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On the Fefferman-Phong inequality

. We also give an abstract result. We even show that in the case of classical symbols, that is S 2 1,0 , the number of needed derivatives is bounded by n 2 + 4 + .

Introduction

The classical Fefferman-Phong inequality, [START_REF] Fefferman | On positivity of pseudodifferential operators[END_REF], states that, if a is a non negative symbol on R n × R n satisfying, for all multi-indices α and β,

|∂ α x ∂ β ξ a(x, ξ)| ≤ C α,β ξ 2-|β| ,
there exists a constant C > 0 such that, for all u ∈ S(R n ), Re(a(x, D)u|u)

L 2 + C||u|| L 2 ≥ 0, (1) 
where a(x, D) is the standard quantization of the symbol a, that is the pseudodifferential operator defined by a(x, D)u(x) =

R n e 2πixξ a(x, ξ) u(ξ)dξ, u being the Fourier transform of u. Thus, it is a great improvement of both the classical and the sharp G e 2πi(x-y)ξ a( x+y 2 , ξ)u(y)dydξ, the inequality is also equivalent to saying that there exists a constant C > 0 such that Op w (a) + C ≥ 0.

(

An alternate and recent version of the Fefferman-Phong inequality due to J. M. Bony, [START_REF] Bony | Sur l'inégalité de Fefferman-Phong[END_REF], says that inequalities (1) and ( 2) hold if a is a non negative symbol such that ∂ α

x ∂ β ξ a(x, ξ) are bounded for |α| + |β| ≥ 4, which is a remarkable result since it indicates that only the boundedness of derivatives of order larger than or equal to 4 is relevant.

In this paper, we are interested in estimating the number of derivatives of the symbol a needed to obtain the Fefferman-Phong inequality. In [START_REF] Lerner | On the Fefferman-Phong inequality and a Wiener type algebra of pseudodifferential operators[END_REF] (see also the short version [START_REF] Lerner | A Wiener algebra for the Fefferman-Phong inequality[END_REF]), N. Lerner and Y. Morimoto proved that this number is bounded by 4 + 2n + with an arbitrary > 0, n being the dimension of the base space. Actually, they established the following more precise result :

Inequalities (1) and ( 2) hold if a is a non negative symbol such that

∂ α x ∂ β ξ a ∈ A 0 (R 2n ) for |α| + |β| = 4,
where A 0 (R 2n ) is the Wiener type algebra of symbols studied by J. Sjöstrand in [START_REF] Sjöstrand | An algebra of pseudodifferential operators[END_REF].

Recall that one way to define the algebra A 0 (R d ) is as the set of functions that can be written as the sum of a series like

k∈Z d u k (x)e ixk ,
where the functions u k are bounded, with spectrum in a fixed compact set and

k∈Z d ||u k || L ∞ < ∞ .
Note that the definition of A 0 does not use derivatives. However, in terms of regularity, for a general function on R d to be in A(R d ), it must have d + 1 bounded derivatives, and this fact is optimal, see [START_REF] Boulkhemair | Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators[END_REF]. Hence, the result of Lerner-Morimoto. In this paper, we take back the argument of Lerner-Morimoto and apply more or less known results on L 2 boundedness of pseudodifferential operators to obtain mainly that For a non negative symbol a, inequalities (1) and (2) hold if ∂ α

x ∂ β ξ a (4) are bounded or locally uniformly square integrable for |α| + |β| ≤ n + 1, or, if a (4) satisfies the classical S 0 1,0 estimates up to [ n 2 ] + 1 derivatives, or, if a satisfies the S 2 1,0 estimates up to [ n 2 ] + 5 derivatives.

Here, a (4) stands for the tensor of fourth order derivatives of a. In fact, we shall also use fractional derivatives in such a way that we finally obtain that the number of derivatives of the symbol a needed to obtain the Fefferman-Phong inequality is bounded by 4 + n + (resp. 4 + n 2 + ), where > 0 is arbitrary. The paper begins with an abstract result. Indeed, we remark that the method of proof of Lerner-Morimoto works if one replaces the algebra A 0 by any subalgebra of L ∞ satisfying few assumptions. See Section 2. Then, we indicate some more or less natural algebras that satisfy the assumptions of Section 2 and prove L 2 boundedness for pseudodifferential operators associated to these algebras in the t-quantization. In the fourth section, we state the result that gives the best bounds for the number of derivatives of the symbol needed to obtain the Fefferman-Phong inequality. We conclude by stating the Fefferman-Phong inequalities in the semi-classical setting.

Thanks are due to P. Bolley and N. Lerner for motivating discussions on the subject.

Some notations

"Cst " will always stand for some positive constant which may change from one inequality to the other.

||.|| E denotes the norm in the space E.

L(E) is the space of bounded operators in E.

(u|v) is the scalar product in L 2 . u = F(u) is the Fourier transform of u.

For a function a(x, η), F 1 (a)(ξ, η) and F 2 (a)(x, y) denote the Fourier transforms of x → a(x, η) and η → a(x, η) respectively.

We often use

∂ α 1 ∂ β 2 a for ∂ α x ∂ β ξ a(x, ξ). τ k is the translation operator : τ k u(x) = u(x -k). If x ∈ R n , x = √ 1 + x 2 . [x] denotes the integral part of the real number x. [α, β] stands for the compact interval {x ∈ R; α ≤ x ≤ β}. λ ∼ µ means that λ µ and µ λ are bounded. H s (R d ), s ∈ R, is the usual Sobolev space. B s (R d ), s ∈ N ∪ {∞},
is the space of bounded functions in R d with bounded derivatives up to the order s. For positive non integral s, B s (R d ) is the usual Hölder space.

An abstract result

Let A be a subalgebra of L ∞ (R 2n ) satisfying the following properties :

(H1) ∃C 0 > 0, ∃m ≥ 0, ∀Y ∈ R 2n , ∀b ∈ A, ||τ Y b|| A ≤ C 0 Y m ||b|| A . (H2) The map b → Op w (b) is bounded from A to L(L 2 (R n )).
We have then the following :

Theorem 1 There exists a constant C > 0 such that, for all non negative functions a on R 2n such that a (4) ∈ A(R 2n ), we have Op w (a) + C||a (4) 

|| A ≥ 0, (3) 
that is, Op w (a) is semi-bounded.

The proof follows the same lines as that of [START_REF] Lerner | On the Fefferman-Phong inequality and a Wiener type algebra of pseudodifferential operators[END_REF]. So, we shall be brief and refer to that paper for more details.

Lemma 1 For any function a defined on R 2n and such that a (4) ∈ A(R 2n ), we have

Op w (a) = Op wick (a - 1 8π ∆a) + Op w (r),
where r ∈ A(R 2n ) is such that ||r|| A ≤ C||a (4) || A , C being a constant independent of a, and ∆a = 2n j=1 ∂ 2 j a.

Recall that Op wick (a), the Wick quantization of a, is the pseudodifferential operator whose Weyl symbol is b

(X) = a(X + Y )2 n e -2πY 2 dY. (4) 
Proof : If b is given by (4), using Taylor formula, we can write

b(X) = a(X) + 1 8π ∆a + 1 6 1 0 (1 -t) 3 a (4) (X + tY ) Y 4 e -2πY 2 2 n dtdY.
Another application of Taylor formula allows us to write the Weyl symbol of Op wick (∆a) as

θ(X) = ∆a(X) + 1 0 (1 -t) (∆a) (X + tY ) Y 2 e -2πY 2 2 n dtdY.
Thus, the Weyl symbol of Op wick (a 

-1 8π ∆a) is equal to b -1 8π θ = a -r where r(X) = - 1 6 1 0 (1 -t) 3 a (4) (X + tY ) Y 4 e -2πY 2 2 n dtdY + 1 8π 1 0 (1 -t) (∆a) (X + tY ) Y 2 e -2πY 2 2 n dtdY, that is, r(X) = 1 0 a (4) (X + tY ) P (t, Y )e -2πY
||r|| A ≤ C 0 ||a (4) || A 1 0 Y m |P (t, Y )|e -2πY 2 dtdY = C||a (4) || A .
It follows from the above lemma and assumption (H2) on A that Theorem 1 is a consequence of the following result of [START_REF] Lerner | On the Fefferman-Phong inequality and a Wiener type algebra of pseudodifferential operators[END_REF] which is independent of the algebra A.

Proposition 1 There exists a constant C > 0 such that for any nonnegative function a defined on R 2n and such that a (4) ∈ L ∞ (R 2n ), we have

Op wick (a - 1 8π ∆a) + C||a (4) || L ∞ ≥ 0.
The proof of this proposition relies on the Wick pseudodifferential calculus and on a precise result on the decomposition of nonnegative functions as sums of squares. We refer to [START_REF] Lerner | On the Fefferman-Phong inequality and a Wiener type algebra of pseudodifferential operators[END_REF].

This achieves the proof of Theorem 1.

We turn now to the Fefferman-Phong inequality in the standard quantization case. To be able to deduce it from the Weyl quantization case, we have to strengthen the assumption (H2). We shall use (H2) : The map a → Op t (a) is bounded from A to L(L 2 (R n )) for all t ∈ [0, 1] and its norm is uniformly bounded with respect to t ∈ [0, 1].

Recall that Op t (a) is the pseudodifferential operator defined by Op t (a)u(x) = R 2n e 2πi(x-y)ξ a((1 -t)x + ty, ξ)u(y)dydξ, u ∈ S(R n ), so that, Op 1/2 = Op w and Op 0 is the standard quantization. Recall also that Op t (a) = Op 0 (J t a) where J t = e 2πitDxD ξ , t ∈ R.

Theorem 2 Assume that A satisfies (H1) and (H2) . There exists a constant C > 0 such that, for all non negative functions a on R 2n such that a (4) ∈ A(R 2n ), we have

Re(a(x, D)u|u) L 2 + C ||a (4) || A ||u|| 2 L 2 ≥ 0, u ∈ S(R n ). (5) 
Proof : We are concerned with the semi-boundedness of the operator A = [a(x, D) + a(x, D) ]/2. We can write 2A = Op w (J -1/2 a + J 1/2 a). Now, by Taylor formula, we have

J -1/2 a = a -πiD x D ξ a -π 2 1 0 (1 -t)e -πitDxD ξ (D x D ξ ) 2 adt and J 1/2 a = a + πiD x D ξ a -π 2 1 0 (1 -t)e πitDxD ξ (D x D ξ ) 2 adt.
Since a is real, we get

J -1/2 a + J 1/2 a = 2a -π 2 1 0 (1 -t)(J -t/2 + J t/2 )(D x D ξ ) 2 a dt.
Hence,

A = Op w (a) -R where R = π 2 2 1 0 (1 -t)(Op (1-t)/2 (b) + Op (1+t)/2 (b))dt (6) 
and b = (D x D ξ ) 2 a. Since b ∈ A, it follows from assumption (H2) that R is bounded in L 2 (R n ) with an operator norm bounded by C ||a (4) || A and therefore the result follows from Theorem 1.

On algebras of symbols and boundedness of operators

We present here some more or less known algebras of symbols which give rise to L 2 -bounded pseudodifferential operators and to which we are going to apply the results of the preceding section.

Uniformly local Sobolev algebras

If E is a Banach space of functions or distributions on R d (for example, containing D(R d ), to avoid trivial cases), we shall denote by E ul the set of functions or distributions u which are locally uniformly in E, that is, the set of u such that u τ y χ is in E uniformly in y ∈ R d for some χ ∈ D(R d ) with non zero integral. The space E ul is then naturally normed by ||u|| E ul = sup y∈R 2n ||u τ y χ|| E . We shall apply this procedure to the usual Sobolev space H s (R 2n ) as well as to its anisotropic analogues

H s,s (R n × R n ) and H σ (R 2n ), s, s ∈ R, σ = (σ 1 , . . . , σ 2n ) ∈ R 2n .
Recall that these are also Hilbert spaces and are defined by : -

u ∈ H s,s (R n × R n ) iff u is a tempered distribution such that the integral R n ×R n ξ s ξ s u(ξ, ξ ) 2 dξdξ is finite. -u ∈ H σ (R 2n ) iff u is a tempered distribution such that the integral R 2n 2n i=1 ξ i σ i u(ξ) 2 dξ is finite.
We shall consider the spaces

H s ul (R 2n ) for s > n, H s,s ul (R n × R n ) for s > n 2 , s > n 2
, and

H σ ul (R 2n ) for σ i > 1 2 , 1 ≤ i ≤ 2n. These are Banach subalgebras of L ∞ (R 2n
) and we have the inclusions

H s ul (R 2n ) ⊂ H s 2 , s 2 ul (R n × R n ) ⊂ H ( s 2n ,..., s 2n ) ul (R 2n )
with continuous injections, of course.

Clearly, these algebras satisfy trivially the assumption (H1). They also satisfy assumption (H2) , although this is much less trivial. In fact, we are going to show that, if a ∈ H σ ul (R 2n ),

σ i > 1 2 , 1 ≤ i ≤ 2n, then, for all t ∈ R, Op t (a) is bounded in L 2 (R n
) and its operator norm can be estimated by C(1

+ t 2 ) N ||a|| H σ ul .
Using dyadic decompositions with respect to each variable, this is equivalent to the following :

Theorem 3 There exist positive constants C and M such that, for all a ∈ L ∞ (R 2n ) with supp( a) ⊂ 2n i=1 [-R i , R i ], R i ≥ 1, 1 ≤ i ≤ 2n
, and all t ∈ R, the following inequality holds :

||Op t (a)|| L(L 2 ) ≤ C(1 + t 2 ) M (R 1 R 2 . . . R 2n ) 1 2 ||a|| L 2 ul .
Proof : In fact, the cases t = 0 and t = 1 2 are proved in [START_REF] Boulkhemair | L 2 estimates for pseudodifferential operators[END_REF] and [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF] respectively. Unfortunately, we have not been able to deduce this theorem from these cases (is it possible ?). However, the proof is very similar to that of Theorem 2.1 in [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF], so, we shall be brief and only indicates the changes, refering at each time to [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF] for details.

We have to study

I = (Op t (a)v|u), u, v ∈ S(R n ),
and we can assume that a ∈ S(R 2n ). The first step in estimating I is given by the analogue of Lemma 2.

of [8] :

Lemma 2 There exists a constant C > 0 such that, for all a ∈ S(R 2n ), all χ ∈ S(R n ) with χ(x)dx = 1, and every t ∈ R, we have

||Op t (a)|| L(L 2 ) ≤ C t s sup k∈R n χ(x) ω(x) ω(y) F 2 (a)(x + k, y) 2 dxdy 1 2
,

where ω(x) = n i=1 x i s i , s i > 1, 1 ≤ i ≤ n, s = s 1 + ... + s n , and y → F 2 (a)(x, y)
is the Fourier transform of a(x, η) with respect to η.

Indeed, one writes

I = F 2 (a)(x, y) v(x + (1 -t)y) u(x -ty) dxdy,
and then follows the proof of Lemma 2.2 of [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF]. The t s appears when one applies Peetre inequality.

The second step is

Lemma 3 There exists a constant C > 0 such that, for all a ∈ S(R 2n ) with

F 2 (a)(x, y) = 0 when y / ∈ n i=1 [-R i , R i ], R i ≥ 1, 1 ≤ i ≤ n, all χ ∈ S(R n ) with χ(x)dx = 1
, and every t ∈ R, the following estimate holds :

||Op t (a)|| L(L 2 ) ≤ C t 2n (R 1 . . . R n ) 1 2 sup k∈R n χ(x) ω(x) a(Rx + k, η) 2 dxdη 1 2
, where Rx stands for (R

1 x 1 , . . . , R n x n ) and ω(x) = n i=1 x i 2 .
In estimating

I = F 2 (b)(Rx, y) V (x + (1 -t)y) U (x -ty) dxdy, where we have set b(x, η) = a(x, R -1 1 η 1 , . . . , R -1 n η n ), U (x) = (R 1 . . . R n ) 1 2 u(Rx) and V (x) = (R 1 . . . R n ) 1 2 v(Rx), we follow the proof of Lemma 2.3 of [8].
For the third and last step in the proof of Theorem 3, we write

I = F 1 (b)(ξ, η) V (η -tξ) U (η + (1 -t)ξ) dξdη, where ξ → F 1 (b)(ξ, η) is the Fourier transform of b(x, η) with respect to x, b(x, η) = a(R -1 x, Rη), U (x) = u(R -1 x)/ √ R 1 . . . R n , V (x) = v(R -1 x) / √ R 1 . . . R n and Rx = (R 1 x 1 , . . . , R n x n ).
Then, the proof finishes as that of Theorem 2.1 of [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF]. However, another power of t appears at this stage when we use the formula

η + (1 -t)ξ s η -tξ s = |α|,|β|≤2s c α,β (t) ξ α η β ,
since now the c α,β (t) are polynomial in t of degree |α| ≤ 2s. Hence, we get the estimate of Theorem 3 with M = n + s and s is an even integer greater than n 2 .

Hölder type algebras

A well known algebra of bounded functions in R 2n which also satisfies (H1) and (H2) is the Hölder algebra B s (R 2n ) for s > n. Here, to be simple, when s ∈ N, this will be the Sobolev space W s,∞ and not the Zygmund class even if many of our statements hold with the latter.

One can obtain somewhat more general algebras by considering Hölder anisotropic regularity in the same spirit as in the case of the uniformly local Sobolev spaces. The more general one is defined by means of a 2n-dyadic partition of unity in R 2n , 1 = j∈N 2n ϕ j , where

ϕ j (ζ) = ϕ j 1 (ζ 1 ) . . . ϕ jn (ζ 2n ), j = (j 1 , . . . , j 2n ), based on a dyadic partition of unity in R, 1 = k∈N ϕ k , (for example, ϕ 0 ∈ D(R), ϕ 1 ∈ D(R \ 0), ϕ k+1 (t) = ϕ k ( t 2 ), t ∈ R, k ≥ 1). If σ ∈ (R * + ) 2n , we have, by definition, u ∈ B σ (R 2n ) if and only if u ∈ L ∞ (R 2n ) and (2 jσ ||ϕ j (D)u|| L ∞ ) j∈N 2n is bounded, where jσ = j 1 σ 1 + • • • + j 2n σ 2n . One can define similarly B s,s (R n × R n ), s > 0, s > 0, if
one wants to take derivatives only in the directions of the subspaces R n × {0} or {0} × R n , by using a dyadic partition of unity in R n × R n which is a tensor product of standard dyadic partitions of unity in R n .

These spaces have natural normed structures and, in fact, are Banach algebras of bounded continuous functions. Note also the following inclusions, for s > 0, which are similar to those with the uniformly local Sobolev spaces,

B s (R 2n ) ⊂ B s 2 , s 2 (R n × R n ) ⊂ B ( s 2n ,..., s 2n ) (R 2n ), (7) 
and that the associated injections are continuous. The fact that

B s (R 2n ), for s > n, B s,s (R n × R n ), for s, s > n 2 , and B σ (R 2n ), for σ i > 1 2 , 1 ≤ i ≤ 2n
, satisfy the (H2) assumption is a consequence of Theorem 3 and the above inclusions. The fact that they satisfy (H1) is trivial and holds with arbitrary exponents.

S 0 1,0 type algebras

Another algebra which will be important for us is defined as follows. The idea is that of an S 0 1,0 type algebra with a limited regularity. To any Banach space E of functions in R 2n , one can associate the space denoted by S m 1,0 E, m ∈ R, and defined as the set of functions a :

R n × R n → C such that (i) a(x, ξ)χ(ξ) is in E, for all χ ∈ D(R n ). (ii) {λ -m a(x, λξ)χ(ξ); λ ≥ 1} is a bounded subset of E, for all χ ∈ D(R n \ 0).
The reason for such a definition is that when E is formally the space B ∞ (R 2n ), we obtain in fact the usual Hörmander space S m 1,0 . The space S m 1,0 E is at least a normed space since it can be equipped with the norm

||a(x, ξ)ϕ(ξ)|| E + sup{2 -jm ||a(x, 2 j ξ)ϕ 0 (ξ)|| E ; j ∈ N},
where ϕ ∈ D(R n ) and ϕ 0 ∈ D(R n \ 0) are such that they define a dyadic partition of unity in R n :

ϕ(ξ) + j≥0 ϕ 0 (2 -j ξ) = 1. (8) 
Here, we are essentially interested by the cases where E is one of the Banach algebras defined in the preceding subsection. In these cases, we obtain spaces S m 1,0 E which are Banach spaces and, when m = 0, even Banach algebras, as one can check easily. The fact that these Banach algebras satisfy the (H1) assumption is not completely trivial and we state it as Proposition 2 There exist constants C > 0 and M > 0 such that, for all (y, η) ∈ R 2n and all a ∈ S 0 1,0 E, τ (y,η) a is in ∈ S 0 1,0 E and

||τ (y,η) a|| S 0 1,0 E ≤ C η M ||a|| S 0 1,0 E .
Here, E stands for one of the three algebras of the preceding subsection :

B s (R 2n ), B s,s (R n × R n ) or B σ (R 2n ), with s, s > 0, σ ∈ (R * + ) 2n .
Proof : We shall treat the case of E = B σ (R 2n ), the others being similar. Let a ∈ E and χ ∈ D(R n ). We can write, using the dyadic partition of unity [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF],

a(x -y, ξ -η)χ(ξ) = a(x -y, ξ -η)ϕ(ξ -η)χ(ξ) + j≥0 a(x -y, ξ -η)ϕ 0 (2 -j (ξ -η))χ(ξ) = τ (y,η) (aϕ)(x, ξ)χ(ξ) + j≥0 τ (y,η) [a j (x, 2 -j ξ)]χ(ξ)
where we have set a j (x, ξ) = a(x, 2 j ξ)ϕ 0 (ξ). By definition, aϕ ∈ E and (a j ) is a bounded sequence of E. It follows from the translation invariance of E, from the lemma below and from the fact that the sum above has a number of non vanishing terms which is finite and does not depend on (y, η), that χτ (y,η) a ∈ E and ||χτ (y,η) a|| E ≤ Cst ||a|| S 0 1,0 E . Note that we also used the fact that E is an algebra.

Lemma 4 Given σ ∈ (R * + ) d , there exists a constant C > 0 such that, for all h ∈ (R * + ) d and all u ∈ B σ (R d ), the function x → u(hx) = u(h 1 x 1 , ..., h d x d ) is in B σ (R d ) and ||u(hx)|| B σ ≤ C h σ ||u|| B σ , where h σ = h σ 1 1 ... h σ d d , h i = max{1, h i }, i ∈ {1, ..., d}.
The proof of this lemma is easy and is left to the reader. Assume now that χ ∈ D(R n \ 0) and let λ ≥ 1. As before, write

a(x-y, λξ-η)χ(ξ) = a(x-y, λξ-η)ϕ(ξ-λ -1 η)χ(ξ)+ j≥0 a(x-y, λξ-η)ϕ 0 (2 -j (ξ-λ -1 η))χ(ξ) = a(x -y, λξ -η)ϕ(ξ -λ -1 η)χ(ξ) + j≥0 τ (y,λ -1 η) [a λ,j (x, 2 -j ξ)]χ(ξ) (9) 
where a λ,j (x, ξ) = a(x, 2 j λξ)ϕ 0 (ξ). The number of non vanishing terms in the last sum is finite and does not depend on (y, η, λ), and, clearly, we can estimate that sum in the E norm as before by Cst ||a|| S 0 1,0 E . It remains to treat the first term in [START_REF] Coifman | Au delà des opérateurs pseudodifférentiels[END_REF]. On the support of this term, we have |ξ -λ -1 η| ≤ 1 and γ 1 ≤ |ξ| ≤ γ 2 with some positive constants γ 1 and γ 2 , so that, λ -1 |η| ≤ 1 + γ 2 . Now, if λ -1 |η| is small enough, for example, λ -1 |η| ≤ γ 1 /2, then, we also have |ξ -λ -1 η| ≥ γ 1 /2, so that we can replace ϕ by some ϕ ∈ D(R n \ 0) and we can then estimate the term a(x -y, λξ -η) ϕ(ξ -λ -1 η)χ(ξ)

as before. Finally, we are left with the term a(x-y, λξ-η)ϕ(ξ-λ -1 η)χ(ξ) under the condition that λ ∼ |η|. We can now write it as (τ (y,η) a λ )(x, λξ) χ(ξ) with a λ (x, ξ) = a(x, ξ)ϕ(ξ/λ), and then, apply Lemma 4 and the translation invariance of E to obtain

||(τ (y,η) )a λ (x, λξ) χ(ξ)|| E ≤ Cst λ |σ | ||a λ || E
where |σ | = σ n+1 + ... + σ 2n . The last thing we do is to restrict ourselves to λ = 2 k , to rewrite a λ and then to estimate it as follows

a λ (x, ξ) = a(x, ξ)ϕ(ξ) + k-1 j=0 a(x, ξ)ϕ 0 (2 -j ξ), ||a λ || E ≤ Cst k||a|| S 0 1,0 E ≤ Cst ln λ ||a|| S 0 1,0 E ≤ Cst ln η ||a|| S 0 1,0 E . Hence, ||(τ (y,η) )a λ (x, λξ) χ(ξ)|| E ≤ Cst η |σ | ln η ||a|| S 0 1,0 E .

This finishes the proof of the proposition.

Concerning the L 2 boundedness of operators associated with symbols in S 0 1,0 E, one can prove the following result :

Theorem 4 Let E stands for B s (R 2n ) with s > n 2 , or B s,s (R n × R n ) with s > 0, s > n 2 , or B σ (R 2n ) with σ i > 0 if 1 ≤ i ≤ n, and σ i > 1 2 if n + 1 ≤ i ≤ 2n.
There exist positive constants C and M (M > 2n works) such that, for all functions a ∈ S 0 1,0 E and all t ∈ R, the operator Op t (a) is bounded in L 2 (R n ) with an operator norm estimated by C t M ||a|| S 0 1,0 E .

Proof : In view of the inclusions [START_REF] Boulkhemair | L 2 estimates for pseudodifferential operators[END_REF], it is sufficient to treat the case of E = B σ (R 2n ). We follow ideas of [START_REF] Coifman | Au delà des opérateurs pseudodifférentiels[END_REF], [START_REF] Boulkhemair | L 2 estimates for pseudodifferential operators[END_REF] and [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF]. Unfortunately, the theorem is not a consequence of the results obtained in these papers.

Let a ∈ S 0 1,0 E. Since the usual regularized functions of a are bounded in S 0 1,0 E by a constant times ||a|| S 0 1,0 E , we can assume that a ∈ S(R 2n ). Write a(x, η) = a(x, η)ϕ(η)

+ k≥0 a(x, η)ϕ 0 (2 -k η),
where ϕ(η) + k≥0 ϕ 0 (2 -k η) = 1 is a standard dyadic partition of unity in R n . In order to treat the terms of this decomposition, we need the following Lemma 5 Let K be a compact set in R n . Then, there exists a constant C K > 0 such that, for all a ∈ S(R 2n ) with supp(η → a(x, η)) ⊂ K and for all t ∈ R,

||Op t (a)|| L(L 2 ) ≤ C K t 2n ||a|| E .
To prove the lemma, write the 2n-dyadic decomposition of a, a = j∈N 2n a j , and apply Lemma 3 to each a j . We get

||Op t (a j )|| L(L 2 ) ≤ C t 2n 2 |j | 2 sup z∈R n χ 0 (x) ω(x) a j (2 j x + z, η) 2 dxdη 1 2
, where j = (j n+1 , ..., j 2n ), 2 j x = (2 j n+1 x 1 , . . . , 2 j 2n x n ), ω(x) = n i=1 x i 2 and χ 0 ∈ S(R n ) with χ 0 (x)dx = 1. Now, it follows from the fact that a(x, η) has a compact support in η that each a j (x, η) is rapidly decreasing in η and that, for all α ∈ N n ,

||η α a j (x, η)|| L ∞ ≤ C α 2 -jσ ||a|| E . Hence, χ 0 (x) ω(x) a j (2 j x + z, η) 2 dxdη ≤ Cst 2 -2jσ ||a|| 2 E , so that, ||Op t (a)|| L(L 2 ) ≤ Cst t 2n j 2 |j | 2 -jσ ||a|| E = C K t 2n ||a|| E ,
which proves the lemma. Of course, Lemma 5 applies to the term a(x, η)ϕ(η). Now, let us consider the terms a(x, η)ϕ 0 (2 -k η) = a k (x, 2 -k η), k ≥ 0, where we have set a k (x, η) = a(x, 2 k η)ϕ 0 (η). By definition of S 0 1,0 E, the sequence (

a k ) is bounded in E. Write a k = b k + r k where b k is given by b k (x, η) = 2 kn χ(2 k y) a k (x -y, η) dy .
with χ ∈ S(R n ) , χ = 1 near 0, and supp( χ) is small enough (for example, χ(ξ) = χ 1 (ξ/ ) with supp( χ 1 ) in the unit ball and small enough). Clearly, (b k ) is also a bounded sequence in E and

||b k || E ≤ ||χ|| L 1 ||a k || E = ||χ 1 || L 1 ||a k || E , since E is translation invariant. Set b(x, η) = k b k (x, 2 -k η) and let us estimate I = (Op t (b)v|u) for u, v ∈ S(R n ). We have I = k F 1 (b k )(ξ, 2 -k η) v(η -tξ) u(η + (1 -t)ξ) dξdη.
Since |η| ∼ 2 k and |ξ| ≤ 2 k on the support of integration, with a small enough , we also have |η -

tξ| ∼ |η + (1 -t)ξ| ∼ |η| ∼ 2 k .
Here, α ∼ β means that the ratio α β has (positive) upper and lower bounds. Note that depends on t (in fact, ∼ 1 t ). However, one can choose bounds on 2 -k |η -tξ| and 2 -k |η + (1 -t)ξ| that do not. Therefore, we can take a ψ ∈ D(R n \ 0) such that we can write

I = k Op t (b k (x, 2 -k η))ψ(2 -k D)v ψ(2 -k D)u ; so that, |I| ≤ k ||Op t (b k (x, 2 -k η))|| L(L 2 ) ||ψ(2 -k D)v|| L 2 ||ψ(2 -k D)u|| L 2 ≤ Cst sup k ||Op t (b k (x, 2 -k η))|| L(L 2 ) ||v|| L 2 ||u|| L 2 = Cst sup k ||Op t (b k (2 -k x, η))|| L(L 2 ) ||v|| L 2 ||u|| L 2
To obtain the last equality, we have applied the following lemma whose proof is easy and left out : 

Lemma 6 For all a ∈ S (R n × R n ), t ∈ R and λ > 0, Op t (a) is bounded in L 2 (R n ) if
|I| ≤ Cst t 2n sup k ||b k || E ||v|| L 2 ||u|| L 2 ≤ C t 2n sup k ||a k || E ||v|| L 2 ||u|| L 2 , so that, since u, v ∈ S(R n ) are arbitrary, ||Op t (b)|| L(L 2 ) ≤ C t 2n sup k ||a k || E .
We turn now to the study of r(x, η) = k r k (x, 2 -k η). We need here to use the space F = B σ (R 2n ) with 0 < σ i < σ i for 1 ≤ i ≤ n, and σ i = σ i for n + 1 ≤ i ≤ 2n. Applying as above Lemma 4, Lemma 5 and Lemma 6, we can write

||Op t (r k (x, 2 -k η))|| L(L 2 ) ≤ Cst t 2n ||r k || F .
It suffices now to show that ||r k || F ≤ δ k ||r k || E with (δ k ) ∈ 1 to finish the proof of the theorem. Write the 2n-dyadic decomposition of r k , r k = j∈N 2n r k,j . On the support of F 1 (r k,j )(ξ, η), we have

|ξ i | ∼ 2 j i , 1 ≤ i ≤ n, and |ξ| ≥ 2 k .
This implies that there exists (a rather large) k 0 ∈ N (more precisely, one can check that

2 k 0 ∼ 1 ) such that r k,j = 0 if j i < k -k 0 , ∀i ∈ {1, ..., n}.
Therefore, given j ∈ N 2n such that r k,j = 0, there exists i ∈ {1, ..., n} such that j i ≥ k -k 0 , which allows us to estimate ||r k,j || L ∞ as follows :

2 jσ ||r k,j || L ∞ = 2 -j(σ-σ ) 2 jσ ||r k,j || L ∞ ≤ 2 -j i (σ i -σ i ) ||r k || E , so that, ||r k || F ≤ 2 -(k-k 0 )τ ||r k || E ≤ Cst -τ 2 -kτ ||r k || E ≤ Cst t τ 2 -kτ ||r k || E ,
where τ = min{σ i -σ i ; 1 ≤ i ≤ n}. Hence,

||Op t (r)|| L(L 2 ) ≤ Cst t 2n+τ sup k ||r k || E ≤ Cst t 2n+τ sup k ||a k || E .
This achieves the proof of the theorem.

The conclusion of this subsection is that, if E is one of the algebras

B s (R 2n ) with s > n 2 , B s,s (R n × R n ) with s > 0, s > n 2 , or B σ (R 2n ) with σ i > 0 if 1 ≤ i ≤ n, and σ i > 1 2 if n + 1 ≤ i ≤ 2n,
then, the algebras S 0 1,0 E satisfy (H1) and (H2) .

Estimates on the needed number of derivatives

In view of the results of the preceding sections, we can state the following which gives bounds on the number of derivatives needed for the Fefferman-Phong inequality to hold.

Theorem 5 Let a be a non negative function defined on R n × R n . Then, the Fefferman-Phong inequalities (1) and ( 2) hold if a satisfies one of the following conditions, with a constant C that depends linearly on the norm of a in the imposed space :

(i) ∂ α 1 ∂ β 2 a is in L ∞ (R 2n ) or L 2 ul (R 2n ) for 4 ≤ |α| + |β| ≤ n + 5. (ii) For |α| + |β| = 4, ∂ α 1 ∂ β 2 a is in B n+ (R 2n ) or H n+ ul (R 2n
), > 0, or in one of the other algebras of subsections 3.1 and 3.2.

(iii) For |α| + |β| = 4, ∂ α 1 ∂ β 2 a is in S 0 1,0 E where E is B n 2 + (R 2n ) or B , n 2 + (R n × R n ) or B σ (R 2n
) with σ = ( , ..., ; 1 2 + , ..., 1 2 + ), being an arbitrary positive number (see subsection 3.3).

(iv

) |∂ α x ∂ β ξ a(x, ξ)| ≤ C α,β ξ 2-|β| for |α| + |β| ≤ [ n 2 ] + 5. (v) a ∈ S 2 1,0 E with E = B n 2 +4+ (R 2n ). (vi) For |α| + |β| ≤ 4, ∂ α 1 ∂ β 2 a is in S 2-|β| 1,0 E where E is B , n 2 + (R n × R n ) or B σ (R 2n
) with σ = ( , ..., ; 1 2 + , ..., 1 2 + ), being an arbitrary positive number (see subsection 3.3).

Proof : Parts (i), (ii) and (iii) are consequences of Theorem 1 and Theorem 2 since all the considered algebras satisfy the assumptions (H1) and (H2) .

Here, we shall prove (v) and (vi), (iv) being a consequence of (v). The proof is an adaptation of that of Corollary 1.3.2 (i) of [START_REF] Lerner | On the Fefferman-Phong inequality and a Wiener type algebra of pseudodifferential operators[END_REF], and we refer to that paper for missing details. Let E stands for either

B n 2 +4+ (R 2n ), B , n 2 + (R n × R n ) or B σ (R 2n
) with σ = ( , ..., ; 1 2 + , ..., 1 2 + ). First, let us treat the case of Weyl quantization. If ϕ(ξ)

+ k≥0 ϕ 0 (2 -k ξ) = 1 is a dyadic partition of unity in R n , we can write Op w (a) = Op w (aϕ) + j≥0 Op w [a j (x, 2 -j ξ)],
where

a j (x, ξ) = a(x, 2 j ξ)ϕ 0 (ξ). Since aϕ is in S 0 1,0 E, it follows from Theorem 4 that Op w (aϕ) is bounded in L 2 (R n ). So, let us consider I j = (Op w [a j (x, 2 -j ξ)]v|v), j ≥ 0, v ∈ S(R n ).
By performing a simple change of variables in the integral defining I j , we can write

I j = (Op w (b j )v j |v j ),
where b j (x, ξ) = a j (2 -j/2 (x, ξ)) and v j (x) = v(2 -j/2 x)2 -jn/4 . It follows from the assumptions that, for |α|

+ |β| = 4, the functions ∂ α 1 ∂ β 2 b j (x, ξ) = 2 -2j ∂ α 1 ∂ β 2 a j (2 -j/2 (x, ξ
)) are bounded in E. This is not sufficient a priori for our goal. However, since they are supported in the annuli c 1 2 j/2 ≤ |ξ| ≤ c 2 2 j/2 , they are in fact bounded in S 0 1,0 E. Indeed, if χ ∈ D(R n \ 0) and λ ≥ 1, we have λ ∼ 2 j/2 on the support of the functions ∂ α 1 ∂ β 2 b j (x, λξ)χ(ξ); so that, applying Lemma 4 yields

||∂ α 1 ∂ β 2 b j (x, λξ)χ(ξ)|| E ≤ Cst sup j≥0 2 -2j ||∂ α 1 ∂ β 2 a j || E ≤ Cst β ≤β sup j≥0 2 (|β |-2)j ||(∂ α 1 ∂ β-β 2 a)(x, 2 j ξ) ∂ β ϕ 0 (ξ)|| E .
It follows from this and from the fact that b j is non negative (we use a non negative ϕ 0 , of course) that the Fefferman-Phong inequality holds for Op w (b j ). However, this is not sufficient to conclude since we have to sum constants and the v j are only bounded with respect to j. So, consider the operator B j = Op w (ψ j )Op w (b j )Op w (ψ j ) where ψ j (ξ) = ψ 0 (2 -j/2 ξ), ψ 0 ∈ D(R n \ 0) and ψ 0 = 1 in a (large enough) neighborhood of supp(ϕ 0 ). One can write, using the Weyl pseudodifferential calculus,

B j = Op w (b j ψ 2 j ) + R j = Op w (b j ) + R j ,
with some remainder operator R j . The reason for introducing the operator B j is that

j (B j v j |v j ) = j Op w (b j )ψ j (D)v j ψ j (D)v j ≥ j -Cst ||ψ j (D)v j || 2 L 2 = j -Cst ||ψ 0 (2 -j D)v|| 2 L 2 ≥ -Cst ||v|| 2 L 2 ,
and it is thus sufficient to prove that R j is bounded in L 2 (R n ) and that (||R j || L(L 2 ) ) j is a summable sequence. It follows from the Weyl calculus that R j = Op w (r j ) where r j is given by the following expression (see [START_REF] Lerner | On the Fefferman-Phong inequality and a Wiener type algebra of pseudodifferential operators[END_REF]) :

r j (x, ξ) = 2 n 8π 2 |α|=2 1 α! 1 0 (1 -t) e -4πyη ∂ α η [ψ j (ξ + η)ψ j (ξ -η)] ∂ α 1 b j (x + ty, ξ) dydηdt.
Clearly, on the support of r j (x, ξ), we have |ξ| ∼ 2 j/2 . Moreover, since the function ψ j (ξ + η)ψ j (ξ -η) is differentiated, we also have |η| ∼ 2 j/2 on the support of integration. Setting ψ 0 (ξ, η) = ψ 0 (ξ + η)ψ 0 (ξ -η), we see that r j (x, ξ) is a finite combination of the integrals

2 -2j 1 0 (1 -t) e -4πyη ∂ α 2 ψ 0 [2 -j/2 (ξ, η)] ∂ α 1 a j [2 -j/2 (x + ty, ξ)] dydηdt,
or, after some integrations by parts whose gains are some negative powers of 2 j , of the integrals

r j,α (x, ξ) = 2 -4j 1 0 (1-t) e -4πyη |2 -j/2 η| -2 ∂ α 2 ψ 0 [2 -j/2 (ξ, η)] ∆ 1 ∂ α 1 a j [2 -j/2 (x+ty, ξ)] dydηdt.
Now, the fact that ||Op w (r j,α )|| L(L 2 ) = ||Op w [r j,α (2 -j/2 x, 2 j/2 ξ)]|| L(L 2 ) , (see Lemma 6), suggests that we consider

r j,α (2 -j/2 x, 2 j/2 ξ) = 2 -4j 1 0 (1 -t) e -4πyη |η| -2 ∂ α 2 ψ 0 (ξ, η) ∆ 1 ∂ α 1 a j (2 -j x + 2 -j ty, ξ) dydηdt = 2 -4j 1 0 (1 -t) e -4πyη 4πy -2n D η 2n [|η| -2 ∂ α 2 ψ 0 (ξ, η)] ∆ 1 ∂ α 1 a j (2 -j x + 2 -j ty, ξ) dydηdt,
where we have performed the change of variables (y, η) → (2 -j/2 y, 2 j/2 η) and, then, integrations by parts. Hence, using the fact that E is an algebra which is translation invariant and Lemma 4, we obtain that r j,α (2 -j/2 x, 2 j/2 ξ) is in E and that

||r j,α (2 -j/2 x, 2 j/2 ξ)|| E ≤ Cst 2 -4j ||∆ 1 ∂ α 1 a j (2 -j x, ξ)|| E ≤ Cst 2 -4j ||∆ 1 ∂ α 1 a j || E ,
and, consequently,

||r j (2 -j/2 x, 2 j/2 ξ)|| E ≤ Cst 2 -4j ||a (4) j || E ≤ Cst 2 -2j sup k≥0 2 -2k ||a (4) 
k || E .

It remains to note that r j (2 -j/2 x, 2 j/2 ξ) has a support in ξ which is contained in fixed compact set and then to apply Lemma 5. The result is that

||R j || L(L 2 ) = ||Op w [r j (2 -j/2 x, 2 j/2 ξ)]|| L(L 2 ) ≤ Cst 2 -2j sup k≥0 2 -2k ||a (4) 
k || E , and this achieves the proof of the Fefferman-Phong inequality in the Weyl quantization case. The case of the standard quantization can be seen to be a consequence of Weyl quantization case. In fact, if A = [a(x, D) + a(x, D) ]/2, it follows from (6) that we can write

A = Op w (a)-R where R = π 2 2 1 0 (1-t)(Op (1-t)/2 (b)+Op (1+t)/2 (b))dt and b = (D x D ξ ) 2 a.
Clearly, b ∈ S 0 1,0 E and applying Theorem 4 yields the fact that R is a bounded operator in L 2 (R n ) and that its operator norm is estimated by Cst ||b|| S 0 1,0 E . This establishes the Fefferman-Phong inequality in the standard quantization case and, at the same time, completes the proof of Theorem 5.

Semi-classical estimates

One can also prove semi-classical Fefferman-Phong inequalities using an abstract setting. However, here, the algebra A has to satisfy the following additional assumption :

(H3) ∃C 1 > 0, ∀h ∈ [0, 1], ∀b ∈ A, ||b(hX)|| A ≤ C 1 ||b|| A .
The following results are consequences of those of section 2.

Corollary 1 Assume that A satisfies the assumptions (H1), (H2) (resp. (H2) ) and (H3).

(i) There exists a positive constant C such that, for all non negative functions a on R 2n such that a (4) ∈ A(R 2n ), and for all h ∈ [0, 1], we have

Op w [a(x, hξ)] + C h 2 ||a (4) || A ≥ 0, (resp. Re(a(x, hD)u|u) L 2 + C h 2 ||a (4) || A ||u|| 2 L 2 ≥ 0, u ∈ S(R n )). (ii)
There exists a positive constant C such that, for all non negative functions a h (x, ξ) on

R 2n , h ∈]0, 1], such that the functions (∂ α 1 ∂ β 2 a h )(x, ξ/h)h -|β| are bounded in A for |α|+|β| = 4, we have ∀h ∈]0, 1], Op w (a h ) + C M h 2 ≥ 0, (resp. Re(a h (x, D)u|u) L 2 + C M h 2 ||u|| 2 L 2 ≥ 0, u ∈ S(R n )), where M = sup{||(∂ α 1 ∂ β 2 a h )(x, ξ/h)h -|β| || A ; 0 < h ≤ 1, |α| + |β| = 4}. (iii)
There exists a positive constant C such that, for all non negative functions a

h (x, ξ) on R 2n , h ∈]0, 1], such that the functions (∂ α 1 ∂ β 2 a h )(xh 1/2 , ξh -1/2 )h -|β| are bounded in A for |α| + |β| = 4, we have ∀h ∈]0, 1], Op w (a h ) + C M h 2 ≥ 0, (resp. Re(a h (x, D)u|u) L 2 + C M h 2 ||u|| 2 L 2 ≥ 0, u ∈ S(R n )), where M = sup{||(∂ α 1 ∂ β 2 a h )(xh 1/2 , ξh -1/2 )h -|β| || A ; 0 < h ≤ 1, |α| + |β| = 4}.
Proof : One can check easily, using the (H3) assumption, that (iii) implies (ii) which implies (i). The proof of (iii) is formally the same as that of [START_REF] Lerner | On the Fefferman-Phong inequality and a Wiener type algebra of pseudodifferential operators[END_REF]. In fact, one has just to replace the Wiener-Sjöstrand algebra A 0 by the algebra A and, of course, to apply Theorem 1 (resp. Theorem 2). So, we refer to [START_REF] Lerner | On the Fefferman-Phong inequality and a Wiener type algebra of pseudodifferential operators[END_REF].

Taking, for example, A = B n+1 (R 2n ), we obtain the following Corollary 2 There exists a positive constant C such that, for all non negative functions a h on R 2n , h ∈]0, 1], such that

|∂ α 1 ∂ β 2 a h (x, ξ)| ≤ C α,β h |β| for h ∈]0, 1] and 4 ≤ |α| + |β| ≤ n + 5, we have ∀h ∈]0, 1], Op w (a h ) + C M h 2 ≥ 0, (resp. Re(a h (x, D)u|u) L 2 + C M h 2 ||u|| 2 L 2 ≥ 0, u ∈ S(R n )), where M = sup{C α,β ; 4 ≤ |α| + |β| ≤ n + 5}.
Proof : It is easily seen that a h satisfies the conditions of Corollary 1(iii). Moreover, the algebra B n+1 (R 2n ) satisfies the assumptions (H1), (H2) and (H3).

Remarks and further results

1. A natural question that can be raised is whether these upper bounds on the number of derivatives needed for the Fefferman-Phong inequality to hold are optimal. In fact, this is not quite clear for us. However, we can at least say that the bounds n+ and n 2 + concerning the number of derivatives needed for the L 2 boundedness of the involved pseudodifferential operators are optimal. See [START_REF] Coifman | Au delà des opérateurs pseudodifférentiels[END_REF], [START_REF] Boulkhemair | L 2 estimates for pseudodifferential operators[END_REF], [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF]. Furthermore, the "4" number of derivatives is reputed "to be optimal", and it would be a great achievement if one can reduce it. Roughly, one can say that the bounds are optimal with respect to the method of proof.

By using the same ideas, one can estimate the number of derivatives needed for the sharp G

• arding inequality to hold. The usual argument for proving this inequality is simpler of course than that needed to establish the Fefferman-Phong inequality, and even works for systems, that is, for matrices of symbols and operators. For example, if a is some function on the phase space such that a ∈ L ∞ , one can write Op wick (a) = Op w (a) + Op w (r) where r(X) = 2 n (1 -t)a (X + tY )Y 2 e -2πY 2 dtdY.

See [START_REF] Lerner | On the Fefferman-Phong inequality and a Wiener type algebra of pseudodifferential operators[END_REF]. Clearly, if a is non negative, a ∈ A and A is a subalgebra of L ∞ satisfying the assumptions (H1) and (H2), it follows from the positivity of the Wick quantization that Op w (a) + C||a (4) || A ≥ 0. Of course, the same is true for the standard quantization if A satisfies (H1) and (H2) . Here, one can even show that (H2) is not necessary and that it is enough to assume instead that a → a(x, D) is bounded from A to L(L 2 (R n )). Taking back the arguments developped in the preceding sections, one can prove, for example, that for a non negative symbol a on R 2n , we have 3. The Fefferman-Phong inequalities (that is, Theorem 1 and Theorem 2) also hold when A = S 0 , E where 0 < < 1 and E is one of the spaces B s (R 2n ) with s > n, B s,s (R n × R n ) with s > n 2 , s > n 2 , or B σ (R 2n ) with σ i > 1 2 , 1 ≤ i ≤ 2n, (or even the spaces obtained when B is replaced by H ul ). Here, the space S m , E, m ∈ R, is defined as the set of functions a : R n × R n → C such that (i) a(x, ξ)χ(ξ) is in E, for all χ ∈ D(R n ).

(ii) {λ -m a(λ -x, λ ξ) χ(λ -1 ξ); λ ≥ 1} is a bounded subset of E, for all χ ∈ D(R n \ 0). In fact, one can apply the same argument as that used above to check that the algebra A = S 0 , E satisfies the assumption (H1). The fact that A satisfies (H2) is already proven in [START_REF] Boulkhemair | L 2 estimates for Weyl quantization[END_REF]. The same property is proven in [START_REF] Boulkhemair | L 2 estimates for pseudodifferential operators[END_REF] in the case of the standard quantization. Now, the case of the t-quantization can be handeled similarly by the same methods. One obtains, for example, that the Fefferman-Phong inequalities (1) and (2) hold for the non negative function a on the phase space if it satisfies the estimates Such inequalities with symbols in the classes S 0 , E are to be compared with similar ones obtained by J.-M. Bony, [START_REF] Bony | Sur l'inégalité de Fefferman-Phong[END_REF], and D. Tataru, [START_REF] Tataru | On the Fefferman-Phong inequality and related problems[END_REF], under more or less different assumptions. However, those authors do not consider the limited regularity of the symbols as we do.

4. In the case of symbols of type (1,0), D. Tataru proved in [START_REF] Tataru | On the Fefferman-Phong inequality and related problems[END_REF] the sharp G • arding and the Fefferman-Phong inequalities with a limited regularity in the x variables by means of the FBI transform. He used 2 derivatives for the first one and 4 for the other one but did not limit the regularity with respect to the frequency variables. These are to be compared with Theorem 5 (vi) above which says that the Fefferman-Phong inequality holds if one uses 4 derivatives in (x, ξ) plus " " derivative in x and n 2 + derivatives in ξ. It is likely that, by doing a paradifferential decomposition of the symbol as did Tataru, one can remove the " " in the case of the x regularity.

•

  arding inequality. Using the Weyl quantization Op w (a)u(x) = R 2n

  Op w (a) + C ≥ 0, and Re(a(x, D)u|u)L 2 + C||u|| L 2 ≥ 0, u ∈ S(R n )), if ∂ α 1 ∂ β 2 aare bounded or locally uniformly in L 2 for |α| + |β| ≤ n + 1 or |α|, |β| ≤ [ x, ξ) are bounded for |α| + |β| ≤ [ n 2 ] + 3.

|∂ α x ∂ β ξ a ( 4 )

 4 (x, ξ)| ≤ C α,β ξ (|α|-|β|) for |α|, |β| ≤ [

  and only if Op t (a(x/λ, λη)) is, and we have ||Op t (a(x/λ, λη))|| L(L 2 ) = ||Op t (a)|| L(L 2 ) .

	Now, it remains to apply Lemma 5 in conjunction with Lemma 4 to obtain