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Modeling and numerical simulation of action potentials in human atrial tissues

Electrophysiology of the heart is the subject of a vast interdisciplinary literature, from medical sciences through bio-engineering, physiology, chemistry and physics. The difficulty in having access to direct measures on real patients entailed the coupling of such studies with numerical simulations. Several works have been done on this topic, focusing mainly on the behavior of the ventricles. In this paper we focus on atrial simulation: we present a reaction-diffusion model coupled with the simple FitzHugh-Nagumo (FHN) model and the more complex Courtemanche-Ramirez-Nattel (CRN) model, which has been derived explicitely for human atrial cells. Numerical experiments are performed with both the bidomain and the monodomain models to simulate the evolution of a complete heartbeat.

Introduction

The basic property of neural cells to produce signals is called Action Potential (AP). It consists of a sudden variation in the transmembrane potential, called upstroke, followed by a recovering of the resting condition. It shows different shapes and amplitudes according to the different kind of excitable media to which the cells belong to, and in the large muscle cells makes it possible the simultaneous contraction of the whole cell. An action potential propagates keeping the same shape and amplitude all along an entire neural or muscular fiber. Cardiac cells are characterized by a transmembrane potential that is negative at rest, owing to the fact that the concentration of potassium ions [K + ]i inside the cardiac cell is remarkably higher than the outside concentration [K + ]e, and show two kinds of action potentials: the quick and the slow response. The quick response is typical in the myocardium fibers (both atrial and ventricular) and in the Purkinje fibers, which are fibers specialized in the conduction. The quick response cells are characterized by a negative transmembrane potential at rest (around -90mV), and by a rapid depolarization (positive overshoot), where the potential difference changes sign and the internal potential overtakes the external one of around 20mV: such phase is called Phase 0. Immediately after that (Phase 1) a short period of partial repolarization takes place, followed by a plateau (Phase 2) which lasts for around 0.2 seconds. The potential gets progressively more negative (Phase 3) until it reaches again the resting value. The repolarization procedure is far slower than the depolarization one, and the interval between the end of the repolarization and the next action potential is called Phase 4. The slow response is the one taking place in the Sinoatrial Nodus (SA), the natural pacemaker of the heart, and in the Atrioventricular Nodus (AV), the tissue meant to transfer the pulse from atria to ventricles. The slow response cells are characterized by a resting potential less negative (around -50mV), by a smaller slope and amplitude in the overshoot of the action potential, by the absence of the Phase 1, and by a relative refractory period that continues during Phase 4. The Action Potential propagates across the heart in an heterogeneous way. The pulse moves from the Sinoatrial Nodus (SA), and propagates through the ordinary myocardic fibers of the right atrium, while the Buchmann's bundle drives the pulse towards the left atrium. Some action potentials propagate downwards and reach the Atrioventricular Nodus (AV), which is, under normal conditions, the only gate for the pulse

Description of the model

The conductivity of the cardiac cells depends upon their orientation, and in the most general case the conductivity tensor is anisotropic. The structure of the cardiac cells can be modeled, following Le Grice et al. ( [START_REF] Grice | Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog[END_REF]) as a sequence of muscular layers going from endocardium to epicardium (see also [START_REF] Streeter | Gross morphology and fiber geometry in the heart[END_REF]). In any point x ∈ Ω (in the rest of the paper Ω will denote the spatial domain under consideration) it is thus possible to identify an orthonormal triplet of directions, a l (x), at(x), an(x), with a l (x) parallel to the fibers direction, at(x) and an(x) tangent and orthogonal repectively to the radial lamination, both transversal with respect to the fiber axis. The bidomain model consists in representing the cardiac tissue as the superposition of two media which are continuous and anisotropic, the intra-cellular and the extra-cellular one, coexisting at each point x and separated by a cell membrane. Such model has been derived, by an homogenization technique, starting from a periodic assembling of elongated cells surrounded by extracellular space and connected by end-to-end or side-to-side junctions (for the mathematical details we refer to [START_REF] Keener | Mathematical Physiology[END_REF][START_REF] Colli Franzone | Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level[END_REF]). Denoting by σ i,e l , σ i,e t , and σ i,e n the conductivity coefficients in the a l , at and an directions, the conductivity tensor is given by Di,e(x) = σ i,e l a l (x)a T l (x) + σ i,e t at(x)a T t (x) + σ i,e n an(x)a T n (x), for the intra-and extra-cellular medium respectively. The intra-cellular and extra-cellular electric potentials, which we denote by ui and ue, are governed in the bidomain model by a degenerate reaction diffusion system of parabolic type, coupled with an ODE system describing the ionic gating variables w and the ionic concentrations c. In the following we denote by v = ui -ue the transmembrane potential. The membrane current per unit volume is given by

Im = cm∂tv + Iion(v, w, c), (2.1) 
where cm = χCm, Iion = χiion, χ being the membrane area per tissue volume, Cm the surface capacity and iion the membrane ionic current per unit area. We assume that any external current can be applied to the extracellular medium only: such current, that we denote by I app e , has to satisfy a zero mean value compatibility condition R Ω I app e = 0. Denoting by Ji = -Di∇ui and Je = -De∇ue the intracellular and extracellular current densities, respectively, the bidomain model is derived by imposing the conservation of the total current and in given by

div Ji = -Im div Je = Im -I app e (2.
2)

The ionic current through membrane channels in (2. 

Iion(v, w, c) = L X l=1 G l (v)Φ l (c) Mw Y j=1 w p jl j (v -v l (w)),
G k (v) being the membrane conductance, v k being the reversal potential for the k-th current, p jk being integers, Φ l (c) is a (possibly) nonlinear function of the concentrations, and where the dynamics of the gating and concentration variables is described by a system of ODE's

∂w ∂t = R(v, w) ∂c ∂t = S(v, w, c), (2.3) 
with prescribed initial condition w(x, 0) = w0(x) and c(x, 0) = c0(x). In such models, for any gating variable wj, we have 0 < wj < 1, and the right hand side Rj(v, w) has a special structure such that the system is decoupled and the corresponding ODE is given by

∂wj ∂t = Rj(v, w) = Rj(v, wj) = αj(v)(1 -wj) -βj(v)wj, (2.4) 
with αj(v), βj(v) > 0.

Owing to (2.1) and (2.2), the bidomain model in the variables (ui(x, t), ue(x, t)) and v(x, t) = ui(x, t)ue(x, t), for an insulated domain Ω ⊂ R 3 , eventually reads

8 > > > > > > < > > > > > > : cm∂tv -div (Di∇ui) + Iion(v, w, c) = 0 in Ω × (0, T ) -cm∂tv -div (De∇ue) -Iion(v, w, c) = -I app e in Ω × (0, T ) ∂tw -R(v, w) = 0 in Ω × (0, T ) ∂tc -S(v, w, c) = 0 in Ω × (0, T ) n T Di,e∇ui,e = 0 in ∂Ω × (0, T ) v(x, 0) = v0(x) w(x, 0) = w0(x) c(x, 0) = c0(x)
in Ω.

(2.5)

The above system uniquely determines v, whereas the potentials ui and ue are determined modulus an additive constant depending on time and linked to the reference potential. Such potential is chosen as the mean extracellular potential in the cardiac volume, by imposing a zero mean condition R Ω ue = 0. System (2.5) can be rewritten in terms of the extracellular and the transmembrane potentials. From the second equation in If we assume the anisotropy ratio to be the same in the two media, intra-and extra-cellular, namely we assume Di = λDe with λ constant, the bidomain model reduces to a simpler one. If we let

D = λ 1 + λ Di, I app = λ 1 + λ I app i + 1 1 + λ I app e ,
the simplified model consists of a single reaction-diffusion equation of parabolic type for the transmembrane potential

v, cm∂t v -div (D(x)∇v) + Iion(v, w, c) = I app in Ω × (0, T ), (2.7) 
coupled with the ODE system (2.3) for the gating and concentration variables. Such model is referred to as monodomain model.

Ionic currents and membrane models

The ionic currents appearing in both the monodomain and the bidomain model rely on the choice of the membrane model for the cell conductivity. The earliest model appeared in the work on nerve action potential by Hodgkin and Huxley ( [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]), which earned them the Nobel prize in Medicine in 1963. Models of this type have then been extensively studied and developed by physiologists for the cardiac action potential: under the assumption of an equipotential cell, the variation in time of the membrane potential v for a single cells is ruled in such models by an ordinary differential equation

dv dt = - Iion -Ist Cm , (3.1) 
where Iion and Ist are the total ionic current and stimulus current across the membrane, respectively, and Cm is the total membrane capacitance. Such models are naturally included in the above framework, where the stimulus current is provided by the diffusive term in both the bidomain and the monodomain settings, modeling the stimulus propagation through neighboring cells.

Concerning the modeling of ventricular cells, the fitting of improved experimental data with more complex models led to the developement of many refinements of the original Hodgkin-Huxley model: among them, we recall the model by Beeler and Reuter (1977, with 4 ionic currents and 7 gating and concentrations variables), and the phase-I Luo-Rudy (1991, with N = 6 and M = 7). In this direction, the most recent published model of mammalian ventricular cells is the phase-II Luo-Rudy (1994, [START_REF] Luo | A dynamic model of the cardiac ventricular action potential[END_REF]), which is based on measurements from guinea pig. Simpler models of reduced complexity have also been proposed, where only 1 or 2 gating variables are considered.

If, on the one hand, several models are available to describe the behaviour of ventricular cells, less has been done focusing on atrial cells. Atria differ from ventricles under several aspects. First of all, the thickness of the wall in atria is far less significant than in ventricles, while the speed of conduction is much larger in ventricles. A different ionic current and membrane model should therefore be used when dealing with atria. In this direction, models of atrial cells based on animal data only have been published (see [START_REF] Earm | A model of the single atrial cell: relation between calcium current and calcium release[END_REF][START_REF] Rasmusson | A mathematical model of a bullfrog cardiac pacemaker cell[END_REF][START_REF] Winslow | Generation and propagation of ectopic beats induced by spatially localized Na-K pump inhibition in atrial network models[END_REF]): the most recent of such models is the one proposed by Lindblad et al. (1996, [16]), which is based on measurements from rabbit atrial cells. Although these models have provided valuable insights into the mechanisms underlying the action potential generation in animals, the significant interspecies differences with respect to human being and the amount of available human data led scientists to develop mathematical models of the action potential based on ionic current data measured directly in human atrial cells. The most recently published models in this direction are the ones proposed by Nygren et al. in [START_REF] Nygren | Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization[END_REF] and by Courtemanche et al. in [START_REF] Courtemanche | Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model[END_REF]. Both models handle the atrial cell as a capacitor connected in parallel with variable resistances and batteries representing the ionic channels and driving forces.

The FHN cell model

The simplest ionic model is the FitzHugh-Nagumo (FHN), consisting of 1 ionic current and 1 gating variable. Assuming the potential v to be zero at rest, the ionic current uses only one recovery variable:

Iion(v, w) = g(v) + βw,
where β > 0, g(v) is a cubic-like function, and w satisfies

∂w ∂t = ηv -γw,
with η, γ > 0. Such model is well suited to represent neural cells, but this is not the case for the physiological description of cardiac cells: in particular, the overshoot phase lacks in sharpness and during the recovering phase the potential falls below the resting value.

An improvement of this model is given by the following variant by Rogers and McCulloch ([23]):

Iion(v, w) = Gv " 1 - v v th « " 1 - v vp « + η1vw, ∂w ∂t = η2 " v vp -η3w « ,
where G, η1, η2, η3 are positive coefficients, v th is a threshold potential, and vp is the peak potential. In Figure 1 we report the time evolution of the potential v and of the gating variable w for the Rogers-McCulloch variant of the FHN model. The great simplicity of this model is behind its wide use in literature. However, if on the one hand, such model is well suited to describe the positive overshoot in the quick depolarization phase, on the other hand it provides only a coarse approximation in the plateau and repolarization phases of the action potential, and behaves too poorly when accuracy in the description of the action potential is needed. 

The CRN atrial cell model

One of the most accurate models for atrial cells is the CRN (Courtemanche, Ramirez and Nattel, [START_REF] Courtemanche | Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model[END_REF]) one, in which the total ionic current is given by the sum

Iion = INa + IK + ICa + I b + Ip. (3.2)
The above expression takes into account several aspects of the action potential generation. In (3.2), INa is the fast depolarizing Na + current, while the quantity IK is the total rectifier K + current, given by

IK = IK1 + Ito + IKur + IKr + IKs,
where IK1 is the inward rectifier K + current, playing a major role in the late repolarization phase of the AP and in determining resting membrane potential and resistance, Ito is the transient outward K + current, IKur, IKr, and IKs are the ultrarapid, rapid, and slow rectifier currents. The quantity ICa = ICa,L is the L-type Ca 2+ current, while I b is the the background current for sodium Na + and calcium Ca 2+

I b = I b,Na + I b,Ca .
Finally, Ip collects the actions of pumps and ion exchangers, designed to put back into balance the ion concentrations at rest:

Ip = INaCa + INaK + Ip,Ca,
where INaCa is the sodium-calcium pump, INaK is the sodium-potassium pump, and Ip,Ca is the calcium exchanger.

The model handles also the intracellular concentrations [Na + ]i, [K + ]i, and [Ca 2+ ]i, as well as the intracellular calcium buffering by the sarcoplasmic reticulum system (SR), by means of the calcium concentrations in the uptake ([Ca 2+ ]up), and release ([Ca 2+ ] rel ) SR compartments.

In the model, no extracellular cleft space is included, the membrane capacitance is cm = 100pF, the lenght and diameter of the cells are set to 100 and 16 µm, respectively, and the cell compartment volumes are the same ones used in the phase-II Luo-Rudy model (LR2, [START_REF] Luo | A dynamic model of the cardiac ventricular action potential[END_REF]). Denoting by EX the equilibrium potential for ion X, and with gX its maximal conductance, from Nerst equation, EX is given by

EX = RT zF log [X]e [X]i ,
where R is the gas constant, T is the absolute temperature, F is the Faraday constant, z = 1 for Na + and K + , z = 2 for Ca 2+ , and [X]e and [X]i denote the external and internal concentration of ion X.

The ionic currents are all voltage-dependent, and, in addition, some of them depend upon gating variables whose activation or deactivation handles the ions passage across the membrane, according to the phase of the action potential. The generic gating variable y satisfies an ordinary differential equation such

dy dt = - y ∞ -y τy , (3.3) 
where y ∞ is the steady state of the gating variable with the cell at rest. Notice that formulation (3.3) falls into the Hodgkin-Huxley formalism by setting

y ∞ = αy(v)τy(v) τy(v) = 1 αy(v) + βy(v)
.

The dynamics of the concentration variables is governed by the following equations

d[Na + ]i dt = -3INaK -3INaCa -I b,Na -INa F Vi (3.4) d[K + ]i dt = 2INaK -IK1 -Ito -IKur -IKr -IKs F Vi (3.5) d[Ca 2+ ]i dt = » 2INaCa -Ip,Ca -ICa,L -I b,Ca 2F Vi + Vup(I up,leak -Iup) + I rel V rel Vi - × × » 1 + αiβi ([Ca 2+ ]i + βi) 2 + γiδi ([Ca 2+ ]i + δi) 2 --1 (3.6) d[Ca 2+ ]up dt = Iup -I up,leak -Itr V rel Vup (3.7) d[Ca 2+ ] rel dt = (Itr -I rel ) » 1 + α rel β rel ([Ca 2+ ] rel + β rel ) 2 --1 , (3.8) 
where Vi is the intracellular volume, Vup and V rel are the volumes of the uptake and release compartments of the sarcoplasmic reticulum (SR), αi, γi, and α rel depend on the total concentrations of troponin and calmodulin in myoplasm, and of calsequestrin in the release compartment of SR, while βi, δi, and β rel depend on their half saturation constants, respectively. All these three proteins are responsible of the contraction of the cell. In (3.6) and (3.7), I up,leak is the Ca 2+ leak current by the JSR, Iup is the Ca 2+ uptake current by the JSR, while I rel is the Ca 2+ release current from the JSR. Finally, in (3.7) and (3.8), Itr is the transfer current from NSR to JSR. The model consists globally of 5 concentration variables and 15 gating variables. In Table 1 we report the gating variables associated to the ionic currents, while in Figure 2 and3 we plot the time evolution of the potential and of the gating and concentration variables. For a more detailed description of the model we refer the interested reader to the original paper by Courtemanche et al. [START_REF] Courtemanche | Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model[END_REF].

Current Gating variables Current Gating variables

I Na m h j I Ks x s I to o a o i I Ca,L d f f Ca I Kur u a u i I rel u ν w I Kr x r
Table 1: Ionic currents and corresponding gating variables

Finite dimensional approximation of the model

In this section we outline the variational formulation of the bidomain and the monodomain models, as well as their finite dimensional approximation. In that order, let H 1 (Ω) be the usual Sobolev space over R. The variational formulation of the bidomain model reads as follows. Given v0, w0, c0 ∈ L 2 (Ω), I app ∈ L 2 (Ω × (0, T )), find ui,e ∈ W 1,1 (0, T ; H 1 (Ω)), such that ∀t ∈ (0, T )

8 > > > > > > < > > > > > > : cm ∂ ∂t (v(t), φi) + ai(ui(t), φi) + (Iion(v(t), w(t), c(t)), φi) = 0 ∀φi ∈ H 1 (Ω) -cm ∂ ∂t (v(t), φe) + ae(ue(t), φe) -(Iion(v(t), w(t), c(t)), φe) = -(I app e , φ) ∀φe ∈ H 1 (Ω) v(x, t) = ui(x, t) -ue(x, t), (4.1) 
coupled with the ordinary differential system (2.3), where suitable initial conditions on v, w, c are provided, as given in (2.5). In 

cm ∂ ∂t (v(t), φ) + a(v(t), φ) + (Iion(v(t), w(t), c(t)), φ) = (I app , φ) ∀φ ∈ H 1 (Ω), (4.2) 
where again (., .) denotes the inner product in L 2 (Ω), while a(., .) denotes the elliptic bilinear form

a(λ, µ) = Z Ω (∇λ) T D(x)∇µ dx ∀λ, µ ∈ H 1 (Ω),
respectively, always coupled with the ordinary differential system (??).

If, on the one hand, several theoretical results on reaction-diffusion equations can be applied to the monodomain model, on the other hand less is known on degenerate reaction-diffusion systems such as the bidomain model. We refer the reader to [START_REF] Colli Franzone | Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level[END_REF] for existence, uniqueness and regularity results, both at the continuous and the semi-discrete level, and to [START_REF] Sanfelici | Convergence of the galerkin approximation of a degenerate evolution problem in electrocardiology[END_REF] for a convergence analysis of finite elements approximations. Both papers deal with the FitzHugh-Nagumo (FHN) model of the gating system. More results are known on the related eikonal approximation describing the propagation of excitation front (see for instance [START_REF] Colli Franzone | Spread of excitation in 3-D models of the anisotropic cardiac tissue, I: Validation of the eikonal approach[END_REF][START_REF] Colli Franzone | Spread of excitation in 3-D models of the anisotropic cardiac tissue, II: Effect of the fiber architecture and ventricular geometry[END_REF][START_REF] Keener | An eikonal-curvature equation for the action potential propagation in myocardium[END_REF]), and a mathematical analysis of the bidomain model using Γ-convergence theory can be found in [START_REF] Ambrosio | On the asymptotic behaviour of anisotropic energies arising in the cardiac bidomain model[END_REF].

Semi-discrete formulation

Let T h be a regular triangulation of Ω ⊂ R d (d = 2, 3), namely Ω = S N j=1 Kj, where each Kj = TK j (E) ∈ T h , E is the reference element, a simplex (namely the triangle with vertices (0, 0), (1, 0), and (0, 1) when d = 2 or the thetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) when d = 3) or the unit cube [0, 1] d (d = 2, 3), and where TK j is an invertible affine map. We define h as the maximum diameter of the elements of the triangulation. The associated finite element spaces X h and Y h (see e.g. [START_REF] Quarteroni | Numerical Approximation of Partial Differential Equations[END_REF] for an introduction to finite element methods) are defined as

X h = n ϕ h ∈ C 0 (Ω) | ϕ h |K j • TK j ∈ P1(E) o , Y h = n ϕ h ∈ C 0 (Ω) | ϕ h |K j • TK j ∈ Q1(E) o ,
where P1(E) is the space of polynomials of degree at most one on E, whereas Q1(E) is the space of polynomials of degree at most one with respect to each variable on E.

A semi-discrete problem in space is then obtained by applying a Galerkin procedure, using as finite dimensional space V h = X h or V h = Y h , and choosing a basis for V h . We denote by N h the dimension of V h , we let {ϕi}

N h
i=1 be the finite element basis, and we let M = (m kl ), A = (a kl ) and Ai,e = (a i,e kl ) be the symmetric mass and stiffnes matrices defined by

m kl = N X j=1 Z K j ϕ k ϕ l dx, a kl = N X j=1 Z K j (∇ϕ k ) T D(x)∇ϕ l dx a i,e kl = N X j=1 Z K j (∇ϕ k ) T Di,e(x)∇ϕ l dx.
In the next section, devoted to numerical simulations, such integrals are evaluated by means of a 3rd order Gaussian rule. We let

u i,h (t, x) = N h X j=1 ui,j(t)ϕj(x) u e,h (t, x) = N h X j=1 ue,j(t)ϕj(x) v h (t, x) = N h X j=1 vj(t)ϕj(x) w h (t, x) = N h X j=1 wj(t)ϕj(x) c h (t, x) = N h X j=1 cj(t)ϕj(x)
and denoting, for sake of simplicity, by

u i,h = (ui,1, . . . , ui,N h ) T u e,h = (ue,1, . . . , ue,N h ) T v h = (v1, . . . ,N h ) T w h = (w1, . . . ,N h ) T c h = (c1, . . . ,N h ) T
the bidomain formulation for the finite element problem can be written in compact form as

cm » M -M -M M - ∂ ∂t » u i,h u e,h - + » Ai 0 0 Ae -» u i,h u e,h - + » M I h ion (v h , w h , c h ) -M I h ion (v h , w h , c h ) - = » 0 M I app e,h - . (4.3) 
In the simpler monodomain formulation, the finite elements approximation of the transmembrane potential v h is the solution of

cmM ∂v h ∂t + Av h + M I h ion (v h , w h , c h ) = M I app h . (4.4) 
Both equations (4.4) and (4.3) are coupled with the semidiscrete formulation of the dynamics of the gating and concentration variables

∂w h ∂t = R(v h , w h ), ∂c h ∂t = S(v h , w h , c h ).
Finally, the semi-discrete version of the alternative bidomain formulation (2.6) terms of v h and u e,h is given by 8 > < > :

cmM ∂v h ∂t + Aiv h + Aiu e,h + M I h ion (v h , w h , c h ) = M I app i,h
Aiv h + (Ae + Ai)u e,h = M (I app i,h -I app e,h ).

(4.5) Equation (4.5) above is a Differential-Algebraic Equation (DAE), that separates the differential variable v h from the algebraic one u e,h . Such approach has been firstly used in [START_REF] Colli Franzone | Spread of excitation in 3-D models of the anisotropic cardiac tissue, I: Validation of the eikonal approach[END_REF] and [START_REF] Roth | Action potential propagation in a thick strand of cardiac muscle[END_REF], and sequently by many other authors.

Fully discrete approximation

In order to have a fully discrete approximation of the problem, we integrate in time systems (4.4) and (4.3) by means of a semi-implicit Euler scheme: the linear diffusion term is discretized implicitely, while the nonlinear reaction term (the ionic current Iion) is treated explicitely. The mass matrix M is lumped to diagonal form by standard techniques. Owing to the Hodgkin-Huxley formalism, the ordinary differential system for the gating variables is integrated exactly after linearization around the potential at the previous time step, and the j-th gating variable at time step n + 1 is given by

w n+1 h,j = wj∞(v n h,j ) + (w n h,j -wj∞(v n h,j )) exp - ∆t τw h,j (v n h,j ) ! ,
while the system for the variables is integrated by a backward Euler scheme

c n+1 h -c n h ∆t = S(v n h , w n+1 h , c n h ).
This allows us to decouple the ODE system by solving with respect to the gating and concentration variables first, given the potential at the previous time step v n h , and then solving, in the monodomain case, for

v n+1 h cmM v n+1 h -v n h ∆t + Av n+1 h + M I h ion (v n h , w n+1 h , c n+1 h ) = M I app h
and, in the bidomain case, for u n+1 i,h and u n+1 e,h

8 > > > < > > > : cmM v n+1 h -v n h ∆t + Aiu n+1 i,h + M I h ion (v n h , w n+1 h , c n+1 h ) = 0 -cmM v n+1 h -v n h ∆t + Aeu n+1 e,h -M I h ion (v n h , w n+1 h , c n+1 h ) = -M I app e,h ,
where v n+1 h = u n+1 i,h -u n+1 e,h . With this choice (notice that one could solve for the potential first and update successively the gating and concentration variables), the semi-implicit method in the monodomain case requires to solve the linear system

[cmM + ∆tA] v n+1 h = cmM v n h -∆tM I h ion (v n h , w n+1 h , c n+1 h ) + ∆tM I app h ,
while, in the bidoman case, the associated linear system is

» cmM + ∆tAi -cmM -cmM cmM + ∆tAe -» u n+1 i,h u n+1 e,h - = cm » M -M -M M -» u n i,h u n e,h - -∆t » M I h ion (v n h , w n+1 h , c n+1 h ) -M I h ion (v n h , w n+1 h , c n+1 h ) -M I app e,h
-.

The semi-implict scheme above leads, in the monodomain case, to a linear system with symmetric positive definite matrix, and, in the bidomain case, to a linear system with a symmetric positive semidefinite matrix, with a one dimensional kernel spanned by (1, 1) T . The transmembrane potential v n+1 h is then uniquely determined for both the monodomain and the bidomain models, as in the continuous model, while u n+1 i,h and u n+1 e,h are determined up to the same additive time-dependent constant with respect to a reference potential. Such constant can be determined by imposing the condition 1 T M u n+1 e,h = 0. Both systems are solved by a preconditioned conjugate gradient algorithm (PCG), using as initial guess the solution at the previous time step.

Numerical simulations

In this section we describe some numerical simulations. We consider two dimensional domains since the thickness of the atrial wall is far less significant than that of the ventricular one, and a two dimensional approximation is thus reasonable. We run monodomain and bidomain simulations, with both the modified FHN and the CRN cell model. In Table 1 we report the parameter calibration for the tests. The numerical simulations are run on MATLAB R 6.5.

General

χ = 10 3 cm -1 C = 10 -3 mF/cm 2 Monodomain σ l = 1.2 • 10 -3 Ω -1 cm -1 σ t = 2.5562 • 10 -4 Ω -1 cm -1 Bidomain σ e l = 2 • 10 -3 Ω -1 cm -1 σ e t = 1.3514 • 10 -4 Ω -1 cm -1 σ i l = 3 • 10 -3 Ω -1 cm -1 σ i t = 3.1525 • 10 -4 Ω -1 cm -1 G = 1.5 Ω -1 cm -2 η 1 = 4.4Ω -1 cm -1 FHN model v th = 13 mV η 2 = 0.012 v p = 100 mV η 3 = 1 CRN model
As in the original paper [START_REF] Courtemanche | Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model[END_REF] Table 2: Parameter calibration for the numerical simulations 

Numerical simulation of a slab

In this first series of tests the computational domain is Ω = [0, 1] × [0, 1], and the problem is discretized by P1 elements on an unstructured triangular grid. In the first test we considered a vertex stimulation of the slab. We show the spread of excitation and the repolarization, in Figure 4 for the monodomain-FHN model, and, in Figure 5 for the monodomain-CRN model. For the latter model, the spike-and-dome profile of the Action Potential is more evident, as well as the longer time needed to recover the resting value of the potential, owing to the presence of the plateau phase, that is not captured by the simple FHN model.

In the second test we considered a central stimualtion of the slab. We show the transmembrane potential v as well as the intracellular and extracellular potentials ui and ue, in figure 6 for the bidomain FHN model, at point (.2333,.5667) of the slab, in figure 7 for the bidomain CRN model at point (.8,.7).

In the third test, in order to simulate the presence of arteries or veins, we considered a two dimensional slab with a circular hole embedded. Since the vessel walls (both arterious and venous) are not excitable, we impose a non-conducting condition (n • ∇v = 0) on the border of the hole. We show the spread of excitation and the repolarization for the monodomain FHN model in Figure 8, and for the monodomain CRN in Figure 9. In Figure 10, a closer look allows to better appreciate the distorsion of the wavefront in the neighbourhood of the hole for both the FHN and CRN bidomain models. 

Numerical simulation on curved surfaces

In this second series of tests we consider curved surfaces. In the first test we consider the unit sphere as a coarse model of the atrium and we run bidomain simulation for both the FHN and the CRN cell models. We plot in figure 11 and 12 the spread of excitation on the sphere for the two models.

In the second test we consider a coarse approximate geometrical model of both atria. The stimulus is located in a position corresponding to the one of the sinus node and we run an entire heartbeat. We plot in figures 13 and 14 the spread of excitation along these atrial chambers. 

.

  (2.5) we get cm∂tv = -div (De∇ue) -Iion(v, w, c) -I app e , and inserting it into the first one provides -div [Di∇ui + De∇ue] = -I app e So far, adding and subtracting div (Di∇ue), we obtain the formulation in terms of v and ue: 8 < : -cm∂tv -div (De∇ue) -Iion(v, w, c) = -I app e in Ω × (0, T ) -div [(Di + De)∇ue] = div (Di∇v) -I app e in Ω × (0, T ) (2.6)

Figure 1 :

 1 Figure 1: Time evolution of the potential v and the gating variable w in the Rogers-McCulloch variant of the FHN model

Figure 2 :

 2 Figure 2: CRN model: potential and concentration variables.

Figure 3 :

 3 Figure 3: CRN model: gating variables.

  (4.1), (., .) and ai,e(., .) denote the inner product in L 2 (Ω) (η, ξ) = Z Ω ηξ dx ∀η, ξ ∈ L 2 (Ω), and the elliptic bilinear forms ai,e(λ, µ) = Z Ω (∇λ) T Di,e(x)∇µ dx ∀λ, µ ∈ H 1 (Ω), respectively. The variational formulation of the monodomain model follows by replacing equations (4.1) with

Figure 4 :

 4 Figure 4: Monodomain FHN on a 2d slab: excitation and repolarization

Figure 5 :

 5 Figure 5: Monodomain CRN on a 2d slab: excitation and repolarization

Figure 6 :

 6 Figure 6: Bidomain FHN on a 2d slab: transmembrane potential v (left), intracellular u i (solid line) and extracellular u e (dotted line) potential at point (.2333,.5667)

Figure 7 :

 7 Figure 7: Bidomain CRN on a 2d slab: transmembrane potential v (left), intracellular u i line) and extracellular u e (dotted line, magnified by a factor 5) potential at point (0.8,0.7)

Figure 8 :

 8 Figure 8: Monodomain FHN on a 2d slab with an hole: excitation and repolarization

Figure 11 :

 11 Figure 11: Propagation wavefront on a sphere: bidomain FHN model

Figure 12 :

 12 Figure 12: Propagation wavefront on a sphere: bidomain CRN model

Figure 14 :

 14 Figure 14: Propagation wavefront on atrial chambers: bidomain CRN model

  1) depends on the transmembrane potential v, on Mw gating variables w ∈ R Mw , and on Mc concentration variables c ∈ R Mc and, in an Hodgkin-Huxley formalism, reads

We presented here an approach to simulate the propagation of the excitation fronts in the atrial cells, based on nonlinear models of reaction-diffusion type, considering both the monodomain and the bidomain approach. The ionic currents are expressed by the simple modified FHN model (in the Rogers-McCulloch variant), and by the more sophisticated CRN model, especially designed for human atrial cells. Numerical simulations on a two dimensional slab, on a sphere, and on a coarse model of the atria are given to show the behaviour of the excitation spread and the repolarization phase. The extension of such simulations to a more realistic geometry is currently under investigation. Further directions of research will be twofold: on the one hand we will include in the model the presence of pacemaker cells as the ones provided by O. Doessel and his collaborators (see for instance [27] and [28]), and on the other hand we will couple the atrial simulation with the ventricular one by embedding in the framework the cell model for atrioventricular node proposed by L. Glass and his collaborators [11].