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Modeling and numerical simulation of action potentials

in human atrial tissues

Luca Gerardo-Giorda ∗

Abstract

Electrophysiology of the heart is the subject of a vast interdisciplinary literature, from medical sciences
through bio-engineering, physiology, chemistry and physics. The difficulty in having access to direct measures
on real patients entailed the coupling of such studies with numerical simulations. Several works have been
done on this topic, focusing mainly on the behavior of the ventricles. In this paper we focus on atrial
simulation: we present a reaction-diffusion model coupled with the simple FitzHugh-Nagumo (FHN) model
and the more complex Courtemanche-Ramirez-Nattel (CRN) model, which has been derived explicitely for
human atrial cells. Numerical experiments are performed with both the bidomain and the monodomain
models to simulate the evolution of a complete heartbeat.

1 Introduction

The basic property of neural cells to produce signals is called Action Potential (AP). It consists of a sudden
variation in the transmembrane potential, called upstroke, followed by a recovering of the resting condition.
It shows different shapes and amplitudes according to the different kind of excitable media to which the cells
belong to, and in the large muscle cells makes it possible the simultaneous contraction of the whole cell. An
action potential propagates keeping the same shape and amplitude all along an entire neural or muscular
fiber. Cardiac cells are characterized by a transmembrane potential that is negative at rest, owing to the
fact that the concentration of potassium ions [K+]i inside the cardiac cell is remarkably higher than the
outside concentration [K+]e, and show two kinds of action potentials: the quick and the slow response.
The quick response is typical in the myocardium fibers (both atrial and ventricular) and in the Purkinje
fibers, which are fibers specialized in the conduction. The quick response cells are characterized by a negative
transmembrane potential at rest (around -90mV), and by a rapid depolarization (positive overshoot), where
the potential difference changes sign and the internal potential overtakes the external one of around 20mV:
such phase is called Phase 0. Immediately after that (Phase 1) a short period of partial repolarization takes
place, followed by a plateau (Phase 2) which lasts for around 0.2 seconds. The potential gets progressively
more negative (Phase 3) until it reaches again the resting value. The repolarization procedure is far slower
than the depolarization one, and the interval between the end of the repolarization and the next action
potential is called Phase 4.
The slow response is the one taking place in the Sinoatrial Nodus (SA), the natural pacemaker of the heart,
and in the Atrioventricular Nodus (AV), the tissue meant to transfer the pulse from atria to ventricles. The
slow response cells are characterized by a resting potential less negative (around -50mV), by a smaller slope
and amplitude in the overshoot of the action potential, by the absence of the Phase 1, and by a relative
refractory period that continues during Phase 4.
The Action Potential propagates across the heart in an heterogeneous way. The pulse moves from the
Sinoatrial Nodus (SA), and propagates through the ordinary myocardic fibers of the right atrium, while the
Buchmann’s bundle drives the pulse towards the left atrium. Some action potentials propagate downwards
and reach the Atrioventricular Nodus (AV), which is, under normal conditions, the only gate for the pulse
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to propagate from atria to ventricles, where the conduction is quicker (4 ms−1 versus 1 ms−1).
The electrical activity of the heart as a whole is thus characterized by a complex multiscale structure, rang-
ing from the microscopic activity of ion channels in the cellular membrane to the macroscopic properties of
the anisotropic propagation of the excitation and recovery fronts in the whole heart. The most complete
model of such a complex setting is the anisotropic Bidomain model (see [9, 25]), that consists of a system
of two degenerate parabolic reaction-diffusion equations describing the intra and extracellular potentials in
the cardiac muscle, coupled with a system of ordinary differential equations describing the ionic currents
flowing through the cellular membrane, that are associated to the nonlinear reaction term. This model is
computationally very expensive because of the involvement of different space and time scales, and a simpli-
fied tissue model is the anisotropic Monodomain system, consisting of a parabolic reaction-diffusion equation
describing the propagation of the transmembrane potential coupled with an ionic model, which has been
widely used in literature (see for instance [23, 19]).
If, on the one hand, a wide literature is available for ventricular models (see for instance [4, 5, 20] and refer-
ences therein), on the other hand less has been done on atria, although Atrial Fibrillation (AF) is the most
commonly sustained arrhythmia, for which clinical treatment remains the most problematic. Knowledge of
the human atrial Action Potential and of its ionic currents is thus of critical importance to understand the
electrical properties of atrial tissues in both normal and pathological conditions.
In this paper we consider the FitzHugh-Nagumo (FHN) cell model in the Rogers-McCulloch variant, which
is well suited to capture the excitation wavefront, but behaves very poorly in the description of the plateau
phase, and the Courtemanche-Ramirez-Nattel (CRN) model, that is especially designed for human atrial
myocytes. Both models are then coupled with monodomain and bidomain simulations on a two dimensional
slab with anisotropic conduction.
The rest of the paper is organized as follows. In Section 2 we give a brief review of the mathematical models,
the anisotropic bidomain and monodomain ones. In Section 3 we describe the ionic currents and the modified
FHN and the CRN membrane models. In Section 4 we formulate the finite dimensional approximation of
the problem. Finally, in Section 5, some numerical simulations are presented, varying both the cardiac tissue
model (monodomain and bidomain) and the ionic model (FHN and CRN).

2 Description of the model

The conductivity of the cardiac cells depends upon their orientation, and in the most general case the
conductivity tensor is anisotropic. The structure of the cardiac cells can be modeled, following Le Grice et
al. ([15]) as a sequence of muscular layers going from endocardium to epicardium (see also [29]). In any point
x ∈ Ω (in the rest of the paper Ω will denote the spatial domain under consideration) it is thus possible to
identify an orthonormal triplet of directions, al(x), at(x), an(x), with al(x) parallel to the fibers direction,
at(x) and an(x) tangent and orthogonal repectively to the radial lamination, both transversal with respect
to the fiber axis.
The bidomain model consists in representing the cardiac tissue as the superposition of two media which
are continuous and anisotropic, the intra-cellular and the extra-cellular one, coexisting at each point x and
separated by a cell membrane. Such model has been derived, by an homogenization technique, starting from
a periodic assembling of elongated cells surrounded by extracellular space and connected by end-to-end or
side-to-side junctions (for the mathematical details we refer to [13, 6]).
Denoting by σi,e

l , σi,e
t , and σi,e

n the conductivity coefficients in the al, at and an directions, the conductivity
tensor is given by

Di,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x) + σi,e
n an(x)aT

n (x),

for the intra- and extra-cellular medium respectively.
The intra-cellular and extra-cellular electric potentials, which we denote by ui and ue, are governed in
the bidomain model by a degenerate reaction diffusion system of parabolic type, coupled with an ODE
system describing the ionic gating variables w and the ionic concentrations c. In the following we denote by
v = ui − ue the transmembrane potential. The membrane current per unit volume is given by

Im = cm∂tv + Iion(v, w, c), (2.1)
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where cm = χCm, Iion = χiion, χ being the membrane area per tissue volume, Cm the surface capacity and
iion the membrane ionic current per unit area.
We assume that any external current can be applied to the extracellular medium only: such current, that
we denote by Iapp

e , has to satisfy a zero mean value compatibility condition
R

Ω
Iapp

e = 0. Denoting by
Ji = −Di∇ui and Je = −De∇ue the intracellular and extracellular current densities, respectively, the
bidomain model is derived by imposing the conservation of the total current and in given by

div Ji = −Im div Je = Im − Iapp
e (2.2)

The ionic current through membrane channels in (2.1) depends on the transmembrane potential v, on Mw

gating variables w ∈ RMw , and on Mc concentration variables c ∈ RMc and, in an Hodgkin-Huxley formalism,
reads

Iion(v, w, c) =

LX
l=1

Gl(v)Φl(c)

MwY
j=1

w
pjl

j (v − vl(w)),

Gk(v) being the membrane conductance, vk being the reversal potential for the k-th current, pjk being
integers, Φl(c) is a (possibly) nonlinear function of the concentrations, and where the dynamics of the gating
and concentration variables is described by a system of ODE’s

∂w

∂t
= R(v, w)

∂c

∂t
= S(v, w, c), (2.3)

with prescribed initial condition w(x, 0) = w0(x) and c(x, 0) = c0(x). In such models, for any gating variable
wj , we have 0 < wj < 1, and the right hand side Rj(v, w) has a special structure such that the system is
decoupled and the corresponding ODE is given by

∂wj

∂t
= Rj(v, w) = Rj(v, wj) = αj(v)(1− wj)− βj(v)wj , (2.4)

with αj(v), βj(v) > 0.
Owing to (2.1) and (2.2), the bidomain model in the variables (ui(x, t), ue(x, t)) and v(x, t) = ui(x, t) −
ue(x, t), for an insulated domain Ω ⊂ R3, eventually reads8>>>>>><>>>>>>:

cm∂tv − div (Di∇ui) + Iion(v, w, c) = 0 in Ω× (0, T )
−cm∂tv − div (De∇ue)− Iion(v, w, c) = −Iapp

e in Ω× (0, T )
∂tw −R(v, w) = 0 in Ω× (0, T )
∂tc− S(v, w, c) = 0 in Ω× (0, T )

nTDi,e∇ui,e = 0 in ∂Ω× (0, T )
v(x, 0) = v0(x) w(x, 0) = w0(x) c(x, 0) = c0(x) in Ω.

(2.5)

The above system uniquely determines v, whereas the potentials ui and ue are determined modulus an
additive constant depending on time and linked to the reference potential. Such potential is chosen as the
mean extracellular potential in the cardiac volume, by imposing a zero mean condition

R
Ω
ue = 0.

System (2.5) can be rewritten in terms of the extracellular and the transmembrane potentials. From the
second equation in (2.5) we get

cm∂tv = −div (De∇ue)− Iion(v, w, c)− Iapp
e ,

and inserting it into the first one provides

−div [Di∇ui +De∇ue] = −Iapp
e .

So far, adding and subtracting div (Di∇ue), we obtain the formulation in terms of v and ue:8<:
−cm∂tv − div (De∇ue)− Iion(v, w, c) = −Iapp

e in Ω× (0, T )

−div [(Di +De)∇ue] = div (Di∇v)− Iapp
e in Ω× (0, T )

(2.6)
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If we assume the anisotropy ratio to be the same in the two media, intra- and extra-cellular, namely we
assume Di = λDe with λ constant, the bidomain model reduces to a simpler one. If we let

D =
λ

1 + λ
Di, Iapp =

λ

1 + λ
Iapp

i +
1

1 + λ
Iapp

e ,

the simplified model consists of a single reaction-diffusion equation of parabolic type for the transmembrane
potential v,

cm∂t v − div (D(x)∇v) + Iion(v, w, c) = Iapp in Ω× (0, T ), (2.7)

coupled with the ODE system (2.3) for the gating and concentration variables. Such model is referred to as
monodomain model.

3 Ionic currents and membrane models

The ionic currents appearing in both the monodomain and the bidomain model rely on the choice of the
membrane model for the cell conductivity. The earliest model appeared in the work on nerve action potential
by Hodgkin and Huxley ([10]), which earned them the Nobel prize in Medicine in 1963. Models of this type
have then been extensively studied and developed by physiologists for the cardiac action potential: under
the assumption of an equipotential cell, the variation in time of the membrane potential v for a single cells
is ruled in such models by an ordinary differential equation

dv

dt
= −Iion − Ist

Cm
, (3.1)

where Iion and Ist are the total ionic current and stimulus current across the membrane, respectively, and
Cm is the total membrane capacitance. Such models are naturally included in the above framework, where
the stimulus current is provided by the diffusive term in both the bidomain and the monodomain settings,
modeling the stimulus propagation through neighboring cells.
Concerning the modeling of ventricular cells, the fitting of improved experimental data with more complex
models led to the developement of many refinements of the original Hodgkin-Huxley model: among them,
we recall the model by Beeler and Reuter (1977, with 4 ionic currents and 7 gating and concentrations
variables), and the phase-I Luo-Rudy (1991, with N = 6 and M = 7). In this direction, the most recent
published model of mammalian ventricular cells is the phase-II Luo-Rudy (1994, [17]), which is based on
measurements from guinea pig. Simpler models of reduced complexity have also been proposed, where only
1 or 2 gating variables are considered.
If, on the one hand, several models are available to describe the behaviour of ventricular cells, less has been
done focusing on atrial cells. Atria differ from ventricles under several aspects. First of all, the thickness
of the wall in atria is far less significant than in ventricles, while the speed of conduction is much larger
in ventricles. A different ionic current and membrane model should therefore be used when dealing with
atria. In this direction, models of atrial cells based on animal data only have been published (see [8, 22, 31]):
the most recent of such models is the one proposed by Lindblad et al. (1996, [16]), which is based on
measurements from rabbit atrial cells. Although these models have provided valuable insights into the
mechanisms underlying the action potential generation in animals, the significant interspecies differences
with respect to human being and the amount of available human data led scientists to develop mathematical
models of the action potential based on ionic current data measured directly in human atrial cells. The
most recently published models in this direction are the ones proposed by Nygren et al. in [18] and by
Courtemanche et al. in [7]. Both models handle the atrial cell as a capacitor connected in parallel with
variable resistances and batteries representing the ionic channels and driving forces.

3.1 The FHN cell model

The simplest ionic model is the FitzHugh-Nagumo (FHN), consisting of 1 ionic current and 1 gating variable.
Assuming the potential v to be zero at rest, the ionic current uses only one recovery variable:

Iion(v, w) = g(v) + βw,
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where β > 0, g(v) is a cubic-like function, and w satisfies

∂w

∂t
= ηv − γw,

with η, γ > 0. Such model is well suited to represent neural cells, but this is not the case for the physiological
description of cardiac cells: in particular, the overshoot phase lacks in sharpness and during the recovering
phase the potential falls below the resting value.
An improvement of this model is given by the following variant by Rogers and McCulloch ([23]):

Iion(v, w) = Gv

„
1− v

vth

«„
1− v

vp

«
+ η1vw,

∂w

∂t
= η2

„
v

vp
− η3w

«
,

where G, η1, η2, η3 are positive coefficients, vth is a threshold potential, and vp is the peak potential. In Figure
1 we report the time evolution of the potential v and of the gating variable w for the Rogers-McCulloch
variant of the FHN model.
The great simplicity of this model is behind its wide use in literature. However, if on the one hand, such
model is well suited to describe the positive overshoot in the quick depolarization phase, on the other hand
it provides only a coarse approximation in the plateau and repolarization phases of the action potential, and
behaves too poorly when accuracy in the description of the action potential is needed.
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Figure 1: Time evolution of the potential v and the gating variable w in the Rogers-McCulloch variant of the
FHN model

3.2 The CRN atrial cell model

One of the most accurate models for atrial cells is the CRN (Courtemanche, Ramirez and Nattel, [7]) one,
in which the total ionic current is given by the sum

Iion = INa + IK + ICa + Ib + Ip. (3.2)

The above expression takes into account several aspects of the action potential generation. In (3.2), INa is
the fast depolarizing Na+ current, while the quantity IK is the total rectifier K+ current, given by

IK = IK1 + Ito + IKur + IKr + IKs,

where IK1 is the inward rectifier K+ current, playing a major role in the late repolarization phase of the
AP and in determining resting membrane potential and resistance, Ito is the transient outward K+ current,
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IKur, IKr, and IKs are the ultrarapid, rapid, and slow rectifier currents. The quantity ICa = ICa,L is the
L-type Ca2+ current, while Ib is the the background current for sodium Na+ and calcium Ca2+

Ib = Ib,Na + Ib,Ca.

Finally, Ip collects the actions of pumps and ion exchangers, designed to put back into balance the ion
concentrations at rest:

Ip = INaCa + INaK + Ip,Ca,

where INaCa is the sodium-calcium pump, INaK is the sodium-potassium pump, and Ip,Ca is the calcium
exchanger.
The model handles also the intracellular concentrations [Na+]i, [K+]i, and [Ca2+]i, as well as the intracellular
calcium buffering by the sarcoplasmic reticulum system (SR), by means of the calcium concentrations in the
uptake ([Ca2+]up), and release ([Ca2+]rel) SR compartments.
In the model, no extracellular cleft space is included, the membrane capacitance is cm = 100pF, the lenght
and diameter of the cells are set to 100 and 16 µm, respectively, and the cell compartment volumes are the
same ones used in the phase-II Luo-Rudy model (LR2, [17]). Denoting by EX the equilibrium potential for
ion X, and with gX its maximal conductance, from Nerst equation, EX is given by

EX =
RT

zF
log

[X]e
[X]i

,

where R is the gas constant, T is the absolute temperature, F is the Faraday constant, z = 1 for Na+ and
K+, z = 2 for Ca2+, and [X]e and [X]i denote the external and internal concentration of ion X.
The ionic currents are all voltage-dependent, and, in addition, some of them depend upon gating variables
whose activation or deactivation handles the ions passage across the membrane, according to the phase of
the action potential. The generic gating variable y satisfies an ordinary differential equation such

dy

dt
= −y

∞ − y
τy

, (3.3)

where y∞ is the steady state of the gating variable with the cell at rest. Notice that formulation (3.3) falls
into the Hodgkin-Huxley formalism by setting

y∞ = αy(v)τy(v) τy(v) =
1

αy(v) + βy(v)
.

The dynamics of the concentration variables is governed by the following equations

d[Na+]i
dt

=
−3INaK − 3INaCa − Ib,Na − INa

FVi
(3.4)

d[K+]i
dt

=
2INaK − IK1 − Ito − IKur − IKr − IKs

FVi
(3.5)

d[Ca2+]i
dt

=

»
2INaCa − Ip,Ca − ICa,L − Ib,Ca

2FVi
+
Vup(Iup,leak − Iup) + IrelVrel

Vi

–
×

×
»
1 +

αiβi

([Ca2+]i + βi)2
+

γiδi

([Ca2+]i + δi)2

–−1 (3.6)

d[Ca2+]up

dt
= Iup − Iup,leak − Itr

Vrel

Vup
(3.7)

d[Ca2+]rel

dt
= (Itr − Irel)

»
1 +

αrelβrel

([Ca2+]rel + βrel)2

–−1

, (3.8)

where Vi is the intracellular volume, Vup and Vrel are the volumes of the uptake and release compartments
of the sarcoplasmic reticulum (SR), αi, γi, and αrel depend on the total concentrations of troponin and
calmodulin in myoplasm, and of calsequestrin in the release compartment of SR, while βi, δi, and βrel

depend on their half saturation constants, respectively. All these three proteins are responsible of the
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Figure 2: CRN model: potential and concentration variables.

contraction of the cell.
In (3.6) and (3.7), Iup,leak is the Ca2+ leak current by the JSR, Iup is the Ca2+ uptake current by the JSR,
while Irel is the Ca2+ release current from the JSR. Finally, in (3.7) and (3.8), Itr is the transfer current
from NSR to JSR.
The model consists globally of 5 concentration variables and 15 gating variables. In Table 1 we report the
gating variables associated to the ionic currents, while in Figure 2 and 3 we plot the time evolution of the
potential and of the gating and concentration variables. For a more detailed description of the model we
refer the interested reader to the original paper by Courtemanche et al. [7].

Current Gating variables Current Gating variables
INa m h j IKs xs

Ito oa oi ICa,L d f fCa

IKur ua ui Irel u ν w
IKr xr

Table 1: Ionic currents and corresponding gating variables

4 Finite dimensional approximation of the model

In this section we outline the variational formulation of the bidomain and the monodomain models, as well
as their finite dimensional approximation. In that order, let H1(Ω) be the usual Sobolev space over R. The
variational formulation of the bidomain model reads as follows.
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Figure 3: CRN model: gating variables.

Given v0, w0, c0 ∈ L2(Ω), Iapp ∈ L2(Ω× (0, T )), find ui,e ∈W 1,1(0, T ;H1(Ω)), such that ∀t ∈ (0, T )

8>>>>>><>>>>>>:

cm
∂

∂t
(v(t), φi) + ai(ui(t), φi) + (Iion(v(t), w(t), c(t)), φi) = 0 ∀φi ∈ H1(Ω)

−cm
∂

∂t
(v(t), φe) + ae(ue(t), φe)− (Iion(v(t), w(t), c(t)), φe) = −(Iapp

e , φ) ∀φe ∈ H1(Ω)

v(x, t) = ui(x, t)− ue(x, t),

(4.1)

coupled with the ordinary differential system (2.3), where suitable initial conditions on v, w, c are provided,
as given in (2.5). In (4.1), (., .) and ai,e(., .) denote the inner product in L2(Ω)

(η, ξ) =

Z
Ω

ηξ dx ∀η, ξ ∈ L2(Ω),

and the elliptic bilinear forms

ai,e(λ, µ) =

Z
Ω

(∇λ)TDi,e(x)∇µdx ∀λ, µ ∈ H1(Ω),

respectively.
The variational formulation of the monodomain model follows by replacing equations (4.1) with

cm
∂

∂t
(v(t), φ) + a(v(t), φ) + (Iion(v(t), w(t), c(t)), φ) = (Iapp, φ) ∀φ ∈ H1(Ω), (4.2)

where again (., .) denotes the inner product in L2(Ω), while a(., .) denotes the elliptic bilinear form

a(λ, µ) =

Z
Ω

(∇λ)TD(x)∇µdx ∀λ, µ ∈ H1(Ω),

respectively, always coupled with the ordinary differential system (??).
If, on the one hand, several theoretical results on reaction-diffusion equations can be applied to the mon-
odomain model, on the other hand less is known on degenerate reaction-diffusion systems such as the
bidomain model. We refer the reader to [6] for existence, uniqueness and regularity results, both at the con-
tinuous and the semi-discrete level, and to [26] for a convergence analysis of finite elements approximations.
Both papers deal with the FitzHugh-Nagumo (FHN) model of the gating system.
More results are known on the related eikonal approximation describing the propagation of excitation front
(see for instance [2, 3, 12]), and a mathematical analysis of the bidomain model using Γ-convergence theory
can be found in [1].
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4.1 Semi-discrete formulation

Let Th be a regular triangulation of Ω ⊂ Rd (d = 2, 3), namely Ω =
SN

j=1 Kj , where each Kj = TKj (E) ∈ Th,
E is the reference element, a simplex (namely the triangle with vertices (0, 0), (1, 0), and (0, 1) when d = 2
or the thetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) when d = 3) or the unit cube [0, 1]d

(d = 2, 3), and where TKj is an invertible affine map. We define h as the maximum diameter of the elements
of the triangulation. The associated finite element spaces Xh and Yh (see e.g. [21] for an introduction to
finite element methods) are defined as

Xh =
n
ϕh ∈ C0(Ω) |ϕh|Kj

◦ TKj ∈ P1(E)
o
, Yh =

n
ϕh ∈ C0(Ω) |ϕh|Kj

◦ TKj ∈ Q1(E)
o
,

where P1(E) is the space of polynomials of degree at most one on E, whereas Q1(E) is the space of polyno-
mials of degree at most one with respect to each variable on E.
A semi-discrete problem in space is then obtained by applying a Galerkin procedure, using as finite dimen-
sional space Vh = Xh or Vh = Yh, and choosing a basis for Vh. We denote by Nh the dimension of Vh, we
let {ϕi}Nh

i=1 be the finite element basis, and we let M = (mkl), A = (akl) and Ai,e = (ai,e
kl ) be the symmetric

mass and stiffnes matrices defined by

mkl =

NX
j=1

Z
Kj

ϕkϕl dx,

akl =

NX
j=1

Z
Kj

(∇ϕk)TD(x)∇ϕl dx ai,e
kl =

NX
j=1

Z
Kj

(∇ϕk)TDi,e(x)∇ϕl dx.

In the next section, devoted to numerical simulations, such integrals are evaluated by means of a 3rd order
Gaussian rule.
We let

ui,h(t, x) =

NhX
j=1

ui,j(t)ϕj(x) ue,h(t, x) =

NhX
j=1

ue,j(t)ϕj(x) vh(t, x) =

NhX
j=1

vj(t)ϕj(x)

wh(t, x) =

NhX
j=1

wj(t)ϕj(x) ch(t, x) =

NhX
j=1

cj(t)ϕj(x)

and denoting, for sake of simplicity, by

ui,h = (ui,1, . . . , ui,Nh)T ue,h = (ue,1, . . . , ue,Nh)T vh = (v1, . . . ,Nh )T

wh = (w1, . . . ,Nh )T ch = (c1, . . . ,Nh )T

the bidomain formulation for the finite element problem can be written in compact form as

cm

»
M −M
−M M

–
∂

∂t

»
ui,h

ue,h

–
+

»
Ai 0
0 Ae

– »
ui,h

ue,h

–
+

»
M Ih

ion(vh,wh, ch)

−M Ih
ion(vh,wh, ch)

–
=

»
0

MIapp
e,h

–
. (4.3)

In the simpler monodomain formulation, the finite elements approximation of the transmembrane potential
vh is the solution of

cmM
∂vh

∂t
+Avh +M Ih

ion(vh,wh, ch) = MIapp
h . (4.4)

Both equations (4.4) and (4.3) are coupled with the semidiscrete formulation of the dynamics of the gating
and concentration variables

∂wh

∂t
= R(vh,wh),

∂ch

∂t
= S(vh,wh, ch).

Finally, the semi-discrete version of the alternative bidomain formulation (2.6) in terms of vh and ue,h is
given by 8><>:

cmM
∂vh

∂t
+Aivh +Aiue,h +M Ih

ion(vh,wh, ch) = M Iapp
i,h

Aivh + (Ae +Ai)ue,h = M(Iapp
i,h − I

app
e,h ).

(4.5)
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Equation (4.5) above is a Differential-Algebraic Equation (DAE), that separates the differential variable vh

from the algebraic one ue,h. Such approach has been firstly used in [2] and [24], and sequently by many
other authors.

4.2 Fully discrete approximation

In order to have a fully discrete approximation of the problem, we integrate in time systems (4.4) and
(4.3) by means of a semi-implicit Euler scheme: the linear diffusion term is discretized implicitely, while
the nonlinear reaction term (the ionic current Iion) is treated explicitely. The mass matrix M is lumped to
diagonal form by standard techniques. Owing to the Hodgkin-Huxley formalism, the ordinary differential
system for the gating variables is integrated exactly after linearization around the potential at the previous
time step, and the j−th gating variable at time step n+ 1 is given by

wn+1
h,j = wj∞(vn

h,j) + (wn
h,j −wj∞(vn

h,j)) exp

 
− ∆t

τwh,j (vn
h,j)

!
,

while the system for the concentration variables is integrated by a backward Euler scheme

cn+1
h − cn

h

∆t
= S(vn

h,w
n+1
h , cn

h).

This allows us to decouple the ODE system by solving with respect to the gating and concentration variables
first, given the potential at the previous time step vn

h, and then solving, in the monodomain case, for vn+1
h

cmM
vn+1

h − vn
h

∆t
+Avn+1

h +MIh
ion(vn

h,w
n+1
h , cn+1

h ) = MIapp
h

and, in the bidomain case, for un+1
i,h and un+1

e,h8>>><>>>:
cmM

vn+1
h − vn

h

∆t
+Aiu

n+1
i,h +MIh

ion(vn
h,w

n+1
h , cn+1

h ) = 0

−cmM
vn+1

h − vn
h

∆t
+Aeu

n+1
e,h −MIh

ion(vn
h,w

n+1
h , cn+1

h ) = −MIapp
e,h ,

where vn+1
h = un+1

i,h −un+1
e,h . With this choice (notice that one could solve for the potential first and update

successively the gating and concentration variables), the semi-implicit method in the monodomain case
requires to solve the linear system

[cmM + ∆tA] vn+1
h = cmMvn

h −∆tMIh
ion(vn

h,w
n+1
h , cn+1

h ) + ∆tMIapp
h ,

while, in the bidoman case, the associated linear system is»
cmM + ∆tAi −cmM
−cmM cmM + ∆tAe

– »
un+1

i,h

un+1
e,h

–
=

cm

»
M −M
−M M

– »
un

i,h

un
e,h

–
−∆t

»
MIh

ion(vn
h,w

n+1
h , cn+1

h )

−MIh
ion(vn

h,w
n+1
h , cn+1

h )−MIapp
e,h

–
.

The semi-implict scheme above leads, in the monodomain case, to a linear system with symmetric positive
definite matrix, and, in the bidomain case, to a linear system with a symmetric positive semidefinite matrix,
with a one dimensional kernel spanned by (1,1)T . The transmembrane potential vn+1

h is then uniquely
determined for both the monodomain and the bidomain models, as in the continuous model, while un+1

i,h and

un+1
e,h are determined up to the same additive time-dependent constant with respect to a reference potential.

Such constant can be determined by imposing the condition 1TMun+1
e,h = 0. Both systems are solved by a

preconditioned conjugate gradient algorithm (PCG), using as initial guess the solution at the previous time
step.
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5 Numerical simulations

In this section we describe some numerical simulations. We consider two dimensional domains since the
thickness of the atrial wall is far less significant than that of the ventricular one, and a two dimensional
approximation is thus reasonable. We run monodomain and bidomain simulations, with both the modified
FHN and the CRN cell model. In Table 1 we report the parameter calibration for the tests. The numerical
simulations are run on MATLAB R© 6.5.

General χ = 103 cm−1 Cm = 10−3 mF/cm2

Monodomain σl = 1.2 · 10−3 Ω−1cm−1 σt = 2.5562 · 10−4 Ω−1cm−1

Bidomain σe
l = 2 · 10−3 Ω−1cm−1 σe

t = 1.3514 · 10−4 Ω−1cm−1

σi
l = 3 · 10−3 Ω−1cm−1 σi

t = 3.1525 · 10−4 Ω−1cm−1

G = 1.5 Ω−1cm−2 η1 = 4.4Ω−1cm−1

FHN model vth = 13 mV η2 = 0.012
vp = 100 mV η3 = 1

CRN model As in the original paper [7]

Table 2: Parameter calibration for the numerical simulations

Figure 4: Monodomain FHN on a 2d slab: excitation and repolarization

5.1 Numerical simulation of a slab

In this first series of tests the computational domain is Ω = [0, 1] × [0, 1], and the problem is discretized
by P1 elements on an unstructured triangular grid. In the first test we considered a vertex stimulation of
the slab. We show the spread of excitation and the repolarization, in Figure 4 for the monodomain-FHN
model, and, in Figure 5 for the monodomain-CRN model. For the latter model, the spike-and-dome profile
of the Action Potential is more evident, as well as the longer time needed to recover the resting value of the
potential, owing to the presence of the plateau phase, that is not captured by the simple FHN model.
In the second test we considered a central stimualtion of the slab. We show the transmembrane potential v

as well as the intracellular and extracellular potentials ui and ue, in figure 6 for the bidomain FHN model,
at point (.2333,.5667) of the slab, in figure 7 for the bidomain CRN model at point (.8,.7).
In the third test, in order to simulate the presence of arteries or veins, we considered a two dimensional
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Figure 5: Monodomain CRN on a 2d slab: excitation and repolarization
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Figure 6: Bidomain FHN on a 2d slab: transmembrane potential v (left), intracellular ui (solid line) and
extracellular ue (dotted line) potential at point (.2333,.5667)
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Figure 7: Bidomain CRN on a 2d slab: transmembrane potential v (left), intracellular ui (solid line) and
extracellular ue (dotted line, magnified by a factor 5) potential at point (0.8,0.7)

slab with a circular hole embedded. Since the vessel walls (both arterious and venous) are not excitable,
we impose a non-conducting condition (n · ∇v = 0) on the border of the hole. We show the spread of
excitation and the repolarization for the monodomain FHN model in Figure 8, and for the monodomain
CRN in Figure 9. In Figure 10, a closer look allows to better appreciate the distorsion of the wavefront in
the neighbourhood of the hole for both the FHN and CRN bidomain models.

Figure 8: Monodomain FHN on a 2d slab with an hole: excitation and repolarization

5.2 Numerical simulation on curved surfaces

In this second series of tests we consider curved surfaces. In the first test we consider the unit sphere as a
coarse model of the atrium and we run bidomain simulation for both the FHN and the CRN cell models.
We plot in figure 11 and 12 the spread of excitation on the sphere for the two models.
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Figure 9: Monodomain CRN on a 2d slab with an hole: excitation and repolarization

0 0.5 1
0

0.2

0.4

0.6

0.8

1

T = 3ms
0 0.5 1

0

0.2

0.4

0.6

0.8

1

T = 6ms
0 0.5 1

0

0.2

0.4

0.6

0.8

1

T = 9ms

0 0.5 1
0

0.2

0.4

0.6

0.8

1

T = 12ms
0 0.5 1

0

0.2

0.4

0.6

0.8

1

T = 15ms
0 0.5 1

0

0.2

0.4

0.6

0.8

1

T = 18ms

0 0.5 1
0

0.2

0.4

0.6

0.8

1

T = 3ms
0 0.5 1

0

0.2

0.4

0.6

0.8

1

T = 6ms
0 0.5 1

0

0.2

0.4

0.6

0.8

1

T = 9ms

0 0.5 1
0

0.2

0.4

0.6

0.8

1

T = 12ms
0 0.5 1

0

0.2

0.4

0.6

0.8

1

T = 15ms
0 0.5 1

0

0.2

0.4

0.6

0.8

1

T = 18ms

Figure 10: Propagation wavefront aroud an hole: bidomain FHN (left) and CRN (right) models
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In the second test we consider a coarse approximate geometrical model of both atria. The stimulus is located
in a position corresponding to the one of the sinus node and we run an entire heartbeat. We plot in figures
13 and 14 the spread of excitation along these atrial chambers.

Figure 11: Propagation wavefront on a sphere: bidomain FHN model

6 Conclusions

We presented here an approach to simulate the propagation of the excitation fronts in the atrial cells,
based on nonlinear models of reaction-diffusion type, considering both the monodomain and the bidomain
approach. The ionic currents are expressed by the simple modified FHN model (in the Rogers-McCulloch
variant), and by the more sophisticated CRN model, especially designed for human atrial cells. Numerical
simulations on a two dimensional slab, on a sphere, and on a coarse model of the atria are given to show
the behaviour of the excitation spread and the repolarization phase. The extension of such simulations to
a more realistic geometry is currently under investigation. Further directions of research will be twofold:
on the one hand we will include in the model the presence of pacemaker cells as the ones provided by O.
Doessel and his collaborators (see for instance [27] and [28]), and on the other hand we will couple the atrial
simulation with the ventricular one by embedding in the framework the cell model for atrioventricular node
proposed by L. Glass and his collaborators [11].
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[11] P. Jørgensen, C. Schäfer, P.G. Guerra, M. Talajic, S. Nattel, and L. Glass. A mathematical model of
human atrioventricular nodal function incorporating concealed conduction. Bulletin of Mathematical
Biology, 64(6):1083–1099, 2002.

[12] J.P. Keener. An eikonal-curvature equation for the action potential propagation in myocardium. J.
Math. Biol., 29:629–651, 1991.

[13] J.P. Keener and J. Sneyd. Mathematical Physiology. Springer-Verlag, 1998.

[14] J. Kneller, R. Zou, E.J. Vigmond, Z. Wang, L.J. Leon, and S. Nattel. Cholinergic atrial fibrillation in
a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties. Circ.
Res., 90:e73–e87, 2002.

17



[15] J. Le Grice, B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin, and P.J. Hunter. Laminar structure of the
heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol.,
269 (Heart Circ. Physiol.):H571–H582, 1995.

[16] D.S. Lindblad, C.R. Murphey, J.W. Clark, and W.R. Giles. A model of the action potential and
underlying membrane currents in a rabbit atrial cell. Am. J. Physiol., 271:H1666–H1696, 1996.

[17] C. Luo and Y. Rudy. A dynamic model of the cardiac ventricular action potential. Circ. Res., 74:1071–
1096, 1994.

[18] A. Nygren, C. Fiset, L.Firek, J.W. Clark, D.S. Lindblad, R.B. Clark, and W.R. Giles. Mathematical
model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res., 82:63–81,
1998.

[19] A.V. Panfilov. Spiral breakup as a model of ventricular fibrillation. Chaos, 8:57–64, 1998.

[20] A.V. Panfilov and A.V. Holden. Computational biology of the heart. Wiley, 1997.

[21] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer-Verlag,
Berlin, 1994.

[22] R.L. Rasmusson, J.W. Clark, W.R. Giles, E.F. Shibata, and D.L. Campbell. A mathematical model of
a bullfrog cardiac pacemaker cell. Am. J. Physiol., 259:H352–H369, 1990.

[23] J.M. Rogers and A.D. McCulloch. A collocation-galerkin finite element model of cardiac action potential
propagation. IEEE Trans. Biomed. Engnrg., 41:743–757, 1994.

[24] B.J. Roth. Action potential propagation in a thick strand of cardiac muscle. Circ. Res., 68:162–173,
1991.

[25] B.J. Roth. How the anisotropy of the intracellular and extracellular conductivity influence stimulation
of cardiac muscle. J. Mat. Biol., 30:633–646, 1992.

[26] S. Sanfelici. Convergence of the galerkin approximation of a degenerate evolution problem in electro-
cardiology. Numer. Meth. Part. Diff. Eq., 18(2):218–240, 2002.

[27] G. Seemann. Modeling of Electrophysiology and tension development in the human heart. PhD thesis,
Universität Karlsruhe, 2005.
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