specificity is defined a7 P/(#F P + #TP), respectively. In the case of PKMR,
the regularization parametaris optimized by applying the internal cross-validationhwitthe training set, and
set to be 0.1.

Table 3: Comparison of sensitivities (left) and specifést{right): Class 1.

Rate direct kCCA em KMR PKMMRRate direct kCCA em KMR PKMR

0% 0.47 - - - -0% 0.66 - - - -
20% - 082 0.76 0.76 0.8820% - 045 043 041 0.42
40% - 0.70 0.70 0.70 0.76 40% - 036 04 0.36 0.38
60% - 0.70 0.88 0.88 0.9460% - 0.5 053 0.48 0.51
80% - 0.76 0.88 0.88 0.88 80% - 0.81 093 0.93 0.93
100% 094 094 094 094 0.900% 1.0 1.0 1.0 1.0 1.0

Table 4: Comparison of sensitivities (left) and specifést{right): Class 3.

Rate direct kCCA em KMR PKMMRRate direct kCCA em KMR PKMR

0% 0.58 - - - -0% 0.62 - - - -
20% - 064 0.76 0.76 0.8220% - 040 044 0.34 0.35
40% - 0.64 0.82 0.88 0.88 40% - 0.39 053 0.45 0.42
60% - 0.76 082 0.82 0.8860% - 056 051 0.51 0.53
80% - 0.76 094 0.94 1.0 80% - 0.68 094 094 0.85
100% 1.0 1.0 1.0 1.0 1.000% 094 094 094 0.94 0.94

Table 3 and Table 4 show the results of computing sensé#/itind specificities depending on the rate of
training set for class 1 and class 3, respectively, in theeleme-out cross-validation experiments. The direct
method with0% means that we use sequence information only, while thetdinethod with100% means that we
use structure information only. Looking at the tables, theViR seems to outperform the other methods in this
context especially from the viewpoint of sensitivity. Inntast, the performance seems to be at competitive level
across different methods from the viewpoint of specificity.

6 Discussions and conclusions

In this paper we addressed the problem of filling missingiestin a kernel Gram matrix, given a related full
kernel Gram matrix. We attacked this kernel matrix compketproblem from the viewpoint of regression. We
proposed the kernel matrix regression (KMR) based on thenlyidg features in the reproducing kernel Hilbert
space by modifying the idea of KCCA. Through the developnoéihe KMR, we also clarified the mathematical
relationship between the kCCA, tler-algorithm, and the proposed methods in the context of theckenatrix
completion problem. In the experiment on gene network arfee and protein 3D prediction, we confirmed that
the performance of the KMR is competitive with that of othesthods, and we showed that the penalized version
of the KMR works the best when an appropriate regularizgtieaameter is chosen.
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