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Résumé

This paper contains a new algorithm solving a variant of the Basis Pursuit model. The variant aims
at simplifying the parameter tuning. The algorithm is easy to implement and prove it converges to the
actual solution of the model. Some experiments on image approximation show that it outperforms by
far the existing algorithms.
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1 Introduction

1.1 Recollection on Basis Pursuit

The use of the Basis Pursuit norm [4] in image/signal processing is now a fairly developed field of
research. To mention few contributions it is commonly used for compression, source separation [17] and
feature selection in classification [3]. Many theoretical result have also been established supporting this
model. Most of them aim at understanding the equivalence between the common Basis Pursuit model (see
below) and the search for the sparsest decomposition (see, among others, [8, 9]). Other authors show that
the Basis Pursuit model is an efficient way to simplify a complex data distribution (see [13, 12]).

In its most recent form [9, 13], the Basis Pursuit functional is defined by a finite subset of R (called
dictionary) (v;);cr and takes the form

E(U) = inf()\i)ief Zie[ Ai
under the constraints \; > 0,Vi € I,

and Eie] )\l’t/Jl =,

for all v € RV,

The strength of this functional is that its level sets are scaled versions of the convex hull of (v;);cr (see
[7, 13]). It is therefore possible to build a functional E that favor the apparition of specific structures ; and
we have a complete control on these structures. This functional can then be used in optimization problems
designed for specific applications.

The common model named Basis Pursuit takes the form

(Aw)ineigeRDH Z )\ww_U”Q—’—)\Z Al (1)
$eD $eD
for a dictionary D, A > 0, a datum v € R and the standard /? norm on R, ||.||. It can be rewritten
under the form
min ||w — v + AE(w), (2)
weRN

when FE is defined with the dictionary DU {—,¢ € D}.
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Notice that the use of a general E in (2) permits to assign a sign to each feature. This might be of
some importance in some applicative contexts. (Think about a source separation problem involving text.
The letters are always black on a white background.)

Another issue which we wanted to improve in (1) concerns the choice of the parameter \. For practical
applications, it is always preferable to solve the model under the form

ming ), cpek? Zwe’D [Awl,
under the constraints || >, cp Ayt — v[|* <7,

for a parameter 7 > 0. Indeed, 7 can generally be tuned automatically, according to some prescribed
precision or a known noise level.
All these considerations led us to consider a Basis Pursuit model written under the form
Inf(x)ie, 2ier Ai
(D)< under the constraints A\; > 0,V: € I,
and [[v — >, A < 7,

for a dictionary D = (¢;)ier, 7 > 0 and an initial datum v € RY,
The purpose of the paper is to design an efficient algorithm for solving (D).
Throughout the paper, we will assume that the dictionary is such that

Vw € RN, 3(\)icr, Vi € I, > 0 and w = Y Aty
iel
or equivalently (the equivalence is not trivial and relies, for instance, on the variant of the Farkas Lemma
given in [16], Th. 22.3, pp.199) that

{w,Vi € I, (w,;) <1} is bounded.

When this hypothesis holds, E is a norm.

1.2 Sketch of the paper

In section 2, we build two algorithms. This is done by solving a problem (P) whose dual problem is
(D). The problem (P) is stabilized to improve convergence speed (see Section 2.1 and 2.2). Then, some
calculations permits to give analytical formulas for some of the necessary computations of the algorithms
(see Section 2.3). They also guarantee its convergence (see Section 2.4). Two versions of the algorithms are
proposed in Section 2.5 and 2.6. They are easy to implement.

Then, some experiments are explained and commented in Section 3. The experiments are described in
Section 3.1, the practical convergence of the proposed algorithms is studied in Section 3.2, a bibliography
on existing algorithms is made in Section 3.3 and we compare our algorithms to the main existing algo-
rithm. This comparison shows our algorithms (in particular one of them) outperforms, by far, the existing
algorithms.

2 Building algorithms

2.1 Dual formulation

We consider the optimization problem below and will show that the corresponding dual problem takes
the form (D) above. As in the preceding section v € RY is the initial datum, D = (v;);¢; is a finite subset
of RY (called dictionary) and 7 > 0.

(P) minwERN H’LUH - %<U),U>
under the constraints Vi € I, (w, ;) < 1.

The Lagrangian of the problem (P) is

L(w, (Ai)ier) = [lw] — %(w, )+ > Ail(w, ) = 1).

iel



As usual (see Th. 28.3, pp 281, in [16]), the unique solution w* to (P) is also the first argument of any
saddle point (w*, (Af);cr) of the form

min ma. L(w, (X\;);
WERN (Ai)iejé(RJrI ( 7( l)lef)a

where, we write,
R = {(\)iesr € R, Vi € I, \; > 0}

All along the paper, we denote

S={(\)ier € R* (A)ier =arg  max  L(w*, (\i)ier)}- ®3)
(Ni)ier €RHL
We know that S # 0 (see Cor. 28.2.1, pp. 278, in [16]) but cannot guarantee it is reduced to a single
element.
Notice that, L is a saddle function (i.e. : convex in w and concave in (););c;) which satisfies the
hypotheses of Th. 37.6, pp. 397, in [16] (L(., (\;)ier) and —L(w,.) do not have any direction of recession).
So, for any (Af)ier € S, (w*, (Af)icr) is a saddle point of the form

et e Hw Qier) = DB i, L(w, (Ai)ier)
: 1
I v SR 2 (IIwII = (w, —v - ; A“m) —~ ; ;.
Finally, notice that, denoting F'(w) = ||w||, we have
! ! _ oo ifu =37 mAi € TOF(0)
min <|w|| DY w») _ { S i "
Also, we know that
OF(0) = {w e RY |lw| < 1}. 5)

So we finally know that any (A);e; € S is solution to

MAX(x),c R+~ Dier i
under the constraint ||v — >, TAil| < 7,

which, modulo a trivial multiplication by 7 is precisely the problem (D) considered in the preceding section.
As a conclusion, the problem (D) can be solved by any algorithm solving (P) which also provides a
Kuhn-Tucker vector (A!);cr. The point is that, in fact, most algorithms solving (P) also provide such a
(A} )ier-
In the following, we will only consider a small family of such algorithms. (Our motivation for considering
this family will be clear after Section 2.3 and 2.4) This family is described in the next section.

2.2 A stabilized family of algorithms

We write
f((Ai)ier) = min L(w, (Ai)ier)-
weRN

As indicated in the previous section, (D) consists in maximizing f over R*!. Assuming that we know
how to evaluate V f at any location (\;);cs such that f ((\;):cs) is finite, we could in principle apply any
gradient based algorithm to achieve that goal. A typical example is the Uzawa algorithm.

Now, at each iteration, the step size of such an algorithm will have to be such that f remains finite
(see (4)). This will result in a slow and unstable algorithm.



In order to avoid this problem, we propose to stabilize the algorithm with the idea used in [1, 18].
Rephrased in our context, they first consider the intermediate problems :

(P) ming, gy aflw —ul]® + [lw]| = 3 {w, v)
“ under the constraints : Vi € I, (w, ;) < 1,

for a > 0 and u € RY.
Taking u” € RY, they show in the context of their paper (see Proposition 2, in [1]) that the algorithm

™ = solve(Pym), (6)

where “solve( P, )” is the unique solution to (P,m ), converges to the unique solution to (P).
In our paper, we go one step further and adapt their idea to the problem of finding a saddle point. To
do so, we write

fum (Mi)ier) = min L' (w, (\i)ier, u™),

weRN
with
L, Oier u™) = allw — ™ 4 ol (w, 20 = 3" A} = S0 A
icl iel
The family of algorithm which we consider in this paper is described in Table 1. A discussion similar to

the one of the preceding section guarantees that the sequence (u™),,en built by such an algorithm equals
the one of the scheme (6).

— Initialize u°

— Repeat until convergence (loop in m)
1. Use a gradient based algorithm for solving

O)ier = are , jmags Jur (Qidier)

2. Update u™! = argmin, cpny L' (w, (A™)icr, u™).

TAB. 1 — General form of the algorithms. The gradient based algorithm still needs to be specified.

Notice that, beside the decompositions and recompositions, the only difficulty in the implementation
of the above algorithm is the computations of the gradient V f,m, in step 1, and the resolution of the step
2.

Our interest for the algorithms above comes from the fact that, as will be shown in the next section,
those two computations can be performed exactly. Essentially, the cost of the evaluation of V f,~ is one de-
composition and one recomposition in (¢;);e; and the cost for computing arg min,,cgny L' (w, (A7*)ier, u™)
is one recomposition in (1;)c;-

Moreover, we will show that V f,~ is Lipschitz and we will provide its Lipschitz constant (which can be
computed numerically). This will guarantee the convergence of the gradient based algorithms considered
in step 1. By the way, we will consider two variants : a projected gradient ascent of constant step size (Step
1 is then a Uzawa algorithm solving (P,~)) and a Nesterov Algorithm (which is argued to be optimal
among gradient based algorithm) (see [15], Section 2.2).

Before, going into those details, let us first state the following proposition which guarantees that our
dual approach actually provides an approximation of the actual solution we are looking for. Its proof is
given in Appendix.

Proposition 1 The sequences (u"™)men and ((A")ic1),,cn defined in Table 1 satisfy

1. (u™)men converges to the solution w* of (P).

2. limy— 400 inf a5y, es ([N — Af )it || = 0, where, we recall that, S is the optimal set of (D).



2.3 Exact computation of the gradient and resolution of step 2

First, as is usual with the gradient of functions defined as a minimum, many terms cancels out' and
we finally have

V furm (Ni)ier) = (W, ¥i) = 1)
where 1
* : mi|2
w" = arg min allw —u™* + o] - (w, ~v ; i) (7)
As a consequence, modulo a decomposition in (1;);cr, the computation of V f,m and the resolution of

step 2 boils down to the same problem : The resolution of (7).
Let us first simplifies the notations and consider the problem

w* = arg min ollw — ul|? + ||w| + (w,r),
weRN
where u and r are in RY.

Let us begin with the situation where ||w*|| = 0. Differentiating, we know that 2a(w* —u)+r € 9F(0),
where F(w) = ||w||. Using (5), we have

w*=0=|r—2au| <1

On the other hand, if we assume that |w*|| # 0, we know that

*

w
20(w* —u) + —— +r =0.
[[w]|
This gives
[w*[|(20u —r) = 2afw”|| + 1)w®. (8)
Taking the norm of the above equality, we obtain
20 — 7| = 20| + 1, (9)

which guaranties that ||2cu — r|| > 1.
As a conclusion,
w'=0%&|2au —r| <1,

and when w* # 0, w* can be computed, using (8) and (9), and is

20w —r|| — 1

= m@au —r)
We can rephrase this as
) 0 ,if 2au — 7] <1
v { %(%zu —r) , otherwise.

As a conclusion, in the Step 1 of the algorithm described in Table 1, the gradient can be computed
with :

V fum (Ni)ier) = ((w*, i) — 1)¢e17 (10)
where
L fo s o
a M”_tﬁ t , otherwise,
with

v
t=2au™ + — — b
au'™ + - Z Ay
el
Moreover, the step 2 of the algorithm of Table 1 is solved by applying (11) at (A").

I'Notice that the differentiation is not that trivial since, in L’, the optimal w depends on (););c;. However, as is common
!
with such max min problems, the term % equals zero and it cancels the terms %
i
V fum ((Ai)ier). For an example of such a calculation, see the proof of Th. 9.3.3, in [5]

which appear in the calculation of



2.4 Computing the Lipschitz constant of the energy gradient

The calculus of the preceding section permits to prove the following result.
Proposition 2 For any (\;)ic; and (\,)icr in RY,

[V fum (Ni)ier) =V fum (N)ier) [| < Cll(Ni = A)ier|l,

with C = 220 - yith

My = jg: ”dﬁsz

iel

and My is the largest eigenvalue of the Gram matriz ((;, ;)i jer-
Proof. Let ()\;)icr and (\);cs be in RT. We have, from (10),

V fum (Ni)ier) = V fum (Nier) = ((w* = w™, %)) cr

0 f ] <1 N 0 S <1
wt =9 -1 and W™ =9 -1

with

t , otherwise, Sall] t’ , otherwise,

where
t=20u™+2 =37 Ay and ' =20u™ 4L =37 N

In order to prove the proposition, we are going to distinguish the different possible location of ||¢|| and
|It’|] with respect to 1.
First, if both ||¢|| <1 and ||¢'|| < 1 : We obviously have

IV furm (Ai)ier) =V fur (Aier) || =0,

which trivially satisfies the statement of the proposition.
The second case is when [|t|| > 1 and ||¢/|| < 1 (the case ||t|| < 1 and ||¢’|] > 1 is similar and will not be
treated) : We then have

IV fum (Aoier) = Vum (Mien) [P = Y (w* —w'™, )

el
< ot — w23 il
el
||t||—1)2 )
< Ml( Il
20t
M, )
< —(|l¢|l — 1
< ol -12

where M is given in the proposition. We also have

m v
Il = 200™ + — = > Xthi = Y (A = M|
1€l el
< NI+ i = Xl
el
< LD (= Al
el

So, we have
([t = 1)* < Mal(Ai = A)ier 1,

where M, is given in the proposition.



We finally obtain

M M-
IV fun ((Addier) = ¥ fur (Mien) [P < =52 1 = NI
which means
My M
IV fun (M)ier) = ¥ fu (WDien) | < T =211 = Aier [

Therefore, the statement of the proposition holds in that case.
We finally need to study the case where both ||¢|| > 1 and ||| > 1 : We then have

IV fum (Ndier) =V fum (Mien) |2 = D (w" —w'™,4)?

el
S Mle* _ wl*H2
— il — 2
< ‘Htll 1 _IItHIl,
202l 20[t/|]
< ol = Dl e — (1) - 1)
aleflIt']])?
< e I ) -
aitllfe]1)?
So, we finally obtain
VM VM
YV fum (Mi)ier) = V fum (A); t 7‘tt—ttH

But, we also have,

e =ene = |[nenee =0+ aen = ey
< el — el + il -
< 2l

Since,
[t = tll < vV Ma[[(Ni = Apierll,

we finally have

M M. M; M.
19 (i) = Vfum (Oien) | < (Y24 YRR 0 = et
< PR - Xt

2«

The above proposition is important since it guarantees that some gradient based algorithm with
constant step size, used in the algorithms of Table 1, converges for some step size (see next sections).
Together with Proposition 1, this ensures that the whole algorithm converges to the desired solution.

However, in order to chose the step size in these algorithms we need to have an estimate of the best
possible constant Lipschitz constant. This can, of course be done experimentally be running the algorithm
for several step-size, when all the other parameters are fixed.

A more flexible way to chose the step size is to use the formula expressing the bound C given in
Proposition 2. With this regards, for most dictionaries, all its elements but Ms are easy to calculate.

In order to estimate Ms, one can use a standard algorithm for computing the largest eigenvalue of an
operator (see [5], Section 6). Notice with this respect that the application of the Gram matrix ({5, ;) )i jer
to a vector (\;);er requires one recomposition and one decomposition in the dictionary (v;);er-



Another possibility (the one we will use in our experiments), is to use the bound (obtained from

Gershgorin Circle Theorem)
M; < <I£1éilx|1/)z|> (Z ||¢z||> : (12)

el
Finally, as can easily be seen from (10) and (11), f,~ does not satisfy any sort of ellipticity property.
In particular, it is not elliptic.

2.5 Uzawa version of the algorithm

In this section, we present the algorithm obtained when the gradient based algorithm used to solve the
step 1 of the algorithm described in Table 1 is a simple projected gradient ascent with constant time step.
The step 1 is then an Uzawa algorithm solving the dual of (P,~) (thus the name of the version). Given
Proposition 2, we know (see [15], Cor. 2.1.2, pp. 70, and Th. 2.2.8, pp. 88) that it converges as soon as

the time step is in the range (0, C) where C is given in Proposition 2. Moreover, the "best time step"

p_L

We also know (see [15]) that, for p = & and u™ € R”, there exists a constant C; > 0 (which depends
on the initialization quality) such that
2C
um 2 C
fum (A )ier) = fam < Cri—— vt

where (\¥);c7 is the result at the kth iteration of the algorithm and
qum = min p fum (()\']LC)ZGI) (13)

(Ai)ier€RT

The final algorithm is described in Table 2

— Initialize (\0)ser, u® € RN and p = §.
— Repeat until convergence (loop in m)
— Repeat until convergence (loop in k)

1. Compute wk = 20u™ — 3.} Ay + 1o
2. if (HwkH <1), set wk =0
otherwise, set w* «— aw®, with a = 1%

20‘““”‘ I
3. Update \Ft1,

Vi € I\ = max (0, \F + p((w", v;) — 1))

— update u™*! = w* and, for all i € I, \) = N+,

TaB. 2 — Uzawa version of the algorithm : The step 1 of the algorithm described in Table 1 is solved by a
projected gradient descent with constant step size.

In practice (and in the experiments presented in Section 3), we initialized (A\?);c; and u® at 0. The
constant C' was estimated with Proposition 2 and (12). This gives :

i |2 i i maXge i
o 3 e l0il?) (Z;.f il masier 931D »

2.6 Nesterov version of the algorithm

In this section, we present a version the algorithm where the step 1 of the algorithm described in Table
1 is solved with a Nesterov algorithm (see [15], p.90). In the community involved in complexity theory,
this algorithm is said to be optimal for solving the problem we are interested in.



We know that (see [15], Th. 2.2.3, pp. 80 and the remark after the description of Algorithm 2.2.19,
pp. 90), for p = £ and u™ € RY there exists some constants Cz > 0 (which depends on the initialization
quality) and ¢ < C (and, in practice, close to C) such that

By ) _ g _ &
fum ((Az )lEI) fum S C2 (2\/6—’—0]6)2’

where (\F);cs is the result at the kth iteration of the Netsterov’s algorithm and f;.. is given by (13).

So, in theory, the convergence speed of this algorithm is one order of magnitude faster than the Uzawa
implementation of the preceding section. The convergence speed is indeed bounded by a term whose decay
is of order 1%2 It was % in the preceding section. Notice that, in image processing, a Nesterov algorithm
has also been used to minimize an approximation of the total variation (see [19]).

The final algorithm is described in Table 3.

— Initialize (\0)ser, u® € RN and p = §.
— Repeat until convergence (loop in m)
— Initialize (19)ier = (A\?);er and 7o = 0.999.
— Repeat until convergence (loop in k)
1. Compute w* = 2au™ — >, ; pkep; + Lo

2. if (JJw*|| < 1), set w* =0
k [w"]|~1
2aflw*]

otherwise, set w* « aw*, with a =

3. Update \FF1 :
Vie LA =max (0, puf + p((w*, i) — 1))

—rit+A/T2+4r
4. Compute 7541 = % and tgy1 =

5. Update pf*! :

re(1=7k)
T’§+Tk+1

Vie It = Mt (A5 = 0F)
— Set for all i € I, ) = \FL.
— Update u™t! :
- Compute u™ ! = 2au™ - 3",
— if (JJum™*] < 1), set u™ =0
m—+1 m—+1

Mty + Ly

; ; _ ™t
otherwise, set u —au , with a = Sl I

TAB. 3 — Nesterov version of the algorithm.

As for the Uzawa version of the algorithm, in practice (and in the experiments presented in Section 3),
we initialized (A});c; and u° at 0. The constant C was also estimated with (14).

3 Experimental results

In Section 3.1, we give all the details on the experimental data and the quantities which will be used
to evaluate the quality of the algorithms.

We display in Section 3.2 some experiments on the convergence of the algorithms presented in this
paper. In particular they emphasize on the influence of o on the convergence speed of the algorithms.

In Section 3.3, we describe the algorithm proposed, by M. Elad, in [10] to solve the Basis Pursuit model
and make few comments on the other existing algorithms.

Finally, in Section 3.4, we compare the different implementations (Uzawa, Nesterov, Elad) of the Basis
Pursuit.



3.1 Experiments description

All the experiments are made with the same dictionary : a translation invariant discrete local cosine
dictionary. It consists of all the translations of the 64 small images displayed on Figure 1. All these small
images are set to 0 outside of their support and the large images (those in RY) are assumed periodized
outside of their original support. Notice also that the dictionary is symmetrized. This means that the
dictionary also contains the opposite of the elements already defined with the translations. Doing so, we
obtain a model which is closer to the more common definition of the Basis Pursuit (the one minimizing
the sum of the absolute value of the coordinates).

lftﬁiiii
| Pglal=pot=r=r=

RO QXD R
DA 6 58 S S
AP e el e

RETOE G6 RF ceeseis
1T 00 0 R

Fi1G. 1 — Small images defining the translation invariant discrete local cosine dictionary.

The decompositions and recompositions which are needed in the algorithms are computed with Fast
Fourier Transforms, as is explained in [20].
To evaluate the quality of a decomposition (\;);c; approximating an image v, we consider three quan-
tities : 200
' = P € LA # 0} (15)

where # denotes the cardinal of a set. Notice that we put 200 (not 100). This is due to the fact that, for

every ¢ € I, there exists j € I such that ¢; = —1);. With the 200, 19 represents the percentage of elements

of I which appear in the decomposition, without regard to the sign of the corresponding coordinate.
Similarly, we consider

Z i, (16)
#I el
(remember that, for all i € I, \; > 0) and
2 Y A — o) (17)
il

where, for any u € RY,

Those are the quantities evaluated by the curves displayed on Figure 4,5,6,...

In all the curves presented in the paper (Figure 4,5.6,... ) the scale of the x-axis is given by the iteration
number (those indexed by k in Table 2 and Table 3). In terms of computational effort, this corresponds
mainly to one decomposition and one recomposition in the dictionary (v;)ier.

Finally, in the experiments, we either have v equal to the image Barbara (see Figure 2) or v equal to
an extracted part of it (see Figure 3).

10



F1G. 2 — Image used for the experiments.

3.2 Convergence of the Uzawa and Nesterov algorithms

First, we would like to point out that despite the theoretical guarantees concerning the convergence of
these algorithms, we found few situations where the step size % given in the algorithm description (see
Table 2 and Table 3) is too large. However, we would like to point out that those rare cases are easy to
detect since both 2 and [! rapidly blow up. It is then possible to increase the estimation of the Lipschitz
constant C' and run the algorithm again. Since, this problem rarely occurs, we have not implemented such
a loop. We would recommend to do it if the algorithm is used in a fully automatic way.

This issue being clarified, the algorithms have good convergence properties. As can be seen in the
preceding sections, beside the parameters of the problem D, 7 and v, the only parameter of the algorithm
is « (see the definition of (P, )). Our experiments therefore aim at understanding its role on the convergence
properties of the algorithms.

In fact, it plays the same role in both the Uzawa and the Nesterov implementations. So, we only display
the curves for the Uzawa version of the algorithm. All the curves which we comment and display in this
section concern experiments with the image on Figure 3, 7 = 0.0445 and the dictionary described in Section
3.1.

The first issue we would like to address is the convergence of /2. In theory, it should converge to 7. This
is actually the case in our experiments. We display on Figure 4 the curves representing /2 as a function of
the iteration number, for the 400 first iterations. Up to negligible fluctuations, the curves are constant for
the iteration between 400 and 3000.

We see on Figure 4 (and this was confirmed in many other experiments for both the Uzawa and the
Nesterov versions of the algorithm) that, as far as the [ criterion is concerned, a small value « is preferable.

We display on Figure 5 the curves representing the quantity ! as a function of the iteration number.
Again, those curves are representative of many other experiments confirming the same statement : As far
as the (! criterion is concerned, a large value « is preferable. Notice that adding more iterations does not
permit to improve the result as much as a change of a.

The quantity (° is also of a particular interest, since people often use the Basis Pursuit model to obtain

11



F1G. 3 — Image extracted from Barbara (the image on Figure 2). It is used for the experiments displayed
under the form of curves.

l2
70 1
6O+ - :curve fora =1
50 4 —— : curve for a = 100

| L |
T 1 T

% .
100 200 300 400 it.

F1G. 4 - [? curves : The drawn curves give the criterion /2 (see (17)) as a function of the iteration number,
for « = 1 and a = 100. Typically, the curves for other values of o and the Nesterov version of the algorithm
are similar. They always converge to the prescribed value (0.0445 in the experiment).

a result which is sparsely represented in the dictionary D. We display on Figure 6 the curves representing
the quantity (°, as a function of the iteration number. These curves are, of course, very much correlated to
those concerning the [! criterion. We get the conclusions : As far as the [0 criterion is concerned, a large
value « is preferable. Again, adding more iterations does not permit to improve the result as much as a
change of a.

As a conclusion, it seems that a wise way to chose the parameter « is to chose « as large as possible,
such that the convergence of the [? criterion is satisfactory, given the applicative context and the number
of iterations allowed.

Also, we have not tried to make « evolve as a function of the iteration number (or some other extra
criterion such as a test on the 2 criterion). This should, of course, improve the results we obtained in our
experiments.

3.3 Existing algorithms for solving the Basis Pursuit model

As already mentioned in the introduction, there are surprisingly few algorithms for solving Basis Pursuit
based regularisation models. All those we found [6, 2, 10, 11, 14] deal with the model under its form :

min i 1'—’024-/\ il 18
(M)ieleRIH; ¥i — | > Il (18)

el
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R : curve for a = 1

,,,,,,,,, : curve for a = 10
0.4+
—— : curve for a = 100
03+ T
0.2 +
0.1 +
0 | | i | ) |
250 500 1000 2000 3000 it

F1G. 5 - I! curves : The drawn curves give the criterion I* (see (16)) as a function of the iteration number,
for « = 1, @« = 10 and o = 100 and the Uzawa version of the algorithm. Typically, the curves for other
values of o and the Nesterov version of the algorithm are similar.

ZO

***** :curve fora =1
100+ : curve for o = 10
\ —— : curve for o = 100

T I .
0 250 500 1000 2000 3000 1t.

F1G. 6 — [° curves : The drawn curves give the 9 criterion (see (15)) as a function of the iteration number,
for « =1, 10 and 100. We observed the same behavior for the Nesterov version of the algorithm.
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Let us denote, for all ()\;);cr € Rf

F(Oa)ier) = 11D At =0+ 2 [Ail,
el el
and, for 0 > 0 and t € R,
t—2% ift>g
Se(t)=< 0 it <
t+g ,ift<-3.

We describe in Table 4 the algorithm proposed by M. Elad in [10]. This is the existing algorithm to
which we will compare our results.

— Initialize (A\9);e;.
— Repeat until convergence (loop in k)
1. Compute d¥, for alli € I :

3

B8 o (W o= 3 N, ) | — A
K HU%HQ

iel
2. Compute the optimal step :

t* = arg min f ((ADier +t(d] )ier) -

3. Update \**1 :

Vi€ I AFTL = \F R gk,

TAB. 4 — The algorithm, solving (18), described in [10].

Let us explain this choice. First, remark that the algorithms proposed in [6, 2] are easy to explain, given
Table 4. When all the elements of the dictionary are normalised, they indeed correspond to the algorithm
of Table 4 where we always choose t* = 1. According to our experiments, the introduction of t* greatly
stabilizes the algorithm.

Finally, the main innovation, in [11], is to replace t* by a M-dimensional vector. Its computation is
then performed by minimizing f over Span ((d"™'~=™),,c(0. .1} ). Although this obviously improves the
convergence results, we have not implemented this algorithm. It seems indeed to provide only a relatively
small improvement when compared to the algorithm described in Table 4 (see [11]). This improvement is
made at the price of an important effort in the implementation of the algorithm.

Finally, the algorithm proposed in [14] is very elegant and has the advantage of being exact. However,
it does require, at each iteration, the inversion of a matrix. The size of this matrix goes to the number of
non-zero coordinates of the result. This restricts its use to applications where this number remains very
small.

3.4 Comparison of the algorithms

We display on Figure 7, 8, 9, 10, 11 and 12 the curves corresponding to a comparison between the
Uzawa and Nesterov versions of our algorithm (see Table 2 and 3) and the Elad Algorithm described in
Table 4.

Concerning the choice of the parameters, the purpose of our paper is obviously not to answer the
question : How to fix ) in the model (18)? So our only choice is to follow the steps :

— Run the Elad algorithm for a given value .

— Compute 7 : the I? criterion for the result of Elad algorithm.

— Run Uzawa or Nesterov version of the algorithm for this 7.

14



12

— : Uzawa version of the algorithm o = 50 and 7 = 0.0445
od : Nesterov version of the algorithm o = 50 and 7 = 0.0445
fffff : Elad algorithm with A = 0.1 (for this v, this corresponds to 7 = 0.0445)
30
0 e = ‘ }

T .
100 200 300 400 it.

F1G. 7 - [? curves : The drawn curves give the criterion /2 (see (17)) as a function of the iteration number,
for the Elad Algorithm (see Table 4), the Nesterov and Uzawa versions of the algorithm (see Table 3 and
2). For the Nesterov algorithm, the piece of curve corresponding to the iterations between 1 and 52 is not
drawn since its values are around 800. The parameter 7 = 0.0445 corresponds to [? criterion applied to
the result of the Elad Algorithm.

This results in an unfair comparison favoring the Elad algorithm.

We display on Figure 7, 8 and 9 the /2, [! and [° criterion as a function of the iteration number.
This experiment is made for A = 0.1, in (18), which corresponds to 7 = 0.0445, in (D). Concerning the
comparison between the Uzawa and the Nesterov versions of the algorithm, we find that, because of some
small instability, the Nesterov version takes more time to converge. However, it seems to converge to the
same solution.

Concerning the convergence of the I? criterion, Elad is much faster (see Figure 7). It is not clear whether
we would find the same result when )\ is tuned in order to reach a given precision level 7. (This would
clearly depend on the strategy used to achieve this goal.)

The convergence of the /! and [° criterion is in favor of our implementation (see Figure 8 and 9). In
particular, none of the coordinates are canceled by the Elad implementation of the Basis Pursuit, our
implementation has less than 2.8% non-zero coordinates (after the 3000 iterations).

Finally, concerning the Elad implementation, we observe (this is corroborated by many other experi-
ments) that, modulo negligible changes, it stops evolving after few iterations (say 20).

We also display the curves corresponding to the same experiment for A = 200, in (18), which corresponds
to 7 = 14.9973, in (D), for the small image displayed on Figure 3. Although the situation is completely
different, we can draw, from these curves, exactly the same conclusions as in the previous case.

To conclude with these curves, notice that the Uzawa version of our algorithm reaches a fair level
of convergence after few hundreds of iteration (i.e. few hundreds of decomposition/recomposition in the
dictionary (wi)ief)-

In the case A = 200 (i.e. 7 = 475.852, when v is the large image displayed on Figure 2), the qualitative
difference between the algorithms under study can be displayed under the form

> At

el

for the results (\;);cs of the algorithms. This image is indeed significantly different from the initial image
v (this was not the case for A = 0.1). We display on Figure 13 a sharpened part of the reconstruction of the
result obtained by the Elad algorithm?2. Mostly, it is blurry and many details are lost. The same sharpened
part of the result of the Uzawa algorithm? is displayed on Figure 14. It is much sharper and much more

2The electronic images are available at http ://www.math.univ-paris13.fr/~malgouy/research.htmi
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3 .
— : Uzawa version of the algorithm a = 50 and 7 = 0.0445
""""" : Nesterov version of the algorithm « = 50 and 7 = 0.0445
5 vé ***** : Elad algorithm with A = 0.1 (for this v, this corresponds to 7 = 0.0445)
1 _4
S | | | |
0 T I

I I :
2000 3000 1t.

F1G. 8 — ! curves : The drawn curves give the criterion [ (see (16)) as a function of the iteration number,
for the Elad Algorithm (see Table 4), the Nesterov and Uzawa versions of the algorithm (see Table 3 and
2). The parameter 7 = 0.0445 corresponds to [? criterion applied to the result of the Elad Algorithm.

ZO

— : Uzawa version of the algorithm « = 50 and 7 = 0.0445
""""" : Nesterov version of the algorithm o = 50 and 7 = 0.0445
***** : Elad algorithm with A = 0.1 (for this v, this corresponds to 7 = 0.0445)

I I N
1000 2000 3000 it.

F1G. 9 - [° curves : The drawn curves give the criterion [° (see (15)) as a function of the iteration number,
for the Elad Algorithm (see Table 4), the Nesterov and Uzawa versions of the algorithm (see Table 3 and
2). The parameter 7 = 0.0445 corresponds to [? criterion applied to the result of the Elad Algorithm.
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F

1051 — : Uzawa version of the algorithm o« = 50 and 7 = 14.9973

90—+ e : Nesterov version of the algorithm o = 50 and 7 = 14.9973

wh o T : Elad algorithm with A = 200 (for this v, this corresponds to 7 = 14.9973)

T

45 +

15---=

T T I H
250 500 1000 2000 3000 1t.

F1G. 10 — [? curves : The drawn curves give the criterion [? (see (17)) as a function of the iteration number,
for the Elad Algorithm (see Table 4), the Nesterov and Uzawa versions of the algorithm (see Table 3 and
2). For the Nesterov algorithm, the piece of curve corresponding to the iterations between 1 and 500 so
that the difference between Uzawa and Elad algorithms is visible. The parameter 7 = 14.9973 corresponds
to (2 criterion applied to the result of the Elad Algorithm.

details are present. However, some drawbacks of the model also start to appear (this should be improved
by modifying the dictionary). Some sort of “ringing” artifact appears next to contrasted edges. Its “width”
corresponds to the size of the support of the elements in the dictionary (namely 8). Also, some details are
extended out of their original support. For instance, the texture of the scarf is present on Barbara’s chin.

Appendix : proof of Proposition 1

First, notice that, because of the construction of f,, and L', u™*! as defined by Table 1 is solution to
(P,m ), where we recall that

(p,) | Mitwery afw - ull> + JJw]l = £ {w,v)
“7 | under the constraints : Vi € I, (w, ;) < 1.

The statement 1 is therefore a simple adaptation of the Proposition 2, in [1], to a different energy. A
straightforward adaptation of their proof works and need not be written in details.
Let us focus on the proof of the second statement. Its proof decomposes into two stages :

1. For any (Af)ier € S,
1i o, — *b
MU NDIRETEDBPHT
el iel
(Notice that this guarantees that ), ; A7¢; is independent on the particular choice of (\})icr € S.
Which is not surprising.)
2. The sequence ((AI")ic1),,cy is bounded in R’ and all its accumulation points solve (D).

In order to prove the first stage, we first consider the situation where (P) is such that w* = 0. If this
occur, we obviously have ||v|| < 7 (look at (P)). In turns, this implies that, for all ¢ € I, A} =0 (just look
at (D)).

Now, for all m € N, if there exists ¢ € I such that A\]* > 0, we can deduce from the Kuhn-Tucker
relation (see Th. 28.3, pp 281, [16]) that (u™*!,4);) = 1. This implies that

sup(u™*t ;) > 1.
iel
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— : Uzawa algorithm, when 7 = 14.9973
1.25+ e : Nesterov algorithm, when 7 = 14.9973

R : Elad algorithm, when \ = 200 (i.e. 7 = 14.9973)
0.75+

0.50

0-2577 ****************************************** ***’** ***** ********************

250 500 1000 2000 3000 it.

F1G. 11 — [! curves : The drawn curves give the criterion I* (see (16)) as a function of the iteration number,
for the Elad Algorithm (see Table 4), the Nesterov and Uzawa versions of the algorithm (see Table 3 and
2). For the Nesterov algorithm, the piece of curve corresponding to the iterations between 1 and 1000 so
that the difference between Uzawa and Elad algorithms is visible. The parameter 7 = 14.9973 corresponds
to (2 criterion applied to the result of the Elad Algorithm. For Nesterov and Uzawa algorithms we took
a = 50.

lO

25 1 — : Uzawa version of the algorithm o = 50 and 7 = 14.9973
rrrrrrrr : Nesterov version of the algorithm a = 50 and 7 = 14.9973

20+ - : Elad algorithm with A\ = 200 (for this v, this corresponds to 7 = 14.9973)
15+
10+

5 —_+

0 ; e —— — T e 1 :

250 500 1000 2000 3000 it.

F1G. 12 — [° curves : The drawn curves give the criterion [° (see (15)) as a function of the iteration number,
for the Elad Algorithm (see Table 4), the Nesterov and Uzawa versions of the algorithm (see Table 3 and
2). For the Nesterov algorithm, the piece of curve corresponding to the iterations between 1 and 70 is not
drawn since its values reach 85%. The parameter 7 = 14.9973 corresponds to [? criterion applied to the
result of the Elad Algorithm.
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F1G. 13 — Part of the image obtained with Elad algorithm, for A = 200 (i.e. 7 = 475.852). (The image has
been sharpened for the display.)

As a consequence, since lim,, ;. u™"! = w* = 0, there exists M > 0 such that for all m > M and for
allie I, \" =0.
As a conclusion, when w* = 0,
RIS S
icl il
Let us now assume that w* # 0. We first remark that for any (A\});er € S,

w* 1

T~ 7T N =0
i€l
Since u™*! converges to w*, for m large enough, u™*! cannot be zero. Given the definition of u™*1,
we also know that
2a(u™ Tt —u™) + L—H - lv + Z)\md}- =0
a0 A =0
We finally obtain
um-i—l w*
AF =A™ = 20(u™ T — ™) ———— — ——
2N AT [wm | [l |

iel
Since (u™)men converges to w*, we have
lim > (A7 = A7)y = 0.

m——+o0
il
In order to establish the second step of the proof, we first remark that because of the definition u™*!

and (A""!)ics, we have for any (A})ies € S (as for any element of R*/),

L' (™ (A e, u™) > L' (™ (Aier, u™).
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F1G. 14 — Part of the image obtained with Uzawa algorithm, for 7 = 475.852. (The image has been
sharpened for the display.)

Using the definition of L', we obtain

(LY N ) = YA > (@Y ) — ) AT

el 1€l 1€l 1€l
So,
A < 3 a4 ) [0 —A:nﬂwiH. (19)
el el el

Since limy, oo ™ = w* and limy,—io0 D (AF — A7TH)2); = 0, we are sure that there exists B > 0,
such that, for all m € N
> A" <B.

iel

Let (X;)ics be an accumulation point of ((A)ies),,cy, we obtain, using (19),

IR Y
iel iel
Now, since lim,, 400 D _;e7 AY"%i = >, Aftbi, we obviously have
> Nt =Y At
icl iel
Using the fact that (A\});er solves (D), we finally have
D = X,
iel iel

which implies (Xi)ie] e S.
This concludes the proof.
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