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Abstract

We examine how the interference of a coherent light-pulse with its slightly time-delayed copy

may generate a pulse nearly identical to the original one and ahead of it. The simplicity of this

2-pulse system enabled us to obtain exact analytic expressions of the pulse distortion, valid for a

wide class of pulse shapes. Explicit results are given for the pulses usually considered (gaussian,

hyperbolic secant) but also for more realistic pulses of strictly limited duration. We finally show

that the efficiency of the 2-pulse system is comparable to that of the other superluminal systems,

at least for the pulse advancements actually demonstrated in the optical experiments.
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Although unambiguous demonstrations of the phenomenon have been achieved in the

1980’s [1, 2], the now called superluminal propagation of light pulses (fast light) still attracts

considerable interest. For reviews see, e.g., [3, 4, 5]. In an ideal experiment, the pulse

having covered some distance L in a linear medium with anomalous dispersion leaves it

with almost no change in shape, in significant advance of a pulse which would have covered

the same distance L at the velocity c of light in vacuum. As a matter of fact, the field

transmitted at some time t is not the consequence of the signal entering the medium at the

same time t but that of all the signals anterior to t by more than L/c and this puzzling

phenomenon is not at odds with the relativistic causality. It is now well recognised that the

superluminal propagation originates in a predominantly destructive interference between the

different frequency-components of the pulse, all propagating with velocities smaller than c

(see, e.g.,[6]). A similar mechanism occurs in systems involving a non-dispersive medium

when several modes or paths of light-transmission, with different propagation times, are

possible. The interference of the different transmitted pulses may then generate an output

pulse ahead of the fastest one among them and even in absolute advance of the input

pulse [7, 8]. This explains in particular the superluminal transmission of optical pulses

through a multilayer structure [9, 10] though, due the high multiplicity of possible paths,

the phenomenon is usually analysed in terms of evanescent waves (optical tunnelling). A

simpler and more direct demonstration of multiple-pulse interference is provided by the

recent experiment involving a fibre taper coupled with a microsphere [11]. The output

pulse then results from the interference of the pulses transmitted by the taper after having

achieved n roundtrips (0 ≤ n < ∞ ) inside the sphere (whispering-gallery mode). In order

to examine how a time-delay can originate a time-advancement, we examine in this paper

the still simpler situation in which only two pulses interfere (2-pulse systems). This occurs

in particular in birefringent media where the light can propagate at two different velocities.

Superluminality has then been inferred from phase measurements by Solly et al. [12] and

directly demonstrated by Brunner et al. [13].

The causality principle fixes a strong link between the transmission-delay of a linear

system and its gain profile [5, 14, 15, 16]. The largest superluminal effects are generally ex-

pected when the frequency ω0 of the optical carrier coincides with a well-marked minimum

of gain. In the present case this is actually achieved when the 2-pulse interference is predom-

inantly destructive, as indicated before. The relation between the slowly-varying envelopes
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of the incident and output pulses ein(t) and eout(t) reads then eout(t) = Aein(t)−Bein(t− τ)

with A > B > 0 and τ > 0. The coefficient A (B) is the amplitude-gain for the fast

(slow) pulse and τ is the delay of the slowest pulse with respect to the fastest one (t is

thus a local time). Finally the 2-pulse system can be characterised by its impulse re-

sponse h(t) = Aδ(t) − Bδ(t − τ) or, in the frequency domain, by its transfer function

H(Ω) = A−B exp(−iΩτ), where Ω is the deviation of the current optical frequency ω from

ω0. Our definitions and sign conventions are those used in signal theory [17]. The phase

shift ϕ(Ω) = arg [H(Ω)] and the amplitude-gain |H(Ω)| are respectively odd and even pe-

riodic functions of Ω , the latter oscillating between m = A − B (its value for Ω = 0) and

M = A + B (constructive interference). Fig.1 shows the frequency dependence of |H(Ω)|
and of ϕ(Ω) in a case taken as reference in the following.
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FIG. 1: Amplitude-gain |H(Ω)| (full line) and phase shift ϕ(Ω) (dashed line) of the 2-pulse system

as a function of the detuning Ω = ω − ω0 , for M = 7.4 and m = 0.89. The frequency unit is 1/τ .

The spectrum of a gaussian pulse of duration τp = 13τ is given for reference (dotted line).

Some light on the superluminality mechanism is obtained by doing a Taylor series expan-

sion of eout(t). At the first order in τ , we get

eout(t) ≈ (A − B)ein(t) + (−B)(−τ)
dein(t)

dt
≈ m

[

ein(t) + a1
dein(t)

dt

]

(1)

with a1 =
[

M
m

− 1
]

τ
2
. This leads at the first order in a1 to eout(t) ≈ mein(t + a1) and

H(Ω) ≈ m exp(iΩa1). Despite their apparent roughness, the previous approximations are

exactly those currently used to define the group velocity. a1 is nothing but the group time-

advancement dϕ/dΩ|Ω=0 and is actually positive since the negative signs associated with

the time-delay τ of the slow pulse and with the destructive interference compensate one
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another (see the intermediate form in Eq.1). At this order of approximation, the output

pulse has the same shape that the input pulse, is m times larger and is ahead of the fastest

transmitted pulse by a1. The approximation will be good if m exp(iΩa1) is itself a good

approximation of the exact transfer function on the entirety of the pulse spectrum. This

requires (at least) the time-delay τ to be small compared to the duration τp of the pulse

(hereafter the full width at half maximum of its intensity profile). The examination of the

expression of a1 then shows that group advancements comparable to the pulse duration can

be attained only if the maximum gain M is large compared to the gain m at the frequency

ω0 of the optical carrier. This property is common to all the superluminal systems [18]. In

purely passive (not amplifying) optical systems M ≤ 1 and the condition M/m >> 1 is

only met when m << 1. A large post-amplification (often not explicitly mentioned) is then

required to normalise the amplitude of the output pulse. Conversely some post-attenuation

may be required in active systems to obtain m ≈ 1 [19]. In both cases the device achieving

the normalisation of the output pulse should be considered as a part of the superluminal

system and the gains considered in the following (as well as in Fig.1) are those of the overall

system. Note however that the double condition M >> m ≈ 1 can be met in all-optical

systems, for example in an amplifying medium with a dip in its gain-profile, as proposed in

[16] and demonstrated in [20].

Superluminal effects are always accompanied by some pulse distortion. The distortion

is negligible only when the spectrum (duration) of the input pulse is very narrow (long)

but the fractional advancement is then also negligible. Although this point is often not

addressed, the real challenge is to attain significant fractional advancements with moder-

ate pulse distortion. The latter is conveniently characterised by the root-mean-square (rms)

deviation D of eout(t) from the ideal advanced form ein(t+a) , where a is the aimed advance-

ment. By normalising the energy of the input pulse (
∫ +∞

−∞
|ein(t)|2 dt = 1), D is reduced to

D =
(

∫ +∞

−∞
|eout(t) − ein(t + a)|2 dt

)1/2

. Minimising the distortion is in general a formidable

problem without analytical solution [18]. The 2-pulse system considered here is probably

the only system for which exact analytical results can be obtained. For sake of simplicity,

we assume that ein(t) is real (no chirping). eout(t) is then also real and D depends on the

pulse shape only via p(τ), p(a) and p(a + τ), where p(t) =
∫ +∞

−∞
ein(t + θ)ein(θ)dθ is the

autocorrelation of ein(t) [17]. Recall that p(t) is an even function of t, has its maximum

(equal to 1) for t = 0, and is the inverse Fourier transform of the energy spectrum of ein(t).
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For given delay τ and advancement a, simple calculations show that D attains a minimum

Dmin(a, τ) =

√

1 − p2(a) + p2(a + τ) − 2p(τ)p(a)p(a + τ)

1 − p2(τ)
(2)

when M = p(a)−p(a+τ)
1−p(τ)

and m = p(a)+p(a+τ)
1+p(τ)

. The distortion only cancels in the trivial case

a = 0. We have then M = m = 1 , that is A = 1 and B = 0 (no interference). For a > 0,

the minimum distortion is attained for m < 1 and the group advancement a1 generally

differs both from a and from the advancement am of the pulse maximum. It keeps however

a physical meaning. A simple application of the so-called moment theorem in signal analysis

[17] indeed shows that a1 is the advancement of the centre-of-gravity of the pulse envelope, as

large as the distortion may be [16]. If ein(t) is continuous, the derivatives p(n)(t) = dnp/dtn

of p(t) are continuous up to n = 2 and the distortion has an absolute minimum Damin when

τ → 0. It reads

Damin(a) =

√

1 − p2(a) +
[p(1)(a)]

2

p(2)(0)
(3)

where p(2)(0) < 0. At this limit, m = p(a), a1 = p(1)(a)

p(a)p(2)(0)
and M = 2p(1)(a)

τp(2)(0)
. The latter

expression shows that, for a given advancement, the lowest distortion is attained when the

maximum gain M of the system tends to infinity. When M is large but finite, we easily get

D2
min(a, M) ≈ D2

amin(a) +
2
[

p(1)(a)
]2

Mp(2)(0)

[

p(2)(a)

p(2)(0)
− p(a)

]

(4)

that is Dmin(a, M)/Damin(a) = 1 + O(1/M). The asymptotic limit Damin can thus be ap-

proached for moderate values of M . The above results are valid under the unique assumption

that the pulse envelope ein(t) is continuous. Since discontinuities in dein/dt may originate

strong transients in the output pulse (see, e.g., Fig.3 in [21]), we will now consider the usual

case of bell-shaped envelopes, the derivative of which is continuous. The autocorrelation p(t)

is then also bell-shaped, its derivatives p(n)(t) are continuous up to n = 4 and it is possible

to obtain approximate expressions of Damin, m and a1/a valid at the 2nd order in a. They

read Damin(a) ≈ a2

2

√

p(4)(0) − [p(2)(0)]
2
, m ≈ 1+p(2)(0)a2

2
and a1

a
≈ 1+ a2

2

[

p(4)(0)

3p(2)(0)
− p(2)(0)

]

.

At this level of approximation, the distortion is mainly due to the frequency-dependence of

the gain (Fig.1), which originates a broadening of the pulse spectrum and thus a narrowing

of the pulse itself [16]. Due to the pulse-area-conservation theorem [22], this narrowing is

accompanied by a pulse magnification and this explains why the rms distortion is minimised
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when the gain m at Ω = 0 (that is at the centre of the pulse spectrum) is slightly smaller

than unity.

The previous results apply to a wide class of pulse shapes. We first consider the

gaussian pulses, the most popular ones in the literature on superluminality. We write

their envelope under the form ein(t) ∝ exp(−t2/2), such that τp = 2
√

ln 2 ≈ 1.67

and p(t) = exp(−t2/4). We then get Damin(a) =
√

1 + (1 + a2/2) exp (−a2/2) and and

a1 = a. Note however that the common value of a1 and a differs from the advance-

ment am of the pulse maximum. The latter is easily determined from the expression

of eout(t) and reads am =
(

√

1 + 4a2
1 − 1

)

/2a1. At the 2nd order in a, we finally get

Damin(a) ≈ a2/2
√

2 ≈ 0.98 (a/τp)
2 with m ≈ 1 − a2/4 and am/a ≈ 1 − a2.

As a second example we consider the classical hyperbolic-secant pulses (sech-pulses)

ein(t) ∝ 1/ cosh t, such that τp = 2 arg cosh(
√

2) ≈ 1.76 and p(t) = t/ sinh t. We then

get Damin(a) =

√

1 −
(

a
sinha

)2
[

3
(

coth a − 1
a

)2
+ 1

]

and a1 = 3 (coth a − 1/a) 6= a , that is,

in the 2nd order approximation, Damin ≈ 2a2/3
√

5 ≈ 0.93 (a/τp)
2 , with m ≈ 1 − a2/6 and

am/a ≈ 1 − a2/15.

Contrary to the analytical pulses above considered, the pulses actually used in the ex-

periments have obviously a strictly finite duration and their envelope has thus at least two

points of non-analyticity. There is then an unavoidable distortion due to the fact that, in

our local time picture, the output signal cannot anticipate the beginning and the end of the

input signal. Moreover, when M is very large, these points of non-analyticity may generate

strong transients in the output pulse [21], reinforcing the distortion. All that occurs even if

the envelope of the input pulse is quasi-gaussian. In the sequel we will take as reference the

”cos-pulses” of envelope ein(t) ∝ (1+cos t), for |t| < π and ein(t) = 0 elsewhere (total width

2π). They are such that τp = 2 arccos(
√

2 − 1) ≈ 2.29, p(t) = 2+cos|t|
3

(

1 − |t|
2π

)

+ sin|t|
2π

for |t| < 2π and p(t) = 0 elsewhere. We now get Damin(a) =
√

1 − p2(a) − 3f 2(a),

a1/a = 3f(a)/ap(a) 6= 1 and am = arctan(a1), with f(a) =
(

1 − a
2π

)

sina
3

+ 1−cos a
3π

. At

the 2nd order in a, these expressions read Damin ≈ a2/3
√

2 ≈ 1.23 (a/τp)
2, a1/a ≈ 1 and

am/a ≈ 1−a2/3, with m ≈ 1−a2/6 . We observe that, for moderate fractional advancements

a/τp, the distortion of the cos-pulses in the 2-pulse system is not much larger than that of

the standard gaussian pulses. Note that, in both cases, the advancement am is smaller than

the group advancement.

As indicated before (see Eq.4), the asymptotic limit Damin can be approached for reason-
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able values of the maximum amplitude-gain M . For further comparisons, we consider the

case a/τp = 0.32 and M = 7.4. The corresponding gain and phase profiles are those of Fig.1.

The distortion remains moderate (14%), exceeding its absolute minimum Damin only by a

factor 1.25. We compare Fig.2 the envelope eout(t) to its ideal form ein(t + a). As expected,
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FIG. 2: Envelopes ein(t) of the input cos-pulse and eout(t) of the output pulse in the 2-pulse

system for a/τp = 0.32 and M = 7.4 (full line). The ideally advanced envelope ein(t + a) is given

for comparison (dotted line). The time unit is the duration τp of the input pulse.

one can see large deviations at the beginning and the end of the input pulse. Occurring

in the pulse pedestal, these features are obviously much less apparent on the correspond-

ing intensity-profile (Fig.3), which is the profile usually observed in the optical experiments.

Apart from a slight overshot at the end, the profile of the output pulse is comparable to that

obtained with an input gaussian pulse of same duration. In both cases, the main distortion

consists in a narrowing of the pulse, resulting in different advancements on its fall and on

its rise.

In the abundant literature on superluminality, one finds few direct demonstrations of

significant pulse-advancements (say a > τp/10) with moderate distortion [2, 11, 19, 23, 24,

25, 26, 27, 28, 29]. Indeed, problems of noise, of instability and of hypersensitivity to small

defects in the input pulse severely limit the maximum gain M which can be actually used

in the experiments (keep in mind that we include in the system gain that of the device

eventually used to normalise the output pulse, so that m / 1 in the moderate distortion

limit). In our experiment at a wavelength λ ≈ 3 mm [2], we succeeded in using M ≈ 160. In

the optical domain, quantum effects (amplified spontaneous emission, detection noise, etc)

[30] further reduce the gains actually usable and, to our knowledge, all the experiments have

been achieved with M < 10 (amplitude gain). Due to these restrictions on the maximum
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FIG. 3: Normalised intensity-profiles corresponding to the pulse envelopes ein(t) and eout(t) of

Fig.2 (full line). The profiles obtained with a gaussian pulse of same duration τp are given for

reference (dashed line).

gain, the efficiency of a superluminal system may be defined as its ability, M being given,

to attain a fractional advancement a/τp as large as possible with a moderate distortion. The

acceptable distortion obviously depends on the advancement, very small when the fractional

advancement is itself very small [31] and the larger the larger a/τp is. In the following we

retain as acceptable the distortion observed in our reference case (Fig.2 and Fig.3), namely

D ≈ 0.45a/τp . Fig.4 shows the fractional advancements a/τp attained in this way for various

values of M ranging from 1 (no advancement) to 20. The advancement actually measured

0.5

0.4

0.3

0.2

0.1

0.0

a 
/τ

p

1 10
Maximum Gain (M)

FIG. 4: Fractional advancement a/τp attainable with an acceptable distortion (see text) as a

function of the maximum gain M (including the gain of the normalisation device). The input pulse

is a cos-pulse. The full (dotted) line and the full (open) circles relate to the 2-pulse (single-dip)

system.

in the experiments is the advancement am of the pulse maximum (am < a) and the most

accessible parameter is the contrast Tmax/T0 between the maximum intensity-transmission
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of the optical device and its value at ω0. Since Tmax ∝ M2 and T0 ∝ m2, we obviously have

Tmax/T0 = M2/m2 ' M2. The dependence of am/τp on Tmax/T0 is shown Fig.5.
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a
m

 /
τ

p

1 10 100
Tmax / T0

FIG. 5: Fractional advancement am/τp of the pulse maximum as a function of the ratio Tmax/T0

of the maximum intensity-transmission of the optical system over its value at the centre of the

pulse spectrum. The input pulse is a cos-pulse. The full (dotted) line and the full (open) circles

relate to the 2-pulse (single-dip) system.

For comparison consider now the superluminal systems having demonstrated the most

striking fractional advancements [2, 11, 19, 23, 24, 25, 26, 27, 28, 29]. Most involve an

homogeneous medium, the transmission curve of which has a dip at the frequency ω0. The

dip may be natural [2, 24] but is often induced by an additional light field [25, 26, 27, 28, 29]

(which unfortunately may also induce extra noise). Using our general conventions, H(Ω) =

M exp
(

− Z
1+iΩ/γ

)

is generally a good approximation of the transfer function of these single-

dip systems. In this expression Z is the field optical-thickness associated with the dip

and γ is the width of the corresponding line, assimilated to a Lorentzian [16]. The group

advancement, the amplitude gain at Ω = 0 and the intensity-contrast Tmax/T0 respectively

read a1 = Z/γ, m = M exp(−Z) and Tmax/T0 = exp(2Z). The distortion can easily be

expressed in the frequency domain by means of the Parseval’s theorem [17]. We get [16]

D =
√

∫ ∞

−∞
|H(Ω) − exp(iΩa)|2 |Ein(Ω)|2 dΩ/2π where Ein(Ω) =

∫ ∞

−∞
ein(t) exp(−iΩt)dt is

the Fourier transform of ein(t). M and a being fixed, the parameters Z and γ are adjusted in

order to minimise the distortion. This is efficiently achieved by means of a genetic algorithm

[32]. Rapid convergence is obtained by exploring values of Z and γ close to those giving

m = 1 and a1 = a, that is Z = lnM and γ = ln M/a. For each value of M , the fractional

advancement a/τp is calculated by a dichotomy method: (i) Choose 0 < a/τp < 1 (ii)

Minimise D by the genetic algorithm (iii) If Dmin is too large (small), decrease (increase)

9



a/τp. Go to (i). We stop the calculation when Dmin equals the acceptable distortion within

0.1% and we determine the corresponding advancement am of the pulse maximum. Fig.4

(Fig.5) shows a/τp (am/τp) as a function of M (Tmax/T0) [33]. Comparing the advancements

am attained with the 2-pulse system and with the single-dip system, we see that the former is

only 22% smaller than the latter for the largest ratio Tmax/T0 actually involved in an optical

experiment (Tmax/T0 ≈ 100). In most experiments Tmax/T0 < 10 and the two advancements

are nearly equal. Conversely the single-dip system would be much more efficient if ratios

Tmax/T0 >> 100 could be used. Quite similar results are obtained by considering the other

superluminal systems having demonstrated significant fractional advancements, in particular

the periodic fibre Bragg gratings [23], the taper coupled with a microsphere [11] and the

doublet of gain lines [19]. A better efficiency is expected from a doublet of absorption lines

[16, 34] but, to our knowledge, this system has not been actually used.

To summarise, we have studied the superluminal system involving the predominantly

destructive interference of a pulse with a time-delayed copy. Due to the simplicity of this

system, we have succeeded in obtaining exact analytical expressions of the distortion. Finally

we have shown that, despite its simplicity, this system permit to observe superluminal effects

comparable to all those which have been actually demonstrated in optics.

Laboratoire PhLAM is Unité Mixte de Recherche de l’Université de Lille I et du CNRS

(UMR 8523). CERLA is Fédération de Recherche du CNRS (FR 2416).
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