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The magnetic properties of (Ga,Mn)As thin films depend on both the Mn doping level 

and the carrier concentration. Using a post growth hydrogenation process we show that it 

is possible to decrease the hole density from 1.1021 cm-3 to <1017 cm-3 while maintaining 

the manganese concentration constant. For such a series of films we have investigated the   

variation of the magnetization, the easy and hard axes of magnetization, the critical 

temperatures, the coercive fields and the magnetocrystalline anisotropy constants as a 

function of temperature using magnetometry, ferromagnetic resonance and magneto-

transport measurements. In particular, we evidenced that magnetic easy axes flipped from 

out-of-plane [001] to in-plane [100] axis, followed by the <110> axes, with increasing 

hole density and temperature. Our study concluded on a general agreement with mean-

field theory predictions of the expected easy axis reversals, and of the weight of uniaxial 

and cubic anisotropies in this material. 

PACS: 75.50.Pp, 76.50.1g, 76.30.2v, 75.70.Ak  
 * laura.thevenard@lpn.cnrs.fr 
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INTRODUCTION 

 

Long hailed as a possible room-temperature diluted semiconductor (DMS), Ga1-xMnxAs has yet to 

gain in Curie temperature, with a published record of 172 K1. It however proved to be a model 

material in the family of ferromagnetic DMS, yielding electrically2 controllable magnetic 

properties, or low switching current densities in tunnelling magneto-resistance junctions 3 4 . 

In this material, the ferromagnetic phase arises from the exchange interaction between the 

localized manganese spins, and the delocalized carriers (holes) brought by the magnetic 

impurities. Its magnetic properties were historically described within the mean-field 

approximation, using a Zener-like model for the exchange integral5. Alternative theoretical 

models taking thermal and quantum fluctuations into account have also been proposed, and give 

distinct trends for the Curie temperature, or the saturation magnetization6 7 8 . 

Experimental data have moreover evidenced a complex magnetic anisotropy9 10. Since 

demagnetizing effects are small in Ga1-xMnxAs, the magnetic anisotropy is principally of 

magnetocrystalline origin, and directly reflects the anisotropy of the valence band (VB) through 

the spin-orbit coupling between magnetic impurities and carrier spins. As a result, magnetic easy 

axes vary with parameters controlling the shape and filling of the VB, such as the Zeeman 

splitting (via the temperature and the manganese concentration), the epitaxial strain, or the carrier 

density11 12. 

In this work, we have studied systematically the dependence of magnetic properties with carrier 

density, using magneto-transport experiments, magnetometry and Ferromagnetic Resonance 

(FMR). Our main objective was to compare our results to the predictions of the mean-field 

theory11 12. We investigated the Curie temperature, and the magnetic anisotropy of samples from 

low 1019 cm-3 hole densities up to the highly metallic regime (low 1021 cm-3), at fixed manganese 

concentration. Similar studies have already been reported, where authors used codoping13 14, 
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atomic-layer-epitaxy15, post-growth annealing16, or modulation-doped heterostructures17  as 

means to decouple magnetic impurity and carrier concentrations.   

We used another approach based on the hydrogen passivation of Ga1-xMnxAs layers. The 

diffusion of atomic hydrogen in the layer results in the formation of electrically inactive Mn-H 

complexes. This passivation reduces the carrier density by three orders of magnitude, and 

suppresses the ferromagnetic phase18 19. Resistivity measurements show that Mn-H complexes are 

stable for temperatures up to 100°C. It is still a matter of debate whether the hydrogen atom lies 

at a bond-centered or at an anti-bonding site between the acceptor and an arsenic neighbor20 21 22. 

According to density functional calculations20, both of these configurations are most stable with 

the manganese in an S=5/2 state, the other spin configurations lying much higher in energy. This 

corroborates experimental findings that the manganese maintains 5 µB per atom after 

hydrogenation, in doped19  (xMn = 5.1020 cm-3), or very diluted  (xMn = 1018 cm-3) samples23. 

Upon controlled subsequent annealing, the hydrogen atoms leave the layer, restoring carriers to 

the matrix. By adjusting the annealing time, it is then possible to obtain samples with a constant  

manganese concentration, and hole densities ranging from 1017 cm-3  to 1021 cm-3. 

Using this technique, we reported  in a previous paper25 the increase of the Curie temperature, and 

the easy-axis flip from out-of-plane to in-plane with increasing hole density, in qualitative 

agreement with mean-field predictions12. In this paper, we extended the study by performing 

magnetometry experiments and investigating in detail the magnetic anisotropy of our samples. To 

that end, we extracted the phenomenological anisotropy fields from the angular dependence of 

resonance fields in FMR experiments, at varying hole concentrations and for temperatures up to 

Tc. These anisotropy fields qualitatively explained the hysteresis cycles observed for magnetic 

fields applied both in-plane and out-of-plane at T = 5K.  We also evidenced several easy-axis 

reversals with temperature and hole densities, in agreement with mean-field predictions.  
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SAMPLE 

A 50 nm ferromagnetic layer of Ga1-xMnxAs was grown on a semi-insulating GaAs (100) substrate. 

Manganese concentration was estimated by XRD to be around xMn ~ 7 %24. An optimal annealing 

temperature was determined to both maximize Curie temperature, and stabilize mobile interstitial 

manganese atoms against future annealing: 1h at 250°C under a low N2 flux yielded a Curie 

temperature of about 140 K. The layer was then passivated by a 130°C hydrogen plasma, cleaved,  

and annealed according to the procedure described in details in Ref. 25. Hall bars were also 

processed in order to perform magneto-transport experiments on each sample. The following study 

therefore focuses on a fully passivated sample, four partly depassivated samples with increasing 

hole densities (samples 1-4), and finally the reference sample that underwent the same exact 

thermal treatment as sample 4, but was hidden from the hydrogen plasma. Note that sample 4 was 

annealed long enough so as to contain almost no hydrogen. X-Ray diffraction measurements were 

performed on all samples (Table 1). As expected with a GaAs substrate, the layer showed 

compressive strain, with a bulk lattice mismatch varying from 0.36 % for the passivated sample to 

0.17 % for the most annealed samples (4 and reference). The impact of these strain variations  

within the series will be discussed in the last part of this paper. 

 

MAGNETO-TRANSPORT AND MAGNETOMETRY 

We first used magneto-transport Hall effect experiments to estimate the hole density p of our 

layers, as a function of magnetic field H, sheet resistivity ρxx and electron charge e with ρxy = 

H/pe+Cρxx
nM⊥  where  n=1 or 2, M⊥  is the perpendicular component of the magnetization, and C 

is a proportionality constant. Although a crucial parameter in most Ga1-xMnxAs studies, the 

precise determination of the carrier concentration is complicated by the dominating contribution 

of the second, anomalous Hall effect (AHE), term. It can however be estimated  by saturating the 

magnetization at high magnetic fields and low temperatures26. Hole densities obtained by 
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magneto-transport measurements in fields up to 10 T are given in Table 1. Values differed very 

weakly with temperature, when working at T=1.8 K, 4.2 K or 9 K, but were sensitive to the 

choice made for the sheet resistivity exponent, n, particularly at low carrier concentrations, where 

the magnetoresistance rose above 400 %. These data correlate fairly well to the mean-field  

predictions which yield a Curie temperature proportionnal to p1/3 at fixed manganese 

concentration, and without taking into account the warping of the bands, as shown in Fig. 1.  

 Tc  

(K) 

p  

(cm-3) 

∆∆∆∆a/a  

(%) 

Hc 

(Oe) 

Sample 1 42   [42] 4.0  (2.0) x 1019 0.31 140 

Sample 2 70  [72] 7.5  (3.2) x 1019 0.30 66 

Sample 3 83   [86] 2.0  (1.1) x  1020 0.27 50 

Sample 4 130* [137] 8.8  (7.9) x  1020 0.18 20 

Reference 140 [142] 1.2  (1.0) x  1021 0.17 12 

 

Table 1: Curie temperature determined by SQUID, magneto-transport (*) (Ref. 25), 

and FMR (measured at high magnetic field, between brackets); carrier 

density evaluated by Hall effect at high fields (4 T<H<10 T), and low 

temperature (T = 1.8 K) with n=1 (fit results for n=2 between parenthesis); 

bulk lattice mismatch deduced from XRD measurements, assuming GaAs 

Poisson coefficient νννν=0.31; coercive field (± 15 Oe error) determined by 

SQUID at T = 5 K with H//<110>. 

 

We then performed magnetometry experiments using a QDMS superconducting quantum 

interference device (SQUID) magnetometer with the magnetic field lying in-plane along <110> 
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directions. For samples 1-3, and reference, we measured the temperature dependence of the 

sample magnetization under a 500 Oe applied field, after zero-field cooling (Fig 2). Comparison 

with field-cooled measurements showed no notable difference, thus excluding the presence of a 

second, super-paramagnetic phase in the sample. Also plotted for comparison is the Brillouin 

M(T) curve under a similar applied field, using SMn = 5/2 and Tc = 140 K. Curve shapes evolved 

notably with decreasing hole densities, becoming less and less convex. This feature was foreseen 

by mean-field approaches12 27. Indeed, when the hole density is low enough for the carriers to be 

entirely polarized before reaching the saturation magnetization, the molecular field seen by the 

manganese is not proportional to the magnetization anymore, and the M(T) curve ceases to follow 

a Brillouin function.  

Using SQUID magnetometry with an in-plane applied field along <110>, we then measured the 

magnetization of our samples up to 5 T, at 5 K (Fig. 3). Coercive fields greatly decreased with 

increasing hole density (Table 1), going from Hc = 140 Oe (sample 1) to 12 Oe (reference 

sample). Note that Potashnik et al28 had already seen a decrease of Hc with increasing xMn  but had 

not determined whether the critical parameter was the manganese or the hole concentration. We 

observed that magnetization at remanence was always smaller than at saturation, showing that, at 

5 K, <110> is a hard axis at all hole densities. Strikingly, the least metallic sample (sample 1, p ~ 

3.1019 cm-3) shows open hysteresis cycles for both the in-plane and out-of-plane field 

configurations (Fig. 3 & 4), with the easier axis along [001], evidencing a complex anisotropy for 

low hole/high manganese concentration samples, as we shall see later. After switching at Hc, the 

in-plane magnetization rotates in several steps for low p samples (sample 1 and 2), and reaches 

saturation at high magnetic fields (~ 1 T, not shown on the figure). For the most metallic samples 

on the contrary (samples 3,4, and reference), it rotates much more continuously, and rapidly 

saturates at equivalent magnetizations (around 40 kA/m) for fields below 0.1 T. Taking 5 µB per 

Mn atom, this corresponds to xMn
eff ~ 4.5%. The magnetization deficit compared to the nominal 
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Mn content is likely due to a small number of remaining interstitial or substitutionnal manganese 

frozen in an anti-ferromagnetic configuration. 

Magneto-transport and magnetometry measurements clearly showed a complex magnetic 

behavior through the evolution of Curie temperature, M(T) curve shapes, and hysteresis cycles 

with hole density. In order to have a finer understanding of these phenomena, we then studied 

quantitatively the magnetic anisotropy of our samples using ferromagnetic resonance. 

 

FERROMAGNETIC RESONANCE 

The ferromagnetic resonance (FMR) measurements were performed with an X-band spectrometer 

with standard 100 kHz field modulation and first derivative detection. All samples were measured 

in two different configurations, with (θH,φH) the angles of the applied magnetic field H, and (θ,φ) 

the equilibrium angles of the magnetization M. In general, H and M are no longer collinear with 

the exception of four high symmetry orientations, such that the equilibrium angles of M have to 

be calculated separately. In configuration 1 (in-plane) the magnetic field is applied parallel to the 

film plane, with θH= 90°, and the   variation of the FMR spectrum with the azimuthal angle φH is 

measured. In configuration 2 (out-of-plane), φH=π/4 and H is varied from θH= 0°, i.e. H//[001] to 

θH= 90°, i.e. H// [110] or ]011[ . As the absolute directions of [110] and ]011[  have been lost 

during the fabrication process, we have assumed in accordance with previous results29 that [110] 

is the harder axis of the two at 4 K.  The FMR spectra are analyzed within the Smit-Beljers 

approach30 based on the minimization of the free energy density F: 
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The cubic magnetocrystalline anisotropy constant related to the zinc-blende structure of GaAs is 

K4. The biaxial strain due to the lattice mismatch breaks the cubic symmetry, resulting in three 

phenomenological anisotropy constants: K4//, K4⊥, and K2⊥. An additional magnetic anisotropy 

between [110] and ]011[  axes is characterized by K2//.  The subscripts indicate parallel and 

normal to the film plane geometry respectively. 

The first term of Eq. 1 represents the Zeeman energy, the second the demagnetization energy 

related to the shape anisotropy of the film, and the last terms the magnetocrystalline anisotropy. 

The FMR resonance condition for an arbitrary field orientation can be obtained from the Smit-

Beljers equation36 : 
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where ω is the angular frequency of the microwave field and γ the gyromagnetic ratio. The Landé 

g-factor of Mn2+ is taken as g=2.00, independent of the hole concentration. 

Typical resonance fields of these films vary between 1 kOe and 8 kOe. The FMR resonance fields 

measured for these two angular variations enable us to determine the numerical values of the four 

magnetocrystalline anisotropy constants from the resonance field positions of the high symmetry 

orientations   H//[110], ]011[  , [001] and [100]. Considering a 10 Oe resolution on the position 

of the resonance fields, the precision of the anisotropy constants is mainly limited by the 

determination of the saturation magnetization (± 10 %). These anisotropy constants vary strongly 

and differently with temperature in the 4 K to Tc range. The FMR resonance position will also 

vary with the magnetization of the film, which depends on the hole concentration and thus on the 

hydrogen passivation. The numerical values of the magnetization M(T,H), which cannot be 

directly determined from the FMR measurements, have been obtained independently by the 

SQUID measurements for each sample. 
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The fully passivated sample does not show any FMR spectrum. It is no longer ferromagnetic but 

presents the typical exchanged narrowed EPR spectrum of a paramagnetic sample. The resonance 

field of 3300 Oe  corresponds to a g-factor of g=2.04 (Fig. 5), signature of an Mn2+ configuration 

for the manganese atoms. The hydrogenation process has therefore not modified the spin ground-

state of the magnetic impurities. The competing interactions of dipolar line broadening and 

exchange narrowing have transformed the hyperfine split multiline spectrum of isolated Mn2+ 

ions in a single, structureless Lorentzian line. It will not be further discussed here. 

The annealed samples 1 to 4 are ferromagnetic. Fig. 6 shows typical FMR spectra at T = 20 K for 

the reference sample and the four partially passivated films (1,2,3, and 4) for the magnetic field 

orientation H//[001]. In addition to the dominant uniform mode at ~ 8 kOe, the reference sample 

shows some low intensity lines which we attribute to a sample inhomogeneity. We further  

observe a shift of the resonance fields to lower values with decreasing hole concentrations, which 

reflects the change of the anisotropy constants with p. Note that the linewidth increases in the 

same manner. The linewidth is related to the damping factor as well as to sample 

inhomogeneities.  

From the resonance fields for H//[001], [100], [110], ]011[  and the magnetization value M, we 

have determined the four anisotropy constants (Table 2) and simulated the complete angular 

variation of the resonance fields. Fig. 7 shows these angular variations for all samples in both 

configurations, for a fixed temperature T = 4 K. The magnetic easy axes directions correspond to 

the lowest resonance fields for each sample. 

At 4 K, the easy axis is in-plane along <100>, except at very low carrier concentration (sample 

1), where it lies out-of-plane. Indeed, FMR spectra and magneto-transport experiments evidenced 

an easy axis reversal from out-of-plane to in-plane between  p ~ 3.1019 cm-3 (sample 1) and p ~ 

5.1019 cm-3 (sample 2). This is in part due to the fact that below a particular Fermi energy, carriers 

lie mainly in the heavy-hole sub-band, favoring the alignment of the spins along the growth 
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direction9. Mean-field calculations using an effective xMn = 5% and εxx = - 0.2 % estimated a  

critical hole density of pc = 7.1019 cm-3 31, close to our experimental values, and those found by 

Sawicki. et. al9. We further observed for all samples a nonequivalence of the ]011[  and [110] 

directions.  

 

 H2⊥⊥⊥⊥ 

(Oe) 

H2// 

(Oe) 

H4⊥⊥⊥⊥ 

(Oe) 

H4// 

(Oe) 

 T=4K T/Tc=0.7 T=4K T/Tc=0.8 T=4K T/Tc=0.8 T=4K T/Tc=0.8 

Sample 1 2373 -193 164 134 341 -256 1815 444 

Sample 2 -1551 -1375 208 108 -137 -19 1745 27 

Sample 3 -2259 -976 163 31 -678 -231 1099 11 

Sample 4 -3311 -854 200 -70 -908 -511 342 -5 

Reference -3178 -1099 261 -30 -1283 -97 362 -4 

 

Table 2: Anisotropy fields extracted from FMR measurements for samples of 

increasing carrier concentration. First column: T = 4K, second column: 

T/T c, with Tc determined by FMR (see Table 1).  

 

When the temperature increases, the perpendicular easy axis of sample 1 flips to [100] at T = 10 

K, as has also been observed previously9 10. This was verified by the closing of the hysteresis 

cycles in Hall effect measurements (not shown here), and can be explained by a band-filling 

argument similar to that used for the easy axis reversal with p (see above). While keeping in mind 

that absolute axes orientations were determined by supposing [110] harder than ]011[  at 4 K, we 

observed that for samples with intermediate hole concentrations (samples 2 and 3), the in-plane 
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[100] easy axis switched to ]011[  for T/Tc = 0.8. In the most doped samples on the contrary 

(sample 4 and reference), the in-plane [100] easy axis switches to [110] for T/Tc= 0.8. While 

temperature-induced  reorientations from [100] to <110> had already been observed in thicker 

and/or less doped samples32 16 , we show here that this easy-axis reversal spans a whole order of 

magnitude in hole concentration, at fixed manganese density. 

  

DISCUSSION 

 

Anisotropy fields 

 

Anisotropy fields found by FMR at T = 4 K (Table 1) scale reasonably well with experiments 

done on comparable Ga1-xMnxAs layers14 33 34. The anisotropy fields Hi are calculated from the 

anisotropy coefficients Ki via the magnetization: Hi=2Ki/M. Note that some authors refer to Kcubic 

as K4=K4//= K4⊥, and to Kuniaxial as ± K2⊥. 

In our series, the general trend is a monotonous evolution of anisotropy fields with carrier density 

p. The most remarkable variations are seen for the cubic terms: H4// is divided by six, while H4⊥ is 

multiplied by four when p  is increased by an order of magnitude. Contrary to another study17, the 

approximation |H4⊥|<<|H4//| is far from valid in our samples. H4// and H4⊥ are indeed 

systematically different by a factor of three at least, and change in relative signs and values with 

increasing hole densities. 

At 4 K, the planar anisotropy is at all carrier densities dominated by the cubic term H4//, and 

decreases with hole density.  It is a result of the in-plane anisotropy of the valence band, as was 

shown by Abolfath et al.11 and Dietl et. al12. Calculations implementing a mean-field approach 

that does not take into account the in-plane uniaxial contribution (H2// here), showed that the in-

plane cubic anisotropy increases with decreasing hole density, up to a critical carrier 
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concentration (2.1019 cm-3 considering xMn=5%, T=0 K, and Jpd = 50 meV.nm3) where it then 

starts to decrease11. The high p predictions scale qualitatively well with our data, but our samples 

were  too doped to investigate the very low density regime. We observe that the in-plane cubic 

anisotropy (H4//) dominates at low temperature, and the uniaxial anisotropy (H2//) at high 

temperature, as also suggested in Ref. 9. 

The largest anisotropy term is always clearly the perpendicular uniaxial H2⊥ field, which can be 

up to ten times higher than the in-plane uniaxial anisotropy, H2//. H2⊥ increases with p, as also 

observed elsewhere (Refs. 35 36), whereas H2// stays at a constant ~ 200 Oe along the series (at 4 

K). Uniaxial anisotropies decreased with temperature, after reaching a peak at around 20-30K. 

The perpendicular H2⊥ term was the only one to remain large up to Tc, converging to a value of 

about 1000 Oe for all samples. These observations seem to confirm that Ga1-xMnxAs can, at the 

lowest order at least, be considered a uniaxial ferromagnet. 

Finally, note that anisotropy fields for samples 4 and reference were similar within 30%. 

Moreover, magneto-transport experiments had shown in Ref. 25  that these two samples had 

similar Curie temperatures and magnetization curves M(H). This tends to confirm that our 

hydrogenation is indeed a non-destructive and reversible process, since we retrieve structural and 

magnetic parameters close to the initial ones after emptying the layer of its hydrogen by thermal 

annealing. 

 

Magnetization reversal process 

 

Following the work of Liu et. al.37, we then calculated the free energy density per Mn atom as a 

function of the magnetization polar angles Θ and φ, assuming no thermal fluctuations, and 

anisotropy coefficients Ki independent of the applied magnetic field. In order to compare 

correctly the free energy to the thermal energy kBT, it would in fact be more appropriate to 
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compute either the free energy  of all manganese atoms (considering a coherent magnetization 

reversal), or of the nucleation volume (if considering a nucleation/propagation reversal 

mechanism). At this point of the study however, we cannot give a reasonable value for this 

critical volume, and therefore prefer to plot the free energy density per Mn atom, keeping in mind 

the former remark. We used Equation (1) and the magnetization given by the M(T) SQUID 

curves, taking 5 µB per atom. Note that we took into account the contribution of the 

demagnetizing field, but that it represented less than 15% of the total energy and had little impact 

on the conclusions. 

 

Magnetic field lying in-plane 

 

 For sample 1 with H//<110> (Fig. 8.a), two equivalent valleys arise with decreasing magnetic 

fields, on either side of φ= 45°. Note that for Happlied = 0 Oe, [110] and ]011[  are not equivalent, 

an indication of the uniaxial in-plane anisotropy (H2//). The angles minimizing the energy indicate 

that at H = 2200 Oe, the magnetization starts to turn slowly away from [110] to the easier [100] 

axis, flips abruptly around H ~ 250 Oe to ]010[ , and rotates slowly again towards ]011[ . This 

is qualitatively what is observed by SQUID magnetometry, with a multi-step magnetization-

reversal (Fig. 3).  

When the carrier density increases, the anisotropy fields evolve, and give a quite different 

magnetization reversal process. For sample 4 (Fig. 8.b) for example, we see that the 

magnetization rotates very progressively. While in low p samples, the large positive H4// fields 

(>1000 Oe) strongly favor <100> axes over the magnetic field direction <110> and yield high 

coercive fields, the low H4// values in high p samples are responsible for the smooth 

magnetization rotation and low coercive fields. Indeed, when the hole density increases, the 
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planar anisotropy progressively diminishes, until in-plane <110> and <100> axes become almost 

equivalent. 

 

Magnetic field lying out-of-plane 

 

For  sample 1 (p ~ 3.1019 cm-3), computing the free energy with H//[001] (Fig. 9.a) shows  that the 

magnetization first remains collinear to the direction of the decreasing magnetic field, then flips 

abruptly in the opposite direction around 400 Oe: [001] is a magnetic easy axis. This is indeed 

what is observed in Hall effect hysteresis cycles (Fig. 4), with Hc
exp ~ 300 Oe. A similar 

argument applied to sample 2 (p ~ 5.1019 cm-3) can explain its unusual experimental hysteresis 

cycle. Energy curves (Fig. 8.b) show that in this case, the magnetization first stays collinear to the 

[001] direction, then abruptly drops to the easier [101] axis (θ = 45°) at H = 1950 Oe, before 

rotating continuously towards the next axis ]110[  (θ = - 45°), and finally flipping completely 

perpendicular-to-plane at high magnetic field. The difference in energy between  [001] and [101] 

configurations gives a characteristic jump at Hexp = 1800 Oe in the hysteresis cycle (Fig. 3).  

On the remaining samples, we can show in the same way that anisotropy fields obtained by FMR 

render fairly well hysteresis cycles for all field configurations, as has already been observed in 

samples with lower manganese doping37. Agreement with experimental reversal fields is 

surprisingly good given the strong hypotheses of this model. We therefore concluded on the 

validity of this approach to study the magnetic anisotropy of our samples. 

 

After having investigated a layer grown in compressive strain, we started a second study on a 50 

nm Ga0.93Mn0.07As layer grown in tensile strain, over a Ga1-yInyAs buffer. In this case, the biaxial 

strain yields a perpendicular-to-plane easy axis for the reference, highly doped layer. Growth 

details are given in Ref. 38. Using the same procedure as in Ref. 25, a set of samples with hole 
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concentrations ranging from 1018 cm-3 to about 1021 cm-3 was fabricated, with identical manganese 

content, and Curie temperatures of 35 K, 45 K, 70 K, 95 K and 156 K (determined by transport 

measurements).  We observed at low temperature an in-plane to out-of-plane easy axis transition 

with increasing hole density. Moreover, all low p samples recovered a perpendicular-to-plane 

easy axis with increasing temperature, with a transition around 20 K. These observations fit very 

nicely to the qualitative conclusions of mean-field calculations for layers in tensile strain (see Fig. 

10 of Ref. 9 for example). Although this study remains preliminary, it has proved that our 

hydrogenation method is valid for layers in both compressive and tensile strain, and has yielded 

promising results concerning the evolution of magnetic anisotropy with hole density for 

(Ga,Mn)As layers in tensile strain. 

 

CONCLUDING REMARKS 

 

In the context of competing theories concerning DMS, and in particular, Ga1-xMnxAs, 

experimental results concerning the evolution of Curie temperatures and magnetic anisotropies 

with carrier density are an important test. We developed an original technique using hydrogen 

passivation to tune the carrier density only, keeping the structural parameters reasonably constant. 

It can be argued that the strain discrepancies in our series of samples (Table 1) may have 

influenced the magnetic anisotropy, as suggested by  Dietl et al.12. If this were valid, we would 

however expect a decrease of the perpendicular anisotropy terms in the series while we observed 

experimentally the opposite trend (see Fig. 9 of Ref. 12). We therefore assumed the strain 

differences to have little impact on our study.  

 

Using the anisotropy fields deduced from the FMR measurements we  showed that the shapes of 

the hysteresis cycles were due to a complex combination of cubic and uniaxial, perpendicular and 
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planar terms. We found that cubic terms H4// and H4⊥ were quite different, and that the uniaxial in-

plane term H2// was far from negligible, being of the order of 200 Oe at 4 K, and varying very 

little with p. We corroborated mean-field predictions concerning the increase of the uniaxial 

perpendicular term H2⊥, and the decrease of the in-plane anisotropy field H4// with hole density. 

We confirmed mean-field predictions of easy axis reversals from [001] to [100], to <110> axes, 

with increasing carrier density, and/or temperature. Lastly, the Curie temperature was indeed 

found to be proportionnal to p1/3 in good approximation, over two orders of magnitude of hole 

densities. We therefore conclude on the general experimental agreement with mean-field 

predictions for Ga1-xMnxAs in compressive strain.  
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Fig. 1: (Color online) Curie temperature as a function of p1/3 where p is the mean 

hole density between n=1 and n=2 fit results (given by the tips of the horizontal 

bars). Full line is the fit to the mean-field expression Tc αααα p1/3.  
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Fig. 2: (Color online) Temperature-dependence of the normalized magnetization 

under a 500 Oe in-plane field for samples 1-3, and reference. The solid line 

corresponds to Brillouin curve with SMn = 5/2, and Tc = 140 K. Curie temperatures 

increase and curves become more convex with increasing hole density.   
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Fig. 3: (Color online) Hysteresis cycles obtained by SQUID magnetometry with the 

magnetic field lying in plane. 
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Fig. 4: (Color online) Hysteresis cycles obtained by anomalous Hall effect25 with 

H//[001] (off-set for clarity), and assuming  M⊥⊥⊥⊥ αααα ρρρρxy/ρρρρxx
n  with  n=2. The 

magnetic easy axis flips from out-of-plane to in-plane with increasing hole 

density. 
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Fig. 5: EPR spectrum of the fully passivated sample; T=20K. The sharp line at 3300 

Oe is a surface signal. 
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Fig. 6: (Color online) FMR spectra at T = 20 K and H//[001] for the reference 

sample and samples 1-4; the spectra are measured with the same gain.  
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Fig. 7: (Color online) Angular variation of the FMR resonance fields at 4 K for (1) 
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1-4 and reference. Magnetic easy axes are indicated in the caption. Symbols: 

experimental results, lines: simulated variation with the coefficients given in 

Table 2. 



 21

-180 -135 -90 -45 0 45 90 135 180

-80

-60

-40

-20

0

20

40

60

(a)

Sample 1
p ~ 3.10

19
 cm

-3

3
2

-500 Oe

0 Oe

250 Oe

750 Oe

1500 Oe

2500 Oe

φ°

F
re

e 
en

er
gy

/M
n 

at
om

  (
10

-3
 m

eV
)

[010][100] [110]

H//[110]

1

-180 -135 -90 -45 0 45 90 135 180

-30

-20

-10

0

10

20

30

(b)

H//[110]

F
re

e 
en

er
gy

/M
n 

at
om

  (
10

-3
 m

eV
)

Sample 4
p ~ 8.2.10

20
 cm

-3

φ°[010][100] [110]

100 Oe

0 Oe

250 Oe

500 Oe

750 Oe

1000 Oe

 

    Fig. 8: (Color online) Free energy per Mn atom computed with anisotropy fields 

given by FMR experiments at T=4 K; the magnetic field is applied in-

plane along [110]. For sample 1 (a), the magnetization rotates in 3 steps, 

showing a competition between <100> and <110> axes. The arrows 

indicate the two non-equivalent magnetization configurations along [110] 

and [1-10], resulting from the small in-plane uniaxial anisotropy H2//. For 

sample 4 (b), the magnetization rotates continuously, <110> is a hard axis.  

 



 22

 

 

0 45 90 135 180
-150

-100

-50

0

50

100

(a)

F
re

e 
e

ne
rg

y/
M

n 
a

to
m

  (
10

-3
   
m

e
V

)

1000 Oe

0 Oe

500 Oe

-2000 Oe

-4000 Oe
Sample 1

p ~ 2.6.10
19

 cm
- 3

 

H//[001]

(x,y)

 Θ° [00-1][001]

0 45 90 135 180
-50

0

50

100

2

3

[101]

F
re

e 
en

er
gy

/M
n 

a
to

m
  (

1
0

-3
   

m
e

V
) 2500 Oe

1950 Oe

750 Oe

0 Oe

- 500 Oe

 Θ °

 

[ 00-1][001 ]

H// [001 ]
Sample 2
p ~ 8.5.10

19
 cm

-3

( x,y)

1

(b)

 

 

    Fig. 9: (Color online) Free energy per Mn atom computed with anisotropy fields 

given by FMR experiments at T=4 K; the magnetic field is applied 

perpendicular-to-plane. At low hole densities (a), the easy axis is [001]. 

Upon increasing  p (b), an in-plane component of the magnetization 

appears. 
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