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Abstract

We address the problem of filling missing entries in a kernel Gram matrix, given a related full Gram ma-
trix. We attack this problem from the viewpoint of regression, assuming that the two kernel matrices can be
considered as explanatory variables and response variables, respectively. We propose a variant of the regression
model based on the underlying features in the reproducing kernel Hilbert space by modifying the idea of kernel
canonical correlation analysis, and we estimate the missing entries by fitting this model to the existing samples.
We obtain promising experimental results on gene network inference and protein 3D structure prediction from
genomic datasets. We also discuss the relationship with theem-algorithm based on information geometry.

1 Introduction

Kernel methods such as support vector machines (SVM) enablethe use of powerful statistical analysis for various
datasets as soon as kernel matrices for the dataset are available [1]. When a dataset containsN objects, theN
objects are represented as anN × N positive semidefinite matrix whose elements can be thought of as objects-
object similarities. An advantage of kernel methods is thatthey can be applied not only to real-valued data but
also to complex structured objects such as strings, trees and graphs [2]. The kernel matrix not only plays an
important role as the input to kernel methods, but also provides important information regarding the similarity
between objects.

In this paper we consider the problem of estimating missing entries in a kernel matrix. More precisely we
assume that two datasets describing the same objects are available; however, although all data are available for the
first dataset, only part of the second dataset is available. In this case, a full kernel Gram matrix can be obtained
for the first dataset, while only a partial kernel Gram matrixis obtained for the second dataset, that is, a matrix
with missing entries. If we are more interested in the seconddataset rather than in the first dataset, it is natural to
think of estimating the missing part of the second kernel matrix, e.g., by looking for correlations between the two
kernels.

This problem arises commonly in applications such as bioinformatics, where informative data for a given
classification task is expensive to produce while less informative data are easily available. As an example, the
DNA sequences of all proteins of a given organism are easily obtained from the sequenced genome, while the 3D
structures of most proteins are still unknown and difficult to obtain. In this case, we want to know the 3D structure
information for the proteins whose structure have not been determined. As another example, high-throughput
genome-wide data (e.g., gene expression data) are available for the full genes of an organism, while the metabolic
network information is known only for a limited number of genes. In this case, we want to predict the unknown
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part of gene network using the fully available genome-wide data. A variety of methods have been proposed in
order to tackle such problems related to kernel matrix completion. Examples include the use of kernel canonical
correlation analysis (kernel CCA) for gene classification [3] and gene network inference [4], and the use of the
em-algorithm based on information geometry for protein 3D structure prediction [5].

In this paper we attack the kernel matrix completion problemfrom the viewpoint of regression, considering
the two kernel matrices represent inner products between explanatory and response variables, respectively. We
propose a variant of the regression model based on the underlying features in the reproducing kernel Hilbert space
by modifying the idea of kernel CCA, and we estimate the missing entries by fitting this model to the existing
samples. In the experiment, we show promising results on theprediction of missing edges in a gene network
from genome-wide data and on the prediction of protein 3D structure information from their sequences. We also
discuss the mathematical and numerical relationships between the proposed methods and theem-algorithm based
on information geometry.

2 Formalism of the question

Suppose that we have an explanatory random variablex ∈ Rd and a response random variabley ∈ Rl. Let us
now consider the situation where the data is available for all theN objects for the explanatory variablex, while the
data is available for the firstn objects and unavailable for the remaining (N − n) objects for the response variable
y. We refer to the firstn objects astraining set, and we refer to the remainingN − n objects astest set below.

Let k andg be symmetric positive definite kernels defined onRd andRl, respectively. When we compute the
kernel matrix for the explanatory variablex, we obtain anN ×N kernel matrixK, where(K)ij = k(xi,xj) (1 ≤
i, j ≤ N), xi belongs to a setX andN is the number of all objects. On the other hand, when we compute the kernel
matrix for the response variabley, we obtain anN ×N kernel matrixG, where(G)ij = g(yi,yj) (1 ≤ i, j ≤ n),
yi belongs to a setY, andn is the number of available objects (n < N ). Note thatG contains in fact missing
values for all entries(G)ij with max(i, j) > n. We want to estimate the missing part ofG using full Gram matrix
K, taking into account a form of correlation between the two kernels.

In this study we express each kernel matrix by splitting the matrix into four parts. We denote byKtt (resp.
Gtt) then × n kernel matrix for thetraining set versus itself,Kpt (resp.Gpt) the(N − n) × n kernel matrix for
thetest set versus thetraining set, andKpp (resp.Gpp) the(N −n)× (N −n) kernel matrix for thetest set versus
itself:

K =

(

Ktt K⊤
pt

Kpt Kpp

)

, G =

(

Gtt G⊤
pt

Gpt Gpp

)

(1)

Note thatKpt andKpp are known, whileGpt andGpp are unknown. The goal is to predictGpt andGpp from K
andGtt.

3 Methods

In this section we describe four approaches that can be used for the problem of kernel matrix completion: the
direct approach (Section 3.1) is a baseline straightforward approach, the kernel CCA approach (Section 3.2) has
been proposed in previous work [4], while the kernel matrix regression (Section 3.3) and penalized kernel matrix
regression (Section 3.4) are new.

3.1 Direct approach

A straightforward approach is to directly plug the entries of the kernel matrixK for the explanatory variablex into
the missing entries of the kernel matrixG for the response variabley, that is, to chooseGpt = Kpt andGpp = Kpp.
We refer to this approach as the direct approach.
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3.2 Kernel CCA (kCCA)

The use of kernel canonical correlation analysis (kCCA) hasbeen proposed to estimate the unknown part of the
metabolic network form genomic data [4]. We make a brief review of this approach in this subsection.

This approach amounts to searching low-dimensional feature spaces derived from both kernels that are maxi-
mally correlated during the training phase. The reconstruction of missing entries inG is then obtained by projecting
the corresponding points onto the feature space for the kernel K, and computing their inner product in this feature
space as an approximation of the kernelG. More formally, let us write a featureu : Rd → R for the explanatory
variablex, and a featurev : Rl → R for the response variabley in the reproducing kernel Hilbert spaces as
follows:

u(x) =
n
∑

j=1

k(x,xj)αj , v(y) =
n
∑

j=1

g(y,yj)βj , (2)

and use the notationα = (α1, α2, · · · , αn)⊤ andβ = (β1, β2, · · · , βn)⊤. The objective is to find featuresu andv
that are as correlated as possible, that is, which maximize the following correlation

ρ = Corr(u, v) =
Cov(u, v)

V ar(u)1/2V ar(v)1/2
, (3)

whereCov(u, v) = E(uv) − E(u)E(v) andV ar(u) = E(u2) − E(u)2. For theoretical and practical reasons [6]
it is better to compute featuresu andv which maximize the following penalized canonical correlation:

ρ =
α⊤KttGttβ

√

α⊤(Ktt + λxI)2α
√

β⊤(Gtt + λyI)2β
, (4)

whereI is an identity matrix, andλx andλy are positive regularization parameters, and the matricesKtt and
Gtt are assumed to be centered. Whenm different featuresu(j) and v(j) associated them largest canonical
correlationsρ(j), j = 1, 2, · · · ,m are obtained, they can be merged into feature vectorsu(x) andv(y) asu(x) =
(u(1)(x), · · · , u(m)(x))⊤ andv(y) = (v(1)(y), · · · , v(m)(y))⊤. The missing entries inG are then estimated as
ĝ(y,y′) = u(x)⊤u(x′).

3.3 Kernel matrix regression (KMR)

An apparent drawback of the kCCA approach is that the objective function of kCCA is different from that of
correctly predicting the values of the kernelG. In particular, by computing featuresv for the response variabley,
the notion of similarity between response variabley is changed. In the problem of kernel matrix completion, we
do not want to change the similarity space for the response variabley. We want instead to change the object-object
similarity space only for the explanatory variablex to make it fit the the object-object similarity space for the
response variabley. In this section we propose a variant of the regression modelbased on the underlying features
in the reproducing kernel Hilbert space by modifying the idea of kernel CCA.

The ordinary regression model between an explanatory variablex ∈ Rd and a response variabley ∈ R can be
formulated as follows:

y = f(x) + ǫ, (5)

wheref : Rd → R andǫ is a noise term. By analogy we propose to regard(x,x′) ∈ Rd × Rd as an explanatory
variable andg(y,y′) ∈ R as a response variable in our context. Assuming the underlying featureu(x) ∈ Rm in
the reproducing kernel Hilbert space, we formulate a variant of the regression model as follows:

g(y,y′) = f(x,x′) + ǫ = u(x)⊤u(x′) + ǫ, (6)

wheref : Rd × Rd → R. We refer to this model as kernel matrix regression model. Wenote that imposingf
to be of the formf(x,x′) = u(x)⊤u(x′) for some featureu : Rd → Rm ensures that the regression function is
positive definite and the number of dimensionm of the featureu is allowed to be infinite.
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Following a classical approach in kernel methods, we consider features in the reproducing kernel Hilbert space
of the kernelK that possess an expansion of the form:

u(x) =
n
∑

j=1

k(x,xj)wj , (7)

wherew = (w1, w2, · · · , wn)⊤ is a weight vector andn is the number of objects in the training set. Whenm dif-
ferent features are considered, we express them by a featurevectoru asu(x) = (u(1)(x), u(2)(x), · · · , u(m)(x))⊤.

In order to represent the set of features for all the objects,we define feature score matricesUt(x) = [u(x1),u(x2), · · · ,u(xn)]
for the training set andUp(x) = [u(xn+1),u(xn+2), · · · ,u(xN )]⊤ for the test set.

In the matrix form, we can actually compute the feature scorematrices asUt = KttW for the training set and
Up = KptW for the test set, whereW = [w(1),w(2), · · · ,w(m)].

The inner products of the feature vectors between two objects areq(x,x′) = u(x)⊤u(x′). To represent all the
object-object similarities in the feature space, we define the similarity matrixQ as

(Q)ij = q(xi,xj) = u(xi)
⊤u(xj), 1 ≤ i, j ≤ N.

Splitting the matrixQ into several parts according to the training set, test set and their interaction, we can compute
them as follows:

Training set versusTraining set:

Qtt = UtU
⊤

t = KttWW⊤K⊤

tt , (8)

Test set versusTraining set:
Qpt = UpU

⊤

t = KptWW⊤K⊤

tt , (9)

Test set versusTest set:
Qpp = UpU

⊤

p = KptWW⊤K⊤

pt . (10)

Here we want to find then × m weight matrixW such thatQtt fits Gtt as much as possible. If we set
A = WW⊤, this problem can be replaced by findingA which minimizes the difference betweenGtt andQtt.
It means that, this enables us to avoid considerable computational burden for computingW itself, even ifm is
infinite. Therefore, we attempt to findA(= WW⊤) which minimizes

L =‖ Gtt − KttAK⊤

tt ‖2
F , (11)

where‖ · ‖F indicates the Frobenius norm. We can rewrite the above equation in the trace form as

L = tr
{

(Gtt − KttAK⊤

tt )(Gtt − KttAK⊤

tt )
⊤
}

. (12)

The derivative ofL with respect toA is obtained as

1

2

∂L

∂A
= −KttGttKtt + K2

ttAK2
tt,

From setting∂L
∂A = 0, the solution is analytically obtained by

A = WW⊤ = K−1
tt GttK

−1
tt .

Then, the feature score matrixU can be computed for training set and test set, respectively,as follows:

Ut = KttK
−1
tt G

1/2
tt , Up = KptK

−1
tt G

1/2
tt . (13)

Therefore, we can compute the feature-based similarity matrix Q involving the test set as follows:
Test set versusTraining set:

Qpt = UpU
⊤

t = KptK
−1
tt Gtt, (14)

Test set versusTest set:
Qpp = UpU

⊤

p = KptK
−1
tt GttK

−1
tt K⊤

pt. (15)

By using theQpt andQpp, we can predict the missing entries in the kernel matrixG, which correspond toGpt and
Gpp.
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3.4 Penalized kernel matrix regression (PKMR)

Here we consider introducing the idea of regularization in the KMR proposed in the previous section. To do so,
we attempt to findA(= WW⊤) which minimizes the following penalized loss function:

L =‖ Gtt − KttAKtt ‖
2
F +λPEN(A), (16)

whereλ is a regularization parameter andPEN(A) is a penalty term forA defined as follows. Each positive
semidefinite matrixA can be expanded asA =

∑n
i=1 wiw

⊤
i , where the(wi)i=1,...,n form an orthogonal basis of

eigenvectors. To eachwi is associated a featureui : Rd → R by (7), whose norm in the RKHS ofK is given by:

‖ ui ‖
2
RKHS=

n
∑

j,k=1

wi,jwi,kk(xj ,xk) = tr(wiw
⊤

i K) .

To enforce regularity of the global mappingu, we therefore define the following penalty forA:

PEN(A) = 2
n
∑

i=1

‖ ui ‖
2
RKHS= 2

n
∑

i=1

tr(wiw
⊤

i Ktt) = 2tr(AKtt) .

In this case, the optimization problem is reduced to findingA which minimizes

L = tr
{

(Gtt − KttAK⊤

tt )(Gtt − KttAK⊤

tt )
⊤
}

+ 2λtr {AKtt} . (17)

The derivative ofL with respect toA is

1

2

∂L

∂A
= −KttGttKtt + K2

ttAK2
tt + λKtt.

Therefore, the solution of the above penalized optimization problem is obtained by

A = K−1
tt (Gtt − λK−1

tt )K−1
tt .

We note that the justification for the penalty used is only valid for positive semidefinite matrices, which will be
obtained at least for small enoughλ. Therefore, we can compute the feature-based similarity matrix Q involving
the test set as follows:

Test set versusTraining set:

Qpt = UpU
⊤

t = KptK
−1
tt (Gtt − λK−1

tt ), (18)

Test set versusTest set:

Qpp = UpU
⊤

p = KptK
−1
tt (Gtt − λK−1

tt )K−1
tt K⊤

pt. (19)

By using theQpt andQpp, we can predict the missing entries in the kernel matrixG, which correspond toGpt and
Gpp.

4 Relationship with the em-algorithm

For the kernel matrix completion problem, the use of theem algorithm based on information geometry has been
proposed [7]. There the kernel matrix completion problem isdefined as finding missing entries that minimize the
Kullback-Leibler divergence between the resulting completed matrix and a spectral variant of the full matrix.

It is interesting to observe that the final algorithms between em and KMR are very similar. Theem algorithm
results in the following equations for estimating the incomplete partsGpt andGpp in G:

5



Test set versusTraining set:
Qpt = KptK

−1
tt Gtt, (20)

Test set versusTest set:

Qpp = Kpp + KptK
−1
tt K⊤

pt + KptK
−1
tt GttK

−1
tt K⊤

pt. (21)

We note that theQpt of the em-algorithm is equivalent to that of the kernel matrix regression. On the other
hand, theQpp of the em-algorithm isnot equivalent to that of the kernel matrix regression. It differs by Kpp +
KptK

−1
tt K⊤

pt. This stems from the difference of the geometry space between the two methods. Theem-algorithm
is based on the information geometry, while the proposed KMRis based on the Euclidean geometry.

5 Experiments

In this section we report an empirical comparison of different methods: 1) direct method, 2) kCCA method, 3)
em-method, 4) KMR method, 5) PKMR method applied to the problemof gene network inference and protein 3D
structure prediction.

5.1 Estimation of missing edges in the metabolic gene network

The metabolic gene network is an important biological network. However, most parts of the metabolic gene
network remain unknown, and many enzyme genes are still missing in our current knowledge. Determining new
enzyme genes and their position in the metabolic network is an expensive and painstaking process that requires
many wet experiments. On the contrary, we can easily obtain various genome-wide genomic datasets representing
gene/protein information, such as gene expression data, protein localization data, and phylogenetic profiles. We
therefore attempt to predict missing edges in the metabolicgene network by using such genomic data.

We gathered a kernel matrix of the genomic data (consisting of 769 genes) by combining three kernel matrices
obtained from three datasets: gene expression data, protein localization data, and phylogenetic profiles, and we
regard this matrix as an explanatory kernel matrixK. We used the same datasets and corresponding kernels as
those used by [4]. We obtained a kernel matrix for the gene network from the graph information of the gene
network by using the diffusion kernel [8] with parameterσ = 1, and we regard this matrix as a response kernel
G. The kernel matrixK is invertible in this case. The kernel similarity values inG (transformed by the diffusion
kernel from the graph of the gene network) are expected to represent the intensity of graphical association between
genes, which can be considered as a possibility of the existence of the edge. Therefore, if the gene pairs sharing
similarities higher than a threshold, they are predicted tointeract with each other.

To compare the performance between different methods, we applied the direct approach, the kCCA, theem-
algorithm, the KMR, and the penalized KMR (PKMR) to the gene network prediction. We tested their performance
by cross-validation. In each cross-validation iteration,we randomly split the genes in the gold standard data into
training set and test set. We learned the model based on the training dataset only and we applied the model to the
test set in order to predict the missing edges involving the test set on the metabolic network. We are also interested
in the effect of the rate of the test samples against the training samples, so we carried out the same experiment with
different percentages of the test samples in the data splitting process in each cross-validation iteration.

As a measure of the performance, we used the AUC score (area under the ROC curve), because the performance
depends on the threshold given in advance. The ROC curve is defined as a function of the true positive rates against
the false positive rates based on several threshold values.”True positive” means that the predicted gene-pairs are
actually present in the gold standard network, while ”falsepositive” means that the predicted gene-pairs are absent
in the gold standard network. In the case of the kCCA, we set the regularization parametersλx andλy as 0.1 and
0.1, and we used 30 features, as suggested by [4]. In the case of the PKMR, the regularization parameterλ is
optimized by applying the internal cross-validation within the training set with the AUC score as a target criterion,
which provides us withλ = 0.1.
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Table 1: Comparison of AUC scores with varying rates of training set:Qtp (training versus test).

RATE DIRECT KCCA EM KMR PKMR
90 % 0.598 0.840 0.889 0.889 0.892
80 % 0.570 0.824 0.844 0.844 0.848
70 % 0.580 0.783 0.805 0.805 0.814
60 % 0.575 0.780 0.786 0.786 0.801
50 % 0.579 0.772 0.783 0.783 0.772
40 % 0.569 0.714 0.760 0.760 0.758
30 % 0.571 0.682 0.732 0.732 0.738
20 % 0.565 0.633 0.674 0.674 0.676
10 % 0.593 0.669 0.672 0.672 0.676

Table 2: Comparison of AUC scores with varying rates of training set:Qpp (test versus test).

RATE DIRECT KCCA EM KMR PKMR
90 % 0.531 0.785 0.766 0.774 0.787
80 % 0.593 0.727 0.724 0.723 0.743
70 % 0.602 0.680 0.686 0.700 0.703
60 % 0.558 0.673 0.683 0.678 0.675
50 % 0.581 0.661 0.644 0.651 0.662
40 % 0.569 0.646 0.635 0.635 0.642
30 % 0.583 0.610 0.621 0.627 0.637
20 % 0.579 0.587 0.587 0.567 0.576
10 % 0.568 0.591 0.585 0.573 0.589

All the result of the experiments are summarized in Tables 1 and 2. Table 1 shows the result in estimating
Qpt, while Table 2 shows the result in estimatingQpp. In each table, the rows correspond to the percentage of the
training samples against the test samples and the columns correspond to the methods. It appears that the direct
approach performs significantly worse than the other supervised learning based methods. It seems that, the kCCA
performs worse than theem-algorithm, the KMR and PKMR in estimatingQpt, while the kCCA performs better
than theem-algorithm and the KMR, and at competitive level with the PKMR in estimatingQpp. Focusing on the
comparison of the performance between theem-algorithm and the KMR, both theem-algorithm and the KMR show
the same performance in estimatingQpt, as expected from the mathematical relationship between theem-algorithm
and the KMR. On the other hand, theem-algorithm and the KMR behave differently in estimatingQpp, but their
performances are at competitive level. The penalized KMR (PKMR) slightly outperforms the other methods in
estimating bothQpt andQpp, suggesting that the introduction of regularization can bemeaningful in this context.

5.2 Prediction of protein 3D structures from their sequences

Protein 3D structures are strongly associated with evolutionary history and biological functions, compared with
protein sequences. Here we attempt to classify proteins into superfamilies based on the structure information.
However, the number of proteins whose structures are determined is limited even nowadays and the structure
information of most proteins is almost unknown. Therefore,we performed protein classification by predicting
missing similarity elements of protein 3D structures.

The sequence similarities are obtained by marginalized kernel [9] and the 3D structural similarities are obtained
by the result of MATRAS [10]. We used the same datasets and corresponding kernel matrices used in previous
work [5], whereK corresponds to the similarity matrix for protein sequencesandG corresponds to the similarity
matrix for protein 3D structures. The kernel matrixK is invertible in this case. We applied the support vector
machine (SVM) to the dataset of TIM beta/alpha-barrel protein fold (18 classes, 90 proteins), and conducted
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one-versus-other supervised classifications for class 1 and class 3, respectively. The reason why we selected the
above two classes is that they have more than 10 members in each class. The leave-one-out cross-validation is
conducted and the performance is evaluated by using sensitivity and specificity, where sensitivity is defined as
#TP/(#FN + #TP ) and specificity is defined as#TP/(#FP + #TP ), respectively. In the case of PKMR,
the regularization parameterλ is optimized by applying the internal cross-validation within the training set, and
set to be 0.1.

Table 3: Comparison of sensitivities (left) and specificities (right): Class 1.

Rate direct kCCA em KMR PKMR
0% 0.47 - - - -
20% - 0.82 0.76 0.76 0.88
40% - 0.70 0.70 0.70 0.76
60% - 0.70 0.88 0.88 0.94
80% - 0.76 0.88 0.88 0.88
100% 0.94 0.94 0.94 0.94 0.94

Rate direct kCCA em KMR PKMR
0% 0.66 - - - -
20% - 0.45 0.43 0.41 0.42
40% - 0.36 0.4 0.36 0.38
60% - 0.5 0.53 0.48 0.51
80% - 0.81 0.93 0.93 0.93
100% 1.0 1.0 1.0 1.0 1.0

Table 4: Comparison of sensitivities (left) and specificities (right): Class 3.

Rate direct kCCA em KMR PKMR
0% 0.58 - - - -
20% - 0.64 0.76 0.76 0.82
40% - 0.64 0.82 0.88 0.88
60% - 0.76 0.82 0.82 0.88
80% - 0.76 0.94 0.94 1.0
100% 1.0 1.0 1.0 1.0 1.0

Rate direct kCCA em KMR PKMR
0% 0.62 - - - -
20% - 0.40 0.44 0.34 0.35
40% - 0.39 0.53 0.45 0.42
60% - 0.56 0.51 0.51 0.53
80% - 0.68 0.94 0.94 0.85
100% 0.94 0.94 0.94 0.94 0.94

Table 3 and Table 4 show the results of computing sensitivities and specificities depending on the rate of
training set for class 1 and class 3, respectively, in the leave-one-out cross-validation experiments. The direct
method with0% means that we use sequence information only, while the direct method with100% means that we
use structure information only. Looking at the tables, the PKMR seems to outperform the other methods in this
context especially from the viewpoint of sensitivity. In contrast, the performance seems to be at competitive level
across different methods from the viewpoint of specificity.

6 Discussions and conclusions

In this paper we addressed the problem of filling missing entries in a kernel Gram matrix, given a related full
kernel Gram matrix. We attacked this kernel matrix completion problem from the viewpoint of regression. We
proposed the kernel matrix regression (KMR) based on the underlying features in the reproducing kernel Hilbert
space by modifying the idea of kCCA. Through the developmentof the KMR, we also clarified the mathematical
relationship between the kCCA, theem-algorithm, and the proposed methods in the context of the kernel matrix
completion problem. In the experiment on gene network inference and protein 3D prediction, we confirmed that
the performance of the KMR is competitive with that of other methods, and we showed that the penalized version
of the KMR works the best when an appropriate regularizationparameter is chosen.
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