
HAL Id: hal-00133116
https://hal.science/hal-00133116v2

Preprint submitted on 20 Sep 2007 (v2), last revised 21 Sep 2007 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adaptive finite element method for viscoplastic flows
in a square pipe with stick-slip at the wall

Nicolas Roquet, Pierre Saramito

To cite this version:
Nicolas Roquet, Pierre Saramito. An adaptive finite element method for viscoplastic flows in a square
pipe with stick-slip at the wall. 2007. �hal-00133116v2�

https://hal.science/hal-00133116v2
https://hal.archives-ouvertes.fr


An adaptive finite element method for viscoplastic flows in a
square pipe with stick-slip at the wall

Nicolas Roquet a

aLCPC – Centre de Nantes, route de Bouaye, BP 4129, 44341 Bouguenais cedex, France

Pierre Saramito b

bCNRS – LJK, B.P. 53, 38041 Grenoble cedex 9, France (corresponding author)

Abstract – This paper is the third of a collection of three papers devoted to the numerical resolution
of non-linear yield stress phenomena by using a new mixed anisotropic auto-adaptive finite element
method. The first paper (Saramito & Roquet, 2001) revisited the classical fully developed Poiseuille
flow of a Bingham yield stress fluid in a straight pipe with non-circular cross-section. The computation
showed the efficiency of the method that was able to compute accurately the yield surfaces that separate
the shear region from the central plug and the dead zones. The second paper (Roquet & Saramito,
2004) considered the less classical problem of a Newtonian fluid with slip yield boundary condition at
the wall. Numerical computations cover the complete range of the dimensionless number describing
the slip yield effect, from a full slip to a full stick flow regime. This paper presents a combination of
the two previous non-linear yield stress phenomena: the Poiseuille flow of a Bingham fluid with slip
yield boundary condition at the wall. Despite its practical interest, for instance for pipeline flows of
yield stress fluids such as concrete and cements, this problem has not been addressed to the best of
our knowledge. The case of a pipe with a square cross-section has been investigated in detail. The
computations cover the full range of the two main dimensionless numbers and exhibit complex flow
patterns: all the different flow regimes are completely identified.
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1. Introduction

The flow of a viscoplastic fluid in a straight pipe with constant section and with non-slip condition at the
wall as been considered several times in the literature. In the 60’s, an extensive mathematical study has
been achieved by Mossolov and Miasnikov [1,2,3]. These authors have established impressive results on
the existence and shape of rigid zones in the flow. In particular, they were the first to characterize the
critical value of the yield stress above which the flow stops. See also Huilgol [4] for a recent application of
such this approach to several pipes with symmetric cross-section. Next, Duvaut and Lions [5] clarified the
the problem of existence and uniqueness of a solution and renewed the mathematical study by using the
powerful tools of variational inequalities. They recovered some properties already established by Mossolov
and Miasnikov, and found new interesting properties.

The numerical study of this flow problem was first considered in 1972 by M. Fortin [6]. More recently,
the regularized model of Bercovier and Engelman [7] has been used by Taylor and Wilson [8] to study
the case of a square section. The augmented Lagrangian algorithm from M. Fortin and Glowinski [9] has
been used by Huilgol and Panizza [10] to solve the case of an annulus and of an L-shaped cross-section,
with the Bingham rheology. More recently, Huilgol and You [11] have derived the algorithm for two other
viscoplastic rheologies (Casson and Herschel-Bulkley).

In 2001, Saramito and Roquet revisited the classical fully developed Poiseuille flow of a Bingham yield
stress fluid in pipe [12] with general (non-circular) cross-section. Addressing the case of a square section,
they pointed out the lack of precision of the previous numerical computations, that was not able to
compute accurately the yield surfaces that separates the shear region from the central plug and the
dead zones. They proposed a new mixed anisotropic auto-adaptive finite element method coupled to the
augmented Lagrangian algorithm. The mesh refinement is expected to catch accurately the free boundaries
of the rigid zones. Based on a priori error estimate on adapted meshes, Roquet et al. [13] performed the
numerical analysis of the method and showed that it converges with an optimal global order of accuracy.
Finally, the extension of this approach to more general flows of a Bingham fluid is addressed in [14] were
the authors considered the flow around a cylinder.

In practical viscoplastic flow problems such as concrete pumping (see e.g. [15,16]), it appears that a non-
slip boundary condition is not a satisfying model. The fluid slips when the tangential strength exceeds
a critical value, and, otherwise the fluid sticks at the wall. This critical value may be considered as an
intrinsic characteristic of the material: in the following, it will be called the yield-force of the fluid. The
model defined by Weber [15] describes this yield-force slip phenomenon. It has already been used by for
the flow of a Newtonian fluid with the Weber slip law by A. Fortin et al. [17] for the sudden contraction
geometry and next by Roquet and Saramito [18] for the straight pipe flow with a square cross-section.

The aim of this paper is to extend the technique presented in Saramito and Roquet [12,18] in order to
apply it to the flow of a Bingham fluid in a straight pipe with constant section with the Weber slip
law at the wall. In section 2, all the governing laws of the flow model are presented, ending with the
non-dimensional formulation of the flow of a Bingham fluid with the Weber law in a straight pipe. In
the third section, the numerical method is described. The last section presents all the numerical results
and the discussion. The role of the two dimensionless numbers associated to the yield parameters of
the flow structure are investigated with details. The computations cover the full range of the two main
dimensionless numbers and exhibit complex flow patterns: all the different flow regimes are completely
identified.
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2. Problem statement

The general equations for the flow of a Bingham fluid with the Weber law is given first. Then, it is
specialized for the case of a straight pipe with constant cross-section.

2.1. Constitutive equation and conservation laws

Let σtot denotes the total Cauchy stress tensor:

σtot = −p I + σ, (1)

where σ denotes its deviatoric part, and p the pressure. In this paper, the fluid is supposed to be vis-
coplastic, and the relation between σ and D(u) is given by the Bingham model [19,20]:











σ = 2ηD(u) + σ0
D(u)

|D(u)| when D(u) 6= 0

|σ| ≤ σ0 when D(u) = 0

(2)

here σ0 ≥ 0 is the yield stress, η > 0 is the constant viscosity, u is the velocity field and
D(u) =

(

∇u + ∇uT
)

/2. For any tensor τ = (τij), the notation |τ | represents the matrix norm:

|τ | =
(τ : τ

2

)1/2

=
1√
2





∑

i,j

τij





1/2

(3)

The constitutive equation (2) writes equivalently:

D(u) =











(

1 − σ0

|σ|

)

σ

2η
when |σ| > σ0

0 otherwise

(4)

The slip boundary condition reads :

ut =











−
(

1 − s0

|σnt|

)

σnt

cf
, when |σnt| > s0,

0, otherwise,

(5)

where s0 ≥ 0 the slip yield stress and cf > 0 the friction dissipation coefficient. The notations ut and σnt

are defined by

ut = u − (u.n)n,

σnt = σ.n − (σnn)n,
(6)

where σnn = (σ.n).n and n is the unit outward normal vector. For any vector field v, the notation |.|
represents the vector norm |v| = (v.v)1/2 . Notice that the vector field σnt is tangent to the boundary
and that σnn is a scalar field defined on the boundary. Observe the analogy of structure between the slip
law (5) and the Bingham constitutive equation (4). The slip relation can be also written as:







σnt = −cfut − s0
ut

|ut|
, when |ut| 6= 0,

|σnt| ≤ s0, when |ut| = 0.
(7)
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Again, observe the analogy between (7) and (2). The boundary condition is complemented by a condition
expressing that the fluid does not cross the boundary:

u.n = 0. (8)

We remark that for s0 = 0, one obtains the classical linear slip boundary condition: the fluid slips for any
non-vanishing shear stress σnt. For s0 > 0, boundary parts where the fluid sticks can be observed. As s0

becomes larger, these stick regions develop. This simple law can be extended, as mentioned by Fortin et
al. [17] or Ionescu and Vernescu [21]. In the context of solid mechanics and contact problems, Coulomb
type friction has been studied by many authors. Refer e.g. to Haslinger et al. [22, p. 377] for the numerical
analysis and to Kikuchi and Oden [23] for the finite element approximation. In this case, the slip yield
stress s0 is no more a constant, and should be replaced by a quantity s that depends upon the pressure
at the boundary: s = c0|σnn|. Nevertheless, previous works do not study the stick-slip transition. In this
paper, since our purpose is to study a new numerical algorithm for the stick-slip transition capturing, we
suppose that the slip yield stress is a constant. The system of equations is closed by conservation laws.
The conservation of momentum is:

ρ

(

∂u

∂t
+ u.∇u

)

− div σ + ∇p = 0, (9)

where ρ is the constant density. Since the fluid is supposed to be incompressible, the mass conservation
leads to:

div u = 0. (10)

2.2. The pipe flow problem

We consider the fully developed flow in a prismatic tube (see Fig 1). Let (Oz) be the axis of the tube and
(Oxy) the plane of the bounded cross-section Ω ⊂ IR2. The pressure gradient is written as ∇p = (0, 0,−f)
in Ω, where f > 0 is the constant applied force density.

The velocity is written as u = (0, 0, u), where the third component u along the (Oz) axis depends only
upon x and y, and is independent of t and z. The problem can be written as a two-dimensional one, and
the stress tensor σ is equivalent to a two shear stress component vector: σ = (σxz, σyz). We also use the
following notations:

∇u =

(

∂u

∂x
,
∂u

∂y

)

(11)

div σ =
∂σxz

∂x
+

∂σyz

∂y
(12)

|σ|=
(

σ2
xz + σ2

yz

)1/2
(13)

Finally, the problem of the flow of a Bingham fluid in a pipe with slip at the wall can be summarized as:

(P ): find σ and u defined in Ω such that

div σ =−f in Ω, (14)

max

(

0, 1 − σ0

|σ|

)

σ − η∇u = 0 in Ω, (15)

max

(

0, 1 − s0

|σ.n|

)

σ.n + cfu = 0 on ∂Ω, (16)
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where n is the unit outward normal vector on the boundary ∂Ω of the cross-section Ω. Here (14) expresses
the conservation of momentum, (15) the constitutive equation and (16) the slip boundary condition.

Let L be a characteristic length of the cross-section Ω, e.g. the half-length of an edge of a square cross-
section. A characteristic velocity is given by U = L2f/η. The Bingham dimensionless number Bi is defined
by the ratio of yield stress σ0 by the representative stress Σ:

Bi =
σ0

L f
. (17)

The slip yield dimensionless number S is defined as the ratio of the slip yield stress s0 to a characteristic
stress Σ = ηU/L = Lf :

S =
s0

L f
. (18)

The friction dimensionless number Cf is defined by

Cf =
cfU

Σ
=

cfL

η
. (19)

The three dimensionless numbers Bi, S and Cf characterize the problem. In order to focus on the non-
linear phenomena only, the Cf coefficient is chosen equal to the unity for all numerical experiments. In this
paper, we explore the problem related to the variation of both Bi and S. For the kind of flow presented
here, the relevant values of the dimensionless numbers Bi and S are expected to be in a finite range,
with an upper bound that may depend on the shape of the cross-section. This is due to the existence of
critical values of Bi and S above which the non-linear effects do not change the stick-slip transition and
the evolution of rigid zones (see for example [12] for Bi only and [18] for S only). One objective of this
article is the determination of such critical values.

3. Numerical method

The augmented Lagrangian method, applied to problem (14)-(15), is briefly introduced in this paragraph.
Then, the delicate problem of the choice of a finite element approximation is carefully treated.

3.1. Augmented Lagrangian algorithm

Let H1(Ω) denote the classical functional Sobolev space [24] and J the convex functional defined for all
v ∈ H1(Ω) by

J(v) =
η

2

∫

Ω

|∇v|2 dx +
cf

2

∫

∂Ω

|γv|2 ds + σ0

∫

Ω

|∇v| dx + s0

∫

∂Ω

|γv| ds −
∫

Ω

fv dx (20)

where ds is a measure on ∂Ω and γ is the trace operator from H1(Ω) to H1/2(∂Ω), i.e. γv is the restriction
v|∂Ω of v on ∂Ω.

Using variational inequality methods (see e.g. Glowinski et al. [25]) we show that the solution u of problem
(P ) is the minimum of J on H1(Ω):

min
v∈H1(Ω)

J(v). (21)

Let us introduce two additional variables:
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d =∇u ∈ L2(Ω)2, (22)

ξ = γu ∈ H1/2(∂Ω). (23)

These additional constraints are handled by using two corresponding Lagrangian multipliers. The first one,
associated with the constraint (22) coincides with the shear stress vector σ ∈ L2(Ω)2 and is still denoted
by σ. The second Lagrangian multiplier λ ∈ L2(∂Ω), associated with the constraint (23), coincides with
the shear stress −σ.n at the boundary. The Lagrangian L is defined for all (u, d, ξ) ∈ H1(Ω)×L2(Ω)2 ×
L2(∂Ω) and (σ, λ) ∈ L2(Ω)2 × L2(∂Ω) by

L((u, d, ξ); (σ, λ)) =
η

2

∫

Ω

|d|2 dx + σ0

∫

Ω

|d| dx −
∫

Ω

fu dx +

∫

Ω

σ.(∇u − d) dx (24)

+
cf

2

∫

∂Ω

|ξ|2 ds + s0

∫

∂Ω

|ξ| ds +

∫

∂Ω

λ (γu − ξ) ds. (25)

For all a > 0, the augmented Lagrangian

La((u, d, ξ); (σ, λ)) = L((u, d, ξ); (σ, λ)) +
a

2

∫

Ω

|d −∇u|2 dx +
a

2

∫

∂Ω

(ξ − γu)2 ds (26)

is quadratic and positive-definite with respect to u. This implies that, with (σ, λ) and (d, ξ) fixed, La can
be minimized with respect to u on H1(Ω), whereas this operation is in practice impossible for a = 0. This
transformation proves to be helpful since we can solve the saddle-point problem of La, which coincides
with that of L, by an appropriate algorithm proposed in [9]:

Algorithm (Uzawa)

initialization: n = 0
Let

(

σ0, λ0
)

and
(

d0, ξ0
)

be arbitrarily chosen in L2(Ω)2 × L2(∂Ω).

loop: n ≥ 0

• step 1: Suppose (σn, λn) and (dn, ξn) are known and find un+1 ∈ H1(Ω) such that

−a∆un+1 = f + div (σn − adn) in Ω, (27)

∂un+1

∂n
+ un+1 = dn.n + ξn − 1

a
(λn + σ

n.n) on ∂Ω. (28)

• step 2: compute explicitly in Ω:

dn+1 :=























(

1 − σ0

|σn + a∇un+1|

)

σn + a∇un+1

η + a
, when

∣

∣σ
n + a∇un+1

∣

∣ > σ0,

0, otherwise.

(29)

and on ∂Ω:

ξn+1 :=























(

1 − s0

|λn + aγun+1|

)

λn + aγun+1

cf + a
, if |λn + aγun+1| > σ0,

0, otherwise.

(30)

• step 3: compute explicitly:
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σ
n+1 := σ

n + a
(

∇un+1 − dn+1
)

in Ω, (31)

λn+1 := λn + a
(

γun+1 − ξn+1
)

on ∂Ω. (32)

end loop

The advantage of this algorithm is that it transforms the global non-differentiable problem (21) into a
family of completely standard problems (27)-(28) and local explicit computations (29)-(30), coordinated
via the Lagrange multipliers in (31)-(32). The sequence (un,dn, ξn, σn, λn) converges for all a > 0 to
(u,d, ξ, σ, λ) where u ∈ H1(Ω) is the solution to (21) and d = ∇u, ξ = u|∂Ω, σ is the shear stress and
λ = −σ.n on ∂Ω.

3.2. Finite element approximation

Let A and B be the two bilinear forms defined by:

A((u, d , ξ); (v, δ, ζ)) = (η + a)

∫

Ω

d.δ dx + (cf + a)

∫

∂Ω

γu γv ds

+ a

∫

Ω

(∇u.∇v −∇u.δ − d.∇v) dx + a

∫

∂Ω

(γu γv − γu ζ − ξ γv) ds,

B((v, δ, ζ); (τ , µ)) =

∫

Ω

τ .(∇v − δ) dx +

∫

∂Ω

µ (γv − ζ) ds.

(33)

and j be the following function:

j(δ, ζ) = σ0

∫

Ω

|δ| dx + s0

∫

∂Ω

|ζ| ds (34)

The saddle point of La is characterized as the solution of a problem expressed by the following variational
inequalities:

(V I): find (u, d, ξ) ∈ H1(Ω) × L2(Ω)2 × L2(∂Ω) and (σ, λ) ∈ L2(Ω)2 × L2(∂Ω) such that:

j(δ, ζ) − j(d, ξ) + A((u, d , ξ); (v, δ, ζ)) + B((v, δ, ζ); (σ, λ)) ≥
∫

Ω

f v dx,

B((u, d, ξ); (τ , µ)) = 0

(35)

for all (v, δ, ζ) ∈ H1(Ω) × L2(Ω)2 × L2(∂Ω) and (τ , λ) ∈ L2(Ω)2 × L2(∂Ω).

Let Vh ⊂ H1(Ω), be a finite dimensional space and let Dh = ∇Vh and Ξh = γVh. The finite dimensional
version of the variational inequalities is simply obtained by replacing functional spaces by their finite
dimensional counterparts:

(V I)h: find (uh, dh, ξh) ∈ Vh × Dh × Ξh and (σh, λh) ∈ Dh × Ξh such that:

j(δ, ζ) − j(dh, ξh) + A((uh, dh , ξh); (v, δ, ζ)) + B((v, δ, ζ); (σh, λh)) ≥
∫

Ω

f v dx,

B((uh, dh, ξh); (τ , µ)) = 0
(36)

for all (v, δ, ζ) ∈ Vh × Dh × Ξh and (τ , λ) ∈ Dh × Ξh. Let Th be a finite element mesh made up of
triangles and let ∂Th denote the corresponding mesh of the boundary ∂Ω, consisting in segments. We
define Vh as the space of continuous piecewise polynomials of order k ≥ 1, relative to Th:

Vh = {v ∈ H1(Ω); v|K ∈ Pk, ∀K ∈ Th}. (37)
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Thus, Dh = ∇Vh is the set of discontinuous piecewise polynomials of order k − 1, relative to Th:

Dh = {δ ∈ L2(Ω)2; δ|K ∈ (Pk−1)
2, ∀K ∈ Th}. (38)

Conversely, Xih = γVh is the set of continuous piecewise polynomial functions defined on the mesh
boundary ∂Th

Ξh = Λh = {µ ∈ L2(∂Ω) ∩ C0(∂Ω); µ|S ∈ Pk, ∀S ∈ ∂Th}. (39)

Numerical experiments presented in this paper use piecewise linear polynomials, i.e. k = 1.

3.3. Mesh adaptation

The mesh adaptation procedure has already been described in [12,13,14,18] for a Bingham fluid flow
problem and in [18] for a stick-slip transition of a Newtonian fluid flow problem. Thus, only the main
steps are presented in this paragraph.

A way to adapt the mesh to the computation of a governing field is to equi-distribute its error of inter-
polation, i.e. to make it constant over all triangles and in all directions. Solving a problem using a mesh
adaptation is an iterative process, which involves three main steps:

1. Starting from an initial mesh T0, the problem is solved using the augmented Lagrangian algorithm,
yielding a solution u(0) associated with the mesh T0.

2. Let ϕ(0) = |∇u(0)| be the governing field. This field emphasizes regions where the solution has high
derivatives, so that the mesh generator refines these regions.

3. Starting from the governing field ϕ(0) on the mesh T0, an anisotropic adaptive mesh generator (see
Borouchaki et al. [26], Hecht [27]) generates a totally new mesh, denoted by T1.

Then, T1 is used to solve the problem, and so on, until the solution obtained reaches an accurate localiza-
tion of the stick-slip transition point. This method is based on the fact that high second derivatives of the
velocity develop at the neighborhood of the stick-slip transition point, and thus the mesh generator refines
this neighborhood. The singular behavior of the second derivative of the velocity at the neighborhood
of the transition point will be analyzed in detail in the next section. The software is based on a finite
element library released by the authors [28,29].

In order to reduce the computational cost in the square cross-section, we exploit the symmetries of the
solutions with respect to the Ox, Oy and the x = y axis. Thus the domain of computation reduces to
a triangle (see Fig. 2). Fig. 3 shows the mesh after 15 adaptation loops and for yield numbers Bi = 0
and S = 0.385, as defined in (17) and (18). The stick-slip transition point is close to the upper corner
x = y = 1, and the stick region is small. Observe that the mesh adaptation process is able to capture the
stick-slip transition point.

4. Numerical experiments and identification of the flow regimes

4.1. Flow features and terminology

The schematic view of the solution is represented on Fig. 4 and, for convenience, we introduce a specific
terminology explained by Fig. 4.a. There are two types of rigid zones: the dead zones, located in the corners
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of the cross-section, associated with u = 0, and the plug, in the center of the cross-section, associated
with a constant velocity. These rigid zones are separated by a deforming zone where the velocity varies
gradually. The rigid zones are separated from the deforming zone by two surfaces: the dead zone boundary
and the plug boundary. At the boundary of the cross-section, there is a stick region, where u∂Ω = 0 and
a slip region where the velocity is not zero. Finally, the transition point separates the stick and the slip
regions.

In this section, the extension of the rigid zones and of the slip region are studied, using lengths shown on
Fig. 4.b. Along the diagonal of the cross-section, ξb is the distance from the center of the square to the
boundary of central plug, and ξm is the distance between the center of the square and the boundary of
the dead zones. Along an edge of the square cross-section, yT is half the extension of the slip region, and
ym is the distance between the center of the edge and the boundary of the dead zones.

The case S = +∞, corresponding to a Bingham fluid flow that sticks at the wall, has been already studied
in detail in [12] while the case Bi = 0, corresponding to a Newtonian fluid that may slip at the wall,
has been studied in [18]. Thus, the present paper focuses on the cases where non-linear behaviours occur
both inside the flow and at the boundary.

4.2. Flow with a fixed slip condition

When the value of the dimensionless parameter S is fixed, and Bi varies, the evolution of the velocity
profiles and the rigid zones can be observed. In the particular case when S = +∞, the fluid sticks at the
wall and we know that there exists a particular value BiB > 0 such that the flow stops when Bi ≥ BiB.
This result has been proved for a general tube cross-section Ω in [5] and the value BiB = 2

2+
√

π
has been

obtained analytically in [1] for a square cross-section and by a numerical method in [12].

The presence of a slip condition modifies this behaviour: the results depend upon the value of S. There
exists a particular value BiT such that the flow is a rigid translation motion when Bi ≥ BiT . The
translation velocity UT could be zero in some cases, and then the flow stops.

The value of BiT depends upon the dimensionless parameter S. When S is small enough, the flow tends,
when Bi increases, to a rigid translation and fully slips at the wall. Conversely, when S is large enough,
the flow tends, when Bi increases, to stop.

4.2.1. Convergence to the cessation of flow

In this paragraph, let us fix S = 0.6.

First, observe on Fig. 5.a the velocity profiles at the wall versus the y coordinate for various values of Bi.
All curves decrease with Bi. Each curve reaches a maximum with an horizontal tangent at the center of
the boundary cross-section, associated with y = 0. For each Bi ≥ 0, we observe that there exists a point
yT that separates the slip and the stick region: when y ≥ yT the fluid sticks. Notice that the tangent
in y = yT is not horizontal and thus, the velocity gradient is discontinuous along the boundary of the
cross-section.

For each fixed y, the velocity at the wall is a decreasing function of Bi. Fig. 5.b shows the maximal wall
velocity umax, ∂Ω, reached at y = 0, as a function of Bi for S = 0.6. We observe that when Bi is larger
than a critical value, denoted by BiA ≈ 0.36, the velocity at the wall is zero all along the wall: the fluid
sticks.
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The position yT of the transition point between the slip and the stick region is represented on Fig. 5.c as
a function of Bi. This representation shows that yT is a decreasing function that vanishes for Bi = BiA.

We have shown the following properties :

• There exists a value BiA such that when Bi < BiA the material slips in the central region of the wall
and sticks close to the corner. When Bi > BiA, the fluid fully sticks at the wall.

• The velocity at the wall decreases with Bi at each point of the wall.
• The stick region develops with increasing Bi until the total adhesion at the wall is reached at Bi = BiA.

We now examine the solution inside the flow domain: let us consider the velocity along the axis and the
development of rigid zones.

Fig. 6.a shows the velocity profiles along the horizontal axis y = 0 for different values of Bi. We observe
decreasing and concave curves that reach a maximum at the center of the flow x = 0. The velocity is
decreasing with Bi at each position x. Moreover, at the center x = 0, the profiles exhibit a plateau that
grows with Bi: it is associated with the development of a central plug flow region.

Fig. 6.b shows the velocity profiles along the diagonal axis of symmetry: notice that the material sticks
at the wall before the plug reaches the wall. Also observe that in the corners of the square cross-section,
i.e. at the vicinity of ξ =

√
2, the velocity vanishes: the material sticks at the wall and develops a dead

zone. The size of the dead zone depends upon Bi.

The velocity of the plug region is also the maximum velocity umax;Ω in the pipe cross-section: it is
represented versus Bi on Fig. 7.a. Observe that umax;Ω is a decreasing function of Bi and that it vanishes
for Bi = BiT ≈ 0.53. The value BiT ≈ 0.53 is a critical value when the flow stops. This value BiT ≈ 0.53
is obtained numerically and it coincides with the explicitly known critical value for the cessation of flow
associated with adhesion at the wall [12]:

BiT =
2

2 +
√

π
≈ 0.5301589

This observation is consistent with the fact that the material sticks to the wall when Bi ∈]BiA; BiT [.

Let us now observe the flow rate as a function of Bi, on Fig. 7.b. The curve first linearly decreases and
then smoothly tends to 0, corresponding to the blocking configuration at Bi = BiT .

Fig. 8 represents the development of rigid zones for S = 0.6 versus Bi and the associated adapted meshes.
The development of rigid zones for S = 0.6 is similar to the case when the material sticks at the wall, that
was previously presented in a separate work [12]: a central plug zone, convex and quasi-circular, develops.
Its area increases with Bi and its boundary flattens when approaching the wall. Simultaneously, concave
dead zones appear and develop in the corners of the square cross-section. In this situation, the width of
the deforming zone decreases and progressively reduces to a thin band around the central plug. Finally,
the flow stops completely when the central plug simultaneously merges with the dead zones and reaches
the wall.

The distance ξb between the center of the cross-section and the boundary of the plug is displayed on Fig.
9, as well as the distance ξm between the center of the square and the boundary of the dead zone. The
distances are measured along the diagonal axis. The size variation of the rigid zones is similar to the one
observed for a total adhesion.

The location ym of the dead zone boundary is compared to yT on Fig. 10, with Bi. Both curves decrease
and first keep a constant distance to each other, then, in the vicinity of BiA, yT quickly falls to 0, while
ym decreases to ym(BiT ). It seems that ym(BiT ) ≈ yT (0): along a side of the cross-section, the maximum
extension of the dead zone and the minimum extension of the stick region seem to be the same. The
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variations of ym and yT mean that adhesion occurs on a part of the wall that is larger than the part
covered by the rigid zones.

As a conclusion for this case S = 0.6, three distinct flow regimes have been identified:

(i) adhesion in the corner and slip at the wall for Bi ∈ [0; BiA],
(ii) adhesion everywhere for Bi ∈]BiA; BiT ],
(iii) blocking for Bi > BiT ,

in the first two regimes, a quasi-circular central plug develops, as well as concave dead zones in the corners.
All the rigid zones are separated by a deforming layer: the greater Bi, the thiner the layer.

4.2.2. Convergence to a block translation

Let us fix here S = 0.45 and compare the results to the previous case where S was equal to 0.6.

Let us begin with the behaviour inside the flow domain, considering Fig. 11. The velocity profiles are
represented along the horizontal symmetry axis, for some Bi. As for section 4.2.1, the curves are concave,
and for each x on the axis the velocity decreases for increasing Bi. Moreover, a plateau develops for Bi > 0
and fills the width of the domain for Bi > BiC , with BiC ≈ 0.5. This corresponds to a central plug which
reaches the wall for Bi = BiC . On Fig. 11.b, the velocity profiles are displayed on the diagonal axis. A
plateau is developing as well, with increasing length; for increasing Bi. Let us in particular consider the
velocity near the corners (ξ =

√
2): for Bi = 0.2, the velocity is 0, however when increasing Bi the velocity

becomes positive. This means that dead zones may appear for small Bi but vanish when Bi increases.
This leads us to the following detailed analysis of the development of the rigid zones.

On Fig. 12, a circular plug is developing when Bi increases. The plug touches the wall and goes on
growing while slipping on the wall when Bi is increased. For Bi > BiT ≈ 0.71, the plug fills the whole
cross-section. The contact between the plug and the wall is the first main difference with the behaviour
observed in section 4.2.1.

On the zoom Fig. 13, the area of the dead zones in the corners increases with Bi, as usual. However,
when Bi reaches a particular value and then goes beyond, the rigid zones vanish. This is the second main
difference with the section 4.2.1. In addition, another important difference is the size of the dead zones,
as they remain here very small (the zoom shows the corner for 0.98 ≤ y ≤ 1).

The plug velocity is given as a function of Bi on Fig. 14.a. The velocity decreases and smoothly tends
to a constant value UT = 0.05 at Bi = BiT . For Bi > BiT , the flow is therefore a unique rigid block
translating with velocity 1 UT = 0.05. This convergence to a slipping block is the third main difference
with the cessation of flow case of section 4.2.1.

The flow rate is represented on Fig. 14.b, it is a decreasing function of Bi, it seems to smoothly tend to
UT ≈ 0.05 at Bi = BiT .

In order to compare the evolution of the size of the rigid zones, two distances along the diagonal axis
are represented as functions of Bi on Fig. 15: the distance ξb between the center and the boundary of
the plug, and the distance ξm between the center of the square and the boundary of the dead zone. The
curve 2 (Bi; ξb(Bi)) seems straight, this means that the plug size increases until the cessation of flow
regime is reached. In the other hand, the curve (Bi; ξm(Bi)) on Fig. 15.b has a minimum at Bi ≈ 0.22

1 Theoretical developments about UT are presented in appendix.
2 for a real function f defined for x ≥ 0, the notation (x; f(x)) is used here as a shortcut to denote the curve defined by
the set of points {(x, f(x)) ; x ≥ 0}.
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because small dead zones appear, with first increasing size, but finally with decreasing size, until they
vanish at Bi ≈ 0.37.

Let us now consider the velocity profiles at the wall on Fig. 16.a. For an increasing Bi, the velocity
decreases at the center while it increases near the corner. A plateau begins to grow from the center of the
wall for Bi > BiC , this is because the central plug comes into contact with the wall at Bi = BiC . The
part of the wall where the velocity is constant (contact region between plug and wall) becomes larger and
finally is the entire wall for Bi = BiT . For Bi ≥ BiT , u = UT ≈ 0.05, because all the fluid in the pipe is
then translating as a single block at the velocity UT .

The maximum velocity at the center of the wall, denoted umax;∂Ω, is the velocity of the central plug for
Bi ≥ BiC , and is represented on Fig. 16.b. It regularly decreases and smoothly reaches UT at Bi = BiT .

We can notice the existence of a number BiS ≈ 0.37 beyond which the fluid slips everywhere. For
Bi < BiS , a stick-slip transition point yT can be defined. This point is an increasing function of Bi, as
it can be seen on Fig. 17. The point yT is compared to the position of the dead zone boundary ym, on
Fig. 17. The curve (Bi; ym(Bi)) exhibits the non-monotonic behaviour already described for ξm with a
minimum at Bi ≈ 0.22 and then full slip at Bi = BiS . Both curves ym and yT meet at Bi = BiS, i.e. the
dead zones disappear only when the slip is everywhere.

In this section, the analysis of the results can be summarised as follows:

• There exists a value Bis ≈ 0.37 above which the material slips on the whole boundary, and below
which the slip is partial.

• The stick region decreases with Bi until the full slip occurs at Bi = BiS .
• A central plug grows when Bi increases.
• The plug reaches the wall at Bi = BiC ≈ 0.5.
• The plug fills the whole pipe when Bi > BiT ≈ 0.71, then the material translates with the constant

velocity UT ≈ 0.05.
• Small dead zones appear when Bi increases, and then vanish for Bi < BiC .

4.3. Identification of the flow regimes

In the Newtonian case [18], we have shown the existence of two numbers SA and SG characterising the
velocity profile at the boundary of the cross-section :

• for 0 ≤ S ≤ SG, the fluid slips on all the wall,
• for SA ≤ S, the fluid sticks on all the wall,
• for SG < S < SA, the fluid sticks in the corners while it slips on the remainder of the wall.

The study of the role of Bi for S 6= 0 in the sections 4.2.1 and 4.2.2 has shown that SA and SG still exist
for Bi 6= 0, leading to a block translation, possibly with a zero velocity. The synthesis Fig. 18 completes
this analysis, by displaying SA and SG as functions of Bi, and BiT as a function of S. The curves delimit
five flow regimes:

(i) full adhesion (A),
(ii) full slip (G),
(iii) adhesion in the corners, slip elsewhere (A+G),
(iv) cessation of flow (B),
(v) block translation (T).
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The curves (Bi; SA(Bi)) and (Bi; SG(Bi)) have opposite variation and join at X = (BiT (ST ), ST ) ≈
(0.71, 0.5). Then, they remain identical for Bi ≥ BiT (ST ). The number BiT (S) only varies in S ∈
[ST ; 0.53] from BiT (ST ) = BiT (0) ≈ 0.71 to BiT (0.53) = BiT (∞) = 2

2+
√

π
. Thus, for any fixed S, when

Bi increases, the flow tends to:

• either a full adhesion and then a cessation of flow (for S > ST ), then the stop value BiT (∞) does not
depend on S if S − ST is high enough,

• or a full slip and then a block translation (for S < ST ), the value BiT = BiT (0) does not depend on S.

Moreover, the curve (S; BiT (S)) only varies when it is identical to (Bi; SA(Bi)), for ST ≤ S ≤
SA(BiT (∞)). Notice that we found SA(BiT (∞)) = BiT (∞), this means: for a given S between ST

and BiT (∞), when Bi increases, the slipping exists somewhere on the wall until the stopping value
Bi = BiT (S) is reached (with BiT (S) between BiT (∞) and BiT (0)).

In the sections 4.2.1 and 4.2.2, two particular values of S have evidenced that the qualitative evolution of
the flow with Bi depends on the sign of S − ST . In the following, the investigation of the flow structures
(rigid-fluid boundary, stick-slip transition) is completed with some intermediate values of S between 0.45
and 0.6 (displayed on Fig. 18).

Fig. 19.b represents the transition yT as a function of Bi, for some S. When S ≥ ST , all the curves tend
to 0 with a final slope close to the vertical. For intermediate values between S = ST = 0.5 and S = 0.53,
each curve increases to a maximum and then decreases to 0.

The boundaries of the rigid zones along the diagonal of the cross-section, as function of Bi, are compared
on Fig. 19.a, for the values of S shown with dashed lines on Fig. 18. For a given value of Bi, the greater
S the larger the rigid zones (plug and dead zones). Moreover, the phenomenon of vanishing dead zones
seems to be specific to the case where S ≤ ST , in this case the plug grows until it fills the entire pipe at
Bi = BiT . When at the contrary S > ST , the dead zones grow until they meet the plug at Bi = BiT
and the flow stops.

These last observations on stick-slip transition and rigid zones evolution lead us to define three sub-regimes
in the regime A + G:

• AG1 : It is defined by the couples (S, Bi) from A + G such that S > SA(BiT (+∞)) ≈ 0.53. When Bi
increases, full adhesion is reached (regime A).

• AG2 : defined by the couples (S, Bi) from A + G such that 1/2 = ST ≤ S ≤ SA(BiT (+∞)) ≈ 0.53.
When Bi increases, full adhesion and cessation of flow arise simultaneously (regime B).

• AG3 : defined by the couples (S, Bi) from A + G such that S ≤ ST = 1/2. When Bi increases, a full
slip is reached (regime G).

All the flow configurations are summarized on Fig. 20 and Fig. 21.

5. Conclusion

This paper presents a combination of the two previous non-linear yield stress phenomena: the Poiseuille
flow of a Bingham fluid with slip yield boundary condition at the wall. This problem is of practical
interest, for instance for pipeline flows of yield stress fluids such as concrete and cements, and was not
addressed to the best of our knowledge from a computational point of view.

An anisotropic auto-adaptive mixed finite element method for a general pipe cross-section has been
developed and applied here to the case of a square cross-section. This generalizes the works previously
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achieved for two particular cases: a viscoplastic fluid with no-slip at the wall, and a Newtonian fluid with
the yield-force slip law. The case of a pipe with a square cross-section has been investigated in detail.
The computations cover the full range of the two main dimensionless numbers and exhibit complex flow
patterns.

Considering the two main parameters S and Bi of the material, the main result is the identification of
five flow regimes and three sub-regimes. More precisely:

• the limiting values of Bi and S separating the regimes have been obtained;
• the evolution of the rigid zones and stick-slip transition points has been established, with respect to

Bi and S in each of the eight regimes.

In particular, we have shown the existence of a regime where slipping occurs everywhere on the wall. The
results concerning this regime has important consequences on the manner yield-stress fluids in pipes are
considered:

• a yield-stress fluid may not be blocked in a pipe with a plug touching the wall, even with a zero shear
rate in the whole pipe,

• rigid zones in corners may not exist for Bi 6= 0,

Another uncommon result is that dead zones in corners may reduce their area when the Bi number
increases (for S ≤ ST ).

For Bi large enough, the material is a unique rigid zone. Using variational analysis for a possibly non-
square cross section, we found that the velocity of the translating block of material is: UT = max(0, ST−S),
where ST = area(Ω)/length(∂Ω). For S > ST , we recover the well-known case where the fluid is blocked.

Finally, the simulations results have evidenced complex flow pattern, which have been caught thanks to
the use of an auto-adaptive mesh process. The completeness of the results demonstrates the efficiency of
the numerical method.

Appendix: main critical values of the dimensionless numbers

SA(Bi): for Bi ≥ 0, adhesion at the wall for S ≥ SA

SG(Bi): for Bi ≥ 0, slip at the wall for S ≤ SG

BiA(S): for S ≥ ST , adhesion at the wall for Bi ≥ BiA

BiT (S): for S ≥ ST , stopped flow for Bi ≥ BiT

for S ≤ ST , block translation for Bi ≥ BiT

BiS(S): for S ≤ ST , slip at the wall for Bi ≥ BiS

Appendix: some theoretical results

It is possible to explain why BiT remains equal to BiT (∞) when S > SA, using a result proved in [30]
and [5]. In the present case, if S and Bi are so that u∂Ω = 0, there exists a value BiT defined by:

14



BiT = sup

{

∫

Ω
v dx

∫

Ω |∇v| dx
; v ∈ H1

0 (Ω) and

∫

Ω

|∇v| dx 6= 0

}

, (40)

such that u = 0 if Bi ≥ BiT , and u > 0 otherwise. Hence, BiT does not depend on S and this remains
true as far as u∂Ω = 0 on both side of the curve (S; BiT (S)). Moreover, the present results concerning
the limit of the cessation of flow regime have a good agreement with the mathematical work of Ionescu
and Sofonea [31]. The results of these authors are:

(Ionesu-Sofonea [31], theorem 4.1., page 294)

(i) The set B is convex and (topologicaly) closed,
(ii) If (Bi, S) ∈ B, then [Bi, +∞[×[S; +∞[⊂ B,
(iii) There exists numbers L1 and L2 such that : B ⊂ [L1, +∞[×[L2; +∞[.

Following the same authors, let us moreover introduce the function:

F1(Bi, S) = inf

{

Bi

∫

Ω

|∇v| dx + S

∫

∂Ω

|γv| ds −
∫

Ω

v dx ; v ∈ H1(Ω) and

∫

Ω

|∇v|2 dx +

∫

∂Ω

|γv|2 ds = 1

}

(41)
The function F1 is concave upper semi-continuous, for fixed Bi and S, F1(., S) and F1(Bi, .) are increasing
and the numbers L1 and L2 are therefore determined as follows (see [31], Lemma 2.1, page 294):

L1 = lim
S−→+∞

inf {Bi ≥ 0 ; F1(Bi, S) ≥ 0}

L2 = lim
Bi−→+∞

inf {S ≥ 0 ; F1(Bi, S) ≤ 0}

(42)

for instance, considering the results of the present article, it is possible to precise: L2 = ST and, for the
square cross-section, L1 = BiT (∞) = 2

2+
√

π
.

Another result characterises the blocking values of Bi as functions of S:

(Ionesu-Sofonea [31], theorem 5., page 295)

Let us define G1 :]0; +∞[−→]0; +∞[ by :

G1(S) = sup

{

∫

Ω v dx − S
∫

∂Ω |γv| ds
∫

Ω
|∇v|dx

; v ∈ H1(Ω) and

∫

Ω

|∇v|dx 6= 0

}

(43)

for all S ≥ ST , the following properties are satisfied:

(i) G1 is a convex decreasing function,
(ii) Bi ≥ G1(S) if, and only if, (Bi, S) ∈ B.

For S ∈]ST ; +∞[, the number G1(S) is the critical value of Bi denoted BiT (S) in this article.

It is possible to explicitly give the velocity along the curve (S; BiT (S)), the formula is identical to the
case of a circular cross-section:

UT (S) =







1

2
− S if S < ST =

1

2

0 otherwise.
(44)

This leads to the following questions: does ST depend on the geometry ? in the translation regime (T ),
is the velocity constant (w.r.t. Bi) when Bi increases ? For the answer, let us consider a couple (S, Bi)
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in the regime T . The velocity is constant in Ω and positive 3 . The variational slip law:
∫

∂Ω

γu (ζ − γu) ds + S

{∫

∂Ω

|ζ| ds −
∫

∂Ω

|γu| ds

}

≥
∫

∂Ω

λ (ζ − γu) ds ∀ζ ∈ L2(∂Ω) (45)

can then be simplified by replacing ζ by u + ǫζ, where ǫ > 0 is a real number, and then by dividing by ǫ
and finally letting ǫ tend to 0:

∫

∂Ω

γu ζ ds + S

∫

∂Ω

γu

|γu| ζ ds ≥
∫

∂Ω

λ ζ ds ∀ζ ∈ L2(∂Ω). (46)

In, other words, u is a positive constant and:

u

∫

∂Ω

ζ ds + S

∫

∂Ω

ζ ds ≥
∫

∂Ω

λ ζ ds ∀ζ ∈ L2(∂Ω). (47)

Now the equilibrium equation writes:
∫

Ω

σ.∇v dx +

∫

∂Ω

λγv ds =

∫

Ω

v dx ∀v ∈ H1(Ω), (48)

therefore, using (47) in which we choose ζ = v∂Ω, we obtain:
∫

Ω

σ.∇v dx + (u + S)

∫

∂Ω

γv ds =

∫

Ω

v dx ∀v ∈ H1(Ω), (49)

in particular, for v = u:
∫

Ω

σ.∇u dx + (u + S)u length(∂Ω) = u area(Ω), (50)

now, using the hypothesis ∇u = 0, the velocity is obtained:

u = UT (Ω, S) =
area(Ω)

length(∂Ω)
− S, (51)

it leads to the value of ST by considering u = 0 and assuming the monotonicity of u along (S; BiT (S)):

ST =
area(Ω)

length(∂Ω)
. (52)
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Figure 1. Square tube cross-section: three dimensional view
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Figure 2. The domain of computation Ω and the boundary conditions.
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Figure 3. Zoom ×100 at the neighborhood of the stick-slip transition point: after 15 mesh adaptation iterations (Bi = 0,
S = 0.385).
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Figure 4. Schematic view of the cross-section: (a) the typical patterns of the flow; (b) some quantities relevant for the
analysis.
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Figure 5. Velocity at the wall for S = 0.6: (a) dependence upon Bi; (b) intersection with the y-axis: maximum wall velocity
versus Bi; (c) intersection with the x-axis: coordinate yT of the stick-slip transition point as a function of Bi.
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Figure 6. Velocity profiles for different values of Bi and S = 0.6: (a) cut along the horizontal axis y = 0; (b) cut along the
diagonal y = x.
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Figure 7. (a) Maximum velocity umax,Ω versus Bi for S = 0.6; (b) Flow rate u versus Bi for S = 0.6.
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Bi = 0.25

Bi = 0.4

Bi = 0.5

Figure 8. Adapted meshes and their associated solutions for S = 0.6: rigid zones in dark gray, deforming zones in light gray,
and isovalues of the velocity.
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Figure 9. Position on the square diagonal of the dead zone boundary ξm and the plug boundary ξb, as functions of Bi, with
S = 0.6.
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Figure 10. Positions on the wall of the free boundaries, as functions of Bi, with S = 0.6: position yT of the stick-slip
transition point, position ym of the dead zone boundary.
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Figure 11. Velocity profiles for some values of Bi and S = 0.45 : (a) cut along the horizontal axis ; (b) cut along the diagonal.
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Bi = 0.15

Bi = 0.45

Bi = 0.55

Figure 12. Adapted meshes and associated solutions for S = 0.45: rigid zones in dark gray, deforming zones in light gray,
and isovalues of the velocity.
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Bi = 0.05

Bi = 0.25

Bi = 0.35

Figure 13. Adapted meshes and associated solutions, zoomed in the corner (0.98 ≤ y ≤ 1) for S = 0.45: rigid zones in dark
gray, deforming zones in light gray.
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Figure 14. (a) Maximum velocity umax,Ω versus Bi for S = 0.45. (b) Flow rate u versus Bi, for S = 0.45.
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Figure 15. Position on the square diagonal of the rigid zones boundaries as functions of Bi, for S = 0.45: position ξm for
the dead zones and ξb for the plug: (a) curves (Bi; ξm(Bi)) and (Bi; ξb(Bi)) ; (b) zoom on the curve (Bi; ξm(Bi)).
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Figure 16. Velocity at the wall for S = 0.45 (mixed regime where both stick and slip exist): (a) for
Bi ∈ {0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6} ; (b) maximum value versus Bi.
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Figure 17. Position at the wall of the free boundaries as functions of Bi for S = 0.45: position ym of the dead zone boundary,
position yT of the stick-slip transition.

30



T

BA

A+G

G

S

Bi

SA(BiT (∞))

BiT (∞)

BiT (0)

X

BiT
SA

SG

0 1
0.38

0.68

0.6

= 0.53
0.515

ST = 0.5

0.45

Figure 18. The main flow regimes for a square section: curves (Bi; SA(Bi)), (Bi; SG(Bi)) and (BiT (S); S), and value ST

separating the regimes; particular point X and values BiT (0), BiT (∞) and SA(BiT (∞)); representation in dashed lines
of the values of S used to study the dependence of the flow upon Bi.
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Figure 19. Evolution of the free boundaries versus Bi, for some values of S : (a) positions ξm of the dead zone and ξb of the
plug along the square diagonal ; (b) position yT of the stick-slip transition point.

32



A :

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

−→ B

G : −→ T

Figure 20. Schematic representation of the flow in the regimes A and G when Bi increases: evolution of the rigid zones
boundaries and of the stick-slip transition points.
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Figure 21. Schematic representation of the flow in the sub-regimes AG1, AG2 and AG3 when Bi increases: evolution of the
rigid zones boundaries and of the stick-slip transition points.
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