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Abstract

This article introduces a new generalization of the modular decom-
position called the bi-join decomposition. Like the split decomposition,
it is an application of bipartitive families that are presented here. We
show that the bi-join decomposition is unique, can be computed in lin-
ear time, and we give several characterizations for graphs completely
decomposable by this decomposition.

1 Introduction

Graph decompositions are widely used in graph algorithms and graph the-
ory. Among many well-known examples this paper deals with the modular
decomposition, and one of its generalization, namely the split decomposition.
Both correspond to a decomposition tree, whose leaves are the graph vertices
and whose internal nodes correspond to decomposition operations. When
the degree of the tree is bounded, some NP-hard problems can be solved
in linear-time using induction on the tree [16]. Modular decomposition has
been studied for a long time and can be computed in linear time [7, 15]|.
Some properties of the modular decomposition extend to the split decompo-
sition, including unicity [8] and linear-time computation of the decomposition
tree [11].

For a decomposition D we say that a graph G is completely decompos-
able if every subgraph (large enough, i.e with at least four or five vertices,
depending on the decomposition) admits a non-trivial decomposition, and
on the other side G is prime if it admits no non-trivial decomposition. The
class of cographs is the class of graph completely decomposable by the mod-
ular decomposition [5]. The corresponding class for the split decomposition



is the class of distance hereditary graphs [13]. Several characterizations are
known for the class of cographs [5], and for the class of distance hereditary
graphs [2, 13|, including a characterization by forbidden subgraphs and by
vertex extensions.

The bi-join decomposition is, like the split decomposition, an application
of the bipartitive families that are presented here. Like [4] generalized mod-
ular decomposition to partitive famailies, set families with the same closure
properties than module family, the bipartitive families are families of par-
tition of a set in two classes that respect some closure properties. Similar
results were found by [8, 9|, working on extending split decomposition, but
using a different formalism than the one presented here.

In this paper, we define bipartitive families and we show that they can be
uniquely represented by a unrooted tree. We introduce a new generalization
of the modular decomposition called the bi-join decomposition. We show
that it leads to a decomposition tree, using the bipartitive families algebra.
Finally we characterize the completely decomposable graphs, and we give a
linear-time decomposition algorithm.

2 Graph decomposition background

2.1 Basic definitions

A graph is a pair G = (V, E). We only consider finite undirected graphs
without loop and without multiple edges. Let n = |V| and m = |E|. We
denote by Ng(v) ={u € V : {u,v} € E} the neighborhood of v in G and by
Ng[v] = Ng(v) U {v} its closed neighborhood, and by dg(v) = |Ng(v)| the
degree of v in G. We shall write N (v), N[v] and d(v) if there is no ambiguity.
Given V! C V, G[V'] = (V',{{u,v} € E : u,v € V'}) is the subgraph of G
induced by V'. We denote by G — V' = G[V \ V'] the subgraph induced by
V\V'and, if v € V, we write G — v instead of G — {v}. We say that a graph
is H-free if it does not have H as induced subgraph, and (Hy,...,Hy)-free if
it is H;-free for all ¢ € {1,...,k}.

A path between v; and vy in a graph is a sequence of vertices (vy,. .., vk)
such that for all ¢ € {1,...,k — 1}, {v;,vis1} € E. k is the length of the
path. A path is chordless if for all 0 < i < j < k, {v;,v;} € E if and only
if i = j — 1. A cycle in a graph is a sequence of vertices (vi, ..., vx) such
that {vy,vx} € E and for all i € {1,...,k — 1}, {v;,vi11} € E. A cycle is
chordless if for all 0 < i < j <k, {v;,v;} € Eifandonlyifi=j—-1ori=1
and j = k. An hole is a chordless cycle with at least 5 vertices. Figure 1
show some graphs discussed in this paper.
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Figure 1: Some graphs

A graph is connected if there is a path between u and v for all vertices u
and v. A tree is a connected graph without cycles. We shall denote vertices
of tree by nodes. A node in a tree is a leaf if its degree is at most one, and
is an internal node otherwise. A rooted tree T = (V, E) is a tree with a root
r € V. For all u # r, the parent of v in T is the unique v such that v is
adjacent to u, and v is on the path between u and r. A neighbor w of u
which is not the parent of u is a child.

Let u be a vertex of G. u is a pending vertex of v if N(u) = {v}, a false
twin of v if N(u) = N(v) and a true twin of v if N[u| = N[v]. An extension
of a graph G at a vertex u adds to G' a new vertex v that can be twin of u
or pending at u.

2.2 Modular decomposition

A module M of a graph G = (V, E) is a non-empty set of vertices such that a
vertex v ¢ M is adjacent either to all vertices of M or to none of them. Every
singleton {v} and the vertex set V' are modules of any graph, called t¢rivial
modules. A graph is prime w.r.t modular decomposition if all its module are
trivial. On the other side, a graph is completely decomposable w.r.t modular
decomposition if every induced subgraph of at least 3 vertices contains a non-
trivial module. The following theorem give several characterizations of the
class of cographs.

Theorem 1. [5]. The following propositions are equivalent:

~

G s a cograph.

2. G is completely decomposable w.r.t. modular decomposition.
3. G 1s Py-free.
4

. For every subgraph H of G, either H or its edge-complement H are not
connected.

5. G can be obtained from a single vertex by a sequence of extensions by
a true twin or a false twin.



Two set A and B overlap if none of A\ B, B\ A, and AN B is empty.
A strong module is a module that does not overlap any other module. Given
two strong modules, either they do not intersect or one of them contains
the other one. Thus, the strong modules can be ordered into a tree by the
inclusion relation. This tree is called modular decomposition tree. Its root
is the strong module V', and its leaves are the n singletons {v}. Since every
internal node has at least two sons, the tree has less than n internal nodes,
and thus there are at most n — 2 non-trivial strong modules in a graph.

The sons of a strong module M are the sons of M in the modular decom-
position tree; in other words they are the largest strong modules included in
M. According to [4], a strong module is complete if it has two sons A and
B such that AU B is a module, and otherwise is prime. [4, 16] made that
fundamental observation:

e Every union of sons of a complete module is a module.

e Every module is either strong or is the union of some sons of a complete
module.

The modular decomposition is the family of all modules of a graph [16].
There can be up to 2" modules in a graph (for instance, in the complete
graph) but the modular decomposition tree allows to store them in O(n)
space, using the fundamental observation above. This result is more formally
established in 3.1.

2.3 Split Decomposition

In a graph, there is a complete join between A C V and B C V if every
vertex of A is linked with every vertex of B. A bipartition of a set V is
an (unordered) pair {Vi,V2} such that Vi # 0, Vo # 0, ViNV, = () and
ViuVy, =V. A split in a graph G = (V, E) is a bipartition {V},V,} of V
such that there exists W; C Vi and W5 C V5 with a complete join between
W, and W5, and with no other edges between V; and V5. If X is a module
then {X,V \ X} is a split, and thus the splits are proper generalizations of
modules. A split is trivial if |[V3| =1 or V| = 1. A graph G is prime w.r.t.
split decomposition if all its split are trivial, and is completely decomposable
w.r.t. split decomposition if every induced subgraph of G with at least four
vertices admits a non-trivial split.

The following theorem give several characterization of the class of distance
hereditary graphs.

Theorem 2. [2, 13] The following propositions are equivalent:
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1. G s a distance hereditary graph.

2. G is completely decomposable w.r.t. split decomposition.

3. all chordless paths between any two vertices of G have the same length.
4. G is (house,hole,domino,gem)-free.

5. G can be obtained from a single vertexr by a sequence of extensions by
a true twin or a false twin or a pending verter.

There may be up to 2" splits in a graph but, as we will see in 3.2, an
unrooted tree can store them in O(n) space. This less known result can be
deduced from |9] and rests on the notion of strong splits.

3 Set families and bipartition families

3.1 Partitive families

We denote by XAY the set (X \Y)U (Y \ X).

Definition 3. Let V be a set. A family F of subsets of V' is a rooted tree-like
family if:

1.0 g Fand V € F,
2. forallv eV, {v} e F,
3. for all X and Y in F, X and Y do not overlap.

The inclusion tree of a rooted tree-like family is a rooted tree T" with node
set F, with root V and edge set {{X,Y} : X C Y and there isno Z € F
such that X C Z C Y}

Definition 4. Let V be a set. A family F of subsets of V' is partitive if:
1.0 g Fand V € F,
2. forallv eV, {v} e F,
3. for all X and Y in F such that X and Y overlap, then

e XNY e F,
e XUY € F,
e X\Y eF,



e Y\ X € F and
o XAY e F.

Note that a rooted tree-like family is a partitive family. A member X
of a partitive family F is strong if there is no member Y € F such that
X and Y overlap. The strong members of a partitive family form a rooted
tree-like family. The following theorem show that the inclusion tree of the
strong members of a partitive family can be used as a representation of all
members of the family:

Theorem 5. [}/ Let F be a partitive family and let T be the inclusion tree of
the strong members of F. The nodes of T can be labeled complete or prime
i such a way that:

e cvery union of children of a complete node is a member of F

e for all member X of F which is not strong, there is a complete node a
such that X s a union of children of .

We call this tree the representative tree of the family. As seen before,
the modules of a graph form a partitive family, and the representative tree
of such a family is called modular decomposition tree. An other example is
given by the disjunctive decomposition of switching functions [1].

3.2 Bipartitive families

Two bipartitions of V' {Vi, V,} and {V3, V4} overlap if the four sets Vi N Vi,
Vo Vs, ViNV, and Vo NV, are nonempty. A bipartition {V3, V5} is trivial if
Vil =1or V| = 1.

Let T = (V, Er) be a tree with leaf-set V' C Vi, and e an edge of 7.
T' = (Vr, Er\{e}) has two connected components T} and T?2. For i € {1, 2},
let C” be the set of nodes in T! which are leaves in T. Every edge e of T thus
defines a bipartition {C!, C?} of V. Let a be an internal node of T. T — «

has d(c) connected components T2, ..., Te®_ For all i € {1,...,d(a)}, we

denote by C? the set of nodes in T¢ which are leaves in T.. {C.,..., Ci“’)}
is a partition of V.

Definition 6. Let V' be a set. A family F of bipartitions of V' is a unrooted
tree-like family if:

1. {0,V} ¢ F
2. forallv e V, {{v},V \ {v}} € F,
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3. two bipartitions of F do not overlap.

A bipartition tree of a unrooted tree-like family is a unrooted tree 7T
with leaf set V' such that for each bipartition {V;,V2} of F there is an edge
e of T such that C! = Vi and C? = Vj, and conversely for every edge e
{Cc},C?} e F.

Lemma 7. Let F be a unrooted tree-like family with bipartition tree T', and let
{V1,Va} be a bipartition of V' such that {V1,Va} does not overlap any member
of F. Then there is a unique node o of T such that for all a € {1,...,d(a)},
CeC Vi orCoCVs.

Proof. Let e = {,7} be a edge of T. By definition {C},C?} € F. {V1,Vs}
does not overlap {C¢, C?}, thus there is z,y € {1,2} such that C* NV, = 0.
W.lo.g. suppose that x = 1, and that S is the node such that there is
aa € {1,...,d(B)} with C§ = C? (so there is a b € {1,...,d(y)} with
C’f; = C!). Let us direct e from 8 to 7. Every edges of T can be directed in
such a way.

Let f be a edge of T on the C! side (nearer from 3 than from 7). Tt
corresponds to a bipartition {C}, C%} of F. There exists z € {1, 2} such that
Ci C Cl, therefore cinV, = (). The edge f is thus directed toward 3.

We proved that in the directed tree, for every two directed edges e and f,
if e is directed in the direction opposed to f then f is directed toward e. T
is thus a directed intree and admits an unique root « which has the desired
property. [

Theorem 8. Fach unrooted tree-like family admits one and only one bipar-
tition tree

Proof. We construct the bipartition tree using induction on the non-trivial bi-
partitions. Let F be a unrooted tree-like family and {V',V3'}, ..., {VF, VF}
be its non-trivial bipartitions. For each 0 < i < k let F; be the family con-
taining the trivial bipartitions plus bipartitions {V;', V}'}, ..., {V{, Vi}. Tt is
clearly an unrooted tree-like family. We construct recursively the bipartition
tree T; of F;.

The trivial unrooted tree-like family F; contains just the trivial bipar-
tition; its partition tree 7, is a star with n leaves and one central node.
Suppose that T; is a bipartition tree of F;. Lemma 7 says that there is a
unique node « in 7; such that for all a € {1,...,d(a)} there is b € {1,2}
such that C? is included in V;f“. Then the tree T;,, is built from 7; by
splitting this node « into two new nodes : «; contains the parts C? that are
included in V;""! and o, the parts included in V; ™. The two nodes are linked



by an edge e and we have {V;*', V3*'} = {C],C?}. Then Tj4; is uniquely
determined from 7; and {V;*, V/t1}. At least, T} is the bipartitive tree of

Fi, = F and is unique. 0
c d c d
b o b f
a g f = a e g

Figure 2: Left : bipartition tree for the family with non-trivial strong mem-
bers {ab,cdefqg} and {abefg, cd}. Right : non-trivial member {abcde, fg} is
added. Notice there is exactly one edge per strong members, including the
trivial ones.

Furthermore, the proof above can lead to a O(kn)-time algorithm that
builds the bipartition tree: at each insertion of a new bipartition, the node
« can be identified by marking all leaves from V"' and recursively marking
every internal node whose all sons excepted one are marked. When no more
node can be marked, if only one vertex is neighbor of both marked and un-
marked nodes, then it is split into its marked and unmarked neighbours. And

if many vertices are in that case, then {Vfﬂ, V;“} overlaps some previously

inserted bipartition: the algorithm is robust.

Definition 9. Let V be a set. A family F of bipartitions of V' is bipartitive
if:

L {0, v}i¢7F,
2. forallv eV, {{v},V\{v}} € F,
3. for all {X1, X5} and {Y3,Y5} in F such that {X, X5} and {¥}, Y3}
overlap, then
o {X1NY,X5UYs},
o {XiNYy, XUV},
o {XoNYy, X1 UYo},
e {XyNYy, X;UY;} and
L] {XlAYl’XlA}/Q} are in F.



A member {X7, X5} of a bipartitive family F is strong if there is no
member {Y7, Y5} € F such that {X;, Xo} and {Y7, Y5} overlap. Note that the
trivial bipartitions are strong. The strong members clearly form a unrooted
tree-like family.

Let T be a partition tree. For each node « with degree k and each ) C I C
{1,...,k}, o and I define the bipartition {V;,V \ V;} where V; = J,; C%.
Let B(T, ) be the family {{V;, V' \ Vi}}ocrcqi,..xy of all possible bipartition
get by splitting node a.

The following theorem can be found in [8, 9|, written using a differ-
ent formalism (the simple decomposition paradigm instead of bipartitions
paradigm). We prove it here more concisely.

Theorem 10. Let V' be a set and F be a bipartitive family of subsets of V,
and let T be the partition tree of its strong bipartitions. The nodes of T can
be labeled complete or prime such that:

1. every bipartition of F is either strong or belongs to B(T, «) for some
complete node o of T.

2. for every complete node « of T, B(T, o) C F

Proof. Let S(F) be the subfamily of strong bipartitions of F and T its bi-
partition tree.

1. Let B be a bipartition of F that is not strong. B overlaps no bipartition
of S(F) since every member of S(F) is strong. According to Lemma 7 there
is a unique node « of T such that B belongs to B(T, «).

2. Let a be a complete node of T and {C%.}ic1..4(a); the partition of V
that the connected components of 7" — « induce.

For short we will denote B(I), with I C {1,...,d(«)}, the bipartition
{V1,V\ V;} where V; = |J,., C?, and for few indices note B(3,7) instead of

B({i,j})-
Claim. For each i,5 € {1,...,d(a)}, B(i,j) € F.

el

Proof. First let us suppose that there exists no I C {1,...,d(«)} such that
i€, j€land B(I) € F. Let us consider the family F' = {I,..., I}
such that for all 1 < j <k, I; C {1,...,d()}, and ¢ € I;, and B(I;) € F.
Since « is complete there exists at least one B(ly) € F. If i ¢ I, take
L ={1,...,d(a)}\ In: B(I) = B(Ip). F is therefore not empty.

Let F' be the subfamily of F' containing elements of F' maximal w.r.t.
inclusion. Two elements I; and I, of F’ overlap, therefore according to Def-
inition 9, B([; U Iy) € F. Let I' be the union of all elements of F’. Then
B(I') e F.



Let us suppose there exists B € F that overlaps B(I'). There exists
J such that B = B(J). We can suppose i € J (otherwise take J' =
{1,...,d(a)}\ J). But B(I'UJ) € F according to Definition 9, and I' U J is
larger than I', contradiction since it is not in F’. Therefore B(I') is strong.

As we suppose that there isno I C {1,...,d(a)} such that i € I, j € I
and B(I) € F, then I' is an union of sets which do not contain j, and I’ does
not contain j. Therefore B(I') is a non-trivial strong bipartition of F. But
there is no edge e in T such that B(I') = {C}, C#}, contradiction.

We can now suppose there exists I C {1,...,d(a)} such that i € I,
j € I and B(I) € F. Let us take I with minimum size. B([) is not strong,
thus there exists B € F that overlaps B(I), and there exists J such that
B = B(J). If neither ¢ nor j is in J then B(I \ J) is a bipartition of F
that contradicts minimality of I. If both ¢ and j are in J then B(INJ) is a
bipartition of F that contradicts minimality of /. So J contains exactly one
of 7 or j.

Let us suppose I contains a third element k. If there exists J; containing
i and k, and Jy containing j and k, such that B(J;) and B(Jy) are two
bipartitions of F that overlap B(I), then according to definition 9, B(INJ;) €
F,and B(INJy) € F, and finally B((INJ;)A(INJ,)) € F. But 7 and j are
belong to (I N J1)A(I N Jy), and not k& which contradicts minimality of I.

Therefore either all bipartitions B(J) that overlaps B(I) are such that
{i,k} C J, or all bipartitions B(J) that overlaps B(I) are such that {j, k} C
J. In first case B(i, k) is strong, and in second case B(j, k) is strong, but they
have no edge in 7', as they belong to B(T, «), contradiction. So I = {i,5}. O

Then for all I C {1,...,d(«)}, we pose I = {iy,ig,...,ix}. For all
1 <5<k, B(ij,’ij+1) € F. Let Ij = {il,...,ij}. Forall1 < j <k, B(I])
overlaps B(i;,i;4+1). If we suppose B(I;) € F, then according to definition 9,
B(Ij11) € F. Notice B(Iy) = B(iy,i2) € F. So by recurrence B(I) =
B(I) € F. 0

The partition tree with the complete or prime labels will be called the
bipartitive tree of the family F. It is an O(n)-sized representation of F.

The family of all split in a connected graph is a bipartitive family, and
the split decomposition tree is the representative tree of the family of split [8].

To conclude this section, the following lemma show a strong relation
between the partitives families and the bipartitive families.

Lemma 11. Let V be a set and v € V. Let F be a family of bipartition of
V,and F'={ V' :vg V' and {V',V\V'} € F}. Then F is bipartitive if
and only if F' is partitive.
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In this case, let T' be the representative tree of F'. Then the representative
tree T' of F is isomorph to T" with a additional leaf for the vertex v adjacent
to the root of T'. Moreover, an internal node of T is complete (prime) if and
only if the corresponding node is complete (prime) in T".

Proof. F fulfills condition (1) and condition (2) in the definition 9 if and only
if ' fulfill condition (1) and (2) in definition 4. It suffice to show that the
condition (3) in the definition 4 is fulfilled by F if and only if the condition
(3) in the definition 9 is fulfilled by F'. Let {X,V \ X} and {Y,V \ Y} be
two bipartition of V. W.l.o.g assume v ¢ X and v ¢ Y. According to the
definition, if two bipartitions { X,V \ X} and {Y,V \ Y} overlap then X and
Y overlap. Conversely if X and Y overlap, the bipartitions must overlap
sincev € (V\X)andv € (V\Y) : the two set V' \ X and V'\ X also overlap.

The two bipartitions { X,V \ X} and {Y, V' \ Y} thus overlap if and only
if the two sets X and Y overlap. In this case, the bipartitions {X NY,V \
(XNY)ELA{XUY, VAXUY)}L {X\Y, VAX\Y)LA{YAX, VA (Y X)}
and {XAY,V\ (XAY)} are in F if and only if XNV, XUY, X\Y, Y\ X
and XAY are in F'.

For the second part, we show that the tree T is the representative tree of
F. Let {X,V \ X} be a bipartition of V' such that v ¢ X. The bipartition
{X,V\ V} is a strong member of F if and only if X is a strong member
of F'. In this case, there is a node a for X in 7". If X # V \ {v}, the
bipartition {X,V \ X} is the bipartition {C}, C?} for the edge e between «
and its parent in 7. If X = V \ {v}, then {X,V \ X} is the bipartition
{CL,C?} for the edge e we added in T between the root and the leaf for v.

Note that a node « in the representative tree of F is complete if and only
if there is a bipartition {X,V\ X} € Fand 0 C I C {1,...,d(c)} such that
X = UierCt. W.lo.g. v € X. Such a partition exists if and only if X € F/,
and thus « is complete in 7". O

4 Bi-joins and the bi-join decomposition

Definition 12. A bi-join in a graph G = (V, E) is a bipartition {V;, V2} of
V such that there exists W; C V4 and Wy C V, with a complete join between
W, and W, a complete join between V; \ Wi and V5 \ W, and no other edges
between V; and V5.

A bi-join {X;, Xo} is strong if it is a strong member of the family of
bi-joins (i.e. there is no bi-join {Y7,Y5} such that {X;, X5} and {Y;, Y5}
overlap), and is trivial if |Vi| = 1 or |V3| = 1. A graph is prime w.r.t the
bi-join decomposition if all its bi-join are trivial.

11



N7,

Figure 3: A bi-join of a graph.

Theorem 13. [17] The family of bi-joins of a graph is a bipartitive family.

The proof of this theorem is given below. The bi-join decomposition tree
of a graph G is the representative tree of the bipartitive family of all bi-joins
of G. As corollary of theorem 10 and theorem 13, we obtain:

Corollary 14. There is a unique tree T, call the bi-join decomposition tree,
whose leaf set is the vertex set of G, where nodes are labeled complete or
prime, with the following properties. For every bi-join {Vi,Va} of G there is
a node « in T such that Vi is the union of components of a. Conversely if
a has components C1,...,Cya), if o is labeled complete then any union of
components is a bi-join (for all I C {1,...,d(a)}, {UicrCi, Usg,Ci} is a bi-
join) and if o is labeled prime then for every a € {1,...,d()}, {Ca, UizaCi}
18 a bi-join, and there is no other bi-join.

Now let us proof Theorem 13. The Seidel switch [18] of a graph G with
switch subset W C V' is a graph with same vertex-set and there is an edge
between x and y if either {z,y} € E(G) and {z,y} does not overlap W, or
{z,y} ¢ E(G) and {xz,y} overlaps W. Let the Seidel reduction of a graph G
at vertex v, denoted G, be the removing of v from vertex-set after a Seidel
switch with switch subset N (v).

Figure 4: The Seidel reduction at vertex d.

Lemma 15 (Fundamental lemma). Let {V1,V2} be a bipartition of V_and
v € Vi. Then {V1,V2} is a bi-join of G if and only if Vs is a module of G’

12



Proof. Let {V1, V3} be a bipartition of G and let v € V;. V is a module of G
if and only if for all w € Vi \{v}, Vo € Ngv(w) or VaN Ng»(w) = (. Moreover
{V1,V32} is a bi-join of G if and only if for all w € Vi \ {v}, Vo N Ng(w) =
Vo N Ng(v) or Vo N Ng(w) = Vo \ Ng(v).

Suppose that v is adjacent to w. Vo C Ngv (w) if and only if for all u € V3,
u is adjacent to both v and w, or v is adjacent to none of v and w. Then
Vo C Ngv(w) <= Vo Ng(w) = VoN Ng(v). Moreover, Vo N Ngo (w) = ()
if and only if for all u € V5, u is adjacent to exactly one of v and w. Then

If v is not adjacent to w, then the previous observation on G gives immedi-
ately Vo C Ngv(w) <= VoNNg(w) = Vo\ Ng(v) and VoNNge (w) = 0 <
Vo N Ng(w) = V2N Ng(v). In all cases Vo N Ngo(w) = 0 or Vo, C Ngv(w) if
and only if Vo N Ng(w) = Vo N Ng(v) or Vo N Ng(w) = Vo \ Ng(v). O

This Fundamental Lemma and Lemma 11 allow to prove Theorem 13: the
bi-joins form a bipartitive family since the modules form a partitive family.
More precisely, let F be the family of all bi-joins of a graph G = (V, E), let
veV,and let F'={V':v g V' and {V',V\V'} € F}. By lemma 11, F is
bipartitive if and only if F' is partitive, and by lemma 15 F’ is the family of
all modules of G* and thus is partitive.

Degenerated graphs

Definition 16. A graph is degenerated for the bi-join decomposition if every
bipartition of its vertices is a bi-join.

Lemma 17. The degenerated graphs are exactly the complete bipartite graphs
K, and the union of two complete graphs K, @ Kp.

Proof. 1t is easy to verify that these graphs are degenerated. Conversely let
G be a degenerated graph. For all v € V(G), G' is a degenerated graph
for modular decomposition, i.e. every subset of vertices of G is a module,
according to the Fundamental Lemma. It is well-known that degenerated
graph for modular decomposition are exactly the complete graph and the
stable set.

If G* is a complete graph then in G there is no edge between N(v) and
VAN (v). Furthermore N(v) and V' \ N(v) are two cliques, thus G = K,® K.
And if G is a stable set then in G there is a complete join between N (v)
and V \ N(v). Furthermore N(v) and V \ N(v) are two stable sets, thus
G = Ka,b- ]
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The bi-join components

Let G be a graph, and let « be a node of its bi-join decomposition tree. For
every i € {1,...,d(a)}, we choose a vertex v; € C. The bi-join component
of a, denoted BJC(«), is the graph G[{v1,...,v}]. Note that BJC(«)

depends from the choice of vy, ..., vg.

Lemma 18. If « is complete BJC(«) is either the complete bipartite graph
K, or the union of two complete graphs K,® K, If v is prime then BJC(«)
1S prime.

Proof. If o is complete then by definition its bi-join component is degener-
ated, and thus is K, or K, ® K, according to lemma 17.

Let a pair (A, B) such that {A, B} is a bipartition of V. We denote by
~(a,p) the relation on A such that u ~4 ) v if N(u)N B = N(v) N B or if
{N(u) N B, N(v) N B} is a partition of B. Note that ~(4 p) is a equivalence
relation, and that {4, B} is a bi-join if and only if ~(4 p) has a unique
equivalence class.

Let « be a prime node. Suppose that BJC(«) is not prime w.r.t. bi-join
decomposition, and {A, B} is non trivial bi-join of BJC(«) = G[{v1,...,v}]
Let Vi = U,,caCt. We show that {V}, B} is a bi-join of G[V; U B]. For every
i € {1,...,k} such that v; € A and for every u € C, u ~(,p) vi, since
{CL, V' \ C.} is a bi-join of G. Moreover, for every v;, vy € A, v; ~;,p) Vi
since {4, B} is a bi-join if G[A U B]. Then ~(y; ) has a unique equivalence
class and {V;, B} is a bi-join of G[V; U B]. Using the same argument, the
bi-join {B, Vi } of G[V1 U B] can be extended to a bi-join {V3,V;} of G, with
Vo = UyepCh. {Vi,Va} is not in the bi-join decomposition tree of G and
we have a contradiction. Thus BJC/(«) is prime w.r.t. bi-join decomposi-
tion. U

5 Completely decomposable graphs

In Section 2 were given characterizations of graphs completely decomposable
w.r.t. modular decomposition (cographs) and w.r.t. split decomposition
(distance hereditary graphs). Now we present a similar characterization for
the completely decomposable graphs w.r.t. bi-join decomposition. There are
two equivalent definition for a graph completely decomposable w.r.t. bi-join
decomposition:

Lemma 19. Let G be a graph. The following conditions are equivalent:
(1) every induced subgraph G with at least 4 vertices has a non trivial bi-join,
(2) every node in the bi-join decomposition tree of G is complete.
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Proof. Suppose that every node in the bi-join decomposition tree of G is
complete. Let H be a subgraph of G with at least 4 vertices. Then every
node in the bi-join decomposition tree 7" of H is complete. Let o be a node
in T. If the degree of o at least 4, then the bipartition induced by two
components of a is non-trivial and is a bi-join of H. Otherwise, there is a
component C! of size at least 2 since the degree of o is 3 and V(H) > 4.
Then {C?,V(H) \ C*} is non-trivial and is a bi-join of H.

Suppose that there is a node « in the bi-join decomposition tree of G
which is prime. Then by lemma 18, BJC(«) is prime and is a induced
subgraph of G. O

Let u be a vertex of G. We recall that v is a false twin of u if N(u) = N(v)
and v is a true twin of u if N(u) U {u} = N(v) U {v}. We say that v is a
false anti-twin of u if N(u) =V \ (N(v) U{u,v}) and a true anti-twin of u if
N(u) =V \ N(v). An (twin,anti-twin)-extension of the graph is to select a
vertex u and add another vertex that can be a true or false twin or anti-twin
of u. The following theorem gives equivalent characterizations for the class
of graphs completely decomposable w.r.t. bi-join decomposition.

Theorem 20. Let G be a graph. The following conditions are equivalent:
(1) G is completely decomposable w.r.t. bi-join decomposition.

(2) G is (Cs,bull,gem,co-gem)-free.

(8) G can be obtained from a single vertex by a sequence of (twin,anti-twin)-
extensions.

(4)Yv eV, G is a cograph.

Proof. (1) <= (4): By lemma 11 and lemma 15, every node in the bi-join
decomposition tree of G is complete if and only if every node in the modular
decomposition tree of G' is complete. So G is completely decomposable by
the bi-join decomposition if and only if G' is a cograph.

(1) = (3): By induction on the number of vertices of the graph. It is
trivial for |[V| < 3. Otherwise, there is a node « in the bi-join decomposition
tree T' adjacent to two leaves v and v. This node is complete so {{u,v},V '\
{u,v}} is a bi-join of G. This bi-join corresponds to a true or a false twin
or anti-twin. Using notation of Definition 12 if Wi = {u,v} or W; = 0
then {u,v} is a module and thus these two vertices are twin. And else a
vertex x ¢ {u, v} is neighbor of either u or v and these two vertices are thus
antitwins.

(3) = (4): By induction on the number of vertices of the graph. Let G
be a graph obtained from a single vertex by a sequence of (twin,anti-twin)-
extensions, let u € V(G), and G’ a graph obtained from G by a (twin,anti-
twin)-extension: we add a new vertex w which is a true or a false twin or
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anti-twin of u. Let v € V(Q); by induction G' is a cograph. If u # v, w
is a twin of w in G", so G" is a cograph by theorem 1. If v = v and w
is a true twin or a false anti-twin of u, w is a dominating vertex of G (a
vertex adjacent to all others vertices). If u = v and w is a false twin or a
true anti-twin of u, w is a isolated vertex of G* (a vertex of degree zero). In
all cases, G is a cograph.

(2) <= (4): Let H be a graph and v € V(H). Then H is a P, if and
only if H is a C5, a bull, a gem or a co-gem.

Let G be a graph such that for every v € V, G'isa cograph. Let H be
an induced subgraph of G, and let v € V(H). Then H = G [V(H) \ {v}]
and then is not a Py, so H is not a Cs, a bull, a gem or a co-gem. Conversely,
let G be a (Cjs,bull,gem,co-gem)-free graph, and let v € V. Let H' be a
subgraph of G°. G[V(H) U {v}] is not a Cs, a bull, a gem or a co-gem, so
H' = G[V(H)U{v}] is not a P,. O

In [14], Hertz show that the class of (Cs,bull,gem,co-gem)-free graphs is
exactly the class of graphs for which every Seidel switch is perfect. He also
gives a proof for (2) <= (4), and a recognition algorithm with running time
O(n?) using the cograph recognition algirithm given in [6]. Using observation
given in section 6 and a linear time cograph recognition algorithm |3, 6, 12|,
this class of graph can be recognized in linear time.

6 Linear-time decomposition algorithm

Theorem 21. The bi-join decomposition of a graph can be computed in linear
time.

Proof. 1t is a consequence of the Fundamental Lemma and of the existence
of linear-time modular decomposition algorithms |7, 15|. By lemma 11 and
lemma 15, the bi-join decomposition tree of G is the modular decomposition
tree of G' with an additional node for v adjacent to the root. Let n be the
number of vertices and m be the number of edges of G. The number of edges
of G' is at most m~+d(v) x (n —d(v) —1) < m+d(v) X n. Then if we choose
v of minimum degree, then the number of edges of G' is at most three times
the number of edges of GG, and the modular decomposition tree of G can be
computed in linear time. O
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7 Missing properties of bi-join decomposition

The modular decomposition can be built recursively : one can find the max-
imal strong modules M;,..., My of a graph, and the re-launch recursively
the process on G[M;] for each i. This constructs the modular decomposition
tree top-down and is indeed how the first modular decomposition algorithm
worked [10]. But this recursive approach does not work for bi-joins since if
{V1,V2} is a bi-join of a graph G, a bi-join {Vj;,Vis} of G[V1] can not in
general be extended into a bi-join of G.

Another difference between modular decomposition and bi-join decom-
position is that we were not able to define the quotient of a node for the
bi-join decomposition. For the modular decomposition, the quotient of a
node « of the modular decomposition tree having sons ay, . .., ay is the graph
G[{v1,...,vx}] where v; is an arbitrary chosen vertex in the module corre-
sponding to «;. [16] proved that the quotient is uniquely defined, and that

e if o is a prime node its quotient is a prime graph

e if o is a complete node its quotient is degenerated (either a clique or a
stable set).

We were able to prove a weaker version of this result, using the bi-join com-
ponents : the bi-join component of a node is not unique (it depends from the
choice of v; in C?)) but has the same property of being prime or degenerated.
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