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1 Introduction

The quest to understand mechanisms behind the temporahily:af a natural population (animal or plant) always
yields useful information for ecological biodiversity negement. The present work was motivated by the analysis
of time-fluctuations of an ecological time series, the ahtarah cone production. Because of the impracticabil-
ity of quantitative evaluation of such population size,yos¢mi-quantitative data are often available numerically.
Data are coded with finite ordered categories or levels. Rhisrsome natural questions arise. Among them, the
following one is of crucial interest here: do lagged valuetedmine future production? The same basic problems
occur as for classical quantitative time series but heragytbatest difficulty stems from the nature of the studied
process (as previously mentioned, working on categorigghbles induces many difficulties since most of the
notions used for quantitative variables have no more sensech context).

Statistical models have been useful instruments for tgiypothesis concerning the mechanisms behind temporal
evolution and to characterize temporal patterns. Two nwaed used throughout this paper to achieve this goal:
a regression modef (Fokianos and KefHgm, P#02,]2003) anchanpaized Markovian modefl (Jacobs and Lgwis,
). The first one is a regression model for categorived Series which is based on generalized linear regres-
sion theory [(McCullagh and Neldégr, 1989). Such model extarehr models to accommodate both non-normal
response distributions (which is the case in the study @&gmatcal data) and transformations to linearity. So, ap-
plying a generalized linear models consists in two choiedamily of probability distribution and a link function
between the response and the predictors. For categorittasdene widely used models are: multinomial-logit
(Agrest,[199p) and cumulative odds modé¢ls (McCulldgh,Q)9@daptation of such models to categorical times
series is easy to do putting past observations at diffeegs &s categorical predictors of the response at time
(Fokianos and Keddn, 2002, 2003). The second one is indeadagtion of the discrete auto-regressive (DAR)
model introduced by Jacobs and Le78a) to the casetedaacal time series. As noticed by McKenzie
), DAR models jj would be more suited to modelling dejeen sequences of categorical observations, but
this does not seem to have been attempted yet ¢,¢,. To the mstlafowledge, no advance in this direction is
made since the paper of McKenzie.

These two models have some advantages and some disadgantsgle are not necessary the same, implying a
complementarity between these two approaches. Among tinenom advantages, the main one is that they are
easy to be interpreted by the practitioners. Since moskedite series in ecology are short-length (for a statistical
purpose), we have to consider only models involving a reaisiemumber of parameters. That is the reason why
we will focus on one order lagged model (even these modeldbeagxtended easily to large order lag values).
Among the inconvenient of the DAR model, the main one is théatarity of the time series, which can not be
checked by any statistical tests (see (McGee and Harri§)2060a discussion about several notions of stationarity
for categorical time series). However it allows us to deawimple model for taking into account missing values (a
contrario to the regression model, the DAR can not treattir¢he case of missing values). Our approach differs
highly of the one recently proposed by Ban005). Indemddnsiders a continuous-state, but non-Gaussian,
time series and its analysis relies only on the ordinal priypsf R. Moreover his methodology requires a long
time series, which is not realistic in many real cases.

Motivation of the present work is the analysis of time sené$arch cone production data in spatially disjoint
locations in order to determine some temporal patternsrohlaone production dynamic at different locations
and to discuss some kind of spatial synchrony. Data arele@tai the first section. Next section 3 is devoted to
present two regression models: one for categorical timesand one for ordinal time series. These two regres-
sion models have been studied by Fokianos and Ke().Z(h section 4 we adapt the one order discrete
auto-regressive model to the context of categorical damdtdinal characteristic is not taken into account in this
model). In particular we develop independence tests anch@strs of the various parameters of the model. In
section 5, we apply these models to two real data sets: th@fiesdeals with annual larch cone production (over
31 years) and the second one with weekly planktonic aburedéharing one year). Last section is devoted to
conclusion and discussion.



2 Motivations

The masting is the intermittent synchronous productioreeficrops by a plant populatign (Kelly and $grk, 2002).
It often shows an evolved strategy related to others enmimtal masting patterns such as rainfall, temperatures,
. Thus variability in seed production according to pastiea is a good descriptor of environmental changes in
climate for example. The information arising from the cleéesization of temporal patterns on such time series
could be used to infer role of environmental parameters ahdranechanismg (Pricet all, R00§). The data
accounting cone production were registered for 31 year®onvalleys located in the Southern French Alps (in
the same area of the Alps called "Brianconnais”). Here wi euinsider four different sites selected to be at
comparable altitudes (ranging from 1800m to 2200m): Ay#gyee: 2200 meters), Montgenevre (altitude: 2200
meters), Névache (altitude: 1800 meters) and Proretydéi 1800 meters). Cone production at a given site was
roughly estimated at the beginning of the cone developmgblinting cones along one meter of branch for at
least one hundred randomly selected trees. The intenslgraf cone production at any site was then classified
into six classed (Rogyds, 1988) from no cones (coded 0) toheavy crop i.e. more than two hundred cones per
tree (coded 4). Annual cone production is considered to eedhlization of an ordinal time series with values
{0,0.5,1,2, 3,4} corresponding to a scale classification endowed with a aktwdering. Data are plotted on
figure[].
When studying the dynamic of the larch population on eactpsiamsites, a first step could be to identify temporal
patterns of cone production and then to compare each paftern one site to others to conclude or not at a spatial
synchrony on a "short” regional spatial scae (Liebheldl|, P004). However, the observed series in figﬂre 1do
not exhibit obviously the presence of such patterns. Therdaleatures of the series are: no seasonality, high
location to location variability with respect of durationdabeginning of intensive larch cone production, presence
of missing values, ... However visual remarks should beidensd carefully.

Such time series could appear as too short-length for thist&tgan who generally needs a lot of information to
infer on a phenomenon but the data are collected from 1978@5,2vhich corresponds to an entire career of a
biologist!

3 Regression modelsfor categorical and ordinal time series

The model used here is a generalization of classical ragressodels to the case of time-dependent categorical
observations and was studied fy (Kauffrahn, 1987) (see (Biskianos and Keddn, 200p, 2003) for a good
summary of the main theoretical aspects).

3.1 Introduction to generalized linear modelsfor qualitative time series

Assume that the observed series is a particular realizafithe stochastic process in discrete tif#é} which
will be described below. Values &f. are supposed to belong to a finite $#&t= {1, ..., k} of k ordered or not
categories. Because we are interested in temporal depembetween successive observations, we condition on
the observed past. For any positive intedet us denote by;_; theo-field generated by; 1, Yo, ..., Y.
LetY; = (Yi1,...,Y k—1) whereY; ; equals to 1 if the-th is observed at timeand0 otherwise. The analysis
of time series based on a generalized linear model suppasé¢hh response variable is influenced by its past
values which are viewed as predictors influencing the thistion of Y; by way of a transformation of a linear
combination.

E [Y:|F—i] =h (Y, ,0),

wherel is the order of the lag time ar¥l;_, is the covariate matrix containing the lagged values of €sponse
variable until lagl. In the following we will focus on € {0, 1,2} (since we aim at treating short-length time
series). The vectas is a vector of time-invariant parameters to be estimate hidl reflect the intensity of the



dependency between the response and its past. Becaussyibase variable is a categorical time series, we have
the following relation:
T = E[Yy | Fa] = P(Ye; = 1|Fi),

for every j € {1,...,k} and everyt{l,...,n}, wherer,;; is a transition probability. Letr;.; =
(Te1,0,---mee—1,). Some adequate regression models for categorical dasaifiathe family of generalized
linear models which links vector of transition probabdgiof the response vector to the covariate process through
the equation:

0= me(B) =h(Y,_8)  or  hTH(m,(8) = Y6 @

In other words, the study of having the respoklise- j at timet is equivalent to carry out a regression on covariates
which are the lagged values of the categorical responsegsocThis model is also called a Markov regression
model for categorical time series. The functlois called the inverse link function and is related to a linkdtion

that describes how the mean depends on the linear predi€mrgach response distribution there exists a variety
of link functions to connect the mean with the linear prealict he use of a generalized linear model is the choice
of a combination of response distribution and a link funttio

3.2 Onthechoiceof thelink function

The link function should adapted to the type of data (Foksamud Kedefr], 2003):

e Nominal data: the most commonly used model for categorimahfminal) data is the multinomial logit

model {(Agres}i[1990):

eXp(ﬁ/‘ytfl)
T, 'J(ﬁ) = - L ; (2)
’ 1+ >0t exp(Byyi1)
foranyj € {1,...,k — 1}. This equation also defines log-odds ratios relative;p by:
.
log (—l) — Byt )
Tt k1

e Ordinal data: since data are ordinal, its is more conven@ntodel the cumulative probability function of
Y;. For ordered categorical time series a reasonable choiliekdfunction is the logistic distribution one

which leads to the proportional odds model (McCulldgh, )980

1
h—! = 4
@) = ewca) @)
It follows that the link function is:
PlY; < jlft_z]) y
I — | =Y, 3. 5
(P[}/t>]|ftl] t lﬂ ( )

3.3 Parametersestimation and global adequacy criteria

Since the joint distribution of response and covariate$tesxmot easy to establish, the likelihood methods are not
applicable to estimate the vector of regression coeffisi@nfs we are interested in the estimation of the effects of
the covariates on the response, we can use the inferency treessed on partial likelihood function. The reader can
refer to (Fokianos and Kedgih, 2002; Vieneeall, [1998) for more details and application. The partial likebd
method leads to non linear equations system. Multinomialetswere fitted using the functionul t i nomfrom
library sectiomnnet onR. Proportional-odds logistic regression models were fitigidg the functiopol r from
library sectionMASS on R. The vector of parameters of this modkis estimated using an iterative weighted least
squares WS (Chalmers and Haslig, 1992; Venables and Rjgley,[2002).

The analysis of the global adequacy and goodness of fit of sattels to the data is discussed using the Akaike’s
information criterion (AIC) which also allows to compareveeal models. The values of this criterion depends on



the number of model parameters and penalizes models wik laumber of parameters. Such consideration is
important in the study of short time series where the numbpamameters can be rapidly equal to the length of
the time series. The chosen model is the one which minimieesdlue of AIC among the others.

In this preliminary work, no detailed analysis of the resil$uof the models is done. Such analysis is important to
assess the goodness of fit between the chosen model and #regeabdata but was not the priority of this paper.

4 Discrete auto-regressive model and categorical data

The discrete auto-regressive (DAR) model introduced bypbds@nd Lewis|(1978&; 1978b; 1978c) is used here
to model categorical data. Some independence tests aréodedle using either the Markov property or runs
properties. Estimators of the parameters are studied iprégse context of categorical data. Simulated data are
used to illustrate numerically the quality of these estomat

4.1 Introduction and model

In a series of papers, Jacobs and Lefis (1978a; 1978b; i @m8ajluced and studied time series models for
discrete variables. Among them we will focus here on therdiscauto-regressive of order 1, denoted by DAR(1).
Such proces$X.} is a discrete-time stochastic process with values on a findered sef? = {1,...,k} and is
defined as follows:

VES0, Xo=ViXea+(1-Vi)Z,

where{V;} is a sequence of iid Bernoulli random variables with par@amete [0;1] and{Z;} is a sequence
of iid random variables having the distributianon E, the two sequences being independent. Moreover we will
assume thak, is distributed according to the distributian implying that the proces§X;} is stationary. The
case ofa = 1 is not interesting sinc&; = X, with probability 1, for anyt. The case ofv = 0 means that the
process{ X;} is simply a sequence of iid random variables having distiglour. Hence the parameter could

be interpreted as follows: the nearest to. @&, the more jj independent ¢ ¢, the sequdd¢g is. Indeed, for all

h € N, p(h) = o” is the auto-correlation function of a DAR(1) process. HeB@dR(1) models can be used to
describe a situation of short range dependency with higheladion. It is easy to prove that stochastic process
{X:} as defined above is a Markov chainsBrwith transition matrixP given by the following equation:

P=al+(1-a)Q,

where!@ = ['x| - - - |'7]. Such Markov chain admits obviously a unique stationaryghdlity distribution which
is 7. One can easily deduce theth power ofQ andP: forall h > 1, Q" = Q andP" = "I + (1 — a)Q,
illustrating one more times the role of

This stochastic process could be generalized to higher tgdding to the DARY{) model. In fact, these models
appear themselves to be a special case of mixture transiigribution (MTD) model introduced by Raftery
). Thus DARY) can be viewed as an alternative to MTD model. According téidRg a MTD model fits
better data in general than a DAR(one, especially fop > 3. However here we will prefer to use a DAR(1)
model since it has the following advantages over the MTD rhoblethe two parameters andr play different
roles: « is related to the correlation whereass the stationary distribution; 2) these models involveagally a
reasonable number of parameters (more parsimonious)iabp&ten few data are available; 3) parameters could
be easily interpreted by a practitioner. But the specia¢ @dDAR(1) model presents the disadvantage of being
restrictive over the transition matrix.

Here we are interested on the use of such stochastic precEssmodeling categorical variables (here the
different modalities are encoded by using théirst positive integers). It implies that many characté&ssbf
these processes have no sense in such context, as it is #ndocabe auto-correlation function (see above).
Thus estimators developed by Jacobs and L1983, ses @8g30) cannot be used. Hence we address the



statistical problem of estimating the parameters in a DAR{tdel in presence of categorical data. Assume we
observeXy, ..., X,, for afixed valuen > 0. First we will test whethef X, } is a sequence of independent random
variables & = 0) or not. In a second step we will estimate all the parametetiseomodel:« andw. Then we
propose a very simple model in order to consider the casessing observations.

4.2 Independence tests

In this section we aim at testing whetHeX, } is a sequence of independent random varialles () or not. Two
ways will be investigated. The first one will use the Markoomerty of the DAR(1) model and the second one
will be based on runs property. Anyway, all along this seattibe null hypothesiél, will be jj o = 0 ¢¢, and the
alternative hypothesis will be ¢ # 0 ¢,¢..

x? test based on the Markov property The following test is a classical test for Markov chain (sBeifiert

et al, [2000) for an illustration in DNA analysis context). We onige the fact thaf X, } is a Markov chain, but not
the particular structure of its transition matrix. Classiesults on Markov chain inference leads to the following
estimate for the transition matrik:

~ N

R 73"
A N
Js*

whereN?,, =371, Mex —jximji andN}' =3, cp NI =300, N« ,—j,. Inother wordsN?, is the
number of jumps from statgto statej” and N}, is the number of visits of statg in the sequence of observations
X0, Xn.

The null hypothesis can rephrased as follows;, = P;.P. ., for any(j, ;') € E?. UnderH,, the maximum-

likelihood estimate of; ;- is:
~ NP NT,
P P J— Js* 5]

P; Jrdg

J.g =

whereN”;, =3, p NI\ =30, ]]_{Xi:j,}. Hence one has to consider the following statis@iés
n n \n 2
o2 Z Z N7 = NJPN™, /(n — 1)]
NPNT, /(n—1)

n
JEEj'EE J5

Theorem 4.1 Under the null hypothesig;? # ka_l)Q i

Some well-known practical restrictions exist in order tcdtde to apply this test. As example, one can require
thatP; ; > 5%, for any(j, j') € E>.

Testsbased onrunsproperty  Unfortunately we cannot compute the power of the previosis tieat is the reason

we will now consider a second family of tests. These testsheilbased on runs property of the model. Runs in
sequence of iid Bernoulli distributions are studied for aneng time: this problem seems to be considered for
the first time by Abraham de Moivre in 1756 (problem LXXIV inshbookThe Doctrine of Chancés For an
historical perspective, see the introduction of the PafiMmod, [1940). Most of the existing papers deal with the
case of Bernoulli random variables, but here we are indeeddsted in the general discrete case. Few extensions
were made in this direction. To the best of our knowledge, ¥i®40) is the first one who studied it.

A run can be defined as follows: it is a consecutive sub-sempiehidentical values in a sequence of random
numbers. For any € E, let us denote b)ij the number of non-overlappingruns of length in the sequence
Xq,..., X,

R_;’,n: |{m7 mel #jva Xm:jav ) X’m+i71 :jva Xm+z7éj}| .

Let us now define the numbét; ,, of j-runs and the total numbét,, of non-overlapping runs:

Rjn= iR;n , and R, = Z Rijn .
=1

JeE



Mood (194p) obtained the limiting distribution %, after renormalization. Two cases have be distinguished:
k=2andk > 2.

Theorem 4.2 (corollary 5 p. 390 and corollary 3 p. 392 iff (Mdold, 1$40))

" — 2
1. Iff =9, — Tm = 2nmm 4, N(0,1).
2\/7171’171’2(1—371'171'2) n—00

2. Ifk > 2, %(Rn—n(lfzjeEw?)) -4, N(0,02), with 62 = ZJEETF? + QZJEEW;’ -

B(ZjeE 7Tg2‘)2-
One can check that in both cases the asymptotic varianc@endeated if and only if there exisise F such
thatw; = 1 (and then, for allj’ # j, 7;; = 0), then the variance is degenerated. These convergendes resuld
be used to construct an asymptotic test.

An alternative solution could be to consider the longestinuhe sequencd’y, ..., X,,. Indeed there exists many
works dealing with the case of either independent trials arkdvian trials. Let us denote Hy, the longest length
of all runs in the sequencky, ..., X,,. Using the previous notations, we have:

Ln, = max{i; 3j s.t. R}, >0} .
Vaggelatou[(2093) studied this random variable in the céseutti-state Markovian trials. It requires thaf,}
is an irreducible and aperiodic Markov chain on a finite siteceE’ with transition probability matrix? and
unigue stationary measutte The Markov chain induced by a DAR(1) model is irreducibld aperiodic ifr > 0

(meaning that all the componentsofare strictly positive) andr # 1 (see chaptexv of (, 196B)). Let us
define the two following quantities:

le}lEai%(ij and ﬂ'p:. Z Ty .
JEE : Pjj=p
If p < 1, then Vaggelatou proved the following asymptotic restierem 1 in[(Vaggelath{i, 2403)):
P(Ly, — [logy/,n] < x) = exp {—n(l - p)ﬂpp“og“""”z‘l} +o(1), (6)

where|-] denotes the integer part amdl) means that the residual term is jj small ¢¢ in regard withThis
result extends the classical one obtained many years agmb§aEov 2) in the case of iid Bernoulli trials.
In both case,L,, — [log;,,n] does not have a limit distribution, but only certain subtsstpe; for instance,
theorem 2 in[(Vaggelatpii, 2403) gives a case where the suiesee converges in distribution to the Gumbel
distribution. We will use theorem 1 (and not theorem 2) tostarct a third (and last) test since we have not
enough observations in real situation. Let us denoteygndp, the value ofy respectively under the null and the
alternative hypothesis. Under the null hypothegisyill be equal to the matrix) as defined in the introduction:
V(j,5') € E?, P;j = mj (the transition probability from statgto statej’ does not depend of). So we have
thatpy = max{r; ; j € E}: po < lifand onlyif, for anyj € E, n; < 1. Under the alternative hypothesis,
p1 =max{P;j;; j€ E} =max{a+ (1 —a)r;; j € E}: p1 <1lifandonlyifa < 1 (itis initially assumed)
and for anyj € E, m; < 1. Thus we find the same condition in both cases and this asgamipthe same as for
the previous test. From now we will assume that 0 in addition to the previous assumptions (let us recall that
we already assume that# 1). Using theorem 1 of Vaggelat003), one could obtainsgmgptotic confidence
interval with a prescribed confidence levet (0;1):

L, = L, — 1 (notice that it is corresponding sometimes to the definitbruns: see for instance (Jacobs and
Lewis,|1978R)). It follows that the powét. of this test is:
- In(e/2) ~ In(1 —¢/2)
O.=1+Py, [ L, <1 — Y V) =Py (L, <1 —— 7)) .
o= (B <o () ) =P (B <o (S0
To computdl,, one has to use equatidﬁ (6) above.




4.3 Parametersestimations

The two parameters anda of such DAR(1) model could be estimated separately sincehgteuction they play
different role.

Estimationsof 7 For anyj € E and for anyi € {1,...,n}, letZ;; = ]].[Xi:j}: these random variables have
the Bernoulli distribution with parameter,. A natural unbiased estimator of is therefore:

SN IR
7Tj = E ZZZ] .
=1
Moreover, using the expression Bft given in the introduction, one can easily derive the varaoicr;:
~ 1 2
Varrj] = —mi(1 = mj) + 5 (1 = m5)m;Va(a) ,
and the covariance between and7; (with j" # j):

COV[/TFJ‘,%J'/] = —Fﬂj/ijn(a) R

with Vi, () = Y7_,(n — h)a®. Applying formula (0.113) in[(Gradshteyn and Ryzrlk, 10€&jithmetico-
geometric progression), we obtain the following exprassi V;, («):

~n—a" al—a")
Vald) =90~ —q=az ™

This leads to the following limit for the variances and theadances:

. ~ 14+«
nlirgo nVvar(w;] = T aﬂj(l —mj),
and: 5
lim TLCOV[%J',%J'/] = ——aﬂ'j/ﬂ'j .
n—oo 11—«

As a consequence of Bienaymé-Chebychev inequality, thepistic result on the variance implies that is
consistent:
Pr

Proposition 4.1 Foranya € [0,1), 7; —— ;.

Moreover one can prove the following central limit theoresn#; by application of the ergodic theorem for
Markov chain [Jong$, 2004) and Slutsky theorem:

T — T 1
Theorem 4.3 Foranya € [0,1), Vi—2t— 2, (o, ﬂ)
ﬂ-j(lfﬁj) n—oo 1 —«

Whena = 0, the asymptotic variance equals to 1 as it is well-known ferr®ulli trials. The largest is, the
larger the asymptotic variance is. Since the asymptotieddp onn which is generally unknown, we cannot yet
use the last proposition to construct confidence intervabrtler to do it, we will need an consistent estimator of
.

Estimationsof o We will first consider the maximum likelihood estimatorafassuming that is known. Since
{X.} is a Markov chain, the log-likelihood is:

‘C(le"'aXn;a) = Z N]j/ 1Ong7j/(Oé/) s

(4,5")€E?



whereN; ; is defined as in section 2 and whéefg;, (o) is the transition probability from stageto statej’ (which
only depends on). Replacing the expression of transition probabilities,abtain that:

E(Xl,...,Xn;a):Z N; jlog(a+ (1 — a)m;) + Z G log((1 — a)mjr)
JEE J'€EN{j}

It follows that the maximum likelihood estimates of « is the solution of the following equation:

Whenr is unknown, one can use the estimation given above and sdubérpestimatoia; of « is the solution

of the following equation:
LY
neg ot (1—a)7;
Unfortunately we cannot derive an explicit expressioanfAn alternate possible way is to minimize the following
function:
Qo= Y. (Prjy—Piy().
(4,3")EE?

Solving this optimization problem leads to an explicit eegBionos *:

2(1*7%) Z Z JJ’*WJ)

of — jeE JEE j'e E\{j}
-
k-1)> w7+ (1-m)?
JEE JEE

It seems to be difficult to establish properties of this itivei estimator. Hence it is not recommended to use it
as an estimator af. However it could provide a possible initialization for aptiization procedure to obtain a
numerical value ofv;. The corresponding plug-in estima@f of « is given by the following expression:

SNA=-7)Fy—7) =Y. Y. 7Py —7p)

— _ € B ER)
5 =
SR BN
JjeErE JjeEE

Simulated data The estimators developed above are applied on simulatedrdatder to evaluate numerically
their performance. We simulate data with various values,of andn:

e o€ {0.1;0.2;0.5;0.8;0.9}.
e n € {50;100; 500}.

Hence two cases are studied:= 2 andk = 3. For each values of these parameters, we simutate 100
independent DAR(1) Markov chain and then we compute theastirs. Unfortunately these we have no guarantee
that the two estimators ef belong to the unit interval. Hence we precise for each cémesumber of samples on
which the computations were done (as it is reasonable, thdauof samples is increasing with the numheaf
observations). Results are given in takﬂesﬂl to 4 (only thimators are computed for simulated data).

4.4 A variant with missing observations

Sometimes categorical time series may contain some missilngs/observations. Here we now propose a very
simple adaptation of the DAR model in order to taking intoaat the missing values. Since the DAR model is



stationary, it will be easy to derive similar expressiongabe initial model.

Assume that at each unit of time, the probability of a missiatlye equals tg? (which does not depend on the
time). Hence, if we denote h¥, the values at time, we have :

Zt{Xt wp. 1-73
-1 wp. g3

where—1 is the value corresponding to a missing value 4id} is DAR(1) stochastic process as described
previously. Hencé is the probability that a value is not observed : this prolitglis assumed to be not depending
ont. Since(X;) is a stationary stochastic process, it follows thét) is still a Markov chain, but taking values
on the setF = {—1} U E. lts transition probabilities matri® can be expressed in function of the transition
probabilities matrixP of (X;):

)

- 1— t
P g pn
(1-83)1, pP
where1, is the unit vector of R. There is now three parameters to be estimated. Indeaada (with the
maximum likelihood method) can be estimated as previoughg extra parametegt can be simply estimated as

follows: N
Z ]]-{Xi:—l} .
=1

B=

5 Applicationsto ecological data

Finally tests and estimators are applied in this sectioeabdata. We apply the two models described previously
to two real data sets. The first one deals with larch cone mtaztu(see section 2) and the second one to planktonic
abundance.

5.1 Larch cone production

The total number of observations was= 31, with £ = 6 categories. The goal of this work is to study masting on
such trees. For a full description of the data, see section 2.

First we apply regression models. Tatﬂes 5 ﬂ]d 6 contairesalfiAIC respectively for the categorical time series
regression model and the ordinal one. We also indicate the&euof parameters to estimate and the number of
observations (these time series may contain missing ValBesthe first case, the independence assumption leads
to the better for all sites. For the second case, model wily @tder 1 and 2 fits better for the site Ayes 2200 and
Montgenevre 2200 while the model with only a lag of order & fietter for Néevache 1800 and the independent
model fits better for Prorel 1800. Comparing values of Al@ thodel for ordinal time series seems to be more
accurate for these data sets.

Second we apply the DAR model. Takﬂe 7 contains the estimatd the three parameters for each of the four
data sets. In all cases, the independence hypothesisdsajwith the two first tests, while the third one leads to
accept the assumption of independence (all with a first typer at 5%). However the power of this last test is

more or less weak in all cases (ranging from above 26% to 5T#4)s it is reasonable to reject the assumption of
independent observations.

In all cases the categorical time series regression moa@sl® accept the temporal independence between obser-
vations. It may be due to the fact that the parameterthe DAR model is closed to zero. However this parameter
can be assumed to be significantly different of zero, acaogrtti the performed tests. It is in concordance with the
fact that observations are time-dependent when using tlieraltime series regression model. Time series studied
here are very short-length and it may the cause that the esinals based on the ordinal time series regression
model and the ones based on the DAR models. Since few dataaitabde, one should prefer to use the DAR
models (because it involves less parameters than the ottls).
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5.2 Planktonic abundance

We now consider weekly planktoni€lfalia democratichabundance data. Data were kindly given by F. Ménard.
In such context, the objective is to test and to compare thpoeal patterns from one year to another. Hence
we apply the two models described above for four years (188P80). It follows that each data-set is made of
n = 52 observations. Abundances were determined semi-quargitaaiccording to classes defined on scale of 5
values.F = {1,2,3,4,5}. The observed series are shown in figﬂre 2 and exhibit the panidems as the larch
cone production ones. Notice that the fifth category wereobserved for any year. For a complete description of
the data, the reader could reefer|to (Ménetrdll, [L993) (see alsq (Viennet all, 1998)).

First we apply regression models. Takﬂas 8 End 9 containdh®ar of parameters to be estimated, the values of
AIC and the number of observations, respectively for thegatical time series regression model and the ordinal
one. With the model for categorical time series, the modét whe order lag fits better all the four years. With
the model for categorical time series, model with two orderfits better for the year 1987 and 1989 while model
with only a one order lag fits better for the two other yearg88.8nd 1990.

Second we apply the DAR model. Ta@ 10 contains the estimatf the three parameters for each of the four
data sets. The two first tests leads to reject the null hys@hiee. to reject the independence of the observations.
The third test leads also to reject the independence asgmfpt the two last year (1989 and 1990) while the null
hypothesis is accepted according to this last test for tlesy®987 and 1988 (respectively with a power equal to
44% and 66%). Thus it is also reasonabke to reject the aseamgitindependent observations.

We can also analyze these data sets as one unique time seriieg (hat it was not possible for the previous
data-set). Hence the sample size is now= 208. All the tests lead to reject the assumption of independent
observations (with a power equal to 69% for the last one). |asteine of tablﬂo contains the estimations of the
three parameters for the whole period.

Here the situation is totally different than previouslydéed the categorical time series regression model and the
DAR model lead to the same conclusion, i.e. a one order lagritgnce in the time series. One can notice that for
these data sets the paramete(of the DAR model) is now between 0.308 and 0.540. Howeveotid@al time
series regression model leads in some case to a two ordeefmndence. Since the number of observations is
almost the twice than for the first data sets, one shouldratteéer to use the ordinal time series regression model.

6 Conclusions and discussions

Applications to real data achieve to convince that thesedwmoplementary models are relevant for practical pur-

pose. Based on the result obtained over real data, one catuderthat either the ordinal time-series regression
model or the DAR model should be used to treat such data. thidesl cases the categorical time-series regres-
sion model seems not to present advantages over the twomtitels. The choice between the ordinal time-series
regression model and the DAR model depends highly on theegtrite. essentially on the number of observa-

tions and the number of parameters to be estimated. Fokarh&edem 3) claimed that jj the regression

methodology can discover dependencies in the DNA sequeataendich cannot assessed by a Markov model ¢ ¢,.
However data treated here can serve as a counter-examgiis aehtence. For the two data sets studied here,
conclusions based on the regression models and the onedraisel Markov model are almost identical.

From this work, one can conclude that in any case the DAR mioaelnly few parameters to be estimated, but
with an equal to number of unknown parameters (as in the ebeanfiparch cone production) one has to prefer the
ordinal time-series regression model.

However both suffers of relying on assumptions or simplifzs. Hence these models could be extended in the
following ways:

11



e Stationarity: the DAR model is strongly stationary (in the sense defined losbe and Harris in5)).
This assumption should be checked with any statisticad.tégtwever no test of stationarity of a categorical
time series has been developed to the best of our knowledggway when dealing with short-length
time series stationary assumption is not really restectiOtherwise a solution could be in applying the
de-trend algorithm suggested by McGee and HarriZOHB)Never their algorithm is more and more
computationally complex as the number of states is incngd@m fact they mainly consider the binary case).
We do not focus here on the study of the possible stationafiycategorical time series which will be done
in a future work. A major advantage of regression model isitha not necessary to have stationarity.

e Higher dependence order and number of parameteisce we consider the case of short-length data, we
limit our study to one or two order lagged models. Indeed buotidels could be applied tp-th order
lagged models. However, for the regression model, a larlye e p implies a large number of parameters
to estimate, that may induce some numerical instabilitye(tucorrelation between the regressors). The
number of parameters in a DAR(model is lower, but ifp > 1 we have no more the Markov property.

e Environmental factorsthese models do not include environmental covariates. gpeession model could
easily integrate such situations, as shown by Fokianos atiid [2002f 2003). For the DAR model, it is
not so easy. A solution could be to consider inhomogeneoukd¥ahain or a state-space model.
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Figure 1: Annual larch production in four sites in the South&lps
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Table 1: Results obtained with= (3, 1)
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Figure 2: Weekly planktonic abundance for four years
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Table 2: Results obtained with= (3, %)
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Table 3: Results obtained with= (1, 1,
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Table 4: Results obtained with= (3, 1,
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AIC
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Indep.

6
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24

143.25
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128.43
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Lag 1
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Table 5: Categorical time-series regression models apfdiannual larch cones production
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H H Ayes 2200 H Montgenevre 220(ﬂ Névache 1800 H Prorel 1800

Model || Nb param| AIC | Nbobs| AIC Nb obs AIC Nb obs| AIC Nb obs
Indep. 6 119.63| 24 143.25 29 143.36| 27 128.43 24
Lag 1 12 116.34| 22 136.3 27 139.32 22 136.62 20
Lags 1-2 18 114.3 20 126.92 25 150.13 17 144.82 17

Table 6: Ordinal time-series regression models applieshtmal larch cones production

Valley H T ‘ aq ‘ 3 H AIC ‘
Ayes 2200 (0.167;0.042;0.292;0.292;0.125;0.083p.082 | 0.774 | 121.06
Montgenevre 2200| (0.138;0.069;0.172;0.310;0.241;0.0699.070 | 0.935| 118.70
Névache 1800 || (0.185;0.185;0.074;0.185;0.296;0.0449.032 | 0.871| 125.94
Prorel 1800 (0.292;0.167;0.125;0.208;0.167;0.0429.161 | 0.774 | 122.89

Table 7: DAR models applied to annual larch cones production

| 1987 | 1988 | 1989 | 1990 || 1987-1990
Model || Nb param|| AIC Nbobs| AIC | Nbobs| AIC | Nbobs| AIC | Nbobs| AIC Nb obs
Indep. 3 100.56 47 111.52 45 121.61 48 133.6 48 468.21| 188
Lag 1 12 73.04 43 89.83 42 96.06 45 99.69 46 331.81| 177
Lags 1-2 21 79.52 40 93.57 37 97.17 42 102.90| 44 31596 | 167
Table 8: Categorical time-series regression models apmigveekly planktonic abundance
| | 1987 | 1988 | 1989 | 1990 || 1987-1990
Model || Nb param|| AIC Nbobs| AIC | Nbobs| AIC | Nbobs| AIC | Nbobs| AIC | Nbobs
Indep. 3 100.56| 47 111.52| 45 121.61| 48 133.6| 48 468.21| 188
Lag 1 6 65.77 43 84.78 42 95.67 45 92.66 46 323.5 177
Lags 1-2 9 63.69 40 NA 37 85.92 42 93.65| 44 298.17 | 167

Table 9: Ordinal time-series regression models appliedgekly planktonic abundance

Year | 7 | &t | 5 | AcC |
1987 | (0.625;0.167;0.042;0.000;0.167)0.540 | 0.923 ] 108.78
1988 | (0.489;0.311;0.089;0.000;0.111)0.308 | 0.865 | 143.11
1989 | (0.354;0.417;0.167;0.000;0.062)0.445 | 0.923 || 132.68
1990 | (0.375;0.271;0.146;0.000;0.208)0.484 | 0.923 | 135.10

1987-1990|| (0.463;0.293;0.112;0.000;0.138)0.468 | 0.904 || 511.00 |

Table 10: DAR models applied to weekly planktonic abundance
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