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Abstract - This paper proposes a descriptive method for an open problem in time series

analysis : determining the number of regimes in a switching autoregressive model. We will

translate this problem into a classification one and define a criterion for clustering hierarchi-

cally different model fittings. Finally, the method will be tested on simulated examples and

real-life data.
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1 Introduction

In the past few years, several nonlinear autoregressive models were proposed for time series
analysis. Some of these models are based on the idea that the process is characterized not
by a unique linear autoregression, but by the fact that two or more regimes are driving the
series behaviour. In each regime, an autoregressive function is fitted. We are interested in
the case where the autoregressive functions are linear in every regime. The most classical
examples are TAR (Treshold Autoregressive) models introduced by Tong (1978) with regime
switching according to the magnitude of a treshold variable, the smoothed version of TAR
models (STAR), or the more recent Markov switching autoregressive models, first used by
Hamilton (1989) to model the U.S. Gross National Product.

Estimating the parameters of these models is usually done by maximizing the likelihood
function, but under a very strong hypothesis, a fixed number of regimes. Choosing the
“true” number of regimes is still an open problem, as this is equivalent to testing with lack
of identifiability under the null hypothesis. This leads to a degenerated Fisher information
matrix and thus the chi-square theory and the likelihood ratio tests fail to apply. An empirical
method to detect this kind of non-linearity using Kohonen maps and hierarchical clustering
of linear regressions is given below. The second section describes the method, while the third
provides examples on simulated and real-life data. Finally, a conclusion will follow.

2 The Method

The problem of finding the “true” number of regimes can be rewritten as a classification
problem by using a sliding window as follows . Suppose that we have observed the values of



a time series {yt}t=1,T and we decide to fit an autoregressive model. Once the order of the
model has been determined (with an AIC criterion, for example), we can consider the data
set of dimension (T −p)x(p+1), {yt, yt−1, ...yt−p}t=p+1,T

. Looking for the number of regimes
is actually equivalent to looking for the number of regression lines (or hyperplanes) which
will best fit the data.

The idea is simple and is based on the possibility of finding patterns in data which will
identify the regression hyperplanes. Given the data set in Figure 1, fitting one regression line
to the data is clearly not the good choice. If we now suppose that we managed to cluster the
data into two groups and we perform a regression within each of these groups, we get two
lines which seem to describe better the sample. This is confirmed by the “within squared
error”, which is equal to the sum of squared residuals if there is only one regime and, if there
are several, to the total sum of squared residuals within each group.
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Figure 1: Fitting clustered data

In the general case, we would like to start with some “good” initial clusters which will be then
classified hierarchically using some squared error criterion and we would expect to have an
important break in the increasing values of this criterion, once we pass from the true number
of regimes to a smaller one.A “good” cluster should contain observations belonging to the
same regime and, at the same time, have enough points to estimate a regression line.

2.1 Initial clustering

For the initial clustering, self-organizing maps were employed. This choice was motivated
by several properties of the Kohonen maps such as the vector quantization property (the
last steps of the algorithm use “0-neighbours”and thus are equivalent to classical VQ tech-
niques), the homogeneity of the clusters as well as the topology conservation used to fasten
the hierarchical classification algorithm.

One problem arises once we get the clusters and try to fit a regression within each one : are
there enough points in every cluster? No cluster will be allowed to have less points than the
number of lags or regressor variables. For this, either we eliminate from the analysis those
which do not verify this condition, either we force the points to move to a different cluster,
by assigning them to the closest sufficiently large cluster.Since very few observations are
concerned with this problem and in order to shorten the computing time, the first approach
was preferred.



The assumption we make here is that the property of homogeneity of self-organizing maps
manages to create clusters in which observations belong to one regime. This could be justified
by the fact that the variables used for the classification contain information concerning the
regime of the observation and similar profiles will belong to the same cluster. Indeed, in the
simulated examples where the different regimes are known, we’ll see that the map clusters
are generally homogeneous from this point of view. This property will no longer apply if the
regression hyperplanes are too close and the noise is important.

2.2 Hierarchical classification

As we actually need to compare different data fits, which is also equivalent to different
numbers of hyperplanes, we need to adapt a hierarchical classification to our case (let us first
make the convention to call “clusters” the result of the Kohonen map and “classes” two or
more “clusters” joined together by the hierarchical method). We will choose a new “distance”
between classes by developping a squared error criterion.

A very popular method used in classification is to minimize a within-class variation criterion,
the variation within a class being defined as the sum of squared distances from the individuals
to the barrycenter. By considering a data set xi ∈ R

n, i = 1, ..., N and a fixed number of
clusters k, the total within-class variation can be written as Iw =

∑k
i=1 wiIi , where wi is the

weight of class i, Ii =
∑Ni

j=1 d2 (xi,j , gi) being the variation within the class i and gi is the
corresponding barrycenter. We denoted by Ni the number of individuals in class i and by
xi,j the data point indexed by j in class i.

In hierarchical classification, this principle was adapted by Ward and the algorithm consists
in clustering together the individuals who minimize the increase of the within-class variation.

Our idea was to build an algorithm similar to Ward’s, but, as our interest is to estimate the
number of hyperplanes characterizing the data, we will replace the barrycenters by regression
lines and the within-class variation becomes the within sum of squared errors. Obviously, in
this case, the inter-class variation cannot be defined.

For a fixed number of classes, k, the within sum of squared errors is defined as

SSEw,k =
∑k

l=1 SSECl
,

where SSECl
=
∑

t∈Cl
(yt − ŷt)

2 is the sum of squared residuals and ŷt is the predicted value

of yt by the linear regression of order p fitted in class Cl, l = 1, k.

Now, in the frame of hierarchical clustering, when passing from k to k − 1 classes, if classes
i and j were clustered, the within sum of squared errors becomes :

SSE
i,j
w,k−1 =

∑k
l=1,l 6=i,l 6=j SSECl

+ SSECi∪Cj

Following the same principle as Ward’s, we want to minimize the increase in the within
inertia, which in this case is defined by the within sum of squared errors. This is equivalent
to finding i and j which minimize

∆S
i,j
w,k,k−1 = SSE

i,j
w,k−1 − SSEw,k = SSECi∪Cj

− SSECi
− SSECj

2.2.1 The within sum of squared errors criterion

Now, let us take a closer look at this difference and give an explicit expression as a function
of the data and the residuals. The following notations are necessary :



- Yi = {Yt}t∈Ci
∈ R

ni , Yj = {Yt}t∈Cj
∈ R

nj , where ni and ni are the cardinalities of Ci and,
respectively, Cj

- Xi = {1, Yt−1, ..., Yt−p}t∈Ci
∈ R

ni×(p+1), Xj = {1, Yt−1, ..., Yt−p}t∈Cj
∈ R

nj×(p+1).

The linear regressions fitted in classes Ci and Cj can be written as :

Yi = Xi · βi + ui = Xi · β̂i + ei

Yj = Xj · βj + uj = Xj · β̂j + ej ,

where βi, βj , β̂i, β̂j ∈ R
p+1, β̂i and β̂j are the least squares estimates of βi and βj , ui, ei ∈ R

ni

and uj , ej ∈ R
nj are the error and, respectively, the residuals vectors, ui ∼ N(0, σ2

i Ini
) and

uj ∼ N(0, σ2
j Inj

).
The linear regression fitted in the joint class Ci ∪ Cj is written as :

Y = X · β + u = X · β̂ + e, where Y =

[

Yi

Yj

]

∈ R
ni+nj , X =

[

Xi

Xj

]

∈ R
(ni+nj)×(p+1),

β, β̂ ∈ R
p+1, β̂ is the least squares estimate of β, u, e ∈ R

ni+nj are the error and the residuals

vector and u ∼ N(0, Ω), Ω =

(

σ2
i Ini

0
0 σ2

j Inj

)

.

Then, we can compute ∆S
i,j
w,k,k−1 as :

• ∆S
i,j
w,k,k−1 = SSECi∪Cj

− SSECi
− SSECj

= e′e − (ei′ei + ej ′ej)

Remark 1 :
Using this form, Toyoda (1974) proves that ∆S

i,j
w,k,k−1 is approximately distributed as σ2χ2 (p + 1),

where σ2 is any well-chosen weighted average of σ2
i and σ2

j and p is the number of lags con-
sidered.

• ∆S
i,j
w,k,k−1 = SSECi∪Cj

−SSECi
−SSECj

=
∥

∥

∥
Y − X · β̂

∥

∥

∥

2
−
∥

∥
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Yi − Xi · β̂i

∥

∥

∥

2
−
∥

∥

∥
Yj − Xj · β̂j

∥

∥

∥

2

(1)

But Y − X · β̂ =

[

Yi − Xi · β̂

Yj − Xj · β̂

]

=

[

Yi − Xi · β̂i

Yj − Xj · β̂j

]

+

[

Xi · ˆβi−Xi · β̂

Xj · β̂j − Xj · β̂

]

(2)

and thus
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∥

∥
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since the cross-product on the right term in (2) can easily be seen to be zero. We get that :
∥

∥

∥
Y − X · β̂

∥
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2
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∥

∥

∥
Yi − Xi · β̂i

∥

∥

∥

2
+
∥
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2
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2
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and by replacing (3) in (1) :

∆S
i,j
w,k,k−1 =

∥

∥

∥
Xi · ˆβi−Xi · β̂

∥

∥

∥

2
+
∥

∥

∥
Xj · β̂j − Xj · β̂

∥

∥

∥

2
=

= (β̂i − β̂)′Xi′Xi(β̂i − β̂) + (β̂j − β̂)′Xj ′Xj(β̂j − β̂) (4)

Using the form of the least squares estimators β̂i, β̂j and β̂

β̂i − β̂ = βi − β +
{[

(Xi′Xi)
−1 Xi′, 0

]

− (Xi′Xi + Xj ′Xj)
−1 [Xi′, Xj ′]

}

·

[

ei

ej

]



β̂j − β̂ = βj − β +
{[

0, (Xj ′Xj)
−1 Xj ′

]

− (Xi′Xi + Xj ′Xj)
−1 [Xi′, Xj ′]

}

·

[

ei

ej

]

and (4) becomes

∆S
i,j
w,k,k−1 = (βi − β)′Xi′Xi(βi − β) + (βj − β)′Xj ′Xj(βj − β)+

+(βi − β)′
{

Xi′ei − Xi′Xi (Xi′Xi + Xj ′Xj)
−1 (Xi′ei + Xj ′ej)

}

+

+
{

ei′Xi − (ei′Xi + ej ′Xj) (Xi′Xi + Xj ′Xj)
−1

Xi′Xi

}

(βi − β)+

+(βj − β)′
{

Xj ′ej − Xj ′Xj (Xi′Xi + Xj ′Xj)
−1 (Xi′ei + Xj ′ej)

}

+

+
{

ej ′Xj − (ei′Xi + ej ′Xj) (Xi′Xi + Xj ′Xj)
−1 Xj ′Xj

}

(βj − β)+

+ei′Xi (Xi′Xi)
−1

Xi′ei + ej ′Xj (Xj ′Xj)
−1

Xj ′ej−

− (ei′Xi + ej ′Xj) (Xi′Xi + Xj ′Xj)
−1 (Xi′ei + Xj ′ej)

If classes i and j come form the same regime, that is βi = βj = β, the increase in the within
sum of sqared errors is only

∆S
i,j
w,k,k−1 = ei′Xi (Xi′Xi)

−1 Xi′ei + ej ′Xj (Xj ′Xj)
−1 Xj ′ej−

− (ei′Xi + ej ′Xj) (Xi′Xi + Xj ′Xj)
−1 (Xi′ei + Xj ′ej)

This quantity is very close to zero if the classes contain enough points. Thus, together with
remark 1,we get that if the joint classes are from the same regime, the within sum of squared
errors should be close to zero and if the classes are from different regimes, the larger the
difference between the parameters of the two regimes, the increase in the within sum of
squared errors should be larger.

2.3 The algorithm

Now, we can write the steps of the algorithm which, at the same time, clusters the data and
models the dependencies within each class:

We consider k going from M to 2, where M is the number of clusters resulting from the
Kohonen map.

For each k, we have the following steps :

• Compute the k regressions lines corresponding to the k classes

• Find (i0, j0) which minimize ∆i,jSSEw

• Join these classes together, put k = k − 1 and go to the first step.

At the last step all points are clustered together and there is a single regression line.

The next thing to do is draw the dendrogram and look how the within sum of squared errors
increases over the classification. As it was mentioned earlier, one might expect an important
break when the number of classes is smaller than the real number of regimes.



Regime1 Regime2

Intercept yt−1 yt−2 Intercept yt−1 yt−2

value -2.82 0.59 -0.89 1.4 0.37 0.32

t-value -19.15 13.09 15.89 8.24 5.96 4.79

Table 1: Coefficients for the TAR model

3 Examples and Results

The method was tested on several nonlinear autoregressive regime switching models. Histor-
ically, the first introduced were the treshold models (we won’t speak here about the other
variants of these models, smoothed etc), followed by the switching Markov and next we will
consider both examples.

3.1 TAR Models

The example is a TAR of order two and the coefficients were taken from the paper of Gon-
zalo&Pitarkis.

yt =

{

−3 + 0.5yt−1 − 0.9yt−2 + εt

2 + 0.3yt−1 + 0.2yt−2 + εt

, yt−2 ≤ 1.5
, yt−2 > 1.5

, where {yt} is the observed series and εt is

i.i.d. standard gaussian.

Three samples containing 200, 400 and 800 points, respectively, were simulated. Let us
examine the 200 points sample. The self-organizing map dimension was fixed equal to 5x5
and {yt, yt−1, yt−2} were the variables used for the classification. Crossing the map with a
boolean variable which distinguishes whether yt−2 is above or below the treshold value allows
to see that the clusters are homogeneous and each of them takes values in one regime.

If the hierarchical clustering algorithm is run on the twenty-five clusters, the squared error
criterion increases as in Figure 3 and suggests that a good choice would be a two-regimes
model. The hierarchical classification provides also good estimators for the parameters of the
model when choosing two regimes as shown in Table 1.

The threshold value was not estimated and we’ll see that the decision on the type of the
model (TAR, Markov switching) cannot be made on this basis only.

Figure 2: Initial clustering with a Kohonen map for TAR model

When increasing the number of points in the sample, we have chosen to increase also the map
size (we considered a 7x7 map for the 400 sample and a 9x9 for the 800). This was done in
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Figure 3: Squared error criterion for TAR model

the purpose of conserving clusters homogeneity, but a good criterion for choosing the size of
the map is still to be defined. The results are very similar and in both cases the hierarchical
algorithm suggests a two-regimes model.

3.2 A Two Regime Markov Switching Model

For this example, we will first define an autoregressive Markov switching process. If {yt}t∈N

is the observed time series, let us suppose that it follows a linear autoregressive process of
order p and that we have two regimes, the passage from one regime to the other being driven
by an unobserved Markov chain, {xt}t∈N

, which has a transition probability matrix A.

For two regimes and two lags of time, we can write the model as follows : yt = fxt (yt−1, yt−2)+

σxtεt

fxt (yt−1, yt−2) ∈ {f1, f2}, σxt ∈ {σ1, σ2}, εt i.i.d. noise (usually a standard gaussian) and

A =

(

p 1 − p

1 − q q

)

is the transition probability matrix of xt.

The data used here were simulated with the parameters below (a globally stationary process
was chosen):

{

f1 (yt−1, yt−2) = 0.2 + 0.5yt−1 + 0.1yt−2

f2 (yt−1, yt−2) = 0.3 + 0.9yt−1 − 0.1yt−2
,

{

σ1 = 0.03
σ2 = 0.02

and A =

(

0.9 0.1
0.2 0.8

)

As for the previous example, three samples (200, 400, 800 points) were considered. We
will only list the results for the 400 sample and remark that the outputs for the other two
cases were very similar. The initial clustering was performed using a 6x6 Kohonen map
and {yt, yt−1, yt−2}as variables. Figure 4 shows that the map is well organized, the clusters
are homogeneous and when crossing with the variable giving the regime, there is a good
separation of them in the initial clusters.

Afterwards, from the hierarchical classification of these clusters, we get, again, a huge jump
when passing from two classes to one, as shown in Figure 5.The estimated coefficients in
each of the two classes are shown in Table 2 (we will also note that the two clusters are
homogeneous, the pourcentage of explained variance being larger than 92% in each of them).



Figure 4: Initial clustering with a Kohonen map for two regimes Markov
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Figure 5: Squared error criterion for 2 regime Markov

Regime1 Regime2

Intercept yt−1 yt−2 Intercept yt−1 yt−2

value 0.3 0.88 -0.09 0.18 0.39 0.24

t-value 41.56 32.89 -3.64 20.91 12.07 8.87

Table 2: Coefficients for the two regime Markov model

3.3 A Three Regime Markov Switching Model

Now let us see what happens if we add a new regime to the model, which will moreover
be explosive and drive the process into a nonstationary one. The following example was
considered :

yt = fxt (yt−1, yt−2) + σxtεt , fxt (yt−1, yt−2) ∈ {f1, f2, f3}, σxt ∈ {σ1, σ2, σ3}, εt is i.i.d.
standard gaussian and






f1 (yt−1, yt−2) = 0.2 + 0.5yt−1 + 0.1yt−2

f2 (yt−1, yt−2) = 0.3 + 0.9yt−1 − 0.1yt−2

f3 (yt−1, yt−2) = 0.5 + 1.2yt−1 + 0.5yt−2

,







σ1 = 0.03
σ2 = 0.02
σ1 = 0.03

and A =





0.8 0.1 0.1
0.1 0.8 0.1
0.6 0.2 0.2





The following results are from a 400 points sample, with an initial 8x8 map. By crossing the
map with the regime variable, there is a relatively good separation, although we may notice
that the first two regimes seem to come closer together with respect to the third one.

Here, a first conclusion would be that there are four regimes. But let us take a closer look
at the hierarchical classification. One of the four final classes contains only one cluster, one
cell of the map. Moreover, this cell (the 8th) is isolated from the rest of the map and it
contains only four observations with very high values. If we project the data on a two or



Figure 6: Initial clustering with a Kohonen map
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Figure 7: Squared error criterion for 3 regimes Markov

three-dimensional space, the same four observations are far from the rest. The algorithm has
identified a small class of outliers which are considered as a separate regime and from this
point of view the method is close to Ward’s which is also sensitive to this kind of observations.

We can’t continue with the examples before making an important remark. We’ve seen that
this method of identifying the number of regression lines works quite good in the examples
above. Concerning the parameter estimation and making a decision about the model (TAR or
Markov switching?, for instance), the hierarchical classification provides only the estimators
for the regression lines, a likelihood approach should be used instead, once we fixed the number
of regimes, to estimate the rest of the parameters : threshold value, transition matrix etc. As
for the second question, no theoretical result is available yet, the econometricians preferring
to decide on other criteria (economic, social etc).

3.4 What about Real Life Data?

The results on the simulated examples being encouraging, we decided to run the algorithm
on real data sets. Three examples were chosen, the first two are the benchmarks Old Faithful
Geyser Data and Santa Fe Competition Laser Data and the third is the U.S. GNP (Gross
National Product) series, used by Hamilton to introduce the switching Markov models.



3.4.1 Old Faithful Data

The first set of data is the classical Old Faithful Geyser in Yellowstone National Park, con-
sisting of 299 pairs of measurements referring to the waiting time between two successive
eruptions, wt, and the duration of the subsequent eruption, dt. The data was collected be-
tween August 1st and August 15th, 1985 and the two variables are recorded in minutes.
Several studies of this sample are available, most authors trying to assess either the cluster-
ing of the data, either the dependency between successive events. A literature overview, as
well as an analysis using time series while assuming “a priori” the existence of two patterns
of dependency, can be found in Azzalini and Bowman (1990) paper. Although there are no
autoregressors in this case, the problem is the same : find the number of clusters and fit a
regression within each one.

Our approach would be to detect the clustering of the data and, at the same time, model
the dependency within each class. The idea of addressing clustering and dependency at the
same time was firstly introduced by Hennig (2000) who uses regression fixed point clusters.

Here, the duration of the eruption was modeled as a linear function of the waiting time before
the eruption. While plotting the duration against the waiting time, one can see that there
are at least two clusters of points, depending on the waiting time. Let us make one last
remark on the data, which is that due to inexact observations during the night, there are
53 points with duration=4 (long eruption) and 20 with duration=2 (short eruption). The
medium eruptions (duration=3) appear only once.

For the Kohonen classification the data set {wt, dt}t=1,299 was considered (no lags of time
were introduced). The map was chosen to be a 6x6 grid and 1000 iterations were performed.
Afterwards, an hierarchical clustering minimizing the within sum of squared errors criterion
was applied to the 33 “valid” clusters (one cluster was void and two others contained only
one point).

In Figure 8, the within sum of squared errors as well as the difference ∆SSEk,k−1 are plotted.
The heterogeneity of the data is obvious and one can see that at least two clusters should be
considered. On the contrary, passing from three clusters to two is less obvious and we shall
see next that there’s overlapping of the clusters and that the regression coefficients are very
close.
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Figure 8: Squared error criterion for the old faithful data

Once we get the hierarchical classification, we get back to the self-organizing map to see how
the classes spread over the grid. On the first graph in Figure 9, the tree-cut at two classes



in presented : the first class in the right upper corner in light-grey circles and the second
beyond the diagonal of the grid in dark-grey circles. Clusters 7 and 28 do not contain enough
points and were not considered in the classification.

Figure 9: The self-organizing map for the old faithful data

While the 2-classes model is meaningful, in the 3-classes case things seem to be more com-
plicated : the first class is the same, well isolated in the right upper part of the grid, while
classes 2 and 3 are mixed on the grid. This is even more obvious if we plot the duration dt

against the waiting time wt and identify the classes as shown in Figure 10.
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Figure 10: 2-clusters and 3-clusters of the old faithful data

The same situation as for the Kohonen map occurs. In both cases, 2-classes and 3-classes
model, a first class (the right upper part of the self-organizing map) is well isolated from
the rest and is concentrated around the waiting=2 points. This class corresponds to short
time eruptions preceeded by rather long waiting times. The second class on the first graph
containts all the long duration points including all duration=4 points. This class is splitted
into two when considering the 3-classes case : one sub-class is formed by the duration=4 points
and the long time erruptions preceeded by long waiting times, while the second contains the
data with a moderately decreasing tendency in the duration for increasing waiting times.

Although there is an interpretation for the 3-classes model, the within squared error criterion
used for the classification suggests a 2-classes model, because it corresponds to an important
break in the increase of the squared error. Besides, in the discussion of Azzalini and Bowman



(1990) geological evidence for the existence of two distinct patterns of eruptions is given and
thus our conclusion is enhanced.

3.4.2 Santa Fe Competition Laser Series

For the laser series, a highly nonlinear data set, the algorithm selects three classes as shown
in Figure 11. In order to compare the results with the existing literature, ten lags of time
were used. The 10000 observations were initially clustered on a 9x9 map. Once the number of
regimes was fixed, the three regimes were supposed to be the states of a discrete Markov chain
and the parameters were estimated using the EM algorithm as described in Rynkiewicz (1999).
The prediction results are weaker than those obtained by Weigend (1995) or Rynkiewicz
(1999), but the number of estimated parameters is much smaller. But, as the nonlinearities
of the series are not entirely explained by a mixture of linear regressions, an adaptation of
the method by replacing the linear functions with nonlinear ones could be more interesting
for this kind of data.
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Figure 11: Squared error criterion for the laser series

3.4.3 GNP Series

Concerning the GNP series, Hamilton’s approach was based on the assumption that the mean
growth rate is subject to occasional, discrete shifts. We dispose of 136 trimestrial observed
values of the series, from 1952 until 1984. The maximal lag to be considered was determined
with the AIC criterion and was fixed at p = 3.

The data was initially clustered with a 4x4 map and considering {yt, yt−1, yt−2, yt−3} as
variables. The sixteen clusters were grouped hierarchically by the squared error criterion and
the results are displayed in Figure 12.

The first graph contains the within sum of squared errors plotted against the number of classes
and the sencond its percentage increase. A first break appears when considering six classes
instead of seven, but this can be interpreted as being due to possible stronlgy homogeneous
clusters from the same regime which get mixed. There is a second break(13%) when passing
from two classes to one but this is less obvious than in previous cases and the decision to
model this series by a two-regime model is questionable from our point of view.
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Figure 12: Squared error criterion for GNP data

4 Conclusion and Future Work

We’ve introduced a descriptive method to assess the presence of regime changes in nonlinear
time series analysis. As there is no theoretical answer and no statistical test to solve this
problem for the moment, this method may be used, but with precaution. Indeed, self orga-
nizing maps could mix the regimes if the regression hyperplanes are too close and the square
error criterion seems to be sensitive to outliers.
Thus, several improvements should be made in the future, like considering a different distance
that would take into account the temporal dependency of the data for the initial clustering
or like looking for a smarter initial clustering that would avoid mixing regimes in the same
cluster. Replacing the linear regressors by nonlinear functions could also be a possibility, but
then the number of parameters becomes larger and the fiability of the estimators decreases.
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