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On the regularization ambiguities in loop quantum gravity

Alejandro Pered]
Centre de Physique Théorique!, Campus de Luminy, 13288 Marseille, France

One of the main achievements of loop quantum gravity is the consistent quantization of the ana-
log of the Wheeler-DeWitt equation which is free of ultra-violet divergences. However, ambiguities
associated to the intermediate regularization procedure lead to an apparently infinite set of possi-
ble theories. The absence of an UV problem—the existence of well behaved regularization of the
constraints—is intimately linked with the ambiguities arising in the quantum theory. Among these
ambiguities there is the one associated to the SU(2) unitary representation used in the diffeomor-
phism covariant “point-splitting” regularization of the non linear functionals of the connection. This
ambiguity is labelled by a half-integer m and, here, it is referred to as the m-ambiguity. The aim of
this paper is to investigate the important implications of this ambiguity.

We first study 241 gravity (and more generally BF theory) quantized in the canonical formulation
of loop quantum gravity. Only when the regularization of the quantum constraints is performed
in terms of the fundamental representation of the gauge group one obtains the usual topological
quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the
level of the regulated theory that conspire against the existence of the continuum limit. This shows
that there is a clear cut choice in the quantization of the constraints in 2+1 loop quantum gravity.

We then analyze the effects of the ambiguity in 341 gravity exhibiting the existence of spuri-
ous solutions for higher representation quantizations of the Hamiltonian constraint. Although the
analysis is not complete in 34+1 dimensions—due to the difficulties associated to the definition of
the physical inner product—it provides evidence supporting the definitions quantum dynamics of
loop quantum gravity in terms of the fundamental representation of the gauge group as the only
consistent possibilities. If the gauge group is SO(3) we find physical solutions associated to spin-two
local excitations.

I. INTRODUCTION

The discovery of connection variables for general relativity led to the definition of a new approach for the non-
perturbative quantization of gravity known as loop quantum gravity (LQG) [I, B, B]. The introduction of SU(2)
connection variables for classical canonical general relativity B, é], and the corresponding use of Wilson loop variables
in the quantum theory ﬂa, ﬂ], allowed the resolution of the longstanding technical problems that had stopped the
development of the quantum geometro-dynamics of Dirac, Wheeler, DeWitt among others ﬂﬂ] Among these new
achievements are: the rigorous definition of the kinematical Hilbert space of quantum gravity, the rigorous quantization
of geometric operators such as area and volume (with the associated prediction of discreteness of quantum geometry),
and the quantization of the highly non linear Hamiltonian constraint—analog of the Wheeler-DeWitt equation—
governing the dynamics of quantum gravity. The latter is an important technical achievement of the approach where
background independence and diffeomorphism invariance play a central role in the elimination of the UV divergences
that plague standard quantum field theories.

Polymer-like excitations known as spin network states form a basis of the kinematical Hilbert space #;,. Quantum
Einstein’s equations are given by the quantum counterpart of the classical constraints of canonical general relativity. A
subset of the constraints—characterized by the vector and Gauss constraints—requires the physical states of quantum
gravity to be SU(2) gauge invariant and space-diffeomorphism invariant !. Since the action of the SU(2) gauge group
and space-diffeomorphism can be unitarily represented in the kinematical Hilbert space, it is easy to characterize the set
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1 In the Dirac program one starts by defining the so-called kinematical Hilbert space .#%;,. One proceeds by representing the set of
classical constraints—here simply denoted by C' ~ 0—as quantum operators in ;. In the classical theory the constraints generate
through the Poisson bracket infinitesimal gauge transformations; therefore, in the quantum theory C become the generators of gauge
transformations. The Hilbert space of solutions of the constraint equations CW = 0 is hence given by the gauge invariant states and is
called the physical Hilbert space, denoted 74y s-
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of invariant states and hence the solutions of this subset of quantum constraint equations by group averaging. Gauge

invariant states are given by equivalence classes of spin network states under diffeomorphisms, i.e., two polymer-like

excitations are regarded as the same if they can de deformed into each other by the action of a diffeomorphism.
Dynamics is governed by the so-called Hamiltonian constraint, whose classical form is
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where A’ is an SU(2) connection, F¥ (A) is its curvature tensor, E¢ is its conjugate momentum with the geometric
interpretation of a (densitized) triad field, and we have considered the constraint in the Riemannian theory (this
simplifying assumption will be made throughout this article). In the quantum theory the Hamiltonian constraint
must be promoted to a quantum operator whose kernel defines the so-called physical Hilbert space Sy of quantum
gravity. The quantization of the Hamiltonian constraint was introduced by Thiemann in [d, [L0]. Shortly thereafter it
was pointed out [L1] that in addition to (potential) factor order ambiguities, Thiemann’s prescription had an intrinsic
ambiguity labelled by a half-integer m € Z/2 associated to the SU(2) unitary representation used to regularize the
curvature tensor F fb(A) appearing in the classical expression of the Hamiltonian constraint. In this paper we refer to
this problem as the m-ambiguity. .

For every m € Z/2 one obtains a different quantum Hamiltonian constraint H,,. As argued below, linear combi-
nations of different regularizations are also good regularizations; therefore, one obtains an infinite dimensional set of
possibly different theories. In this respect one viewpoint is that the understanding of the dynamics in each theory
would allow the pinpointing of the correct one by confronting its prediction with observations. For instance, the analog
of the m-ambiguity appears also in the coupling of quantum gravity with matter. This ambiguity is known to lead to
important physical consequences in the context of cosmological models inspired by loop quantum gravity known as
loop quantum cosmology [12]. In particular in the evolution of the universe near the classical big bang singularity [13].
These effects are potentially observable so that comparison with observations is expected to put constraints on the
set of viable theories. Although, this viewpoint might be argued in the phenomenological framework of loop quantum
cosmology it is not tenable for a fundamental theory as we will discuss in what follows.

The existence of the m ambiguity is intimately related to the mechanism leading to the absence of UV problems in
loop quantum gravity. More precisely, in order to regularize quantum operators corresponding to non linear functionals
of the fundamental fields (e.g. the Hamiltonian constraint) one uses a diffeomorphism covariant prescription of ‘point-
splitting’ consisting of replacing the connection by holonomies along infinitesimal paths. The origin of the ambiguity
resides in the choice of the SU(2) representation in which these holonomies are taken. Because of diffeomorphism
invariance it turns out that the regulator can be removed without ever encountering UV divergences. In this way one
ends up with a well defined quantum Hamiltonian constraint, but only at the price of having an infinite number of
consistent but (in principle) different quantum theories.

The situation is reminiscent of the problem of renormalization in standard background dependent quantum field
theories. There, in order to make sense of products of operator valued distributions (representing interactions) one has
to provide a regularization prescription (e.g. an UV cutoff, dimensional regularization, point splitting, etc.). Removing
the regulator is a subtle task involving the tuning of certain terms in the Lagrangian (counter terms) that ensure finite
results when the regulator is removed. In fact by taking special care in the mathematical definition of the ‘products
of distributions at the same point’ one can provide a definition of the quantum theory which is completely free of UV
divergences [14] (see also [15, [16, [17]). However, any of these regularization procedures is intrinsically ambiguous.
The dimension of the parameter space of ambiguities depends on the structure of the theory. The right theory must
be fixed by comparing predictions with observations (by the so-called renormalization conditions). According to this,
in loop quantum gravity one has only achieved the first step: a rigorous regularization provided by the mathematical
framework of the theory. It remains to settle the crucial issue of how to fix the associated ambiguities.

According to the previous discussion, ambiguities associated to the UV regularization allows for the classification of
theories in two important types: renormalizable and non-renormalizable quantum field theories. In a renormalizable
theory such as QED there are finitely many ambiguities which can be fixed by a finite number or renormalization
conditions, i.e., one selects the suitable theory by appropriate tuning of the ambiguity parameters in order to match
observations. In a non-renormalizable theory (e.g. perturbative quantum gravity) the situation is similar except for
the fact that there are infinitely many parameters to be fixed by renormalization conditions. As the latter must be
specified by observations, a non-renormalizable theory has little predictive power.

Removing UV divergences by a regularization procedure is intimately related to the appearance of ambiguities in
the quantum theory. Although this can happen in different ways in particular formulations, this problem is intrinsic
to the formalism of quantum field theory. In this respect, it is illustrative to analyze the non-perturbative treatment
of gauge theories in the context of lattice gauge theory (where the true theory is studied by means of a regulated
theory defined on a space-time discretization or lattice). It is well known that here too the regulating procedure



leads to ambiguities; the relevance of the example resides in the fact that these ambiguities resemble in nature those
appearing in loop quantum gravity. More precisely, let us take for concreteness SU(2) Yang-Mills theory which can
be analyzed non-perturbatively using the standard (lattice) Wilson action

Siva = gigzp: (1 — iTr[Up + Ug]> : (2)

In the previous equation U, € SU(2) is the holonomy around plaquettes p, and the sum is over all plaquettes of a
regulating (hyper-cubic) lattice. It is easy to check that the previous action approximates the Yang-Mills action when
the lattice is shrunk to zero for a fixed smooth field configuration. This property is referred to as the naive continuum
limit. Moreover, the quantum theory associated to the previous action is free of any UV problem due to the UV
cut-off provided by the underlying lattice.

Is this procedure unique? As it is well known the answer is no. Among the many ambiguities let us mention the one
that, as it will become clear later, is the closest in spirit to the m-ambiguity in loop quantum gravity. More precisely
one can regulate Yang-Mills theory equally well using the following action instead of ():

(m) ]' ]' (m) m m T
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where I1 (U,) denotes to the SU(2) unitary irreducible representation matrix (of spin m) evaluated on the plaquette
holonomy U,,. Or more generally one can consider suitable linear combinations

Siym = Z Qm 51(4311\21 (4)

From the view point of the classical continuum theory all these actions are equally good as they all satisfy the naive
continuum limit. Do these theories approximate in a suitable sense the continuum quantum field theory as well? and
are these ambiguities un-important in describing the physics of quantum Yang-Mills theory? The answer to both
of these questions is yes and the crucial property that leads to this is the renormalizability of Yang-Mills theory.
Different choices of actions lead indeed to different discrete theories. However, in the low energy effective action the
differences appear only in local operators of dimension five or higher. A simple dimensional argument shows that in
the continuum limit (i.e. when the regulating lattice dependence is removed by shrinking it to zero) all the above
theories lead to the same predictions in the sense that can safely ignore non-renormalizable contributions. Therefore,
the ambiguities at the ‘microscopic level’ do not have any effect at low energies where we recover quantum Yang-Mills
theory.

The situation in LQG looks at first quite similar. In order to quantize the Hamiltonian constraint one also needs
to make mathematical sense of the highly non linear (not even polynomial) form of the Hamiltonian constraint ().
The Hamiltonian constraint is quantized by means of a regularization procedure that, due to the manifest background
independence of the approach, does not lead to any UV divergencies when removed (no hidden infinities are ever
encountered). However, as in standard QFT ambiguities arise as a consequence of the regularization. Here we are
concerned with what we have called the m-ambiguity which appears when non linear functions of the connection A
are replaced by holonomies in the regularization of the Hamiltonian constraint ([ll). The m-ambiguity is associated (in
analogy to the previous example in the context of lattice gauge theory) with the SU(2) representation chosen in the
regularization. As a consequence one obtains an m-worth (m € Z/2) of (smeared)? quantum Hamiltonians, H,,[N],
that are consistent in the sense of Thiemann. More generally any linear combination

HIN] =Y ap Hy[N] with ) am =1 (5)

is also a consistent quantization. The nature of this ambiguity is very similar to the example considered in the context
of lattice gauge theory above but the naive implications seem rather dangerous in the case of gravity.

2 The smeared Hamiltonian constraint is defined as
N(2)Eg (2)Eb ()

HN= | =@

Fk (A(x))e, 3z,

and N(z) is a scalar test function called the lapse.



If one would argue in analogy to the lattice gauge theory case one immediately runs into trouble because of the
non-renormalizability of gravity. Indeed for gravity the non trivial information about the quantum theory is encoded
in the dimension five and higher local operators in the effective action (i.e. the infamous higher curvature quantum
corrections to the Einstein-Hilbert action). Consequently, and according to our previous argument, these are precisely
the terms that would be affected by the ambiguities of the microscopic theory, and one would need to perform an
infinite set of independent measurements in order to fix the ambiguities of the fundamental theory. Such a scenario
would place the non perturbative approach of LQG at the same footing as the standard perturbative approach in the
sense of predictive power.

However, one should doubt of the validity of the previous argument on the basis that it is constructed from a
notion of ‘continuum limit’ which is only applicable to background dependent theories. For example in lattice gauge
theories it is relatively easy to define the notion of a continuum limit by simply studying the dependence of the
observables of the theory as a function of the lattice constant. Due to background independence there is no analog
of the lattice constant in loop quantum gravity. Geometry is dynamical and the only scale entering the theory is
the fixed Planck length that modulates the spectrum of geometric operators. Due to both technical and conceptual
difficulties associated to the definition of the continuum in LQG, an explicit treatment of the question of the effects of
the ambiguities at low energies is not possible at this stage. There are indeed indications that the low energy limit in
a background independent theory is very different from what one would naively hope from the experience in standard
QFT [1&8]. However, even though it may be wrong to use the heuristics of standard QFT, this perspective poses a
genuine question that requires an answer. The goal of this paper is to shed some light onto this important issue.

It is interesting to notice that in the simplified context of loop quantum cosmology one can study the effects of
the m-ambiguity, and arrive to conclusions that are in agreement with the previous motivation. Even though, in this
framework, one deals with finitely many degrees of freedom, the ambiguities of the full theory are inherited by the
model due to the particular way in which the model is derived from the full theory. In this simplified setting one can
compute quantum corrections to the classical theory in the sense of an effective theory. These appear in fact as higher
curvature corrections to Hamiltonian constraint [19]. The precise form of these corrections depends indeed on the
value of the parameter m [20]. As in the previous case one should interpret these results with due care. In particular
loop quantum cosmology is not a fundamental description of quantum gravity, and it is not even diffeomorphism
invariant. Nevertheless, it provides an new perspective to arrive at the key question that motivates this work.

Finally, it is also possible that some set of the ambiguities found in the quantization of the Hamiltonian constraint
are of no physical relevance due to consistency conditions that can already be found by studying in more detail the
dynamics of the theory. If that is the case then there is a chance that we can shed some light on the issue before
completely resolving the problem of the low energy limit of LQG. This is in fact the avenue that will be explored in
this work.

These considerations confront loop quantum gravity with two obvious alternatives:

i) From the infinite dimensional set of quantum Hamiltonians (f) only a finite dimensional subset leads to mathe-
matically consistent and physically different theories.

ii) The infinite dimensional set of quantum Hamiltonians (H) leads to an infinite dimensional space of mathematically
consistent and physically different theories.

The possibility i) is desirable while possibility ii) is equivalent to the status of perturbative quantum gravity in the
sense of predictive power. Despite its central role in understanding the theory of LQG, this question has been only
marginally posed [21]. We will explicitly show that in the case of 241 gravity the first possibility holds. In fact there
are an infinite dimensional set of mathematically consistent regularizations of the constraints of 2+1 gravity, yet they
all lead to the same physical theory. In this case we are free to choose the simplest one which corresponds to using
the fundamental representation in the regularization of the curvature constraint.

The fact that 241 gravity is a topological quantum field theory might indicate that there cannot be any UV related
renormalization problems because the theory has no local degrees of freedom. However, we must emphasize that before
implementing the curvature constraint the kinematical Hilbert space of the theory corresponds to the kinematical
Hilbert space of LQG, and thus that of a full fleshed field theory. Hence, ambiguities arise in the definition of the
dynamics in a way that mimics the four dimensional case. If these ambiguities should also desappear in 341 gravity
we might expect to learn something about the underlying mechanism by studying how it happens in 2+1 dimensions.

Indeed, using the insight from the 2+1 theory we provide evidence to support a similar conclusion in 34+1 quantum
gravity. Our result in 3+1 gravity is weaker due to the present lack of suitably defined notion of physical inner product.
Our analysis will be performed in the Riemannian theory in the framework of Thiemann’s quantization; however, the
general ideas presented here are expected to be relevant for other prescriptions for the definition of the quantum
dynamics—such as the master constraint program [22] or that of consistent discretizations |23, 24, 25, 26]—where



the same regularization ambiguity arises. This work is meant to provide a direction that could lead to a possible
resolution of the ambiguity issue. A stronger result (as the one in 241 gravity) would require explicit knowledge of
the (yet not available) notion of physical probability derived from the theory.

Are there other ambiguities? Perhaps the most obvious ambiguity in the quantization of the classical expression
(@ concerns the ordering of the densitized triad fields and the connection. However, background independence and
consistency with the (recently shown to be unique [27]) kinematical structure of loop quantum gravity appears to
drastically reduce factor ordering ambiguities. The only known mechanism for the quantization of the non linear
E-dependent part of the Hamiltonian constraint is due to Thiemann and based on the observation that one can write

@ as
H x 6abc€ijkeszbjck with  ef () = {Ai(z)’/dyg |det(E)]}- (6)

The previous expression is used in the quantization where the Poisson bracket is promoted to a commutator and the
integral corresponds to the well understood quantum volume operator (there are in fact two proposed versions of the
latter |28, 129]; however, resent results indicate that only one appears to be consistent [30, 31]). Because Thiemann’s
prescription requires the £ dependent part of the Hamiltonian to be treated in this way we end up with only two
factor ordering possibilities: €, on the left or on the right of F/(A). The first of the previous possibilities does not
lead to a well defined operator [32], technically it is ruled out by cylindrical consistency [33]. So we conclude that
factor ordering seem not to be a source of infinitely many ambiguities. Another ambiguity noticed in the literature
is associated to, what we can call, the ‘combinatorial’ possibilities in the regularization of the curvature part of ().
As we mentioned above one regularizes the connection dependence in the Hamiltonian by using holonomies. There at
least two natural choices: one where the action of the Hamiltonian constraint on a spin network creates new nodes,
and the other where only the valence of nodes is altered by the action of the constraint but no new nodes are created.
A new manifold of ambiguities appears if one considers the coupling of gravity to matter [34, 135]. The effects of these
ambiguities will not be studied here. We concentrate on the m-ambiguity which gives rise to infinitely many a priory
consistent theories and is most clearly related to the regularization procedure.

II. THE M-AMBIGUITY IN QUANTUM CANONICAL 2+1 RIEMANNIAN GRAVITY

A complete account of the canonical quantization of 2+1 gravity using LQG techniques is provided in [36]; we will
follow the notation therein. If one starts from the kinematical Hilbert space ., spanned by spin network states the
only remaining constraint in 241 gravity is the quantum curvature constraint

F(A)|g >=0.

The physical inner product and the physical Hilbert space, #pnys, of 241 gravity can be defined by introducing a
regularization of the formal expression defining the generalized projection operator into the kernel of F', namely,

p=+ [T 6" = [ DIV expli [ TVE(), @
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where N € su(2), and ¥ denotes the 2-dimensional Riemann surface representing space. In [3€] it is shown how the
previous object can be given a precise definition leading to a rigorous expression for the physical inner product of the
theory. However, in order to give a precise meaning to the previous formal expression it is necessary to introduce a
regularization as an intermediate step for the quantization due to the non-linear dependence of the constraint on the
fundamental variables. In this section we observe that the analog of the m-ambiguity in 3+1 gravity appears when
the regulator is introduced. Therefore we first generalize the construction of [3€] to this case.

In order to motivate the regularization consider a local patch U C X where we choose the cellular decomposition
to be square with cells of coordinate length e. In that patch, the integral in the exponential in ([d) can be written as
a Riemann sum

FIN] = / Te[NF(A)] = lim > T[N, F, (8)
U P
where p labels plaquettes, N, € su(2), and F, € su(2) are values of N'r;, 7;¢?°F¢ [A] at some interior point of the

plaquette p, and 7; are the generators of su(2). The tensor € is the 2-dimensional Levi-Civita tensor. The quantity
F[N] corresponds to the smeared curvature constraint.



The basic observation is that given the holonomy U, € SU(2) around the plaquette p and a unitary irreducible
representation of SU(2), II™ one can write

II™[U,] = 17 + EF(A)T™ + O(€%),

where 1™ is the identity in the representation m and Ti(m) is the i-th generator in the corresponding representation.
Which implies

1Jm) m
ﬂM=/ﬂWHMFﬁm§jT[%ﬁW%W (9)
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U

where the Tr™ in the r.h.s. is taken in the representation m, N, = NFr(™ and C = Tr™ [r{" 4™ ]. Notice that
the explicit dependence on the regulator € has dropped out of the bum on the r.h.s., a sign that we should be able
to remove the regulator upon quantization. The r.h.s. can be easily promoted to a sum of self adjoint operators
acting in the kinematical Hilbert space, so the previous prescription provides a half-integer-worth of quantizations of
F[N] in the sense of Rovelli-Gaul [11] (the operator II'™[U,] acts simply by multiplication in %, [24]). The use of
holonomies in the quantization of F[N] (which is the natural point-split-like regularization adapted to the kinematical
structure of the theory) is responsible for the occurrence of the m-ambiguity.

Following [36] one introduces P{™—a regularization of the generalized projection operator in terms of the represen-
tation m—in terms of a definition of its matrix elements between elements of the spin network basis denoted {|s >},
namely

T [N, T [0,
Cm

<P™s s > = lim <H / dN, exp(i

e—0
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= lim <H d™(Uy)s, s >,

e—0

where in the last equation we have introduced the distribution d™ (U) that we formally write as

Tr(™ (m)
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Cm
(11)
It is easy to check that d*/?(U) = §(U), i.e., the delta distribution on SO(3) directly from the N integration.
Therefore, d*/? (U) projects into the identity in the sense that [dUf(U)d"/»(U) = f(1). However, for m # 1/2
the group averaging is more subtle and the r.h.s. of the previous equation is not well defined as a distribution. We
will give a precise definition of d"™ (U) for m # 1/2 below. The properties of d™ (U)—as shown in [36]—completely
determine the physical scalar product of the theory. In fact the above property of d*/? (U) implies that P*/* defines
a projection operator into flat-connection-configurations and therefore yields a physical Hilbert space corresponding
to finitely many topological degrees of freedom.
Before studying the case m > 1 we will illustrate the main idea in a simpler case: three dimensional BF theory
with internal gauge group G = U(1). This example illustrates the main idea that we will be applied in the rest of the
paper. The analog of equation ([[I)) is given by the expression®

d™ (¢) = / dN exp(iN[e™? —1]) = §[e"™? — 1], (12)
which we can expand in terms of U(1) unitary irreducible representations as

d™ (¢ Z ™ etk (13)

where
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3 The analogy is self evident observing that Tr(™ [N,I1(™) [U,]] = Tr(™ [N, (I1(™ [U,] — 1(™)] from the fact that N, is traceless.



where ¢, = ad with 6 = 2w /m are the roots of the argument of the delta function above. These roots are the solutions
to the regularized constraint F' = exp(im¢) — 1. We see that as a consequence of our regularization the constraint
admits extra solutions in addition to the flat one ¢ = 0. The sum corresponds to a geometric sum, namely

m—1 ;
1 ppa Lo hm((on-1 g g ez
(m) _ —iké1 _ _ pm, p
%= 27 |m)| 0;1 [e ] T 1 — e—ikém T { 0 otherwise (15)

If we proceed as in [36] we would find that unless m = 1 (i.e. the fundamental representation) we would obtain a
theory with infinitely many degrees of freedom. This is because the vanishing of infinitely many Fourier components
of d™ (¢) for m # 1 implies a reduction of the space of zero-norm states with respect to the m = 1 quantization.
Hence, the physical Hilbert space becomes larger. The argument presented here is rather formal. This is because the
U(1) case presents some extra subtleties at the time of defining the physical inner product which are not present in
the non-Abelian case which will be treated in more detail in the following section 4. The choice of m > 1 introduces
spurious solutions to the regularized constraints.

Now we essentially repeat the previous derivation for SU(2), but we go further removing the regulator and con-
structing in this way the physical inner product. We shall see that the spurious solutions appearing in the previous
example are also present in 241 gravity for certain bad regularizations. We will show that for these choices the
regulator cannot indeed be removed and such regularizations must be ruled out as inconsistent. This will lead to a
unique theory in the case of three dimensional gravity.

Let us analyze d™ (U) defined in equation ([[Il) in more detail. The simplest way is to use the isomorphism between
SU(2) and S3. Any element U € SU(2) can be written as

U=atr, where ax!z"d,, =1, (16)

pw,v=1--- 4 and 1o = 1 and 7, = i0, for o, the Pauli matrices for « = 1,2, 3. In terms of this parametrization of
SU(2) one can write the unitary irreducible representations of spin m as

m Ay Aoy, m (A Aam
TI¢ )[U]BimBzm = M. g2 7.}(11 1B1 - 7-”22m )Bzm’ (17)
from where it follows that
T [T U] = 2/ QD (a), (18)

where Q™1 (z#) is a polynomial of degree 2m — 1. The fact that d*™ (U) = d (gUg~") implies that Q™) (z#)
is rotational invariant as a function of ¥ or, equivalently, only dependent on z° (using ([@)). Therefore, only for
m = 1/2 the only solution to the three traces in ([[l) equal to zero is & = 0 which implies U = 1. However, for m > 1
in addition to # = 0 we have the roots of Q?*™~1)(z#) = 0. For example for m = 1 one has

QWat)=22"=2V1-Z L. (19)

In this case equation ([[§) vanishes for the point & = 0 and the 2-sphere Z-Z = 1. The fact that the configurations that
solve the constraint is the union of sub-manifolds of SU(2) with different dimensions (the point 2 = 1 and the sphere
|Z] = 1) implies that ([ is ill-defined as a distribution. In order to carry on one has to introduce a regularization
having in mind that d"[U] must project onto the identity 2° = 1 and the each of the 2-spheres of S* that are
solutions of Q(gm’l)(x”) = 0. The regularization procedure is ambiguous. The ambiguity can be parameterized by
two parameters, namely

3
A (Ulz"]) = M [ 6(2) + A28(QE™ =1 (a#)). (20)
=1

Notice that if we would choose A2 = 0 we would immediately reproduce the standard quantization based on the
fundamental representation. Since our aim is to explore the possibility of constructing a theory which is both well
defined but different from the one obtained for m = 1/2 we proceed by assuming that Ao # 0.

4 When the fundamental representation is used in the regularization, the vacuum to vacuum physical transition amplitude if the theory
is defined on M = X x R with X given by a Riemann surface of genus g is given by < P,1 >= 3", Azfzg—where Ay is the dimension
of the irreducible unitary representation k—which is convergent for the SU(2) case and g > 1 but always ill defined for U(1). This is
an example of the kind of technical difficulties we would encounter if we would like to completely analyze the U(1) case.



As in reference [36] it will be convenient to expand the distribution d (U) in terms of unitary irreducible repre-
sentations. This allows us to write the plaquette contributions (M) in terms of sums over Wilson loops which can be
easily represented by self adjoint operators in 4;,. More precisely we want

dm(U) =3¢ x[Ul, (21)

where x;(U) is the character or trace of the j-representation matrix of U € SU(2) and the coefficients c;-m) are given
by the Peter-Weyl theorem, namely

& = [dv a0 = = [ detdaras, - 1) 4 Ol ), (22)

where the integration is performed with the Haar measure of SU(2) that, in the coordinates we are using, takes the
simple form

duy = 7 2dz" §(xF 2" 8, — 1).

For m = 1/2 we obtain the familiar result ¢§'/* = 2j 41 for j € Z and zero otherwise, i.e. d'/2[U] is the SO(3) delta
distribution °. For m = 1, Q) (z#) = 2x¢; therefore using @) and ) we obtain

e = M (25 + 1) + dax; (U], (23)

where Uy is in the conjugacy class of the element labelled by coordinates 2° = 0,2' = 22 = 0,22 = 1. Since in the
expression of the physical inner product we can absorb an overall factor, we will define

sin[(27 + 1) %]

W = (25 + 1 U] = (25 +1) |1
¢;’=(27+1)+Ax;[0] =(2j+1) [1+A ornmk

(24)
where \ parameterizes the remaining ambiguity.

The previous equation allow us to write the distribution d")[U] as a sum of holonomy operators in the corresponding
irreducible representations. We can represent the regulated projector as a sum of product of such fundamental Wilson
loops based on the plaquettes of the regulating lattice. In order to complete the definition of the theory we must
take the limit ¢ — 0 in the definition of the physical inner product. This amount to shrinking to zero the cellular
decomposition of 3 used as regulator of P. To make our point it will be sufficient to consider the vacuum-to-vacuum
transition amplitude defined by equation () when the states |s >=|s' >= |1 >€ Hip.

In the case m = 1/2 the limit ¢ — 0 is straightforward because the integration of the connection on the boundary
of neighboring plaquettes is, in that case, simply equivalent to a fusion of plaquettes with no change in the amplitude
(see Figure [l with ¢}'/* = 2j 4 1). In this sense we have a trivial scaling or renormalization of the amplitudes for
m = 1/2 so that the continuum limit produces a topological quantum field theory (for details see [3€]). In fact the
vacuum-to-vacuum amplitude is

<P@ 1>=> (2 +1)*7%, (25)
J

where g is the genus of X.

For an arbitrary m the situation changes radically. This can be illustrated in our present example m = 1. Because
of the additional solution Uy # 1, the fusion move does no longer imply a trivial renormalization of the face amplitude
(see Figure[l). Integrating over all the internal connections we obtain

A
2

o

sin[(2j + 1) %]

(25 +1) ’ (26)

<PO,1>=> (25 +1)>7% [1 +A
J

where < P& 1 > denotes the vacuum-to-vacuum amplitude before the regulator has been removed, A is the coordinate
area of X, and A/e is the number of plaquettes in the cellular decomposition.

5 In fact one cannot get the mode expansion of the SU(2) delta function coming from the integral definition of di/? [U]. In order to have
the half-integer representations in 2+1 gravity one must define 051/2) = 2j + 1 for all half-integers [37].
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FIG. 1: Infinitesimal plaquette-delta-distributions can be integrated and fussioned with the corresponding modification of the
face amplitude. The lines in the previous figure represent the holonomy around plaquettes of the regulator in the representation
denoted by the latin index k and j in this case. the dark boxes denote integration of the generalized connection associated to the
corresponding edge. The previous equation is a trivial consequence of the orthogonality of unitary irreducible representations
of SU(2). The plaquettes in the picture are square as a matter of simplicity.

For A # 0 the limit € — 0 of the previous face amplitude is ill defined. For constant A the face amplitude will either
diverge or converge to zero depending on the value of the representation j. In order to avoid this problem we could
renormalize A as we shrink the lattice. For instance the limit would in fact be well define we chose A = € 2)g. In this
case we get

sin[(2j + 1) 5]

& — 1 €8] — ; 2-2g
<P 1>=lim <P¥ 1> Z(2J+1) exp | Ao A @D

J

(27)

The previous amplitude explicitly depends on the coordinate area of 3. We can insist in defining the limit by
renormalizing the ambiguity parameter but at the cost of loosing background independence. It is clear the the theory
obtained for m = 1 has nothing to do with 24+1 quantum gravity. In other words we have taken the limit ¢ — 0
but the result is not even diffeomorphism invariant: it remains in the dependence of the amplitude on the coordinate
area. We have run into an anomaly of the kind described in [38]. We can avoid the previous problem if we chose
A€) = O(€?). In that case we would recover the topological amplitude [Z3) as in the case m = 1/2. This is not
surprising as we are simply suppressing any contribution of the spurious solutions in the continuum limit.

For m = 3/2 the situation is simply the same, which illustrates the generic case. In this case Q> (xt) = 8xix; —
20(x%)2. A similar analysis gives therefore we get

C;S/2> = )\1(2j + 1) + )\QXJ' [Uo] (28)

where Uy is in the conjugacy class of the element labelled by the point 29 = /2/7, 2! = 22 = 0,2% = \/5/7. As
before (and for any m > 1) the presence of spurious solutions would spoil the existence of a diffeomorphism invariant
continuum limit unless the physical inner product is defined in such that the extra solutions have zero physical norm.

In that case the theory obtained coincides with the one constructed in terms of the fundamental representation
m=1/2.

A. Linear combinations

The problem with the quantization of the curvature constraint in terms of a single representation m that is different
from the fundamental one can be traced back to the existence of non trivial configurations that solve the regulated
constraint. These extra solutions do not correspond, in classical terms, to F' = 0. In the limit ¢ — 0 the spurious
solutions define wild oscillatory configurations at the coordinate scale set by €. These solutions conspire to make the
elimination of the regulator ill defined. We have seen in the previous section that unless the spurious solutions are
appropriately suppressed (which leads to the quantum theory obtained for m = 1/2) the continuum limit does not
exist or is anomalous.

One can avoid the previous undesired effect by considering those good regularizations that do no introduce spurious
solutions. In fact this can be easily characterized as follows: Instead of using a regularization consisting on a single
irreducible representation one can study the general case where the curvature constraint is quantized by an arbitrary
linear combination of Wilson lines in any representation. Namely we replace (@) by

FIN] =Y anF[N]=lim C7'> " Y "a,, Tr [N I [U,]] (29)

e—0



where C~ is the appropriate normalization factor for Y, an, = 1.
There exists an infinite dimensional space of such regularizations, parameterized by the coefficients {a,,}. From
this infinite dimensional set of theories only those which satisfy

> am TN U] =0 diff U=1 (30)

lead to theories where the continuum limit is well defined. In fact the individual values of the coefficients {a.,} plays
no physical role, and as long as the previous equation holds the corresponding physical inner product is unique.

In the U(1) example this corresponds to any periodic function F[¢] on the interval [0, 2] vanishing at 0. It is
obvious that there is an infinite dimensional space of such functions. The analog of Equation () becomes

d() = / dN exp(iNF[g]) = F'[0)8[4]. (31)

Except for a trivial overall factor renormalization we obtain the result that follows from the quantization based on the
fundamental representation. The result is exactly the same in the non-Abelian case. So we conclude that considering
arbitrary linear combinations of representations we can obtain well defined quantizations of 2+1 gravity. However,
the resulting theory is completely equivalent to the m = 1/2 quantization. We are in fact in the situation (i) described
in the introduction.

B. Covariant spin foams

At this stage it should be clear that the analysis presented above can be extended with mild modifications to the
covariant picture. More precisely in the lattice definitions of the path integral for 241 quantum gravity that leads to
the Ponzano-Regge model one can also study the effect of the modification of the simplicial action by replacing the
customary regularization of the curvature tensor in terms of the Wilson line in the fundamental representation by an
arbitrary function of the holonomy around plaquettes satisfying the naive continuum limit property.

In the case of a regularization based on a single unitary representation; for m # 1/2 discretization independence
of the partition function is lost and the path integral is no longer well defined. The continuum limit is lost. The
good regularizations are characterized as in the previous section and are equivalent to that defined in terms of the
fundamental representation, in terms of which we recover a unique result: the standard Ponzano-Regge model. Notice
that this can also be interpreted from the point of view developed in [3§], if the spin foam face amplitude is not equal to
the dimension of the representation labelling the face, the spin foam amplitudes are not well defined in the equivalence
classes of spin foams and hence are regarded as anomalous.

III. THE M-AMBIGUITY IN 341 GRAVITY

In 341 gravity our strategy is similar to that of 241 gravity. We will show that unless m = 1/2 (for SU(2))—or
m =1 (for SO(3))—is used in the regularization of the Hamiltonian constraint, the resulting theory contains spurious
local degrees of freedom. These are the analog of the new solutions found above which interfere with the existence of
the continuum limit in 2+1 gravity. We will explicitly demonstrate the existence of such solutions in 3+1 gravity by
constructing explicit examples when m > 1. Their existence is due exactly to the same mechanism as in our previous
lower dimensional example. These solutions also correspond to wildly Planck-scale-oscillatory configurations. In view
of the result of the previous section these regularizations correspond to bad suited quantizations of the curvature part
of the Hamiltonian constraint.

Unfortunately the construction of physical inner product of the theory is not yet well understood and it is in
this respect that our argument cannot be as strong as the one made for 2+1 gravity in the first part of this paper.
Nevertheless, the fact that quantizations of the theory in terms of m > 1 produce these extra local excitations, i.e.
new degrees of freedom, strongly discourages the choice of such theories. One should expect these spurious solutions
to be zero norm in the physical inner product of loop quantum gravity.

A. Quantization of the Hamiltonian constraint

As explained in the introduction Thiemann’s prescription leads to H = F(A)EE/det(E) as the only consistent
factor ordering in the quantization of the Hamiltonian constraint ([{Il). We use the notation of reference [11]. With all



this in mind the action of the (regulated) quantum Hamiltonian constraint on a spin-network vertex |v) is given by

. N,i - R . R A
m — vt ijk (M)[n. .1 — BM),, 1) 7 (M) (m)e—1
HR |v) = 3¢ (m) 7" Tr [(h [aij] — ™ o)) R [sk] V R[5, 7] | ) (32)

where the subindex A in 7:121 denotes the triangulation used for the regularization of the action of the constraint,
N, is the value of the lapse function at the vertex, and the supra-index m denotes the fact that we are using the
unitary representation of spin m to regularize the curvature term in terms of the holonomies fz(m)[aij] around to
certain loops a;; and R(m) [sk] along segments sy respectively. The latter are defined in detail in [11] and will be
graphically introduced in what follows. The m-dependent factor C'(m) is a normalization factor needed to satisfy the
naive continuum limit.

Now we will briefly remind the reader of the basic technicalities associated to the quantization of the Hamiltonian
constraint. In this part of the paper we are following [11l] almost literally. For simplicity we use 3-valent nodes in
our pictures; however, our argument is completely general and applies to arbitrary n-valent nodes. We describe the
regularization of the Hamiltonian constraint by analyzing the action of the different terms in [B2) separately. We start
with the action of the holonomy h(m) [s,zl] operator on the right which after a simple exercise of re-coupling theory
gives

(33)

(34)

where the two new 3-intertwiners are normalized. The dotted line denotes a region of zero size introduced for
illustrative purposes. For instance, the vertical lines label by representations r and m in the second diagram above
are to be thought of as overlapping.

The next operator appearing in ([B2) from right to left is the volume operator. Following the notation of [11] the
action of the volume operator on the vertex is given by

(35)

q

where V(p,q,m,c),” denotes the matrix elements of the volume operator, and the dotted region corresponds to a
single point. Inside this dotted region we graphically represent the elements of the finite dimensional vector space
Inv[p®g®m®c| in terms of normalized 3-intertwiners (labelled by « and 3 in the previous expression) in the standard
fashion. We recall that 3-valent nodes are used here as a matter of convenience. In general the previous equation
remains true with the obvious modifications. As we will see below our argument is completely independent of the
volume-part of the quantum Hamiltonian, and hence valid for any node valence. Next one acts with the operators



that represents the action of the curvature tensor—the last term on the left of [B2)—obtaining

We call the new edge created by the action of the curvature exceptional edge. This edge has special properties that
grant the absence of anomalies in the quantum theory (for details see [39]).
Expanding the result in the spin network basis and projecting on the connection representation we can write

<AHZ [v(p.g,r)) =Y H™(p,q,ria,b) =
a,b
= Z H(m) (pv q,T;a, b) \ij’qyr;a’b(Aout; Aezc) + .., (37)

a,b



where we have only explicitly written the term where the exceptional edge is created on the bottom (there are two
more terms in this case but they are not important for the rest of the argument), and H()(p,q,r;a,b) are the
corresponding matrix elements of the quantum Hamiltonian constraint. The functional UP%7®b(A,,; A.pe) is the
spin network function of the generalized connection along the edges of the underlying graph. The variable A.;.
denotes the value of the holonomy along the exceptional edge created by the action of the regulated Hamiltonian
constraint, which by appropriate gauge fixing at the original vertex can be taken as the value of the holonomy around
the triangular loop created by the action of the constraint. On the other hand A,,; denotes the generalized connection
along the edges of the spin-network graph which are different from the three edges mentioned above.

It is important to notice that if we write Acze = 2#'7,, using the parametrization of SU(2) of the previous section,
the action of the Hamiltonian constraint implies that

Z H(m)(p7 q,7;a, b)\I/p’q’““’b(Aout; 20, X)) =— Z H(m)(p7 q,7;a, b)\I/p’q’““’b(Aout; 20, —T). (38)
a,b a,b

In other words the resulting state has a definite ‘parity’ under inversion of the generalized connection along the
exceptional loop as a consequence of equation (B@l). This property will be important in the the following sections.

B. Constructing solutions

We assume in this subsection that the corresponding vertex is 3-valent. This will simplify the discussion of the
action of the quantum Hamiltonian constraint. This restriction is however a simple matter of convenience as in
that case the matrix elements of the quantum constraint can be evaluated in a simpler way. In principle one could
generalize the argument presented here to arbitrary valence. Notice however that such generalization is not necessary
for the validity of our conclusions as our objective is to show the presence of spurious local degrees of freedom and not
to fully characterize them. In particular we will exhibit explicit spurious solutions in the next subsection by means of
a general argument valid for arbitrary vertices.

We come back to equation ([B1) and the notation defined there. Now we define a diffeomorphism invariant state
(\IJAoutazP'| by

Vol = 3. Y ququrﬁa)b(Am,xﬂ)<

HEDIfE(T) ab

where Uy is the unitary operator that represents the diffeomorphism ¢. The previous states are labelled by the
parameters Ao, and z* (or simply Aeze = z#7,). The coefficients YPariab(A . M) are given by the evaluation
of the corresponding spin network function defined in @) for a definite choice of configuration, i.e., the generalized
connection (holonomies) along the edges of the corresponding graph.

We also assume that the rest of the spin network state is annihilated by the quantum Hamiltonian constraint acting
on the other vertices. This assumption is realized for example by a spin network state that has no ezceptional edges
apart from the one on the vertex of interest. More precisely, because the action of the quantum Hamiltonian constraint
creates exceptional links on spin network states we have that (V|H[N] s >= 0 if the diffeomorphism invariant state
(¥| does not have any exceptional edge. From this basic solution one can obtain infinitely many solutions by adding
local excitations—solutions to the local conditions imposed by the Hamiltonian constraint at a vertex—at different
vertices. This is precisely what we do in order to construct the new solution.

It is direct to check that for any spin-network state |¢ > we have

0 If the state ¢ ¢ [ — exceptional edge]

(VA on[H[N]p >= { NUPX;:Z (z*)  otherwise ’

(40)

where [U — exceptional edge] denotes the equivalence class under diffeomorphisms of ¥ of the spin network state
obtained form any element in the sum B9) by setting m = 0, a = p and b = ¢ respectively, and N, is the value of



the lapse function at the corresponding vertex. The quantity P(m) (z*) is an order 2m polynomial of the variable z*
explicitly given by

PR ) = 3 HO) 15 ) TP ) a
a,b

The coefficients of the previous polynomial can be shown to be real: the reality of WP47i%0(A,,: z*) follows from
the fact that spin network functions can be normalized to be real functions of the generalized connection. Spin
networks can be taken as real because they can be expressed as real linear combinations of products of traces of
Wilson loops in the fundamental representation and hence real. The matrix elements of the Hamiltonian constraint
are also real in this basis. This might might seem strange as the Hamiltonian constraint is not self-adjoint. This is
perhaps the reason why this property of the Hamiltonian constraint has not been previously noticed in the literature.
It is a simple matter to proof the reality of the matrix elements of the Hamiltonian for 3-valent vertices ®. It is not
obvious whether the reality holds for general matrix elements. This would be interesting to explore.

The state (¥ 4,,, »«| would be in fact a physical state for every solution z# of the equation Py (z#) = 0 with
a#x, = 1! As the order of the polynomial increases with m, it is natural to expect that the number of solutions of
P(m)( #) = 0 will do so as well. However, it could happen that for some reason non of the non trivial solutions of

the polynomial equation satisfy z*z, = 1. Notice however that the reality of the coefficients of P(Qm) (z*) plus the
fact its coefficient depend on the external (continuum) parameters A,,; suggest that it should be pos&ble to tune the
polynomial equation so that its solutions lay on the unit sphere. Nevertheless, in order to show this explicitly one
would need the explicit evaluation of the matrix elements of the Hamiltonian constraint. This is not a serious obstacle
as such analysis for 3-valent vertices would require a simple generalization of the results of [42]. However, such a
strategy will take us for a considerable technical detour in the paper; so we will instead demonstrate the existence of
spurious solutions by a different method.

Assume for the moment that these solutions exist for m > 1/2. The existence of these solutions is directly linked to
our choice of regularization indicating that the physically correct quantizations must be those for which the curvature
tensor is regularized in terms of the fundamental representation. If on the contrary one wants to insist in using a
higher m representation in the definition of the theory one must provide a strong justification for the inclusion of
the extra local degrees of freedom. The understanding of the construction of the physical inner product from the
quantum constraints would certainly make the result more robust. Our results in 2+1 gravity suggest in this respect
that the spurious solutions appearing for higher m regularizations would be of zero norm and hence would disappear
from Fnys.

C. Solutions from an algebraic argument

Instead of explicitly computing the matrix elements of the quantum Hamiltonian—which would present a quite
formidable task—we construct solutions in this section by a simple algebraic argument. The idea is to make use of
equation (BY). The argument presented here is valid for any vertex valence.

1. Ezample in quantum mechanics

As an example we consider a quantum mechanical particle on the unit sphere. An orthonormal basis of the Hilbert
space can be taken to be the angular momentum basis whose elements we label [¢m > (s.t. L2[tm >= (( + 1)[ém >

6 Let us briefly support the statement of reality. In fact the result is a simple consequence of properties of the reality properties of the
spin-network basis and the volume operator. From equation (BH) one concludes that the matrix elements of the quantum Hamiltonian
constraint are real if the matrix elements of the volume operator are real (the reality of the combination of spin networks on the
right follows directly from the reality of spin network basis elements). Therefore it remains to show that the matrix elements of the
volume operator appearing in B8] are real. Recall that the finite dimensional matrix V (p, ¢, m, c)oéﬁ is defined as V = \/W where W
essentially corresponds to the quantization of €qp . Ef E;’E'Jce”k Acting on finite valence nodes, and because its action does not change
the valence, W can be represented by a finite dimensional hermitian matrix. In order to define the square root one must go to the basis
that diagonalizes W, namely

V=yVWl=UyWp| U™ (42)
where Wp is the diagonal form of W |[11]. An important property of W is that it is purely imaginary and skew-symmetric [40, 41].
Hence W2 is real and symmetric U is orthogonal from where it follows the reality of V. This completes the proof of the reality of the
matrix elements of the quantum Hamiltonian constraint.



and L,|¢m >= m|fm >). We have that the wave function < &, fm >= Yp,,, (&) transforms under parity as
Yom(—8) = (~1)! Yo (@),
Due to the previous property the action of the parity operator p on basis elements is simply
plem >= (=1)"tm > .
The action of our (toy) Hamiltonian constraint H is defined by

<TH[tm >= " Peming Yng(E), (43)

n,q

which is the simplified analog of equation 7). To complete the analogy we require H to be such that < Z|H [¢m >=
— < —Z|H |fm > which can be achieved if H = (1 — p)Hp. In this analogy we associate
h(m [aig] = h™ [ayi]

2

(1-p)—
and
ﬁo — hm) [sk] V hm) [slzl]

For an operator like this it is very easy to find solutions. In fact any dual state of even parity will be obviously
annihilated by H. A basis of solutions will be given by the states < 2n,m| for any positive integer n.

2. Solutions of Thiemann’s Hamiltonian

In order to find solutions of the quantum Hamiltonian we must first construct states with a definite ‘parity’ under

the ‘reflection’ Aeze — AZL. A family of candidate states are given by the following spin network states

o transform by a factor (—1)* [42]. The next step is to find a diffeomor-
phism invariant state starting from the previous spin network by means of summing over the action of diffeomorphisms.
The corresponding state is an element of the set of distributions or linear functionals C'yl* and can be written as

which under the transformation A.p. — AL

(¥] = Z Z Cap

¢EDIff[M] oB

where U[¢] is the unitary operator that generates diffeomorphism and the only condition on the coefficients is that
Cap = 01f a is odd.

Direct calculation shows that the previous is a solution of the m-quantum Hamiltonian constraint, namely that
(U, H™[N]s >= 0 for any arbitrary |s >€ J4,;,. The previous statement is non trivial only in the case when |s > is
in the diff-equivalent class of the spin network state we started with. In that case the answer is zero because we are
computing the superposition between an even parity with an odd parity state which must vanish.



The solutions found in the previous subsection are labelled by two quantum numbers « and 3. The set of possible
values for these two quantum numbers grows with the value of the ambiguity parameter m. There are in fact 2m +1
allowed values for o which lead to IntegerPart(m + 1) even values. If m = 1/2 we have only the possibility o = 0.
However, if we use the fundamental representation of SO(3), i.e., m = 1 we have two possibilities: a = 0, already
present in the previous case and « = 2. This solution corresponds to a spin two local excitation! For higher values of
m there are more solutions as an artifact of a bad choice of regularization. According to the results in 241 gravity
these solutions should be regarded as spurious.

D. Linear combinations

One should also consider the possibility of arbitrarily combining different m-regularizations to produce a infinite-
dimensional family of quantum Hamiltonian constraints

HIN] =Y am Hu[N] with > ap =1 (46)

Now the previous solutions will continue to exist since the action of the quantum constraint on them is governed by
a single term in the sum. The key equation is

where the (s| denotes a diff-invariant state associated to the spin network < s|. The validity of the previous equation
allows for the construction of spurious solutions by simply using the spurious solutions found in the previous section
for individual terms in (EG). This seems quite different from what we found in Section [IAl where some linear
combinations would lead to quantizations that were equivalent to the one based on the fundamental representation.

Even though this might be interpreted as a positive result one should keep in mind that this happens because of
a property of Thiemann’s quantum constraint that is also seen as a problem. More precisely, the fact that among
the solutions of Thiemann Hamiltonian constraint there is a vast set of solutions of a rather trivial nature. For
example a diffeomorphism invariant state labelled by a spin network with no exceptional edge is a trivial solution of
the constraints. This is related to the special character of the exceptional edges that are added by the action of H
required by the conditions that imply the absence of an anomaly [33]. The triviality of these solutions is puzzling and
seem to indicate that the restrictions imposed by quantum constraint quantized a la Thiemann are too week to lead
to a theory with propagating degrees of freedom [43]. This problem is one of the main motivation for the exploration
of alternative definitions of the dynamics such as the one proposed in the master constraint program, the consistent
discretization approach and the covariant spin foams approach.

IV. DISCUSSION

The absence of divergences in the quantization of the Hamiltonian constraint is a remarkable feature of loop quantum
gravity. In this work we point out that this important characteristic of the theory does not, by itself, resolves the issue
of renormalization in quantum gravity as having a sound mathematical framework (free of infinities) is intimately
related to the existence of ambiguities. In the case of loop quantum gravity there is a infinite dimensional space
of possible theories. Until the problem of the ambiguities is settled the situation, regarding the predictive power of
the theory, is not much different from that of standard perturbative approaches. In this paper we investigated the
so-called m-ambiguity associated to the unitary representation used in the quantization of the configuration variables.
In the case of 2 + 1 gravity the problem is completely resolved. In 3 + 1 gravity we provide evidence pointing at a
possible resolution of the question. In what follows we discuss these results in more detail.

2+1 loop quantum gravity

We have showed that consistency of the quantum theory eliminates the ambiguities related to the quantization of
the curvature constraint in 2 + 1 loop quantum gravity. If the regularization is not performed using the holonomy in



the fundamental representation of the gauge group the appearance of extra (spurious) solutions conspire against the
possibility of removing the regulator in the definition of the physical scalar product. There are other prescriptions that
lead to a well defined theory but they are fully equivalent to the quantum theory defined in terms of the fundamental
representation. Pure gravity in three dimensions is an example of theory belonging to the first class mentioned in the
introduction.

The spurious solutions to the quantum constraint regulated with the representation m (with m > 1/2) correspond to
wildly oscillatory curvature configurations down to the Planck scale. These solutions are annihilated by the regulated
constraint but because of the latter feature they are not well defined in the ‘continuum’ (i.e., independently of the
regulator). Nevertheless, if one defines the physical inner product in terms of the good regularizations (e.g., m = 1/2)
then the spurious solutions of the regulated constraint for the bad quantizations (e.g., m > 1/2) have zero physical
norm.

Because 2 + 1 gravity is a topological theory, the fact that the issue of ambiguities can be completely settled in this
case is not entirely surprising—the renormalizability of 2 + 1 gravity is advocated since Witten’s seminal work [44].
Gravity in 2 4+ 1 dimensions has finitely many degrees of freedom and from this perspective one would not expect
serious difficulties dealing with the UV problem. Our results make the previous statement precise in the framework
of loop quantum gravity and provides the starting point for the analysis of the issue in 3 + 1 dimensions. The results
of the first part of this work extends trivially to the case of spinning particles coupled to 2+1 gravity studied in [45].

3+1 loop quantum gravity

The effects of the m-ambiguity in 3+1 loop quantum gravity are similar. Regularizing the holonomies used in
the quantization of the Hamiltonian with unitary representations of spin m > 1 introduces new local degrees of
freedom. These solutions correspond, as in the lower dimensional case, to highly oscillatory excitations at the Planck
scale. The mechanism leading to the existence of such solutions is the analog of the 2+1 case: higher representation
regularizations of the curvature tensor appearing in the Hamiltonian constraint correspond to functions on the groups
with additional roots.

The direct computation of the spurious solutions of Section would require the explicit computation of the
matrix elements of the Hamiltonian constraint for arbitrary regularizations. In Section we used a symmetry
argument to explicitly exhibit the existence of new local degrees of freedom associated with the choice of higher m
quantizations. These local degrees of freedom correspond to higher spin local excitations—for example the quantum
number « in equation () takes values o = 4,--- ,2m for m = integer.

At this stage one cannot construct a complete argument as in 2+1 gravity due to the lack of an explicit definition
of the physical inner product in 341 gravity. More precisely we cannot prove that the spurious solutions would spoil
the existence of a well defined continuum limit unless they are zero norm in JZ,.. Nonetheless the existence of
spurious solutions of the quantum constraints associated to m > 1 quantizations provides an argument against such
theories that changes our perspective regarding the ambiguity problem: if one would like to use values of m > 1 in
the quantization one would need to provide a clear justification for the inclusion of the associated extra degrees of
freedom. This is evidence pointing in the right direction, we hope that future studies could shed more light on this
important issue.

Finally, let us mention that a study of the effects of the m-ambiguity in the quantum mechanical context of loop
quantum cosmology has been performed in [20]. The results are consistent with the ones presented here for the field
theory. In fact there are new solutions associated to a higher m-quantizations the Hamiltonian constraint. Most of
these solutions are un-physical or spurious in view of certain semiclassicality criteria [4f] applied in the context of
loop quantum cosmology. It is interesting to notice that in the simple model studied in [47] one can also study the
effects of the ambiguity with the advantage of knowing the physical inner product. In this case one can explicitly
show that spurious solutions are indeed zero-norm states. This is an interesting result pointing into an encouraging
direction. Yet one must keep in mind that this is a toy model which lacks local degrees of freedom. Moreover, even
though spurious solutions are not in J%,s, the properties of the physical states do depend on the ambiguity.

Physical Hamiltonian and other approaches to dynamics

Our analysis in 3+1 gravity has been performed entirely in the context of the framework of Thiemann’s quantization
of the Hamiltonian constraint. Even when Thiemman’s prescription provides a mathematically consistent quantum
operator, concerns have been raised about its physical viability. Problems related to the so-called ultra-local character
of the quantum dynamics—which are rooted in the way the constraint algebra of gravity is represented (for a review



see [21])—have been pointed out as a serious obstacle for the theory to reproduce general relativity in the classical
limit [43] (for a different perspective of the same problem see [1]).

This has motivated the search for alternative definition of dynamics such as: the covariant definition given by the
so-called spin foam models [48], alternative quantizations proposed by Thiemann in his master constraint program [22],
and the program of Gambini and Pullin of consistent discretizations [23]. In the latter two alternative formulations
similar regularization problems give raise to ambiguities which are the analog of the m-ambiguity studied here.
Therefore, the questions raised by this article must also be addressed in these cases.

Since our argument is based on the existence of multiple solutions of the quantized constraints we expect its
conclusions to be sufficiently general to provide a non trivial insight in cases in which the details of the dynamics
are different. In Fact, in the first part of the paper we showed how the analysis of the ambiguity in the canonical
formulation of 241 gravity had a precise parallel in the covariant formulation (or spin foam representation) of the
theory. For this reason we think that our results obtained in the context of Thiemann’s constraint should apply in
suitable form to any definition of the quantum dynamics where the connection is represented by holonomies.

Spin foam models from constrained BF theory

In Section we showed how the potential ambiguities arising in the definition of the path integral of BF theory
can be eliminated. Our results in three dimensions can be easily generalized to arbitrary dimensions. Therefore,
there are no ambiguities of the type analyzed here in the quantization of BF theory in four dimensions. This provides
extra incentive for the search of a covariant formulation (or spin foam representation) based on the idea of viewing
gravity as a constrained BF theory. Many of the spin foam models studied in the literature are of this kind [49, 50].
Particularly attractive in this respect is the treatment proposed by Freidel and Starodubtsev [51].

General considerations about first order gravity

In the introduction we advocated the similarities between the renormalization problem in perturbative and loop
quantum gravity with the purpose of stressing the importance of a clear understanding of the ambiguity issue in the
latter. Now we would like to point out an important difference which provides an independent (heuristic) argument
supporting the idea the background independent quantum field theory of gravity pursued by loop quantum gravity
should be rather restrictive instead of infinitely ambiguous.

Loop quantum gravity—or spin foam models as their covariant formulation—is a general framework for the non
perturbative quantization of gravity in the first order formulation. By the first order formulation we mean here
the most general diffeomorphism invariant theory that one can write in terms of a tetrad of 1-forms and a Lorentz
connection A 7. The most general form of such action in three dimensions is

S[e,A]:/ Tr[e/\F(A)]+A/Tr[e/\e/\ee], (47)

which was first quantized and argued to be renormalizable by Witten [44]. In four dimensions the most general action
becomes

S[e,A]:i/Tr[e/\e/\F*(A)]+%/Tr[e/\e/\F(A)]+
+A /Tr[e/\e/\(e/\e)*] +a/Tr[F(A)/\F*(A)]—Fﬁ/Tr[F(A)/\F(A)], (48)

where 7 is the Immirzi parameter, and « and 3 are coupling constants. Notice that from this perspective it is natural

to introduce a non trivial Immirzi parameter which is essential for the definition of loop quantum gravity.
Heuristically, in standard renormalization framework, the simplicity of the previous action is reminiscent of a

‘renormalizable’ theory: all the possible terms compatible with the postulated fundamental symmetries are finitely

7 The canonical quantization of these theories directly leads to the fundamental variables of LQG: fluxes of non-Abelian electric field and
generalized connections.



FIG. 2: Interpretation of the solutions [#X) for m = 1 as graviton excitations. Starting from a solution to the constraints given
by a diff-invariant spin network with a vertex with no exceptional edge we can construct a new solution as explained in Section
[T and illustrated here. The solution space is parametrized by the quantum numbers o and 3 in this figure. The dotted
region corresponds to a single point in the spin network graph.

many 8. However this argument cannot be made in the standard way because the previous action is not quadratic
around the diffeomorphism invariant vacuum e = 0 and A = 0 and one cannot make use the usual perturbative
treatment [44]. Moreover, if one instead defines the perturbative theory around an invertible configuration, say
el = 8L, then the perturbation theory generates the infinitely many terms in the effective action that can be written
in terms of the inverse e~ !. Hence we arrive in this case to the standard no-renormalizability of gravity. If the striking
simplicity of the general action () is of an indication in some sense of the uniqueness of the associated quantum
theory the question must be explored non-perturbatively.

Loop quantum gravity and spin foam models are non-perturbative approaches based on this action. The fundamental
excitations, spin network states, represent in fact quantum geometries that are degenerate almost everywhere. Indeed,
strictly speaking states corresponding to non degenerate geometries do not exist. Only complicated superpositions
of polymer-like excitations approximate metric configurations such as el = 6! in the weak sense given by coarse
graining |52, 53]: probing the state at low energies yields a metric manifold while the geometry is almost-everywhere
degenerate (e = 0) at the Plank scale. The simple form of the action ) in terms of these variables suggests that
the resulting quantum theory could be rather restrictive.

If there are no ambiguities at the fundamental level, then how is one to recover the infinite series of higher dimen-
sional operators in the effective action of gravity? Coarse graining would be the mechanism. In the semi-classical
limit the quantum geometry states approximate a space-time geometry when probed at sufficiently low energies. De-
viations from the classical behavior due to quantum fluctuations will appear as higher powers of the curvature tensor
corrections in the effective action because e™! now exists in the coarse-grained sense. In this process only coarse
graining would generate the higher curvature corrections in the effective action description. These terms should be
calculable from the fundamental theory and the properties of the semiclassical states considered. In other words, the
non-perturbative formulation of first order gravity (where ambiguities are controlled by a finite number of parameters)
could play the role of ‘renormalizable’ theory underlying the non renormalizable metric gravity. From this perpective
we could expect that, as in 241 gravity, the (infinite dimensional set of) regularization ambiguities in the quantization
would have to be drastically reduced in the definition of.%},,,. This question will have to be explored further in future
work; our present results provide some supporting evidence in this direction.

Gravitons?

Let us conclude our discussion with a speculative interpretation of an intriguing type of solution to the quantum
Hamiltonian constraint found in Section [T We constructed an argument to rule out higher spin regularizations
of the quantum Hamiltonian. The case m = 1/2 and m = 1 are special as they correspond to the fundamental
representation of SU(2) and SO(3) respectively. Therefore, we might expect the quantization based on m =1 to be
of interest. In this case the solutions found in Section [IT'J have a clear-cut interpretation as spin two excitations.
It would be interesting to further investigate the possibility of interpreting the solutions presented in [HH) as the
fundamental degrees of freedom leading, in the low energy limit, to the notion of graviton. Notice that if we assume
that the continuum limit is dominated by four valent vertices (i.e., quantum tetrahedra: the simplest excitations of

8 Here we are assuming that there are no matter couplings. In order to couple the theory to standard matter one need to use the inverse
tetrad e~! which is not a fundamental variable. Notice that fermions can be brought into the game without introducing the inverse
tetrad.



3-volume), these solutions are labelled by two local quantum numbers as illustrated in Figure[[¥l In this speculative
interpretation we see the infinitesimal loop that is attached to the geometry by a link labelled with @ = 2 as a spin
two particle. Notice that this is fully analogous to the way in which spin 1/2 fermions are coupled to the geometry
[F4, l5A).

V. ACKNOWLEDGEMENT

The author would like to thank F. Conrady, S. Lazarini, D. Marolf, D. Perini, C. Rovelli, D. Sudarsky, and K.
Vandersloot for discussions and suggestions. The idea of this work was motivated by questions of R. Wald at the VI
Mexican School on Gravitation and Mathematical Physics.

[1] Alejandro Perez. Introduction to loop quantum gravity and spin foams. 2nd International Conference on Fundamental
Interactions, Domingos Martins, Espirito Santo, Brazil, \gr-qc/0409061, 2004.

[2] Carlo Rovelli. Quantum gravity. Cambridge, UK: Univ. Pr. (2004) 455 p.

[3] Abhay Ashtekar and Jerzy Lewandowski. Background independent quantum gravity: A status report. Class. Quant. Grav.,
21:R53, 2004.

4] A. Ashtekar. New variables for classical and quantum gravity. Phys. Rev. Lett., 57:2244, 1986.

5] J. F. Barbero. Real ashtekar variables for lorentzian signature space times. Phys. Rev., D51:5507-5510, 1995.

6] L. Smolin T. Jacobson. Nonperturbative quantum geometries. Nucl. Phys., B299:295, 1988.

7] C. Rovelli L. Smolin. Loop space representation of quantum general relativity. Nucl. Phys. B, 331:80, 1990.

8] Carlo Rovelli. Notes for a brief history of quantum gravity. gr-qc/0006061, 2000.

I

380:257, 1996.

[10] T. Thieman. Introduction to modern canonical quantum general relativity. gr-qc/0110034.

[11] Marcus Gaul and Carlo Rovelli. A generalized hamiltonian constraint operator in loop quantum gravity and its simplest
euclidean matrix elements. Class. Quant. Grav., 18:1593-1624, 2001.

[12] Martin Bojowald and Hugo A. Morales-Tecotl. Cosmological applications of loop quantum gravity. Lect. Notes Phys.,
646:421-462, 2004.

[13] Martin Bojowald and Kevin Vandersloot. Loop quantum cosmology, boundary proposals, and inflation. Phys. Rev.,
D67:124023, 2003.

[14] H. Epstein and V. Glaser. The role of locality in perturbation theory. Annales Poincare Phys. Theor., A19:211, 1973.

[15] G. Scharf. Finite quantum electrodynamics: The causal approach. Berlin, Germany: Springer (1995) 409 p. (Texts and
monographs in physics).

[16] Stefan Hollands and Robert M. Wald. Existence of local covariant time ordered products of quantum fields in curved
spacetime. Commun. Math. Phys., 231:309-345, 2002.

[17] Stefan Hollands and Robert M. Wald. On the renormalization group in curved spacetime. Commun. Math. Phys., 237:123—
160, 2003.

[18] John Collins, Alejandro Perez, Daniel Sudarsky, Luis Urrutia, and Hector Vucetich. Lorentz invariance: An additional
fine-tuning problem. Phys. Rev. Lett., 93:191301, 2004.

[19] Joshua Lee Willis. On the low-energy ramifications and a mathematical extension of loop quantum gravity. UMI-31-48692.

[20] Kevin Vandersloot. On the hamiltonian constraint of loop quantum cosmology. Phys. Rev., D71:103506, 2005.

[21] Hermann Nicolai, Kasper Peeters, and Marija Zamaklar. Loop quantum gravity: An outside view. 2005.

[22] Thomas Thiemann. The phoenix project: Master constraint programme for loop quantum gravity. 2003.

[23] Rodolfo Gambini and Jorge Pullin. Consistent discretization and loop quantum geometry. Phys. Rev. Lett., 94:101302,
2005.

[24] Rodolfo Gambini and Jorge Pullin. Discrete space-time. |gr-gc/0505023, 2005.

[25] Rodolfo Gambini, Marcelo Ponce, and Jorge Pullin. Consistent discretizations: the gowdy spacetimes. Phys. Reuv.,
D72:024031, 2005.

[26] Rodolfo Gambini and Jorge Pullin. Classical and quantum general relativity: A new paradigm. (gr-gc/0505052, 2005.

[27] Jerzy Lewandowski, Andrzej Okolow, Hanno Sahlmann, and Thomas Thiemann. Uniqueness of diffeomorphism invariant
states on holonomy- flux algebras. gr-qc/0504 147, 2005.

[28] Abhay Ashtekar and Jerzy Lewandowski. Quantum theory of geometry. ii: Volume operators. Adv. Theor. Math. Phys.,
1:388, 1998.

[29] C. Rovelli and L. Smolin. Discretneess of the area and volume in quantum gravity. Nucl Phys B, 442 (1995), Erratum:
456:593,734, 1995.

[30] Kristina Giesel and Thomas Thiemann. Consistency check on volume and triad operator quantisation in loop quantum
gravity. ii. 2005.


http://arxiv.org/abs/gr-qc/0409061
http://arxiv.org/abs/gr-qc/0006061
http://arxiv.org/abs/gr-qc/0110034
http://arxiv.org/abs/gr-qc/0505023
http://arxiv.org/abs/gr-qc/0505052
http://arxiv.org/abs/gr-qc/0504147

[31] Kristina Giesel and Thomas Thiemann. Consistency check on volume and triad operator quantisation in loop quantum
gravity. i. 2005.

[32] T. Thiemann. Private communication.

[33] T. Thiemann. Quantum spin dynamics (qsd). Class. Quant. Grav., 15:839-873, 1998.

[34] Martin Bojowald, James E. Lidsey, David J. Mulryne, Parampreet Singh, and Reza Tavakol. Inflationary cosmology and
quantization ambiguities in semi-classical loop quantum gravity. Phys. Rev., D70:043530, 2004.

[35] Martin Bojowald. Quantization ambiguities in isotropic quantum geometry. Class. Quant. Grav., 19:5113-5230, 2002.

[36] Karim Noui and Alejandro Perez. Dynamics of loop quantum gravity and spin foam models in three dimensions. To appear
in Class. Quant. Grav., |gr-qc/0402112, 2004.

[37] A. Perez. Spinfoam Models for Quantum Gravity. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, 2001.

[38] A. Perez M. Bojowald. Spin foam quantization and anomalies. \gr-qc/0303026, 2003.

[39] Thomas Thiemann. Introduction to modern canonical quantum general relativity. 2001.

[40] Roberto De Pietri and Carlo Rovelli. Geometry eigenvalues and scalar product from recoupling theory in loop quantum
gravity. Phys. Rev., D54:2664-2690, 1996.

[41] T. Thiemann. Closed formula for the matrix elements of the volume operator in canonical quantum gravity. J. Math.
Phys., 39:3347-3371, 1998.

[42] Roumen Borissov, Roberto De Pietri, and Carlo Rovelli. Matrix elements of thiemann’s hamiltonian constraint in loop
quantum gravity. Class. Quant. Grav., 14:2793-2823, 1997.

[43] Lee Smolin. The classical limit and the form of the hamiltonian constraint in non-perturbative quantum general relativity.
1996.

[44]

[45] Karim Noui and Alejandro Perez. Three dimensional loop quantum gravity: Coupling to point particles. 2004.

[46] Martin Bojowald. Dynamical initial conditions in quantum cosmology. Phys. Rev. Lett., 87:121301, 2001.

[47] Karim Noui, Alejandro Perez, and Kevin Vandersloot. On the physical hilbert space of loop quantum cosmology. Phys.
Rev., D71:044025, 2005.

[48] Alejandro Perez. Spin foam models for quantum gravity. Class. Quant. Grav., 20:R43, 2003.

[49] J. C. Baez. An introduction to spin foam models of quantum gravity and bf theory. Lect. Notes Phys., 543:25-94, 2000.

[50] D. Oriti. Spacetime geometry from algebra: Spin foam models for non- perturbative quantum gravity. Rept. Prog. Phys.,
64:1489-1544, 2001.

[61] Laurent Freidel and Artem Starodubtsev. Quantum gravity in terms of topological observables. 2005.

[62] Luca Bombelli, Alejandro Corichi, and Oliver Winkler. Semiclassical quantum gravity: Statistics of combinatorial rieman-
nian geometries. Annalen Phys., 14:499-519, 2005.

[53] Abhay Ashtekar, Carlo Rovelli, and Lee Smolin. Weaving a classical geometry with quantum threads. Phys. Rev. Lett.,
69:237-240, 1992.

[54] John C. Baez and Kirill V. Krasnov. Quantization of diffeomorphism-invariant theories with fermions. J. Math. Phys.,
39:1251-1271, 1998.

[55] H. A. Morales-Tecotl and C. Rovelli. Loop space representation of quantum fermions and gravity. Nucl. Phys. B, 451:325—
361, 1995.


http://arxiv.org/abs/gr-qc/0402112
http://arxiv.org/abs/gr-qc/0303026

	Introduction
	The m-ambiguity in quantum canonical 2+1 Riemannian gravity
	Linear combinations
	Covariant spin foams

	The m-ambiguity in 3+1 gravity
	Quantization of the Hamiltonian constraint
	Constructing solutions
	Solutions from an algebraic argument
	Example in quantum mechanics
	Solutions of Thiemann's Hamiltonian

	Linear combinations 

	Discussion
	2+1 loop quantum gravity
	3+1 loop quantum gravity
	Physical Hamiltonian and other approaches to dynamics
	Spin foam models from constrained BF theory
	General considerations about first order gravity
	Gravitons?


	Acknowledgement
	References

