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Abstract

Electrophysiology of the heart is the subject of a vast interdisciplinary literature, from medical sciences
through bio-engineering, physiology, chemistry and physics. The difficulty in having access to direct measures
on real patients entailed the coupling of such studies with numerical simulations. Several works have been
done on this topic, focusing mainly on the behavior of the ventricles. In this paper we focus on atrial
simulation: we present a reaction-diffusion model coupled with the simple Fitz-Hugh-Nagumo (FHN) model
and the more complex Courtemanche-Ramirez-Nattel (CRN) model, wich has been derived explicitely for
human atrial cells. Numerical experiments are performed with both the bidomain and the monodomain
models to simulate the evolution of a complete heartbeat.

1 Introduction

The basic property of neural cells to produce signals is called Action Potential (AP). It consists of a sudden
variation in the transmembrane potential, called upstroke, followed by a recovering of the resting condition.
It shows different shapes and amplitudes according to the different kind of excitable media to which the cells
belong to, and in the large muscle cells makes it possible the simultaneous contraction of the whole cell. An
action potential propagates keeping the same shape and amplitude all along an entire neural or muscular
fiber. Cardiac cells are characterized by a transmembrane potential that is negative at rest, owing to the
fact that the concentration of potassium ions [K+]i inside the cardiac cell is remarkably higher than the
outside concentration [K+]e, and show two kinds of action potentials: the quick and the slow response.
The quick response is typical in the myocardium fibers (both atrial and ventricular) and in the Purkinje
fibers, which are fibers specialized in the conduction. The quick response cells are characterized by a negative
transmembrane potential at rest (around -90mV), and by a rapid depolarization (positive overshoot), where
the potential difference changes sign and the internal potential overtakes the external one of around 20mV:
such phase is called Phase 0. Immediately after that (Phase 1) a short period of partial repolarization takes
place, followed by a plateau (Phase 2) which lasts for around 0.2 seconds. The potential gets progressively
more negative (Phase 3) until it reachs again the resting value. The repolarization procedure is far slower
than the depolarization one, and the interval between the end of the repolarization and the next action
potential is called Phase 4.
The slow response is the one taking place in the Sinoatrial Nodus (SA), the natural pacemaker of the heart,
and in the Atrioventricular Nodus (AV), the tissue meant to transfer the pulse from atria to ventricles. The
slow response cells are charcterized by a resting potential less negative (around -50mV), and by a smaller
slope and amplitude in the overshoot of the action potential, the absence of the Phase 1, and by a relative
refractory period that continues during Phase 4.
The Action Potential propagates across the heart in an heterogeneous way. The pulse moves from the
Sinoatrial Nodus (SA), and propagates through the ordinary myocardic fibers of the right atrium, while the
Buchmann’s bundle drives the pulse towards the left atrium. Some action potentials propagate downwards
and reach the Atrioventricular Nodus (AV), which is, under normal conditions, the only gate for the pulse
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to propagate from atria to ventricles. Moreover, the conduction is slower in atria than in ventricles (1 ms−1

versus 4 ms−1).
The electrical activity of the heart as a whole is thus characterized by a complex multiscale structure, ranging
from the microscopic activity of ion channels in the cellular membrane to the macroscopic properties of the
anisotropic propagation of the excitation and recovery fronts in the whole heart. The most complete model
of such a complex setting is the anisotropic Bidomain model (see [9, 23]), that consists of a system of
two degenerate parabolic reaction-diffusion equations describing the intra and extracellular potentials in
the cardiac muscle, coupled with a system of ordinary differential equations describing the ionic currents
flowing through the cellular membrane, that are associated to the nonlinear reaction term. This model
is computationally very expensive because of the involvement of different space and time scales, and a
simplified tissue model is the anisotropic Monodomain system, consisting of a parabolic reaction-diffusion
equation describing the propagation of the transmembrane potential coupled with an ionic model, which has
been widely used in literature (see for instance [21, 17]).
If, on the one hand, a wide literature is available for ventricular models (see for instance [4, 5, 18] and
references therein), on the other hand less has been done on atria, althought Atrial Fibrillation (AF) is the
most commonly sustained arrythmia, for which clinical treatment remains the most problematic. Knowledge
of the human atrial Action Potential and of its ionic currents is thus of critical importance to understand
the electrical properties of atrial tissues in both normal and pathological conditions.
In this paper we describe the Fitz-Hugh-Nagumo (FHN) cell model in the Rogers-McCulloch variant, which
is well suited to capture the excitation wavefront, but behaves very poorly in the description of the plateau
phase, and the Courtemanche-Ramirez-Nattel (CRN) model, that is especially designed for human atrial
cells. These models are then coupled with both monodomain and bidomain simulations on a two dimensional
slab with anisotropic conduction.
The rest of the paper is organised as follows. In Section 2 we give a brief review of the mathematical models,
the anisotropic bidomain and monodomain ones. In Section 3 we describe the ionic currents and the modified
FHN and the CRN membrane models. In Section 4 we give the variational formulation of the problem and
its finite element approximation. Finally, in Section 5, some numerical simulations on a two dimensional
cartesian slab are presented, varying both the cardiac tisssue model (monodomain and bidomain) and the
ionic model (FHN and CRN).

2 Description of the model

The conductivity of the cardiac cells depends upon their orientation, and in the most general case the
conductivity tensor is anisotropic. The structure of the cardiac cells can be modeled, following Le Grice et

al. ([13]) as a sequence of muscular layers going from endocardium to epicardium (see also [26]). In any
point x it is thus possible to identify an orthonormal triplet of directions, al(x), at(x), an(x), with al(x)
parallel to the fibers direction, at(x) e an(x) tangent and orthogonal repectively to the radial lamination,
both transversal with respect to the fiber axis.

2.1 The bidomain model

The bidomain model consists in representing the cardiac tissue as the superposition of two media which
are continuous and anisotropic, the intra-cellular and the extra-cellular one, coexisting at each point x and
separated by a cell membrane. Such model has been derived, by an homogenization technique, starting from
a periodic assembling of elongated cells surrounded by extracellular space and connected by end-to-end or
side-to-side junctions (for the mathematical details we refer to [12, 6]).
Denoting by σi,e

l , σi,e
t , and σi,e

n the conductivity coefficients in the al, at and an directions, the conductivity
tensor is given by

Di,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x) + σi,e
n an(x)aT

n (x),

for the intra- and extra-cellular medium respectively.
The intra-cellular and extra-cellular electric potentials, which we denote by ui and ue, are governed in
the bidomain model by a degenerate reaction diffusion system of parabolic type, coupled with an ODE
system describing the ionic gating variables w and the ionic concentration c. In the following we denote
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Im = cm∂tv + Iion(v, w, c) the membrane current per unit volume, where cm = χCm, Iion = χiion, χ being
the membrane area per tissue volume, Cm the surface capacity and iion the membrane ionic current per unit
area.
Let then Iapp

e be an applied extra-cellular current per unit volume which satisfies the compatibility condition
R

Ω
Iapp

e = 0 and let ji,e = −Di,e∇ui,e be the intra- and extra-cellular current density: the conservation of
the total current entails div Ji = −Im and div Je = Im − Iapp

e .
The bidomain model in the variables (ui(x, t), ue(x, t)) and v(x, t) = ui(x, t) − ue(x, t), for an insulated
domain Ω ⊂ R3, reads then

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

cm∂tv − div (Di∇ui) + Iion(v, w, c) = 0 in Ω × (0, T )
−cm∂tv − div (De∇ue) − Iion(v, w, c) = −Iapp

e in Ω × (0, T )
∂tw −R(v, w) = 0 in Ω × (0, T )
∂tc− S(v, w, c) = 0 in Ω × (0, T )

n
TDi,e∇ui,e = 0 in ∂Ω × (0, T )
v(x, 0) = v0(x) w(x, 0) = w0(x) c(x, 0) = c0(x) in Ω.

(2.1)

The above system uniquely determines v, whereas the potentials ui and ue are determined modulus an
additive constant depending on time and linked to the reference potential. Such potential is chosen as the
mean extracellular potential in the cardiac volume, by imposing a zero mean condition

R

Ω
ue = 0.

System (2.1) can be rewritten in terms of extracellular and transmembrane potentials. From the second
equation in (2.1) we get

cm∂tv = −div (De∇ue) − Iion(v, w, c) − Iapp
e ,

and inserting it into the first one provides

−div [Di∇ui +De∇ue] = −Iapp
e .

So far, adding and subtracting div (Di∇ue), we obtain the formulation in terms of v and ue:

8

<

:

−cm∂tv − div (De∇ue) − Iion(v, w, c) = −Iapp
e in Ω × (0, T )

−div [(Di +De)∇ue] = div (Di∇v) − Iapp
e in Ω × (0, T )

(2.2)

2.2 The simplified monodomain model

If we assume the anisotropy ratio to be the same in the two media, intra- and extra-cellular, namely we
assume Di = λDe with λ constant, the bidomain model reduces to the monodomain one. If we let

D =
λ

1 + λ
Di, Iapp =

λ

1 + λ
Iapp

i +
1

1 + λ
Iapp

e ,

the simplified monodomain model consists of a single reaction-diffusion equation of parabolic type for the
transmembrane potential v.

8

>

>

>

>

<

>

>

>

>

:

cm∂t v − div (D(x)∇v) + Iion(v, w, c) = Iapp in Ω × (0, T )
∂tw −R(v, w) = 0 in Ω × (0, T )
∂tc− S(v, w, c) = 0 in Ω × (0, T )
nTD∇v = 0 in ∂Ω × (0, T )
v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) in Ω.

(2.3)

3 Ionic currents and membrane models

The ionic currents appearing in both the monodomain and the bidomain model rely on the choice of the
membrane model for the cell conductivity. The earliest model appeared in the work on nerve action potential
by Hodgkin and Huxley ([10]), which earned them the Nobel prize in Medicine in 1963. Models of this type

3



have then been developed for the cardiac action potential, where the variation in time of the membrane
potential v (under the assumption of an equipotential cell) is given by

dv

dt
= −

Iion − Ist

Cm
, (3.1)

where Iion and Ist are the total ionic current and stimulus current across the membrane, respectively, and
Cm is the total membrane capacitance. In (3.1) the ionic current through the channels in the membrane
depends on the transmembrane potential v and on M gating and concentration variables w ∈ RM , and reads

Iion(v, w) =

N
X

k=1

Gk(v)

M
Y

j=1

w
pjk

j (v − vk(w)),

Gk(v) being the membrane conductance, vk being the reversal potential for the k-th current and pjk being
integers, and where the dynamics of the gating and concentration variables is described by a system of
ODE’s

∂w

∂t
= R(v, w), w(x, 0) = w0(x).

In such models, if wj is a gating variable, the right hand side Rj(v, w) has a special structure and the
corresponding ODE is given by

∂wj

∂t
= Rj(v, w) = Rj(v, wj) = αj(v)(1 − wj) − βj(v)wj , (3.2)

with αj(v), βj(v) > 0, 0 < wj < 1.
Many refinements of the original Hodgkin-Huxley model, obtained by fitting improved experimental data
with more complex models, have been developed for the modeling of ventricular cells: among them, we recall
the model by Beeler and Reuter (1977, with 4 ionic currents and 7 gating and concentrations variables),
and the phase-I Luo-Rudy (1991, with N = 6 and M = 7). In this direction, the most recent published
model of mammalian ventricular cells is the phase-II Luo-Rudy (1994, [15]), which is based on measurements
from guinea pig. Simpler models of reduced complexity have also been proposed, where only 1 or 2 gating
variables are considered.
If, on the one hand, several models are available to describe the behaviour of ventricular cells, less has
been done focusing on atrial cells. Atria differ from ventricles under several aspects. First of all, the
thickness of the wall in atria is far less significant than in ventricles, while the speed of conduction is much
larger in ventricles. A different ionic current and membrane model should therefore be used when dealing
with atria. In this direction, models of atrial cells based on animal data only have been published (see
[8, 20, 27]): the most recent of such model is the one proposed by Lindblad et al. (1996, [14]), which is
based on measurements from rabbit atrial cells. Although these models have provided valuable insights into
the mechanisms underlying the action potential generation in animals, the significant interspecies differences
with respect to human being and the amount of available human data led scientists to develop mathematical
models of the action potential based on ionic current data measured directly in human atrial cells. The
most recently published models in this direction are the ones proposed by Nygren et al. in [16] and by
Courtemanche et al. in [7]. These two models handle the atrial cell as a capacitor connected in parallel with
variable resistances and batteries representing the ionic channels and driving forces.

3.1 The FHN cell model

The most used and simplest ionic model is the Fitz-Hugh-Nagumo (FHN), consisting of 1 ionic current and
1 gating variable. Assuming the potential v to be zero at rest, the ionic current uses only one recovery
variable:

Iion(v, w) = g(v) + βw,

where β > 0, g(v) is a cubic-like function and w satisfies

∂w

∂t
= ηv − γw,
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Figure 1: Time evolution of the potential v and the gating variable w in the Rogers-McCulloch variant of the
FHN model

with η, γ > 0.
An improvement of this model is given by the following variant by Rogers and McCulloch ([21]):

Iion(v, w) = Gv

„

1 −
v

vth

« „

1 −
v

vp

«

+ η1vw,

∂w

∂t
= η2

„

v

vp
− η3w

«

,

where G, η1, η2, η3 are positive coefficients, vth is a threshold potential, and vp is the peak potential. In Figure
1 we report the time evolution of the potential v and of the gating variable w for the Rogers-McCulloch
variant of the FHN model.
If, on the one hand, such models are well suited to describe the positive overshoot in the quick depolarization
phase, on the other hand they provide only a coarse approximation in the plateau and repolarization phases
of the action potential, and behave too poorly when accuracy in the description of the action potential is
needed.

3.2 The CRN atrial cell model

One of the most accurate models for atrial cells is the CRN (Courtemanche, Ramirez and Nattel, [7]) one,
in which the total ionic current is given by the sum

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca. (3.3)

In the above expression, the total ionic current take into account the fast depolarizing Na+ current, the
rectifier K+ currents, the L-type CA2+ current, the background currents, the intracellular concentrations
[Ca2+]i, [Na+]i, and [K+]i, the action of the NaK and NaCa pumps, and the handling of the intracellular
calcium concentration by the sarcoplasmic reticulum system (SR). In the model, no extracellular cleft space
is included, the membrane capacitance is cm = 100pF, the lenght and diameter of the cells are set to 100 and
16 µm, respectively, and the cell compartment volumes are the same ones used in the phase-II Luo-Rudy
model (LR2, [15]). We give hereafter a brief description of the ionic currents. In that order, we denote with
EX the equilibrium potential for ion X, and with gX its maximal conductance. From Nerst equation, EX

is given by

EX =
RT

zF
log

[X]e
[X]i

,

where R is the gas constant, T is the absolute temperature, F is the Faraday constant, z = 1 for Na+ and
K+, z = 2 for Ca2+, and [X]e and [X]i denote the external and internal concentration of ion X.
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Fast Na+ current

It is a large, rapid inward current which is the major responsible of the depolarization phase at the beginning
of the action potential. It is given by

INa = gNam
3hj(v − ENa),

where m, h, and j are gating variables, whose coefficients in equation (3.2) are given by

αm =

8

>

>

<

>

>

:

.32
v + 47.13

1 − exp [−.1(v + 47.13)]

3.2, if v = −47.13

βm = .08 exp
“

−
v

11

”

αh =

8

>

>

<

>

>

:

.135 exp

„

−
v + 80

6.8

«

0, if v ≥ −40

βh =

8

>

>

<

>

>

:

3.56 exp(.079v) + 3.1 × 105 exp(.35v)

7.69

»

1 + exp

„

−
v + 10.66

11.1

«–−1

, if v ≥ −40

αj =

8

>

>

<

>

>

:

[−127, 140 exp (.2444 v) − 3.474 × 10−5 exp(−.04391v)]
v + 37.78

1 + exp[.311 (v + 79.23)]

0, if v ≥ −40

βj =

8

>

>

>

>

<

>

>

>

>

:

.1212
exp(−.01052v)

1 + exp[−.1378(v + 40.14)]

.3
exp

ˆ

−2.535 × 10−7v
˜

1 + exp[−.1(v + 32)]
if v ≥ −40

Inward rectifier K+ current

This current plays a major role in the late repolarization phase of the AP and in determining resting
membrane potential and resistance. It is given by

IK1 =
gK1(v − EK)

1 + exp(.07(v + 80))
gK1 = .09

Ultrarapid rectifier K+ current:

IKur = gKuru
3
aui(v − EK), gKur = .005 +

.05

1 + exp
“

v−15
−13

” ,

where ua and ui are gating variables, which satisfy equation (3.2) with coefficients

αua = .65

»

exp

„

−
v + 10

8.5

«

+ exp

„

−
v − 30

59.0

«–−1

βua = .65

»

2.5 + exp

„

v + 82

17

«–−1

αui =

»

21 + exp

„

−
v − 185

28

«–−1

βui = exp

„

v − 158

16

«
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Transient outward K+ current

Ito = gtoo
3
aoi(v − EK), gto = .1652,

where oa and oi are gating variables, which satisfy equation (3.2) with coefficients

αoa = .65

»

exp

„

−
v + 10

8.5

«

+ exp

„

−
v − 30

59.

«–−1

βoa = .65

»

2.5 + exp

„

v + 82

17.

«–−1

αoi =

»

18.53 + exp

„

v + 113.7

10.95

«–−1

βoi =

»

18.53 + exp

„

−
v + 1.26

7.44

«–−1

Rapid and slow delayed rectifier K+ currents

IKr =
gKrxr(v − EK)

1 + exp
`

v+15
22.4

´ gKr = .0294

IKs = gKsx
2
s(v − EK) gKs = .129

where xr and xs are gating variables, which satisfy equation (3.2) with coefficients

αxr = .0003
v + 14.1

1 − exp
`

v+14.1
5

´ βxr = 7.3898 × 10−5 v − 3.3328

exp
`

v−3.3328
5.1237

´

αxs = 4 × 10−5 v − 19.9

1 − exp
`

− v−19.9
17

´ βxs = 3.5 × 10−5 v − 19.9

exp
`

v−19.9
9

− 1
´

L-type Ca2+ current

ICa,L = gCa,LdffCa(v − 65.0) gCa,L = .1238

where d, f and fCa are gating variables, which satisfy equation

dy

dt
= −

y∞ − y

τy
(3.4)

where y is any of d, f , fCa, with coefficients

τd =
1 − exp

`

− v+10
6.24

´

.035 (v + 10)
ˆ

1 + exp
`

− v+10
6.24

´˜ d∞ =

»

1 + exp

„

−
v + 10

8

«–−1

τf = 9
ˆ

.0197 exp
ˆ

−.03372(v + 10)2
˜

+ .02
˜−1

f∞ =

»

1 + exp

„

v + 28

6.9

«–−1

τfCa = 2 f∞
Ca =

„

1 +
[Ca2+]i
.00035

«−1

Ca2+ pump current

Ip,Ca = Ip,Ca(max)
[Ca2+]i

.0005 + [Ca2+]i
Ip,Ca(max) = .275

Na+-K+ pump current

INaK = INaK(max)fNaK
1

1 +
“

Km,Na(i)

[Na+]i

”3/2

[K+]o
[K+]o +Km,K(o)

INaK(max) = .6,

where Km,Na(i) and Km,K(o) are the [Na+]i and [K+]o half saturation constants, respectively, while

fNaK =

»

1 + .1245 exp

„

−.1
Fv

RT

«

+ .0052

»

exp

„

[Na+]o
67.3

«

− 1

–

exp

„

−
Fv

RT

«–−1
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Figure 2: CRN model: potential and concentration variables.

Na+-Ca2+ exchanger

INaCa = INaCa(max)

exp
ˆ

γ vF
RT

˜

[Na+]3i )[Ca2+]o − exp
ˆ

(γ − 1) vF
RT

˜

[Na+]3o)[Ca2+]i

(K3
m,Na + [Na+]3o)(Km,Ca + [Ca2+]o)(1 + ksat exp

ˆ

(γ − 1) vF
RT

˜

where INaCa(max) = 1600.0, Km,Na and Km,Ca are the [Na+]i and [Ca2+]o half saturation constants, respec-
tively, ksat = .1 is a saturation factor, and γ = .35 is a voltage dependence parameter.

Background Ca2+ and Na+ currents

Ib,Ca = gb,Ca(v − ECa)

Ib,Na = gb,Na(v − ENa)

where gb,Ca and gb,Na are the maximal conductances for Ca2+ and Na+, respectively.

Dynamics of the concentration variables and the calcium buffers

The concentration variables considered in the CRN model are the internal concentrations [Na+]i, [K+]i
and [Ca2+]i, and the uptake and release calcium concentration by the sarcoplasmic reticulum, [Ca2+]up,
[Ca2+]rel. Their dynamics is governed by the following equations

d[Na+]i
dt

=
−3INaK − 3INaCa − Ib,Na − INa

FVi

d[K+]i
dt

=
2INaK − IK1 − Ito − IKur − IKr − IKs

FVi
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Figure 3: CRN model: gating variables.

d[Ca2+]i
dt

=

»

2INaCa − Ip,Ca − ICa,L − Ib,Ca

2FVi
+
Vup(Iup,leak − Iup) + IrelVrel

Vi

–

×

×

»

1 +
[Trpn]maxKm,Trpn

([Ca2+]i +Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

([Ca2+]i +Km,Cmdn)2

–−1 (3.5)

d[Ca2+]up

dt
= Iup − Iup,leak − Itr

Vrel

Vup
(3.6)

d[Ca2+]rel
dt

= (Itr − Irel)

»

1 +
[Csqn]maxKm,Csqn

([Ca2+]rel +Km,Csqn)2

–−1

, (3.7)

where Vi is the intracellular volume, Vup and Vrel are the volumes of the uptake and release compartments
of the sarcoplasmic reticulum (SR), [Trpn]max and [Cmdn]max are the total concentrations of troponin and
calmodulin in myoplasm, [Csqn]max is the total concentration of calsequestrin in the release compartment
of SR, while Km,Trpn, Km,Cmdn and Km,Csqn are their half saturation constants, respectively.
The Ca2+ Leak current by the JSR in equations (3.5) and (3.6) above is given by

Iup,leak =
[Ca2+]up

[Ca2+]up,max

Iup,max,

where [Ca2+]up,max and Iup,max are the maximal [Ca2+] concentration in NSR and the maximal [Ca2+]
uptake rate for Iup, respectively.
The Ca2+ Uptake current by the JSR in equations (3.5) and (3.6) above is given by

Iup =
Iup,max

1 + (Kup/[Ca2+]i)
,

where Kup is the [Ca2+]i) half saturation constant.
The Ca2+ Release current from the JSR in equations (3.5) and (3.7) above is given by

Irel = krelu
2νw([Ca2+]rel − [Ca2+]i),

where u, ν and w are gating variables whose dynamics is given by equation (3.4), with coefficients

τu = 8.0 u∞ =

»

1 + exp

„

−
Fn − 3.4175 × 10−13

13.67 × 10−16

«–−1

τν = 1.91+2.09

»

1 + exp

„

−
Fn − 3.4175 × 10−13

13.67 × 10−16

«–−1

ν∞ = 1−

»

1 + exp

„

−
Fn − 6.835 × 10−14

13.67 × 10−16

«–−1
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τw = 6.0
1 − exp

`

− v−7.9
5

´

ˆ

1 + .3 exp
`

− v−7.9
5

´˜

(v − 7.9)
w∞ = 1 −

»

1 + exp

„

−
v − 40

17

«–−1

,

where we have set

Fn = 10−12VrelIrel −
5 × 10−13

F

„

1

2
ICa,L −

1

5
INaCa

«

.

Finally, the Transfer current from NSR to JSR in equations (3.6) and (3.7) above is given by

Itr =
[Ca2+]up − [Ca2+]rel

τtr
,

where τtr = 180.
In Figure 2 and 3 we report the time evolution of the potential and of the gating and concentration variables.

4 Variational formulation and discretization of the model

In this section we outline a variational formulation of the monodomain and the bidomain models.
Let N be the number of gating variables, let M be the number of concentration variables of the ionic model,
and let H1(Ω) be the usual Sobolev space over R. The variational formulation of the monodomain model
reads as follows.
Given v0, w0, c0 ∈ L2(Ω), Iapp ∈ L2(Ω × (0, T )), find v ∈ W 1,1(0, T ;H) w ∈ L2(0, T ; [L2(Ω)]N ), and
c ∈ L2(0, T ; [L2(Ω)]M ) such that, ∀t ∈ (0, T )

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

cm
∂

∂t
(v(t), φ) + a(v(t), φ) + (Iion(v(t), w(t), c(t)), φ) = (Iapp, φ) ∀φ ∈ H

∂

∂t
(w(t), ψ) = (R(v(t), w(t)), ψ) ∀ψ ∈ [L2(Ω)]N

∂

∂t
(c(t), ξ) = (S(v(t), w(t), c(t)), ξ) ∀ξ ∈ [L2(Ω)]M ,

(4.1)

with suitable initial conditions on v, w, c, as given in (2.3). Here (., .) and a(., .) denote the inner product in
L2(Ω)

(η, χ) =

Z

Ω

ηχ dx ∀η, χ ∈ L2(Ω),

and the elliptic bilinear form

a(λ, µ) =

Z

Ω

(∇λ)TD(x)∇µdx ∀λ, µ ∈ H1(Ω),

respectively.
In a similar way, the variational formulation of the bidomain model can be written as follows.
Given v0, w0, c0 ∈ L2(Ω), Iapp ∈ L2(Ω × (0, T )), find ui,e ∈ W 1,1(0, T ;H), w ∈ L2(0, T ; [L2(Ω)]N ), and
c ∈ L2(0, T ; [L2(Ω)]M ) such that ∂v

∂t
∈ L2(0, T ;L2(Ω)), ∂w

∂t
∈ L2(0, T ; [L2(Ω)]N ), ∂c

∂t
∈ L2(0, T ; [L2(Ω)]M ),

and ∀t ∈ (0, T )

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

cm
∂

∂t
(v(t), φi) + ai(ui(t), φi) + (Iion(v(t), w(t), c(t)), φi) = 0 ∀φi ∈ H

−cm
∂

∂t
(v(t), φe) + ae(ue(t), φe) − (Iion(v(t), w(t), c(t)), φe) = −(Iapp

e , φ) ∀φe ∈ H

∂

∂t
(w(t), ψ) = (R(v(t), w(t)), ψ) ∀ψ ∈ [L2(Ω)]N

∂

∂t
(c(t), ξ) = (S(v(t), w(t), c(t)), ξ) ∀ξ ∈ [L2(Ω)]M

v(x, t) = ui(x, t) − ue(x, t),

(4.2)
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with suitable initial conditions on v, w, c, as given in (2.1). Here (., .) denotes again the inner product in
L2(Ω), while ai,e(., .) denote the elliptic bilinear forms

ai,e(λ, µ) =

Z

Ω

(∇λ)TDi,e(x)∇µdx ∀λ, µ ∈ H1(Ω),

respectively.
If, on the one hand, several theoretical results on reaction-diffusion equations can be applied to the mon-
odomain model, on the other hand less is known on degenerate reaction-diffusion systems such as the
bidomain model. We refer the reader to [6] for existence, uniqueness and regularity results, both at the con-
tinuous and the semi-discrete level, and to [24] for a convergence analysis of finite elements approximations.
Both papers deals with the Fitz-Hugh-Nagumo (FHN) model of the gating system.
More results are known on the related eikonal approximation describing the propagation of excitation front
(see for instance [2, 3, 11]), and a mathematical analysis of the bidomain model using Γ-convergence theory
can be found in [1].

4.1 Semi-discrete formulation

Let Th be a triangulation of Ω ⊂ Rd (d = 2, 3), namely Ω =
SN

j=1Kj , where each Kj = TKj
(E) ∈ Th, E is

the reference element, a simplex (namely the triangle with vertices (0, 0), (1, 0), and (0, 1) when d = 2 or
the thetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) when d = 3) or the unit cube [0, 1]d

(d = 2, 3), and where TKj
is an invertible affine map. We define h as the maximum diameter of the elements

of the triangulation. The associated finite element spaces Xh and Yh (see e.g. [19] for an introduction to
finite element methods) are defined as

Xh =
n

ϕh ∈ C0(Ω) |ϕh|Kj
◦ TKj

∈ P1(E)
o

, Yh =
n

ϕh ∈ C0(Ω) |ϕh|Kj
◦ TKj

∈ Q1(E)
o

,

where P1(E) is the space of polynomials of degree at most one on E, whereas Q1(E) is the space of polyno-
mials of degree at most one with respect to each variable on E.
A semi-discrete problem in space is then obtained by applying a Galerkin procedure, using as finite dimen-
sional space Vh = Xh or Vh = Yh, and choosing a basis for Vh. Let then {ϕi} be the finite element basis,
and let M = (mkl), A = (akl) and Ai,e = (ai,e

kl ) be the symmetric mass and stiffnes matrices defined by

mkl =
N

X

j=1

Z

Kj

ϕkϕl dx,

akl =

N
X

j=1

Z

Kj

(∇ϕk)TD(x)∇ϕl dx ai,e
kl =

N
X

j=1

Z

Kj

(∇ϕk)TDi,e(x)∇ϕl dx.

Numerical evaluation of such integrals is obtained by means of a 3rd order Gaussian rule. In the monodomain
formulation, the finite elements approximation of the transmembrane potential vh is the solution of

cmM
∂vh

∂t
+Avh +M Ih

ion(vh,wh, ch) = MIapp
h . (4.3)

On the other hand, the bidomain formulation for the finite element problem can be written in compact form
as

χcmM
∂

∂t

„

ui,h

ue,h

«

+ A

„

ui,h

ue,h

«

+ χ

„

M Ih
ion(vh,wh, ch)

−M Ih
ion(vh,wh, ch)

«

=

„

0
MIapp

e,h

«

(4.4)

where the matrices M and A are given by

M =

„

M −M
−M M

«

A =

„

Ai 0
0 Ae

«

. (4.5)

Both equations (4.3) and (4.4) are coupled with the semidiscrete formulation of the dynamics of the gating
and concentration variables

∂wh

∂t
= R(vh,wh),

∂ch

∂t
= S(vh,wh, ch).
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The bidomain formulation can be written alternatively in terms of vh and ue,h (or vh and ui,h) by adding
the two equations and substituting ui,h = vh + ue,h in the first equation, obtaining

8

>

<

>

:

cmM
∂vh

∂t
+Aivh +Aiue,h +M Ih

ion(vh,wh, ch) = M Iapp
i,h

Aivh + (Ae +Ai)ue,h = M(Iapp
i,h − Iapp

e,h ).

(4.6)

Equation (4.6) above is a Differential-Algebraic Equation (DAE), that separates the differential variable vh

from the algebraic one ue,h. Such approach has been firstly used in [2] and [22], and sequently by many
other authors.

4.2 Fully discrete approximation

In order to have a fully discrete approximation of the problem, we integrate in time systems (4.3) and
(4.4) by means of a semi-implicit Euler scheme: the linear diffusion term is discretized implicitely, while
the nonlinear reaction term (the ionic current Iion) is treated explicitely. The mass matrix M is lumped to
diagonal form by standard techniques. The ordinary differential system for the gating variables is integrated
exactly after linearization around the potential at the previous time step.

The j−th gating variable at time step n+ 1 is given by

w
n+1
j = wj∞(vn

h) + (wn
j − wj∞(vn

h)) exp

„

−
∆t

τwj
(vn

h)

«

,

where

wj∞ = αj(v
n)τwj

(vn) τwj
(vn) =

1

αj(vn) + βj(vn)

The system for the concentration variables is then integrated by a backward Euler scheme

c
n+1
h − c

n
h

∆t
= S(vn

h,w
n+1
h , cn

h).

This allows us to decouple the ODE system by solving with respect to the gating and concentration variables
first, given the potential at the previous time step v

n
h, and then solving, in the monodomain case, for v

n+1
h

χcmM
v

n+1
h − v

n
h

∆t
+Av

n+1
h + χMIh

ion(vn
h,w

n+1
h , cn+1

h ) = MIapp
h

and, in the bidomain case, for u
n+1
i,h and u

n+1
e,h

8

>

>

>

<

>

>

>

:

χcmM
v

n+1
h − v

n
h

∆t
+Aiu

n+1
i,h + χMIh

ion(vn
h,w

n+1
h , cn+1

h ) = 0

−χcmM
v

n+1
h − v

n
h

∆t
+Aeu

n+1
e,h − χMIh

ion(vn
h,w

n+1
h , cn+1

h ) = −MIapp
e,h ,

where v
n+1
h = u

n+1
i,h −u

n+1
e,h . With this choice (notice that one could solve for the potential first and update

successively the gating and concentration variables), the semi-implicit method in the monodomain case
requires to solve the linear system

χ
“cm

∆t
M +A

”

v
n+1
h =

cm
∆t

Mv
n
h − χMIh

ion(vn
h,w

n+1
h , cn+1

h ) +MIapp
h ,

while, in the bidoman case, the associated linear system is

“χcm
∆t

M + A
”

„

u
n+1
i,h

u
n+1
e,h

«

=
χcm
∆t

M

„

u
n
i,h

u
n
e,h

«

− χ

„

MIh
ion(vn

h,w
n+1
h , cn+1

h )

−MIh
ion(vn

h,w
n+1
h , cn+1

h )

«

+

„

0
−MIapp

e,h

«

,

where the matrices M and A are the ones defined in (4.5). The transmembrane potential v
n+1
h is uniquely

determined, as in the continuous model, while u
n+1
i,h and u

n+1
e,h are determined up to the same additive time-

dependent constant with respect to a reference potential. Such constant can be determined by imposing the
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condition 1TMu
n+1
e,h = 0.

Notice that the semi-implict scheme above leads to a linear system with symmetric positive definite matrix
in the monodomain case. On the other hand, in the bidomain case, the resulting linear system involves a
symmetric positive semidefinite matrix, with a one dimensional kernel spanned by (1,1)T . These systems
are solved by a preconditioned conjugate gradient algorithm (PCG), using as initial guess the solution at
the previous time step.

General χ = 103 cm−1 Cm = 10−3 mF/cm2

Monodomain σl = 1.2 · 10−3 Ω−1cm−1 σt = 2.5562 · 10−4 Ω−1cm−1

Bidomain σe
l = 2 · 10−3 Ω−1cm−1 σe

t = 1.3514 · 10−4 Ω−1cm−1

σi
l = 3 · 10−3 Ω−1cm−1 σi

t = 3.1525 · 10−4 Ω−1cm−1

G = 1.5 Ω−1cm−2 η1 = 4.4Ω−1cm−1

FHN model vth = 13 mV η2 = 0.012
vp = 100 mV η3 = 1

CRN model As in the original paper [7]

Table 1: Parameter calibration for the numerical simulations

5 Numerical simulations

In this section we describe some numerical simulations. The computational domain is Ω = [0, 1]× [0, 1], and
the problem is discretized by P1 elements on an unstructured grid. We consider a two dimensional slab since
the thickness of the atrial wall is far less significant than that of the ventricular one, and a two dimensional
approximation is thus reasonable. We run monodomain and bidomain simulations, with both the modified
FHN and the CRN cell model. In Table 1 we report the parameter calibration for the tests. The numerical
simulations are run on MATLABR© 6.5.
In the first test we considered a vertex stimulation of the slab. We show the spread of excitation and the
repolarization, in Figure 4 for the monodomain-FHN model, and, in Figure 5 for the monodomain-CRN
model. For the latter model, the spike-and-dome profile of the Action Potential is more evident, as well as
the longer time needed to recover the resting value of the potential, owing to the presence of the plateau
phase, that is not captured by the simple FHN model.

Figure 4: Monodomain FHN on a 2d slab: excitation and repolarization

13



Figure 5: Monodomain CRN on a 2d slab: excitation and repolarization

In the second test we considered a central stimualtion of the slab. In Figure 6 we show the transmembrane
potential v as well as the intracellular and extracellular potentials ui and ue, for the bidomain FHN model,
at point (.2333,.5667) of the slab. In Figure 7 we show the spread of excitation and the action potential at
point (.8,.7) for the bidomain CRN model.
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−50
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Figure 6: Bidomain FHN on a 2d slab: transmembrane potential v (left), intracellular ui (solid line) and
extracellular ue (dotted line) potential at point (.2333,.5667)

In the third test, in order to simulate the presence of arteries or veins, we considered a two dimensional
slab with a circular hole embedded. Since the vessel walls (both arterious and venous) are not excitable,
we impose a non-conducting condition (n · ∇v = 0) on the border of the hole. We show the spread of
excitation and the repolarization for the monodomain FHN model in Figure 8, and for the monodomain
CRN in Figure 9. In Figure 10, a closer look allows to better appreciate the distorsion of the wavefront in
the neighbourhood of the hole for both the FHN and CRN models.
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Figure 7: Bidomain CRN on a 2d slab: excitation spread (left) and transmembrane potential (right)

Figure 8: Monodomain FHN on a 2d slab with an hole: excitation and repolarization

15



Figure 9: Monodomain CRN on a 2d slab with an hole: excitation and repolarization
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Figure 10: Propagation wavefront aroud an hole: monodomain FHN (left) and CRN (right) models

Finally, to analyze the cost of the two models, we compare their computational complexity in the first two
test cases. The slab is discretized by an unstructured triangular grid consisting of 7744 nodes and 15166
elements. We report in Table 2 the CPU time needed to simulate complete a heartbeat (around 400msec)
on a Dell Poweredge 4600 server. The higher level of accuracy in the description of the Action Potential
provided by the CRN model requires a smaller step in the time integration. Moreover, at each time step
with the CRN ionic model, one has to update 15 gating and 5 concentration variables on each point of the
grid, whereas with the FHN ionic model only one gating variable has to be updated at each point of the
grid. No adaptivity is introduced in the integration scheme for this comparison, and the fixed time steps are
∆t = 0.1msec for the FHN models, and ∆t = 0.05msec for the CRN models.
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FHN CRN
Monodomain Bidomain Monodomain Bidomain

3.1e+03 5.8e+03 5.6e+04 7.2e+04

Table 2: CPU time (in sec) for monodomain and bidomain models to simulate a complete heartbeat

6 Conclusions

We presented here an approach to simulate the propagation of the excitation fronts in the atrial cells,
based on nonlinear models of reaction-diffusion type, considering both the monodomain and the bidomain
approach. The ionic currents are expressed by the simple modified FHN model (in the Rogers-McCulloch
variant), and by the more sophisticated CRN model, especially designed for human atrial cells. Numerical
simulations on a two dimensional slab are given to show the behaviour of the excitation spread and the
repolarization phase. Future work will focus on more general domains, on the simulation of spiral waves,
and on the coupling of these models with models of pacemaker cells as the ones provided by O. Doessel and
his collaborators (see for instance [25]).
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