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The standard block orthogonal (SBO) polynomials P i;n (x), 0 ≤ i ≤ n are real polynomials of degree n which are orthogonal with respect to a first Euclidean scalar product to polynomials of degree less than i. In addition, they are mutually orthogonal with respect to a second Euclidean scalar product. Applying the general results obtained in a previous paper, we determine and investigate these polynomials when the first scalar product corresponds to Hermite (resp. Laguerre) polynomials. These new sets of polynomials, we call Hermite (resp. Laguerre) SBO polynomials, provide a basis of functional spaces well-suited for some applications requiring to take into account special linear constraints which can be recast into an Euclidean orthogonality relation.

Introduction

In a first paper [START_REF] Normand | Block orthogonal polynomials: I. Definitions and properties[END_REF] (paper I), within the general frame of an Euclidean vector space endowed with distinct scalar products, and using the Gram-Schmidt orthogonalization (G-SO) process, we investigate the general properties of standard block orthogonal (SBO) polynomials. By definition, for a given non-negative integer i, these real polynomials P i;n (x), n = i, i + 1, . . ., of degree n, are (i) orthogonal to the i-dimensional subspace P i of real polynomials of degree less than i with respect to a first Euclidean scalar product ( , ) defined by a non-negative weight function w(x) on the interval [a, b], (x m , P i;n ) := b a dx w(x)x m P i;n (x) = 0 m = 0, . . . , i -1 n = i, i + 1, . . . ;

(1.1)

(ii) mutually orthogonal with respect to a second Euclidean scalar product ( , ) 2 , similarly defined by a distinct non-negative weight function w 2 (x) on the same interval1 , (P i;m , P i;n ) 2 := b a dx w 2 (x)P i;m (x)P i;n (x) = H i;n δ m,n m, n = i, i + 1, . . . .

In other words, for a given subspace P i , there exists a unique orthogonal complement P ⊥ i of codimension i, orthogonal with respect to the scalar product ( , ), and complementary with respect to the space of real polynomials P of any degree2 , P i , P ⊥ i = 0 and P = P i ⊕ P ⊥ i .

(1.3) Then, {P i;i , P i;i+1 , . . .} is an orthogonal basis of P ⊥ i with respect to the scalar product ( , ) 2 . These basis polynomials are defined uniquely apart from a constant multiplicative factor for each polynomial.

Classical orthogonal polynomials (i.e., the Hermite, Laguerre and Jacobi polynomials) are orthogonal with respect to a scalar product defined with a particular positive measure. These polynomials arise frequently and have been studied in great detail [START_REF] Szegö | Orthogonal Polynomials Colloquium Publications[END_REF][START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF][START_REF] Bateman | Higher Transcendental Functions[END_REF][START_REF] Gradshteyn | Table of Integrals[END_REF] 3 . The purpose of this paper is to determine and investigate the SBO polynomials in the special cases where the first measure, {[a, b], w(x)dx} corresponds to the Hermite and then the Laguerre polynomials. This work has been motivated by the recent consideration of 'constrained orthogonal polynomials' by Giraud et al [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF][START_REF] Giraud | Constrained orthogonal polynomials[END_REF][START_REF] Giraud | Coordinates, modes and maps for the density functional[END_REF]. Their physical motivations, sketched in section 1 of paper I, were basically to define orthogonal basis functions, taking into account special linear constraints (i.e. orthogonality relations), to provide a functional space well-suited for some specific applications. Thus, aiming to use the Hohenberg-Kohn variatonal principal [START_REF] Hohenberg | Inhomogeneous electron gas[END_REF] for the ground state energy in nuclear physics, the variable function, i.e. the particle density, has to satisfied the constraint of particle number conservation. In toy models, expanding the particle density on SBO polynomials, these authors only consider the case i = 1 (and partly i = 2) for the Hermite polynomials in [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF][START_REF] Giraud | Coordinates, modes and maps for the density functional[END_REF] and the Laguerre polynomials in [START_REF] Giraud | Constrained orthogonal polynomials[END_REF]. Our works generalize these results to all non-negative integer values of i and provide a systematic study of the properties of these polynomials, in particular getting new recurrence and differentiation formulae.

This paper is organized as follows. Explicit expressions and properties of the Hermite (resp. Laguerre) SBO polynomials are given in section 2 (resp. 3), i.e. for: the connection coefficients in section 2.2 (resp. 3.2), the differentiation formulae in section 2.3 (resp. 3.3), the recurrence relations with respect to the degree n in section 2.4 (resp. 3.4) and with respect to both i and n in section 2.5 (resp. 3.5), the special value at x = 0 in section 2.6 (resp. 3.6), the properties of the zeros in section 2.7 (resp. 3.7), and finally, the interrelation between the Hermite and the Laguerre cases in section 3.8. We give our conclusions in section 4. For completeness and to illustrate how the general methods used allow to recover well-known results in a unified way, several properties of the Hermite (resp. Laguerre) polynomials are briefly recalled in appendix A (resp. B). This aims also at emphasizing the similarities to and the differences from the study of the classical orthogonal polynomials and the SBO polynomials. Some expressions related to the Pochammer symbol and generalized hypergeometric series are computed in appendix C. Some determinants with entries expressed in terms of gamma function, except possibly for the last row, are evaluated in appendix D. Finally, some explicit special cases for the Hermite (resp. Laguerre) SBO polynomials are listed in appendix E (resp. F).

Throughout the remaining of this paper, the same conventions and notations as in paper I are used 4 , in addition -references to (sub)sections, appendices and equations of paper I are preceded by I-; -[x] denotes the largest integer less than or equal to the real number x; -for any function f : x → f (x), the first (resp. second) derivative with respect to x is denoted by a prime, f ′ (resp. a double prime, f ′′ ).

Hermite standard block orthogonal polynomials

Definition and main properties of Hermite polynomials, H n , n = 0, 1, . . ., are recalled in appendix A. They correspond to the measure defined by := e -µx 2 µ > 0 .

a := -∞ b := ∞ w := e -x 2 . ( 2 
(2.2)

This choice is motivated by the application considered in [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF][START_REF] Giraud | Constrained orthogonal polynomials[END_REF][START_REF] Giraud | Coordinates, modes and maps for the density functional[END_REF] for the special value µ = 2. Our study will be restricted in (ii) below to this special case, since it allows to push the calculation to its end analytically.

As shown in section I-3.3.3, w and w 2 being even with a = -b, the SBO polynomial P i;n , n = i, i + 1, . . ., as the Hermite polynomials, are even or odd according as n is even or odd, equation I-(3.41), P i;n (-x) = (-1) n P i;n (x) .

(2.3)

Actually, the even and odd polynomials separate from each other and one has, equation I-(3.50), if (-1) i+n = 1 then P i-1;n = P i;n 0 ≤ i -1 ≤ n .

(2.4)

From equation I-(3.12), the basic quantity γ j,k (µ) reads

γ j,k (µ) := H j , H k 2 = ∞ -∞ dx e -µx 2 H j (x)H k (x) (2.5)
which vanishes by parity if j + k is odd. Expanding the Hermite polynomials in terms of powers of x with the coefficients given by equation (A.7) and using equation (A.4), one finds

γ 2j,2k (µ) = (-1) j+k 2 2(j+k) Γ 1 2 + j Γ 1 2 + k × j p=0 k q=0 j p k q (-1) p+q Γ 1 2 + p Γ 1 2 + q ∞ -∞ dx e -µx 2 x 2(p+q) = (-1) j+k 2 2(j+k) Γ 1 2 + j Γ 1 2 + k µ -1 2 × j p=0 k q=0 j p k q Γ 1 2 + p + q Γ 1 2 + p Γ 1 2 + q (-µ) -(p+q) . (2.6) 
The value of the sum over p and q above is considered in lemma C.2 (appendix C). It can be expressed in terms of an hypergeometric function or the function S defined by equation (C.8), then,

γ 2j,2k (µ) = (-1) j+k 2 2(j+k) Γ 1 2 + j Γ 1 2 + k µ -1 2 S j, k, 1 2 ; -µ -1 , -µ -1 . (2.7)
For the odd polynomials, from equation (A.8), a similar calculation yields

γ 2j+1,2k+1 (µ) = (-1) j+k 2 2(j+k+1) Γ 3 2 + j Γ 3 2 + k µ -3 2 S j, k, 3 2 ; -µ -1 , -µ -1 . (2.8)
Alternately, these last two equations can be obtained using, with some care, the definite integrals given in [START_REF] Gradshteyn | Table of Integrals[END_REF][START_REF] Prudnikov | Integrals and Series[END_REF] 5 . Another way to get the basic quantity γ j,k (µ) is to compute the scalar product (F s , F t ) 2 where, F z (x) is the generating function of Hermite polynomials given by equation (A.29). Then, γ j,k (µ) is related to the coefficient of s j t k in the expansion of this scalar product, i.e.,

(F s , F t ) 2 = ∞ -∞ dx e -µx 2 F s (x)F t (x) = ∞ j,k=0 1 j! k! γ j,k (µ)s j t k = π µ 1 2 exp 2st + (1 -µ)(s 2 + t 2 ) µ .
(2.9)

5 See, [START_REF] Gradshteyn | Table of Integrals[END_REF] equation 7.374 5 where, the second argument of the hypergeometric function should be -n instead of n (the result has to be symmetric in m and n) and in addition for α 2 real, α has to be taken positive. See also [START_REF] Prudnikov | Integrals and Series[END_REF] 2.20. [START_REF] Rademacher | Topics in Analytic Number Theory[END_REF] 1 where, the factor (±1) m+n should be replaced by (-1) m+n , or else, 2.20. 16 6. In both cases, one has to use also the linear transformation formula [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] 15.3.6. For µ = 1, i.e. for w 2 = w, one has to recover the orthogonality condition of Hermite polynomials. Indeed, from equation (C.14),

S j, k, 1 2 ; -1, -1 = j! Γ 1 2 + j δ j,k (2.10) 
whence, with the duplication formula

[3] 6 , γ 2j,2k (1) = 2 4j j! Γ 1 2 + j δ j,k = 2 2j (2j)! π 1 2 δ j,k (2.11) 
recovering thereby the value of h 2j given by equation (A.6). The calculation is similar for γ 2j+1,2k+1 [START_REF] Normand | Block orthogonal polynomials: I. Definitions and properties[END_REF]. The results follows readily also from equation (2.9), indeed, (F s , F t ) 2 = π

1 2 e 2st = ∞ j=0 h j (st) j /(j!) 2 .
(ii) The special case

w 2 = w (2) 
2 = e -2x 2 . When µ = 2, one gets simple expressions. Indeed, from equation (C.15) setting z = - 1 2 , one has

γ 2j,2k (2) = (-1) j+k 2 j+k-1 2 Γ 1 2 + j + k (2.12) γ 2j+1,2k+1 (2) = (-1) j+k 2 j+k+ 1 2 Γ 3 2 + j + k (2.13) or, equivalently [5] 7 , γ j,k (2) = (-1) [j/2]+[k/2] 2 1 2 (j+k-1) Γ 1 2 (j + k + 1) if j + k even 0 otherwise. (2.14)
Alternately, this result follows also from equation (2.9),

(F s , F t ) 2 = π 2 1 2 e -1 2 (s-t) 2 = π 2 1 2 ∞ n=0 2n m=0 (-1) n-m 2 -n (2n)! n! m! (2n -m)! s m t 2n-m . (2.15) 
Setting j = m, k = 2n-m and using the duplication formula to get (2n)!/n! = π -1 2 2 2n Γ( 1 2 + n), one recovers equation (2.14).

From now on, except explicitly noted, only this special case µ = 2 will be considered. Then, the corresponding polynomials P i;n , 0 ≤ i ≤ n are called the Hermite SBO polynomials. The case i = 1 has already been considered in [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF][START_REF] Giraud | Coordinates, modes and maps for the density functional[END_REF] with different choices of weight functions and normalization. (See footnote 50 in appendix E for interrelations with our polynomial P 1;n .) The case i = 2, only for the odd polynomials, has been also considered in [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF], as already discussed in the conclusion of paper I (see footnote 44 of paper I). (See footnote 51 for interrelations with our polynomial P 2;2n+1 .)

Connection coefficients between block orthogonal and classical polynomials

The relevant quantities are given by equations I-(3.42)-I-(3.47) in terms of determinants with the (j, k)element of the type Γ(c + j + k), except possibly for the last row. This kind of determinant is evaluated in lemma D (appendix D). From equations I-(3.43), I-(3.46), (2.12), (2.13) and (D.3), one finds for 0

≤ i ≤ n, Z (e) i;n = 2 (i+n-1 2 )(n-i+1) n j=i (j -i)! Γ 1 2 + i + j Z (e) i;i-1 := 1 (2.16) Z (o) i;n = 2 (i+n+ 1 2 )(n-i+1) n j=i (j -i)! Γ 3 2 + i + j Z (o)
i;i-1 := 1 (2.17) 6 See, e.g., [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] 6.1.18, Γ(z)Γ 1 2 + z = 2 -2z+1 π 1 2 Γ(2z) . 7 Equation (2.12) is given in [START_REF] Gradshteyn | Table of Integrals[END_REF] equation 7.374 2, with the wrong sign: the result should be symmetric in j and k and positive for j = k. and therefore, from equations I-(3.44) and I-(3.47) with k n given by equation (A.3) 

[6] 8 , H 2i-1;2n = H 2i;2n = 2 -(2n+ 1 2 ) (n -i)! Γ 1 2 + i + n (2.18) H 2i;2n+1 = H 2i+1;2n+1 = 2 -(2n+ 3 2 ) (n -i)! Γ 3 2 + i + n . (2.19)
The monic SBO polynomials follow from equations I-(3.42), I-(3.45) and (D.2), for 0 ≤ i ≤ n,

P 2i-1;2n = P 2i;2n = n m=i 2 -(n+m) n -i m -i Γ 1 2 + i + n Γ 1 2 + i + m H 2m
(2.20)

P 2i;2n+1 = P 2i+1;2n+1 = n m=i 2 -(1+n+m) n -i m -i Γ 3 2 + i + n Γ 3 2 + i + m H 2m+1 (2.21)
where, according to equations I-(3.13), (2.4) and (A.3), for i ≥ 0,

P i;i = H i := 2 -i H i P i;i+1 = H i+1 = 2 -(i+1) H i+1 . (2.22)
The orthogonality and normalization of these polynomials with respect to the scalar product ( , ) 2 can be checked directly using equation (C.14), e.g., for the even polynomials with equations (2.20) and (2.14),

∞ -∞ dx e -2x 2 P 2i;2n (x) P 2i;2n ′ (x) = 2 -(n+n ′ + 1 2 ) Γ 1 2 + i + n Γ 1 2 + i + n ′ S(n -i, n ′ -i, 1 2 + 2i; -1; -1) = 2 -(2n+ 1 2 ) (n -i)! Γ 1 2 + i + n δ n,n ′ (2.23)
recovering equation (2.18). Equations (2.20) and (2.21) can be inverted to give for 0 ≤ i ≤ n,

H 2n = n m=i (-1) n-m 2 n+m n -i m -i Γ 1 2 + i + n Γ 1 2 + i + m P 2i;2m (2.24) H 2n+1 = n m=i (-1) n-m 2 1+n+m n -i m -i Γ 3 2 + i + n Γ 3 2 + i + m P 2i+1;2m+1 . ( 2 

.25)

As for the Hermite polynomials in appendix A, these relations can be obtained either using the general formulae I- (A.22) and I-(A.28) where, the determinants which occur can be evaluated with equation (D.2), or directly, using lemma A (appendix A), e.g., for the even polynomials, setting j = m -i, k = n -i, ρ j = 2 -(i+j) Γ( 1 2 + 2i + j) and σ j = (-1) j 2 i+j Γ( 1 2 + 2i + j). It should be noted that the connection coefficients relating the polynomials P i;n and H n in equations (2.20), (2.21), (2.24) and (2.25) have the same structure as the connection coefficients relating H n and the monomials in equations (A.7), (A.8), (A.12) and (A.13), respectively. This is due to the fact that in both cases, the metric tensor components are of the same type Γ(c + j + k), apart from some factors depending separately on the indices j and k, see equations (2.14) and (A.4). (See also equation (2.30) below.)

As already noted in section 3.2 of paper I (see equations I-(3.18) and I-(3.19)), for i = 0, P 0;n has to be the unique standard monic orthogonal polynomial Q 2;n corresponding to the weight function w 2 . Since w

(2) 2 (x) = w( √ 2x
), with the normalization (A.3) and changing x into √ 2x in the integral defining the scalar product of Hermite polynomials, one gets for n ≥ 0,

P 0;n (x) = 2 -1 2 n H n √ 2x = 2 -3 2 n H n √ 2x . (2.26)
Thereby, setting i = 0 in equations (2.20), (2.21), (2.24) and (2.25), using the duplication formula and changing m into n -m in the sum over m yield the connection coefficients between the two basic sets of polynomials {H m , m = 0, . . . , n} and {H m ( √ 2x), m = 0, . . . , n} for n ≥ 0,

H n √ 2x = [n/2] m=0 2 1 2 (n-2m) n! m! (n -2m)! H n-2m (x) (2.27) H n (x) = [n/2] m=0 (-1) m 2 -1 2 n n! m! (n -2m)! H n-2m √ 2x .
(2.28)

These remarkable relations can be checked using the integral [START_REF] Gradshteyn | Table of Integrals[END_REF][START_REF] Prudnikov | Integrals and Series[END_REF] 9 and the orthogonality relation of Hermite polynomials with h n given by equation (A.6), e.g., one has 

∞ -∞ dx e -x 2 H n ( √ 2x)H n-2m (x) = 2 3 2 (n-2m) n! m! π 1 2 = 2 1 2 (n-2m) n! m! (n -2m)! h n-2m . ( 2 
(x j , x k ) = (-1) [j/2]+[k/2] 2 -1 2 (j+k-1) γ j,k (2) = √ 2 (-1) [j/2] 2 -1 2 j H j , (-1) [k/2] 2 -1 2 k H k 2 (2.30)
namely, the metric tensor components of the scalar product ( , ) in the basis {x n , n = 0, 1, . . .} and the metric tensor components of the scalar product ( , ) 2 in the basis {(-1) [n/2] 2 -1 2 n H n , n = 0, 1, . . .} are equal apart from a constant factor. Hence, while G-SO with respect to ( , ) of the basis {x n , n = 0, 1, . . .} defines the Hermite polynomial H n , G-SO with respect to ( , ) 2 of the basis {(-1) [n/2] 2 -1 2 n H n , n = 0, 1, . . .} defines the polynomial P 0;n . In other words, the linear mapping defined by

x n → (-1) [n/2] 2 -1
2 n H n , n = 0, 1, . . ., is such that H n → ∝ P 0,n , n = 0, 1, . . .. Therefore, apart from a multiplicative factor c, P 0,n reads as a linear combination of (-1) [m/2] 2 -1 2 m H m , m = 0, 1, . . . with the same connection coefficients as in the expansion of H n in terms of the monomials 10 , i.e. from equation (A.9), For i = 0, one gets from above S 0;n = -n(n -1)/8, which can be checked using equations (2.26) and (A.10).

P 0;n = c [n/2] m=0 (-1) m 2 n-2m m! (n -2m)! (-1) [(n-2m)/2] 2 -1 2 (n-2m) H n-2m . ( 2 
For the general properties of SBO polynomials about the projection operators, the integral representations and the normalizations, see sections 3.3.1, 3.3.2 and 3.3.4 in paper I, respectively.

Differentiation formulae

Let us summarize well-known results for all classical orthogonal polynomials:

• as for any standard orthogonal polynomials, the three term recurrence formula I-(3.55) holds;

• the weight function which defines the scalar product satisfies a differential equation. This implies several differentiation formulae, e.g., the linear homogeneous differential equation of the second order 11 , A(x) y ′′ + B(x) y ′ + λ n y = 0 (2.36)

where, A(x) and B(x) are independent of n and λ n is independent of x.

All these relations follow from the three term recurrence formula and one of the first order differentiation formulae. Moreover, among the three formulae-the recurrence equation, a first order differentiation equation and the second order differential equation-any pair of equations implies the third one. In particular, two first order differentiation formulae or, the first and second order differentiation formulae, imply the recurrence formula. This is the method used to get a five term recurrence formula in the next subsection. However, while the differentiation formulae for classical orthogonal polynomials can be derived in two ways, as recalled in appendices A (item 4) and B (item 4), the second method only can be used for block orthogonal polynomials. This is due to the fact, already encountered in sections 3.3.5 and 3.3.7 of paper I, that the scalar product ( , ) 0 , defined by equation I-(3.5) 12 , is no longer defined by a single integral. Here, for a given nonzero i, one has to deal with both scalar products ( , ) and ( , ) 2 , each of them defined by an integral with a different weight function.

For the scalar product ( , ), the weight function w satisfies the differential equation (A.17), which implies the relations (A.18) and (A.19). Similarly, for the scalar product ( , ) 2 associated with the weight function w (µ) 2 defined by equation (2.2), one has for any polynomials f and g, w

(µ) 2 ′ = -2µxw (µ) 2 (2.37) (f , g ′ ) 2 = -(f ′ -2µxf , g) 2 (2.38) (f ′′ -2µxf ′ , g) 2 = -(f ′ , g ′ ) 2 = (f , g ′′ -2µxg ′ ) 2 .
(2.39) (i) For 0 ≤ ℓ < i, the polynomial H ′ ℓ of degree ℓ -1 is in the subspace P i . Therefore, from the orthogonality condition (1.1), H ′ ℓ and P i;n for i ≤ n are orthogonal with respect to the scalar product ( , ), and from equation (A.18), one has 13 

, 0 = P i;n , H ′ ℓ = -P ′ i;n -2x P i;n , H ℓ . (2.40)
Hence, the particular polynomial P ′ i;n -2x P i;n of degree n + 1 is orthogonal to the subspace P i with respect to the scalar product ( , ), i.e. it belongs to the orthogonal subspace P ⊥ i , see equation (1.3), and thus reads n+1 j=i α i;n,j P i;j . Computing the coefficient of x n+1 in P ′ i;n -2x P i;n fixes α i;n,n+1 = -2. By parity, α i;n,n , α i;n,n-2 , . . . vanish. Now, with respect to the scalar product ( , ) 2 , one has from equations (1.2) and (2.38), for j = i, . . . , n + 1,

α i;n,j H i;j = P i;j , P ′ i;n -2x P i;n 2 = P i;j , P ′ i;n 2 -2x P i;j , P i;n 2 = -P ′ i;j -2(µ -1)x P i;j , P i;n 2 .
(2.41) 11 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.6 (ii) p 164.

12 Any Euclidean scalar product ( , ) 1 defined on P i , together with ( , ) 2 defined on P ⊥ i induce a new Euclidean structure on P with the scalar product defined by (p , q) 0 := (p i , q i ) 1 + (p ⊥ i , q ⊥ i ) 2 for any p = p i + p ⊥ i ∈ P, p i ∈ P i , p ⊥ i ∈ P ⊥ i and q = q i + q ⊥ i ∈ P, q i ∈ P i , q ⊥ i ∈ P ⊥ i . 13 Actually, equation (2.40) still holds for ℓ = i. Since from equation (2.22), P i;i = H i , the component α i;n,i considered in equation (2.41) below, vanishes. This result is obtained also by parity.

In the special case µ = 2, it turns out that P ′ i;j -2(µ -1)x P i;j is the particular polynomial P ′ i;j -2x P i;j , introduced above for j = n (i.e. of degree j + 1 in the subspace P ⊥ i ), and which reads j+1 k=i α i;j,k P i;k . Thus, for µ = 2, considered only henceforth, one has for i ≤ j ≤ n + 1,

α i;n,j H i;j = -α i;j,n H i;n j+1 k=i δ k,n .
(2.42)

For n = i, all the α-coefficients are known: α i;i,i = 0, α i;i,i+1 = -2. For n ≥ i + 1, it follows from above that for n ≥ i + 2 and j = i, . . . , n -2, α i;n,j vanishes. It remains to consider the case j = n -1. With α i;n-1,n = -2, equations (2.18) and (2.19), one gets (by inspection of the four cases according to the parity of i and n),

κ i;n := α i;n,n-1 = 2 H i;n H i;n-1 = 1 2 n -(-1) i+n i . (2.43)
Finally, for µ = 2 and 0 ≤ i ≤ n, one finds the first order differentiation formula14 ,

P ′ i;n = -2 P i;n+1 + 2x P i;n + κ i;n P i;n-1 (2.44)
which still holds for n = i, since then κ i;n vanishes. This equation has to be compared with equation (A.26).

For n = i, both equations coincide, using equation (2.22). For i = 0, using equation ( 2.26), one gets

H ′ n = - 1 2 H n+1 + xH n + nH n-1 (2.45) 
which follows from, e.g., the differentiation formula (A.21) and the recurrence formula (A.16).

With the boundary value of P i;i , given in terms of Hermite polynomials by equation (2.22), the differentiation formula (2.44) can be used to get step by step P i;n for all i and n with 0 ≤ i ≤ n. One can also take advantage of the parity relation (2.4) to divide by two the number of polynomials to be computed. A table of polynomials P i;n for i = 0, 1, 2 and n = i, i + 1, . . . , i + 4 is given in appendix E.

Following the same steps as above, for 0 ≤ ℓ < i ≤ n, the polynomial xH ′ ℓ of degree ℓ is orthogonal to P i;n with respect to the scalar product ( , ), and from equation (A.18), one has

0 = P i;n , xH ′ ℓ = x P i;n , H ′ ℓ = -x P ′ i;n + P i;n -2x 2 P i;n , H ℓ = -x P ′ i;n -2x 2 P i;n , H ℓ . (2.46)
Hence, the particular polynomial x P ′ i;n -2 x 2 P i;n of degree n + 2 belongs to P ⊥ i and reads n+2 j=i β i;n,j P i;j . Computing the coefficient of x n+2 in x P ′ i;n -2x 2 P i;n fixes β i;n,n+2 = -2. By parity, β i;n,n+1 , β i;n,n-1 , . . . vanish. Now, with respect to the scalar product ( , ) 2 , one has from equations (1.2) and (2.38), for i ≤ j ≤ n + 1,

β i;n,j H i;j = P i;j , x P ′ i;n -2x 2 P i;n ) 2 = x P i;j , P ′ i;n 2 -2x 2 P i;j , P i;n 2 = -x P ′ i;j -2(µ -1)x 2 P i;j , P i;n 2 -H i;n δ j,n .
(2.47)

In the special case µ = 2, it turns out that x P ′ i;j -2(µ -1)x 2 P i;j is the particular polynomial x P ′ i;j -2x 2 P i;j , introduced above for j = n (i.e. of degree j + 2 in the subspace P ⊥ i ), and which reads j+2 k=i β i;j,k P i;k . Thus, one has for i ≤ j ≤ n + 1,

β i;n,j H i;j = -β i;j,n j+2 k=i δ k,n -δ j,n H i;n (2.48)
and therefore, β i;n,n = -1 2 . Then, for n = i and n = i + 1, all the β-coefficients are known:

β i;i,i = -1 2 , β i;i,i+1 = 0, β i;i,i+2 = -2 and β i;i+1,i = 0, β i;i+1,i+1 = -1 2 , β i;i+1,i+2 = 0, β i;i+1,i+3 = -2.
For n ≥ i + 2, it follows from equation (2.48) that for n ≥ i + 3 and j = i, . . . , n -3, β i;n,j vanishes. It remains to consider the case j = n -2. From β i;n-2,n = -2 and equation (2.43), one gets

β i;n,n-2 = 2 H i;n H i;n-2 = 1 2 κ i;n κ i;n-1 . (2.49)
Finally, in the case µ = 2, for 0 ≤ i ≤ n and κ i;n given by equation ( 2.43), one finds another first order differentiation formula,

x P ′ i;n = -2 P i;n+2 + 1 2 (4x 2 -1) P i;n + 1 2 κ i;n κ i;n-1 P i;n-2 (2.50)
which still holds for n = i and n = i + 1, since then κ i;n κ i;n-1 vanishes. This equation, which relates polynomials having the same parity, has to be compared with equation (A.27). For i = 0, using equation (2.26), one gets

4xH ′ n = -H n+2 + 2(2x 2 -1)H n + 4n(n -1)H n-2 (2.51)
which follows, e.g., from the differentiation formula (A.27) and the recurrence formula (A.28).

Starting with the values of P i;i and P i;i+1 given by equation (2.22), the differentiation formula (2.50) allows, as equation (2.44), to compute step by step P i;n for all i and n with 0 ≤ i ≤ n (see appendix E). (ii) Following the same arguments again, for 0 ≤ ℓ < i ≤ n, the polynomial H ′′ ℓ -2xH ′ ℓ of degree ℓ is orthogonal to P i;n with respect to the scalar product ( , ), and from equation (A.19), one has

0 = P i;n , H ′′ ℓ -2xH ′ ℓ = P ′′ i;n -2x P ′ i;n , H ℓ . (2.52)
Hence, the particular polynomial P ′′ i;n -2 x P ′ i;n of degree n belongs to P ⊥ i and reads n j=i γ i;n,j P i;j . Computing the coefficient of x n in P ′′ i;n -2x P ′ i;n fixes γ i;n,n = -2n. By parity, γ i;n,n-1 , γ i;n,n-3 , . . . vanish. With respect to the scalar product ( , ) 2 , one has from equations (1.2), (2.38) and (2.39), for i ≤ j ≤ n, γ i;n,j H i;j = P i;j , P ′′ i;n -2x P ′ i;n 2 = P i;j , P ′′ i;n -2µx P ′ i;n 2 + 2(µ -1) x P i;j , P ′ i;n 2 = P ′′ i;j -2(µ -1)x P ′ i;j -2µ x P ′ i;j -2(µ -1)x 2 P i;j , P i;n

2 -2(µ -1) H i;n δ j,n . (2.53)
In the special case µ = 2, once again, P ′′ i;j -2(µ -1)x P ′ i;j (resp. x P ′ i;j -2(µ -1)x 2 P i;j ) is the particular polynomial P ′′ i;j -2x P ′ i;j (resp. x P ′ i;j -2x 2 P i;j ), introduced above for j = n (i.e. of degree j (resp. j + 2) in the subspace P ⊥ i ), and which reads j k=i γ i;j,k P i;k (resp. j+2 k=i β i;j,k P i;k ). Thus, one has for i ≤ j ≤ n,

γ i;n,j H i;j = γ i;j,n j k=i δ k,n -4β i;j,n j+2 k=i δ k,n -2δ j,n H i;n . (2.54)
For n = i and n = i + 1, all the γ-coefficients are known: γ i;i,i = -2i and γ i;i+1,i = 0, γ i;i+1,i+1 = -2(i + 1).

For n ≥ i + 2, it follows from above that for n ≥ i + 3 and j = i, . . . , n -3, γ i;n,j vanishes. It remains to consider the case j = n -2. From β i;n-2,n = -2 and β i;n,n = -1 2 , one gets

γ i;n,n-2 = -4β i;n-2,n H i;n H i;n-2 = 2κ i;n κ i;n-1 . (2.55)
Finally, in the case µ = 2, for 0 ≤ i ≤ n and κ i;n given by equation (2.43), one finds the second order differentiation formula 15 ,

P ′′ i;n -2x P ′ i;n + 2n P i;n = 2κ i;n κ i;n-1 P i;n-2 (2.56)
which still holds for n = i and n = i + 1, since then κ i;n κ i;n-1 vanishes. This equation has to be compared with the differential equation (A.24). For n = i and n = i + 1, both equations coincide, using equation (2.22). For i = 0, from equation (2.26), one gets

H ′′ n -x H ′ n + n H n = 2n(n -1) H n-2 (2.57)
which follows, e.g., from equations (A.22) and (A.24).

Recurrence relation with respect to the degree n

In the case µ = 2, eliminating P ′ i;n between the two first order differentiation formulae (2.44) and (2.50) yields for 0 ≤ i ≤ n the five term linear recurrence formula,

P i;n+2 -x P i;n+1 + 1 4 P i;n + 1 2 κ i;n x P i;n-1 - 1 4 κ i;n κ i;n-1 P i;n-2 = 0 (2.58)
where, κ i;n is defined by equation (2.43). This relation still holds for n = i and n = i + 1, since κ i;n vanishes for n = i. It has to be compared with the three term recurrence formula (A.16). For i = 0, with equation (2.26), one finds

H n+2 -2 x H n+1 + 2 H n + 4n x H n-1 -4n(n -1) H n-2 = 0 (2.59)
which follows from the three term recurrence formula (A.16). Note that the five term recurrence formula (2.58) can as well be obtained from the first and second order differentiation formulae (2.44) and (2.56) as follows. Take the derivative of equation (2.44), eliminate P ′′ i;n using equation (2.56), and then eliminate the remaining first derivatives P ′ i;n+1 , P ′ i;n and P ′ i;n-1 using equation (2.44) again.

As the differentiation formulae (2.44) and (2.50), the recurrence formula (2.58) can be also used to get step by step P i;n for all i and n with 0 ≤ i ≤ n, starting from P i;i (see appendix E).

Recurrence relations with respect to both i and n

(i) As shown in section 3.3.6 of paper I, SBO polynomials corresponding to different values of i can be related together. Thus, P 2i+2;2n can be expressed in terms of the polynomials P 2i,2ℓ with ℓ = i, . . . , n. From equations I-(3.58), (2.20) and (2.24), one has for 0 ≤ i < n,

P 2i+2;2n = n ℓ=i P 2i;2ℓ 2 ℓ-n n -i n -i n -ℓ Γ 3 2 + i + n Γ 1 2 + i + ℓ n m=sup(i+1,ℓ) (-1) m-ℓ n -ℓ m -ℓ m -i 1 2 + i + m (2.60)
where, the sum over m can be evaluated as follows. First, the lowest value of m can be taken as ℓ instead of sup(i + 1, ℓ), since the term added thereby occurs for ℓ = i only, and it vanishes for m = i. Then, with p = n -ℓ, q = m -ℓ, ρ = ℓ -i and σ = 1 2 + i + ℓ > 0, the sum over m reads p q=0 (-1) q p q q + ρ q

+ σ = δ p,0 + (ρ -σ) p q=0 (-1) q p q 1 q + σ (2.61)
where, using the binomial formula and the beta function

[3] 16 , 1 0 dx x σ-1 (1 -x) p = p q=0 (-1) q p q 1 q + σ = B(σ, p + 1) = Γ(σ)Γ(p + 1) Γ(σ + 1 + p) . ( 2 

.62)

Putting all together, one finds for 0 ≤ i < n,

P 2(i+1);2n = P 2i;2n -2 -n 1 2 + 2i (n -i -1)! n-1 ℓ=i 2 ℓ (ℓ -i)! P 2i;2ℓ .
(2.63) 16 See, e.g., [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] 

= P 2i+1;2n+1 -2 -n 3 2 + 2i (n -i -1)! n-1 ℓ=i 2 ℓ (ℓ -i)! P 2i+1;2ℓ+1 . (2.64)
With always the parity relation (2.4), these recurrence relations provide another way of computing P i;n for all 0 ≤ i ≤ n, starting with the boundary values P 0;n given by equation (2.26) (see appendix E). Thus, for i = 0, one gets for n ≥ 1 [6] 17 ,

P 1;2n (x) = P 2;2n (x) = 2 -3n H 2n ( √ 2x) -2 -(n+1) (n -1)! n-1 ℓ=0 2 -2ℓ ℓ! H 2ℓ ( √ 2x) (2.65) P 2;2n+1 (x) = P 3;2n+1 (x) = 2 -(3n+ 3 2 ) H 2n+1 ( √ 2x) -2 -(n+1) 3(n -1)! n-1 ℓ=0 2 -(2ℓ+ 3 2 ) ℓ! H 2ℓ+1 ( √ 2x) (2.66)
i.e. expansions in terms of Hermite polynomials of the variable √ 2x, instead of x as given by equations (2.20) and (2.21).

(ii) On the right-hand side of equation (2.63), the sum over ℓ depends on n through the upper bound n -1 of the sum only. Therefore, replacing n by n -1 in equation (2.63) and eliminating n-2 ℓ=i • • • between the equation obtained thereby and equation (2.63) yield for 0

≤ i ≤ n -1, 4 P 2(i+1);2n -4 P 2i;2n -2(n -i -1) P 2(i+1);2(n-1) + (2i + 2n -1) P 2i;2(n-1) = 0 .
(2.67)

This relation still holds for n = i + 1 since then, it reduces to equation (2.63). From equation (2.64), one gets a similar equation for the odd polynomials. Actually, both equations can be written as a remarkable single linear four term recurrence relation, with coefficients independent of x, and which holds for all i and n having the same parity and such that 0 ≤ i ≤ n -2, if (-1) i+n = 1 then 4 P i+2;n -4 P i;n -(n -i -2) P i+2;n-2 + (i + n -1) P i;n-2 = 0 .

(2.68)

For n = i + 2, this relation reduces to a three term recurrence relation. From equations (2.4) and (2.22), one finds for i ≥ 0, the following expressions which can also be obtained from equations (2.20) and (2.21),

P i;i+2 = 2 -(i+2) H i+2 + (1 + 2i)H i (2.69) P i+1;i+3 = P i;i+3 = 2 -(i+3) H i+3 + (3 + 2i)H i+1 . (2.70)
More generally, the four term recurrence relation (2.68) with the parity relation (2.4) provide another easy way of computing step by step P i;n for all i and n with 0 ≤ i ≤ n, starting from the boundary values of P i;i given by equation (2.22) (see appendix E).

Special value at x = 0

The odd polynomials P 2i;2n+1 = P 2i+1;2n+1 vanish at x = 0. For the even polynomials, from equations (2.20), (A.11) and (C.1), one finds for 0 ≤ i ≤ n,

P 2i-1;2n (0) = P 2i;2n (0) = 2 -n n m=i (-1) m 2 m n -i m -i Γ 1 2 + i + n Γ 1 2 + i + m 1 2 m = (-1) i 2 -(n-i) 1 2 i 1 2 + 2i n-i F -(n -i), 1 2 ; 1 2 + 2i; 2 (2.71)
17 Equation (2.65) has been already given in [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF] (3) with different choices of w and w 2 , see footnote 50.

where, F is a terminating hypergeometric function, for which we don't know a closed form in terms of say gamma function products for all i and n. These values can be computed by recurrence as follows.

(i) Boundary values for n = i and i = 0. From equations (2.22), (2.26) and (A.11), one gets

P 2i;2i (0) = 2 -2i H 2i (0) = (-1) i 1 2 i = (-1) i (2i)! 2 2i i! i = 0, 1, . . . ( 2 
.72)

P 0;2n (0) = 2 -3n H 2n (0) = (-1) n 2 -n 1 2 n = (-1) n (2n)! 2 3n n! n = 0, 1, . . . . (2.73) 
Setting for 0 ≤ i ≤ n,

P 2i;2n (0) := (-1) n 2 -2(n-i) 1 2 i p i;n = (-1) n (2i)! 2 2n i! p i;n (2.74)
one finds the boundary values,

p i;i = 1 i = 0, 1, . . . p 0;n = 2 n 1 2 n = (2n)! 2 n n! n = 0, 1, . . . . (2.75) 
(ii) Recurrence relation with respect to n. Setting x = 0 either in the differentiation equation (2.50), or in the recurrence formula (2.58), yields for 0 ≤ i ≤ n (setting P 2i;2(i-1) (0) := 0),

4 P 2i;2(n+1) (0) + P 2i;2n (0) -(n -i) n + i -1 2 P 2i;2(n-1) (0) = 0 (2.76)
or equivalently from equation (2.74), p i;n satisfies the three term recurrence relation (setting p i;i-1 := 0), 

p i;n+1 -p i;n -2(n -i)(2n + 2i -1)p i;n-1 = 0 . ( 2 
:= 0), 2(2i + 1)p i+1;n -p i;n + 4(2i + 1)(n -i -1)p i+1;n-1 -(2i + 2n -1)p i;n-1 = 0 (2.80)
allowing also to get step by step p i;n for all i and n such that 0 ≤ i ≤ n starting from the boundary values (2.75).

Note that setting x = 0 in equation (2.44) (resp. (2.56)) allows to compute P ′ i;n (0) (resp. P ′′ i;n (0)), knowing P i;n (0) for several values of n.

Properties of the zeros

Several properties of the zeros of standard orthogonal polynomials have been known for a long time: e.g., as recalled in I-(3.3.7), (i) all the zeros are real, simple and located in the support [a, b] of the measure; (ii) the zeros of polynomials with consecutive degrees separate each other.

We saw previously that Hermite SBO polynomials coincide in several special cases with standard orthogonal polynomials, and therefore share their properties, i.e. from equations (2.4), (2.22), (2.26) and (2.32),

P 0;0 = H 0 = 1 P n;n = P n-1;n = H n n = 1, 2, . . . (2.81) P 0;n (x) = 2 -1 2 n H n ( √ 2 x) P 1;2n+1 (x) = 2 -3(n+ 1 2 ) H 2n+1 ( √ 2x) n = 0, 1, . . . . (2.82)
As a general result proven in section 3.3.7 of paper I: (i) for 0 ≤ i ≤ n, P i;n has at least m distinct real zeros of odd order, with i ≤ m ≤ n;

(ii) P n-1;n , n = 1, 2, . . . has n real and simple zeros.

It is recalled that the arguments used for standard orthogonal polynomials can no longer be used since the scalar product ( , ) 0 , defined by equation I-(3.5) (see footnote 12), is not defined by a single integral. We observe that all special Hermite SBO polynomials of degree n listed in appendix E have numerically n real simple zeros. Nevertheless, we have not been able neither to prove this fact for all n, nor to build a counter-example.

Concerning the relative positions of the zeros of SBO polynomials with a given i and consecutive degrees, we only observe numerically that the zeros of the special Hermite SBO polynomials listed in appendix E separate each other. Once again, we have not been able to prove a general property.

Laguerre standard block orthogonal polynomials

The study use the same method and follows the same steps as for the Hermite polynomials in section 2. The (generalized) Laguerre polynomials L This choice is motivated by the application considered in [START_REF] Giraud | Constrained orthogonal polynomials[END_REF] for the special value µ = 2. Our study will be also restricted in (ii) below to this special case, since it allows to push the calculation to its end analytically. Then, with the same steps as for equation (2.6), using the equations (B.6) and (B.3), one gets

γ j,k (α, µ) := L (α) j , L (α) k 2 = Γ(α + 1 + j) j! Γ(α + 1 + k) k! µ -(α+1) S j, k, α + 1; -µ -1 , -µ -1 (3.3)
where, the function S is defined in equation (C.8). Alternately, the result above can be obtained using the definite integral given in [START_REF] Gradshteyn | Table of Integrals[END_REF][START_REF] Prudnikov | Integrals and Series[END_REF] 18 . Another way to get the basic quantity γ j,k (α, µ) is to compute the scalar product (F

(α) s , F (α) 
t ) 2 where, F

z (x) is the generating function of Laguerre polynomials given by equation (B.17). Then, γ j,k (α, µ) is the coefficient of s j t k in the expansion of this scalar product, i.e.,

F (α) s , F (α) t 2 = ∞ j,k=0 γ j,k (α, µ)s j t k = Γ(α + 1) µ + (µ -2)st -(µ -1)(s + t) -α-1 . (3.4) 
For µ = 1, i.e. for w 2 = w, using equation (C.14), one recovers the orthogonality relation of Laguerre polynomials, γ j,k (α, 1) = h j δ j,k , with h j given by equation (B.5). This result follows also from equation (3.4), using equation (C.1),

F (α) s , F (α) t 2 = Γ(α + 1)(1 -st) -α-1 = Γ(α + 1) ∞ j=0 (-1) j -α -j j (st) j = ∞ j=0 h j (st) j . (3.5) 
(ii) The special case w 2 = w

(2,α) 2 = e -2x x α . As for Hermite polynomials, when µ = 2 one gets simple expressions. From equations (3.3) and (C.15) setting z = -1 2 , one finds

γ j,k (α, 2) = 2 -(α+1+j+k) Γ(α + 1 + j + k) j! k! (3.6)
i.e., once again, the same structure with a factor Γ(c+ j + k) multiplied by some factors depending separately on j and k. Alternately, the expression above follows also from equation (3.4),

F (α) s , F (α) t 2 = Γ(α + 1)(2 -s -t) -α-1 = Γ(α + 1) ∞ n=0 n m=0 (-1) n -α -1 n n m 2 -α-1-n s m t n-m . (3.7)
Then, setting j = m, k = n -m and using equation (C.1), one recovers equation (3.6).

From now on, except explicitly noted, only this special case µ = 2 will be considered.

Then, the corresponding polynomials P i;n , 0 ≤ i ≤ n are called the Laguerre SBO polynomials. The special case i = 1 has already been considered in [START_REF] Giraud | Constrained orthogonal polynomials[END_REF] with different choices of weight functions 19 . (See footnote 52 in appendix F for interrelations with our polynomial P i;n .)

Connection coefficients between block orthogonal and classical polynomials

As for Hermite polynomials, the relevant quantities are given in terms of determinants which can be evaluated using lemma D. One finds from equation I-(3.14), for 0 ≤ i ≤ n, 

Z i;n = 2 -(α+i+n+1)(n-i+1) n j=i (j -i)! Γ(α + 1 + i + j) n j=i (j!) 2 Z i;i-1 := 1 (3.
H i;n = 2 -(α+1+2n) (n -i)! Γ(α + 1 + i + n) (3.9) 
P i;n = n m=i (-1) m 2 m-n m! n -i m -i Γ(α + 1 + i + n) Γ(α + 1 + i + m) L (α) m (3.10) L (α) n = n m=i (-1) m 2 m-n 1 n! n -i m -i Γ(α + 1 + i + n) Γ(α + 1 + i + m) P i;m (3.11)
where, according to equation I-(3.13) and (B.2), for i ≥ 0,

P i;i = L (α) i := (-1) i i! L (α) i . (3.12)
The orthogonality and normalization of these polynomials with respect to the scalar product ( , ) 2 can be checked computing ∞ 0 dx e -2x x α P i;n (x) P i;n ′ (x) with the expansion (3.10) and equations (3.6) and (C.14), thereby recovering equation (3.9).

19 See [START_REF] Giraud | Constrained orthogonal polynomials[END_REF] section 2 where, to define the subspace P ⊥ 1 , instead of considering the orthogonal polynomials Q n with respect to ( , ), the author computes numerically the "seed" polynomials Q n := x n -(x 0 , x n )/(x 0 , x 0 ), n = 1, 2, . . ., which readily fulfil the constraint (x 0 , Q n ) = 0. This can be done easily because there is only one constraint, i.e. i = 1.

20 Equations (3.9) (resp. (3.10)) generalizes the formula given in [START_REF] Giraud | Constrained orthogonal polynomials[END_REF] (7) (resp. (A.1)) for the special case i = 1 with different choices of w and w 2 , see equations (F.16) and footnote 52. , following arguments similar to those given for equation (2.30)21 , it follows from equations (B.3) and (3.6) that,

(x i+j , x i+k ) (1,α) = (x j , x k ) (1,α+2i) = Γ(α + 1 + 2i + j + k) = 2 α+1+2i 2 j (i + j)! L (α) i+j , 2 k (i + k)! L (α) i+k (2,α) (3.13)
where, ( , ) (µ,α) denotes the scalar products defined with the weigh function w (µ,α) , given by equation (3.2). Thus, the metric tensor components of the scalar product ( , ) (1,α+2i) in the basis {x n , n = 0, 1, . . .} and the metric tensor components of the scalar product ( , ) (2,α) in the basis {2 n (i + n)! L (α) i+n , n = 0, 1, . . .} are equal apart from a common multiplicative factor. Hence, while G-SO with respect to ( , ) (1,α+2i) of the basis {x n , n = 0, 1, . . .} defines the Laguerre polynomial L (α+2i) n , G-SO with respect to ( , ) (2,α) of the basis

{2 n (i + n)! L (α)
i+n , n = 0, 1, . . .} defines the polynomial P i;i+n . In other words, for given i ≥ 0, the linear mapping defined by

x n → 2 n (i + n)! L (α)
i+n , n = 0, 1, . . . is such that L (α+2i) n → ∝ P i;i+n . Therefore, apart from a multiplicative factor c, P i,i+n reads as a linear combination of 2 m (i + m)! L (α) i+m , m = 0, 1, . . . with the same coefficients as in the expansion of L (α+2i) n in terms of the monomials, i.e. from equation (B.6),

P i;i+n = c n m=0 (-1) m n! Γ(α + 2i + 1 + n) Γ(α + 2i + 1 + m) n m 2 m (i + m)! L (α)
i+m .

(3.14)

With P i;i+n a monic polynomial, computing the coefficient of x n fixes c = (-1) i 2 -n n!. Changing i + m into m and i + n into n, with now 0 ≤ i ≤ n, one recovers equation (3.10). For i = 0, P 0;n has to be the unique standard monic polynomial Q 2;n corresponding to the weight function w 2 . Since, w

(2,α) 2 (x) = 2 -α w (1,α) (2x)
, with the normalization (B.2), one gets for n ≥ 0, 

P 0;n (x) = 2 -n L (α) n (2x) = (-1) n 2 -n n! L (α) n (2x) . ( 3 
L (α) n (2x) = (-1) n n m=0 (-1) m 2 m (α + 1 + m) n-m (n -m)! L (α) m (x) (3.16) L (α) n (x) = 2 -n n m=0 (α + 1 + m) n-m (n -m)! L (α) m (2x) . (3.17)
These relations can be checked using the integral already quoted in footnote 18 and the orthogonality relation of Laguerre polynomials with h n given by equation (B.5), e.g., one has 

∞ 0 dx e -x x α L (α) n (2x) L (α) m (x) = (-1) n+m 2 m (α + 1 + m) n-m (n -m)! h m . ( 3 
R i;n = - 1 2 i(α + i) + n(α + n) (3.19) S i;n = 1 8 i 3 (2α + i) + 2n 2 + 2(α -3)n -3(α -1) i(α + i) + n(n -1)(α + n)(α + n -1) . (3.20)
For general properties of SBO polynomials about the projection operators, the integral representations and the normalizations, see sections 3.3.1, 3.3.2 and 3.3.4 of paper I, respectively.

Differentiation formulae

For the scalar product ( , ), the weight function w satisfies the differential equation (B.11), which implies the relations (B.12) and (B.13). Similarly, for the scalar product ( , ) 2 corresponding to the weight function w 

) ′ = -(µx -α -1)w (µ,α) 2 (3.21) (f , xg ′ ) 2 = -xf ′ -(µx -α -1)f , g 2 (3.22) xf ′′ -(µx -α -1)f ′ , g 2 = -f ′ , x g ′ 2 = (f , xg ′′ -(µx -α -1)g ′ 2 .
(3.23)

(i) For 0 ≤ ℓ < i -1, the polynomial xL α ℓ
′ of degree ℓ is in the subspace P i . Therefore, xL α ℓ ′ and P i;n for i ≤ n are orthogonal with respect to ( , ). From equation (B.12), one has for 0 ≤ ℓ ≤ i -1 and 0 ≤ i ≤ n,

0 = P i;n , xL (α) ℓ ′ = -x P ′ i;n -(x -α -1) P i;n , L (α) ℓ = -x P ′ i;n -x P i;n , L (α) ℓ . (3.24)
Hence, the particular polynomial x P ′ i;n -x P i;n of degree n+1 is orthogonal to the subspace P i with respect to ( , ), and thus reads n+1 j=i α i;n,j P i;j . Computing the coefficient of x n+1 in x P ′ i;n -x P i;n fixes α i;n,n+1 = -1. Now, with respect to the scalar product ( , ) 2 , one has from equations (1.2) and (3.22), for i ≤ j ≤ n + 1,

α i;n,j H i;j = P i;j , x P ′ i;n -x P i;n 2 = P i;j , x P ′ i;n 2 -x P i;j , P i;n 2 = -x P ′ i;j -(µ -1)x P i;j , P i;n 2 -(α + 1) H i;n δ j,n . (3.25) 
In the special case µ = 2, it turns out that x P ′ i;j -(µ -1)x P i;j is the particular polynomial x P ′ i;j -x P i;j , introduced above for j = n (i.e. of degree j + 1 in the subspace P ⊥ i ), and which reads j+1 k=i α i;j,k P i;k . Thus, for µ = 2, considered henceforth, one has

α i;n,j H i;j = -α i;j,n j+1 k=i δ k,n + (α + 1)δ j,n H i;n . (3.26)
It follows that for j = i, . . . , n -2, α i;n,j vanishes. It remains to consider the cases j = n -1 and j = n. With α i;n-1,n = -1 and equation (3.9), one gets

κ i;n (α) := α i;n,n-1 = H i;n H i;n-1 = 1 4 (n -i)(α + i + n) α i;n,n = - 1 2 (α + 1) . (3.27)
Finally, for µ = 2 and 0 ≤ i ≤ n, one finds the first order differentiation formula [START_REF] Giraud | Constrained orthogonal polynomials[END_REF] 22 ,

x P ′ i;n = -P i;n+1 + x - 1 2 (α + 1) P i;n + κ i;n (α) P i;n-1 (3.28)
which still holds for n = i, since then κ i;n (α) vanishes. This equation has to be compared with the differentiation formula (B.16). For i = 0, using equation (3.15), one gets

2xL (α) n ′ = (n + 1)L (α) n+1 + (x -α -1)L (α) n -(n + α)L (α) n-1 (3.29)
which follows from, e.g., adding the two differentiation formulae (B.14) and (B. [START_REF] Rademacher | Topics in Analytic Number Theory[END_REF]). With the boundary value of P i;i given in terms of Laguerre polynomials by equation (3.12), the differentiation formula (3.28) allows to get step by step P i;n for all i and n with 0 ≤ i ≤ n. A table of these polynomials for i = 0, 1, 2 and n = i, i + 1, . . . , i + 4 is given in appendix F. In particular, setting n = i + 1 and using equations (3.12), (B.2) and (B.16), one finds for n = i ≥ 0,

P i;i+1 = L (α) i+1 + 1 2 (α + 1 + 2i) L (α) i = (-1) i+1 (i + 1)! L (α) i+1 + (-1) i 1 2 i!(α + 1 + 2i) L (α) i . (3.30)
This result can be obtained directly setting n = i + 1 in equation (3.10).

(ii) Following the same method again, for 0

≤ ℓ < i ≤ n, the polynomial xL α ℓ ′′ -(x -α -1)L α ℓ ′ of degree ℓ
is orthogonal to P i;n with respect to the scalar product ( , ), and from equation (B.13), one has 

0 = P i;n , xL (α) ℓ ′′ -(x -α -1)L (α) ℓ ′ = x P ′′ i;n -(x -α -1) P ′ i;n , L (α) ℓ . ( 3 
= P i;j , x P ′′ i;n -(µx -α -1) P ′ i;n 2 + (µ -1) P i;j , x P ′ i;n 2 = x P ′′ i;j -(µ -1)x -α -1 P ′ i;j , P i;n 2 -µ x P ′ i;j -(µ -1)x P i;j , P i;n 2 -(µ -1)(α + 1) H i;n δ j,n . (3.32) 
In the special case µ = 2, once again, x P ′′ i;j -(µ -1)x -α -1 P ′ i;j (resp. x P ′ i;j -(µ -1)x P i;j ) is the particular polynomial x P ′′ i;j -(x -α -1) P ′ i;j (resp. x P ′ i;j -x P i;j ), introduced above for j = n (i.e. of degree j (resp. j + 1) in the subspace P ⊥ i ), and which reads j k=i γ i;j,k P i;k (resp. j+1 k=i α i;j,k P i;k ). Thus, one has

γ i;n,j H i;j = γ i;j,n j k=i δ k,n -2α i;j,n j+1 k=i δ k,n -(α + 1)δ j,n H i;n . (3.33) 
For n = i, and therefore j = i, it is already known that γ i;i,i = -i. For n ≥ i + 1, it follows from above that for n ≥ i + 2 and j = i, . . . , n -2, γ i;n,j vanishes. It remains to consider the case j = n -1. From α i;n-1,n = -1 and equation (3.27), one gets

γ i;n,n-1 = -2α i;n-1,n H i;n H i;n-1 = 2κ i;n (α) . (3.34) 
Finally, in the case µ = 2, one finds the second order differentiation formula for 0

≤ i ≤ n [7] 23 , x P ′′ i;n + (α + 1 -x) P ′ i;n + n P i;n = 2κ i;n (α) P i;n-1 (3.35)
where, κ i;n (α) is defined by equation (3.27). For n = i, the relation still holds, since then κ i;n (α) vanishes, and using equation (3.12), the result coincides with the differential equation (B.15). For i = 0, using equation (3.15), the relation follows, e.g., from equations (B.14) and (B.15).

Recurrence relation with respect to the degree n

Taking the derivative of the first order differentiation formula (3.28), and eliminating x P ′′ i;n with the second order differentiation formula (3.35) yield

-P ′ i;n+1 + 1 2 (α -1) P ′ i;n + (n + 1) P ′ i;n + 1 4 (n -i)(α + 1 + i + n)( P ′ i;n-1 -2 P i;n-1 ) = 0 . (3.36)
Then, multiplying both sides of this equation by x and using again equation (3.28) to eliminate the first order derivatives P ′ i;n+1 , P ′ i;n 24 and P ′ i;n-1 give the five term linear recurrence formula for 0 ≤ i ≤ n,

P i;n+2 -(x -1) P i;n+1 + 1 2 (α + 1 + 2n)x -2κ i;n (α) - 1 4 (α 2 + α + 2n) P i;n -κ i;n (α)(x + 1) P i;n-1 -κ i;n (α)κ i;n-1 (α) P i;n-2 = 0 (3.37)
where, κ i;n (α) is defined by equation (3.27). A direct calculation shows that this relation still holds for n = i + 1 and n = i, where it reduces to a four and three term recurrence formula, respectively. For n = i, using equation (3.30), one finds for i ≥ 0,

P i;i+2 = (x -1) L (α) i+1 + 1 4 (α 2 -α -2 -2i) L (α) i . (3.38) 
As the differentiation formula (3.28), the recurrence formula (3.37) can be used to get step by step P i;n for all i and n with 0 ≤ i ≤ n starting from P i;i and P i;i+1 given by equations (3.12) and (3.30), respectively (see appendix F).

Recurrence relations with respect to both i and n

(i) Setting j = i + 1 in equation I-(3.58) and using equations (3.10) and (3.11), one can express P i+1;n in terms of the polynomials P i;ℓ with i ≤ ℓ ≤ n. The calculation is very similar to what was done for Hermite polynomials in section 2.5. One finds

P i+1;n = n ℓ=i P i,ℓ 2 ℓ-n n -i n -i n -ℓ Γ(α + 2 + i + n) Γ(α + 1 + i + ℓ) n m=sup(i+1,ℓ) (-1) m-ℓ n -ℓ m -ℓ m -i α + 1 + i + m (3.39)
and using equations (2.61) and (2.62) (with p = n -ℓ, ρ = ℓ -i and σ = α + 1 + i + ℓ > 0) to compute the sum over m yield for 0 ≤ i < n,

P i+1;n = P i;n -2 -n (α + 1 + 2i)(n -i -1)! n-1 ℓ=i 2 ℓ (ℓ -i)! P i;ℓ . (3.40) 
This recurrence relation provide another way of computing step by step P i;n for all i and n with 0 ≤ i ≤ n, starting with the boundary values P 0;n given by equation (3.15) (see appendix F). Thus, for i = 0, one gets for n ≥ 1,

P 1;n = (-1) n 2 -n L ((α) n (2x) -2 -n (α + 1)(n -1)! n-1 ℓ=0 (-1) ℓ L (α) ℓ (2x) (3.41) 
i.e. an expansion in terms of Laguerre polynomials of the variable 2x, instead of x as given by equation This four term linear recurrence relation provides an easy way of computing step by step P i;n for all i and n with 0 ≤ i ≤ n, starting from the boundary values of P i;i given by equation (3.12) (see appendix F).

Special value at x = 0

From equations (3.10), (B.8) and (C.1), one finds for 0 ≤ i ≤ n,

P i;n (0) = (-1) i 2 -(n-i) (α + 1) i (α + 1 + 2i) n-i F(-(n -i), α + 1 + i; α + 1 + 2i; 2) (3.43)
where, F is a terminating hypergeometric function, for which we don't know an explicit expression for all i and n. These values can be computed by recurrence as follows.

(i) Boundary values for n = i and i = 0. From equations (3.12), (3.15) and (B.8), one gets

P i;i (0) = (-1) i i! L (α) i (0) = (-1) i (α + 1) i i = 0, 1, . . . (3.44) 
P 0;n (0) = (-1) n 2 n n! L (α) n (0) = (-1) n 2 n (α + 1) n n = 0, 1, . . . . (3.45) 
Setting for 0 ≤ i ≤ n 25 ,

P i;n (0) := (-1) n 2 -(n-i) (α + 1) i p (α) i;n (3.46) 
one finds the boundary values, p

;i = 1 i = 0, (α) i 
;n = (α + 1) n n = 0, 1, . . . . 1, . . . p (α) 0 
(ii) Recurrence relation with respect to n. Setting x = 0 in the differentiation equation (3.28) yields for 0 ≤ i ≤ n (setting P i;i-1 (0) := 0), 4 P i;n+1 (0) + 2(α + 1)

P i;n (0) -(n -i)(α + i + n) P i;n-1 (0) = 0 (3.48)
or equivalently from equation (3.46), p

i;n satisfies the three term recurrence relation (setting p (α)

i;i-1 := 0), p (α) 
i;n+1 -(α + 1)p

(α) i;n -(n -i)(α + i + n)p (α) i;n-1 = 0 . (3.49) 
With the boundary values (3.47), it follows by recurrence that for m ≥ 0, p

i;i+m is a monic polynomial in α of degree m with positive integer coefficients, and also a polynomial in i of degree [m/2], e.g.:

p (α) i;i+1 = α + 1 p (α) i;i+2 = α 2 + 3 α + 2(1 + i) p (α) i;i+3 = (α + 1) α 2 + 5 α + 6(1 + i) p (α) i;i+4 = α 4 + 10 α 3 + (35 + 12 i) α 2 + 2(25 + 18 i) α + 12(1 + i)(2 + i) . (3.50) 
(iii) Recurrence relation with respect to both i and n. Setting x = 0 in equation (3.42) yields for 0 ≤ i ≤ n -1 (setting P i+1;i (0) := 0), Note that setting x = 0 in equation (3.35) (resp. its derivative with respect to x) allows to compute P ′ i;n (0) (resp. P ′′ i;n (0)), knowing P i;n (0) for several values of n.

2 P i+1;n (0) -2 P i;n (0) -(n -i -1) P i+1;n-1 (0) + (α + i + n) P i;n-1 (0) = 0 (3.

Properties of the zeros

From equations (3.12) and (3.15), the particular Laguerre SBO polynomials,

P n;n = L (α) n P 0;n (x) = 2 -n L (α) n (2x) n = 0, 1, . . . (3.53)
share the properties, especially of the zeros, of the standard orthogonal polynomials.

It has been shown in section 3.3.7 of paper I that: -for 0 ≤ i ≤ n, P i;n has at least m distinct non-negative real zeros of odd order, with i ≤ m ≤ n; -for n ≥ 1, P n-1;n has n non-negative real and simple zeros. We observe that all the special Laguerre SBO polynomials of degree n listed in appendix F have numerically n real non-negative simple zeros. Nevertheless, we have not been able neither to prove this fact in general, nor to build a counter-example.

Concerning the relative positions of the zeros of SBO polynomials with a given i and consecutive degrees, in the Laguerre case one readily finds a counter-example, e.g., with α = 0, from equations (F.6) and (F.7), the zeros read

P 1;2 = x 2 - 5 2 x + 1 2 x 1 = 5 - √ 17 4 ≈ 0.219 x 2 = 5 + √ 17 4
≈ 2.281 (3.54)

P 1;3 = x 3 -5 x 2 + 5 x -1 y 1 = 2 - √ 3 ≈ 0.268 y 2 = 1 y 3 = 2 + √ 3 ≈ 3.732 (3.55)
where, x 1 < y 1 < y 2 < x 2 < y 3 , and therefore the zeros do not separate each other, as for standard orthogonal polynomials. Once again, we have not been able to prove a general property.

Interrelations between Hermite and Laguerre cases

The interrelations between Hermite and Laguerre polynomials are recalled in appendix B (item 6 i.e. the same interrelations as between Hermite and Laguerre polynomials. Let us recall that, while the choice of i determines the subspace P i of polynomials of degree at most i -1, the complementary and orthogonal subspace P ⊥ i , equation (1.3), depends on the choice of the scalar product ( , ). Therefore, P (Hermite)⊥ i , P (Laguerre α=-1 2 )⊥ i and P (Laguerre α= 1 2 )⊥ i are, a priori, different subspaces. Relations (3.56) and (3.57) allow a cross check of many similar formulae obtained in sections 2 and 3, and also of the explicit expressions of the Hermite and the Laguerre SBO polynomials listed in appendices E and F, respectively.

Conclusion

In a first paper [START_REF] Normand | Block orthogonal polynomials: I. Definitions and properties[END_REF] (paper I), we have defined general block orthogonal polynomials. Their properties have been investigated, pointing out what can be generalized and ascribed to Euclidean vector space, endowed with two distinct scalar products, and to polynomial algebra. A general study of the special case of standard block orthogonal (SBO) polynomials, has been made, emphasizing the similarities to and the differences from the study of the standard orthogonal polynomials. For a given i = 0, 1, . . ., these real polynomials of degree n, P i;n , n = i, i + 1, . . ., are orthogonal to the i-dimensional subspace P i of polynomials of degree less than i with respect to a first Euclidean scalar product ( , ). In addition, they are mutually orthogonal with respect to a second Euclidean scalar product ( , ) 2 . They form an orthogonal basis with respect to ( , ) 2 of the subspace P ⊥ i of codimension i, orthogonal to P i with respect to ( , ), and complementary to P i with respect to the space of polynomials of any degree. Based on the Gram-Schmidt orthogonalization (G-SO), we have determined these polynomials uniquely, apart from a constant multiplicative factor for each polynomial, in terms of determinants which entries are the metric tensor components of both scalar products considered.

In this second paper, we apply the general results obtained in paper I, assuming the first scalar product ( , ) corresponds to the Hermite (resp. Laguerre) classical polynomials. In both cases, it turn out that for a particular choice of the second scalar product ( , ) 2 , we get explicitly the connection coefficients between the Hermite (resp. Laguerre) polynomials, and what we call the Hermite (resp. Laguerre) SBO polynomials. These polynomials satisfy all the general properties derived in section 3.3 of paper I for the projection operators, the integral representations and the normalizations. Furthermore, we establish recurrence relations with respect to n and i, and differentiation formulae, allowing a step by step determination of these SBO polynomials. As for the classical orthogonal polynomials, these relations are based on differential equations satisfied by the weight functions w(x) and w 2 (x) defining, respectively, the two scalar products. Partial properties for the zeros of these polynomials are also obtained. We point out the differences with the classical orthogonal polynomials, basically due to the fact that two, instead of one, distinct scalar products are involved. As the Hermite and the Laguerre polynomials, the Hermite and the Laguerre SBO polynomials can be related together. In the Hermite case, the measures considered being symmetric with respect to the origin, additional parity properties occur. This paper recovers and improves results already obtained by Giraud et al [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF][START_REF] Giraud | Constrained orthogonal polynomials[END_REF][START_REF] Giraud | Coordinates, modes and maps for the density functional[END_REF] for i = 1, and partly for i = 2. In particular, we get new recurrence and differentiation formulae. We generalize these results making a systematic study for all non-negative integer values of i. As recalled in paper I, P i;n , n = i, i + 1, . . . provide a basis of the subspace P ⊥ i , suitable for applications requiring to take into account i linearly independent constraints which can be recast into an orthogonality relation with the subspace P i with respect to ( , ). (We have shown in paper I that an extension of similar methods to constraints associated with different scalar products is not straightforward, and may have no solution, a unique solution or an infinite number of solutions.) These constrained polynomials have been first considered in [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF][START_REF] Giraud | Constrained orthogonal polynomials[END_REF][START_REF] Giraud | Coordinates, modes and maps for the density functional[END_REF] with i = 1 to implement the matter conservation in view of application of the Hohenberg-Kohn functional in some problems of nuclear physics.

Open questions still remain. Why can we perform analytical calculations only for very special choices of the weight function w 2 (precisely those made in the applications above), once w is chosen as the classical Hermite (resp. Laguerre) weight function? Is there any 'integrability' structure to discover? Nevertheless, let us recall that for any proper weight functions, determination of the SBO polynomials is a well-defined problem. G-SO is well-suited for numerical calculations and it is not necessary for applications to have analytical expressions. We have not been able to get closed formulae for the connection coefficients between P i;n and x m (we observe in all the special values of P i;n given in appendices E and F, alternate signs in the expansion in powers of x). Can we establish that, both in Hermite and Laguerre cases, P i;n has n distinct real zeros? Similarly, do the zeros of the Hermite SBO polynomials with a given i and consecutive degrees separate each other? (We establish this is not true for the Laguerre case.) As a byproduct, for completeness and to underlined the similarities to and the differences from the classical polynomials, we recover in appendices well-known properties of Hermite and Laguerre polynomials in a unified way (including the expansions of monomials in terms of classical polynomials, not given in the standard textbooks). In addition, also reported in appendix, we have been led to consider several terminating generalized hypergeometric series with one or more variables often set to unity.

The Gegenbauer and Jacobi polynomials will be similarly considered in a forthcoming paper.

We have already underlined in the conclusion of paper I (see footnote 44 of paper I), that the general formulae established therein can be used to defined block orthogonal polynomials for any given i-dimensional subspace E i , possibly different from P i (see footnote 51). Then the block orthogonal polynomials would not be the standard ones and require a new similar study. This value of b m,n can also be obtained directly with lemma A, setting ρ j = Γ(α + 1 + j)/j! and σ j = Γ(α + 1 + j).

(3) Three term recurrence formula. From equations I-(3.55), (B.2) and (B.7), one has for n = 0, 1, . . . 38 ,

L (α) n+1 = (A n x + B n )L (α) n -C n L (α) n-1 (n + 1)A n = -1 (n + 1)B n = α + 2n + 1 (n + 1)C n = α + n . (B.10) (4 
) Differentiation formulae. With w defined by equation (B.1) and f and g some polynomials, one has

(xw) ′ = -(x -α -1)w (B.11) (f , xg ′ ) = ∞ 0 xwf dg = - ∞ 0 d(xwf ) g = -xf ′ -(x -α -1)f , g (B.12) xf ′′ -(x -α -1)f ′ , g = -(f ′ , xg ′ ) = -(xf ′ , g ′ ) = f , xg ′′ -(x -α -1)g ′ . (B.13)
As for the Hermite polynomials in appendix A 4-, these relations can be used in two ways to generate differentiation formulae for n = 0, 1, . . .. 

n

′ = nL (α) n -(α + n)L (α) n-1 . (B.14) (ii) Considering the polynomial xL (α) n ′′ -(x -α -1)L (α) n 
′ with equation (B.13), one gets the second order differential equation (2.36) 40 ,

A(x)L (α) n ′′ + B(x)L (α) n ′ + λ n L (α) n = 0 A(x) = x B(x) = α + 1 -x λ n = n . (B .15) 
• Second method (permutating n and j in the relations above). Only this method can be extended to the SBO polynomials as shown in section 3.3.

For j = 0, . . . , n -1, considering the polynomial xL 

′ = (n + 1)L (α) n+1 + (x -α -1 -n)L (α) n . (B.16) (α) n 
As for the Hermite polynomials, it can be checked that: (i) all these differentiation formulae follow from the first order differentiation formula (B. ). This kind of method is used in section 3.4 to find a five term recurrence formula with respect to the degree for the Laguerre SBO polynomials in the special case w 2 := e -2x x α .

(5) Generating function. most common generating function reads 42 ,

F (α) z (x) := ∞ n=0 L (α) n (x) z n = (1 -z) -α-1 exp xz z -1 |z| < 1 . (B.17)
38 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.12 (3). 39 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.12 (12). 40 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.12 (10).

41 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.12 (12). 42 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.12 (17).

(6) Interrelations between Hermite and Laguerre polynomials. For any polynomials f and g, a change of variable in the integral yields

∞ -∞ dx e -x 2 f (x)g(x) = ∞ 0 dx e -x x -1 2 f ( √ x)g( √ x) = ∞ 0 dx e -x x 1 2 f ( √ x) √ x g( √ x) √ x . (B.18) It follows that for n = 0, 1, . . . 43 , L (-1 2 ) n (x) = H 2n ( √ x) H 2n (x) = (-1) n 2 2n n! L (-1 2 ) n (x 2 ) (B.19) L ( 1 2 
) where, in equation (C.13), the binomial coefficient j k vanishes if j < k. Proof. For z = -1 or w = -1, the first two equations follow directly from lemma C.2. Note that S 1 and S 2 have no singularity, in particular at z = -1 or/and w = -1. If w = -1, only the term p = k contributes 47 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 5.7.1 [START_REF] Giraud | Constrained orthogonal polynomials[END_REF] 50 In the case i = 1, 'Hermite polynomials under a constraint of zero average' have already been considered in [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF] and [START_REF] Giraud | Coordinates, modes and maps for the density functional[END_REF], with different choices of weight functions and normalization: -in [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF] (1) and appendix A, the polynomials A n := 2 n x n + O(x n-1 ), n = 1, 2, . . ., with w := e -1 2 x 2 and w 2 := e -x 2 . From equation (E.12) below with c = 1 2 , one gets A n (x) = 2 3 2 n P 1;n (x/ √ 2), n = 1, 2, . . . ; -in [START_REF] Giraud | Coordinates, modes and maps for the density functional[END_REF] (43), the polynomials Q 2n := 2 n-1 x n +O(x n-1 ), n = 1, 2, . . ., with w := e -1 2 x 2 and w 2 := e -x 2 . Then, one has Q 2n = 2 -(n+1) A 2n , n = 1, 2, . . .. Note that with this choice of w 2 , one has Q 2;n = H n , n = 0, 1, . . .; -in [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF] section 4, the polynomials G n := c n P 1;n , n = 1, 2, . . ., with (G m , G n ) 2 = π/2 δ m,n , w := e -x 2 and w 2 := e -2x 2 . From equations (2.18) and (2.19), one finds c 2n+1 = ± 2 2n+1 / (2n + 1)!, n = 0, 1, . . . and c 2n = ± 2 2n+1 √ 2n/ (2n + 1)!, n = 1, 2, . . .; -in [START_REF] Giraud | Coordinates, modes and maps for the density functional[END_REF] (44), (45a)-(45d), the polynomials Γ n := |c n | P 1;n , n = 1, 2, . . ., with c n as for G n above, (Γ m , Γ n ) 2 = π/2 δ m,n , w := e -x 2 and w 2 := e -2x 2 , and in addition, with a positive coefficient of x n in Γ n . 51 The 'Hermite polynomials constrained by a zero momentum', considered in [START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF] section 3 (17), with w := e -1 2 x 2 and w 2 := e -x 2 , is not the case i = 2. Indeed, the one-dimensional subspace E 1 considered there, and spanned by {x 1 }, is not P 2 spanned by {x 0 , x 1 }. Nevertheless, as discussed in the conclusion I-4 (see footnote 44 in paper I), from parity arguments, it follows that in this non-standard case, the block orthogonal polynomials P n , n = 0, 2, 3, . . . are given by, P 2n = Q 2;2n , n = 0, 1, . . . and P 2n+1 = P 2;2n+1 , n = 0, 1, . . .. From equation (E.12) with c = 1 2 , one gets with B n := 2 n x n + O(x n-1 ), n = 0, 2, 3, . . ., B 2n = H 2n , n = 0, 1, . . . and B 2n+1 (x) = 2 

n (x) = H 2n ( √ x) √ x H 2n+1 (x) = (-1) n 2 2n+1 n! xL

. 1 ) 2 . 1 .

 121 Metric tensor components for a particular weight function w 2 (i) Basic quantity γ j,k . With the same interval, [a, b], let us choose,

n. 1 ) 3 . 1 . 2 :

 1312 , n = 0, 1, . . ., see appendix C, correspond to the measure defined bya := 0 b := ∞ w := e -x x α α > -1 . (3Metric tensor components for a particular weight function w 2 (i) Basic quantity γ j,k . With the same interval [a, b], let us choose, w 2 = w (µ,α) = e -µx x α α > -1 µ > 0 . (3.2)

8 )

 8 and therefore, from equations I-(3.15), I-(3.7), I-(3.16) and I-(3.17) with k n given by equation (B.2) [7] 20 ,

Equations ( 3 .

 3 [START_REF] Prudnikov | Integrals and Series[END_REF] and(3.11) should be compared to equations (B.6) and (B.9), respectively. More precisely, since w = w (1,α) 2

. 15 )

 15 Thereby, setting i = 0 in equations (3.10) and (3.11) yields the remarkable linear relations between the two basic sets of polynomials {L (α) m , m = 0, . . . , n} and {L (α) m (2x), m = 0, . . . , n} for n ≥ 0,

  .18) It follows from equations I-(3.10), I-(3.11), (3.10) and (B.7) that,

(µ,α) 2 defined

 2 by equation (3.2), one has for any polynomials f and g,

( 3 .

 3 10). (ii) On the right-hand side of equation (3.40), the sum over ℓ depends on n through the upper bound n -1 of the sum only. Therefore, replacing n by n -1 in this equation and eliminating n-2 ℓ=i • • • between the equation obtained thereby and equation (3.40) yield for 0 ≤ i ≤ n -1, This relation still holds for n = i + 1, where it reduces to a three term recurrence recovering equation (3.40).

′

  , one finds 41 , xL

  14) and the three term recurrence formula (B.10); (ii) more generally, among the equations (B.10) and (B.14)-(B.16), any pair of equations implies both other equations. In particular, the first order differentiation formula (B.16) and the second order differential equation (B.15) yield the recurrence equation (B.10

2 .( 2

 22 With c, z and w some complex numbers, c not zero or a negative integer, and j and k non-negative integers, let,S 1 (j, k, c; z, w) p) (zw) p (1 + z) j-p (1 + w) k-p (C.6) S 2 (j, k, c; z, w) + p + q) Γ(c + p) Γ(c + q) z p w q (C.7) S(j, k, c; z, w) := (1 + z) j (1 + w) k Γ(c) F -j, -k; c; zw (1 + z) (1 + w) (C.8)where, F is an hypergeometric function. Then, one hasS(j, k, c; z, w) = S(k, j, c; w, z) = S 1 (j, k, c; z, w) = S 2 (j, k, c; z, w) . (C.9)Proof. From equations (C.1), in terms of the Pochammer symbol, one hasS 1 (j, k, c; z, w) = (1 + z) j (1 + w) k Γ(c) min(j,k) p=0 (-j) p (-k) p (c) p 1 p! zw (1 + z) (1 + w) p = S(j, k, c; z, w) (C.10) S 2 (j, k, c; z, w) ) p (-k) q (c) p+q (c) p (c) q (c, -j, -k, c, c; -z, -w) (C.11)where, F 2 is a special case of a generalized hypergeometric series of two variables listed by Horn and reducible to an hypergeometric function[START_REF] Bateman | Higher Transcendental Functions[END_REF] 47 ,F 2 (c, -j, -k, c, c; -z, -w) = (1 + z) j (1 + w) k F -j, -k; c; zw (1 + z) (1 + w) . (C.12)The symmetry property (j, z) ↔ (k, w) is obvious. This completes the proof of equation (C.9).Corollary C. Special values of S(j, k, c; z, w), see lemma C.2 equations (C.6)-(C.9):S(j, k, c; z, -1) = j k k! Γ(c + k) (-z) k (1 + z) j-k (C.13) S(j, k, c; -1, -1) = j! Γ(c + j) δ j,k (C.14) S(j, k, c; z, -z -1) = (1 + z) j (-z) k Γ(c + j + k) Γ(c + j)Γ(c + k) (C.15)

  and 5.10 (3). to equation (C.6), giving equation (C.13). Alternately, setting w = -1 in equation (C.7), the sum over q can be performed with lemma C.1. For z = -w -1, one has zw/((1 + z) (1 + w)) = 1, then from the Gauss summation theorem 48 ,F(-j, -k, c; 1) = Γ(c)Γ(c + j + k) Γ(c + j)Γ(c + k) (C.16)ending the proof of equation (C.15).

w

  (c) (x) := w( √ cx) = e -cx 2 w (c) 2 := w 2 ( √ cx) = e -2cx 2 c > 0 (E.11) then, changing x into √ cx in the integral defining the scalar product ( , ) 2 , the corresponding monic Hermite SBO polynomials P (c) i;n and the orthogonality constant H = c -( 1 2 +n) H i;n . (E.12)

w

  (c) (x) := c -α w(cx) = e -cx x α w (c) 2 (x) := c -α w 2 (cx) = e -2cx x α c > 0 (F.15) then, changing x into cx in the integral defining the scalar product ( , ) 2 , the corresponding monic Laguerre SBO polynomials P (c) i;n and the orthogonality constant H (c) i;n read P (c) i;n (x) = c -n P i;n (c x) H (c) i;n = c -(α+1+2n) H i;n . (F.16)

  With the scalar product ( , ) 2 , one has from equations (1.2), (3.22) and (3.23), for i ≤ j ≤ n, γ i;n,j H i;j = P i;j , x P ′′

		.31)
	Hence, the particular polynomial x P ′′ i;n -(x -α -1) P ′ i;n of degree n belongs to P ⊥ i and reads Computing the coefficient of x	n j=i γ i;n,j P i;j .

n in x P ′′ i;n -(x -α -1) P ′ i;n fixes γ i;n,n = -n. i;n -(x -α -1) P ′ i;n 2

  for all i and n such that 0 ≤ i ≤ n starting from the boundary values (3.47).

	allowing also to get step by step p	(α) i;n	
							51)
	or equivalently with equation (3.46),	
	2(2α + 1 + i)p	(α) i+1;n -p	(α) i;n + 2(α + 1 + i)(n -i -1)p	(α) i+1;n-1 -(α + i + n)p	(α) i;n-1 = 0	(3.52)
	25 See equation (3.56) below, p i;n defined for Hermite polynomials by equation (2.74) and p	(α) i;n are related
	by p i;n = 2 n-i p	(-1 2 ) i;n .				

  If, instead of w and w 2 , one considers the following weight functions,

	-	1 8	(α + 1) 2 (α + 2)(α 2 + 5α + 18)	(F.13)
	P 2;6 = x 6 -4(α + 5) x 5 +	1 2	(13α 2 + 115α + 268) x 4 -	1 2	(11α 3 + 127α 2 + 526α + 752) x 3
	+	1 16	(41α 4 + 538α 3 + 2947α 2 + 7418α + 7056) x 2
	-	1 8	(α + 2)(5α 4 + 58α 3 + 319α 2 + 770α + 720) x
	+	1 16	(α + 1)(α + 2)(α 4 + 10α 3 + 59α 2 + 122α + 144) .	(F.14)

3

(n+ 1 2 ) P 2;2n+1 (x/ √ 2), n = 1, 2, . . ..

More generally, the scalar product ( , ) can be defined by the positive measure {D, dµ} where, µ is a non-constant and non-decreasing real function on the real domain D. Similarly, ( , )

can be defined by {D 2 , dµ 2 }. See section

3.2 in paper I.[START_REF] Szegö | Orthogonal Polynomials Colloquium Publications[END_REF] See equation(3.4) in paper I, written with P N instead of P and valid for any non-negative integer value of N .

The standard textbook is[START_REF] Szegö | Orthogonal Polynomials Colloquium Publications[END_REF]. See, also[START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] chapter 22,[START_REF] Bateman | Higher Transcendental Functions[END_REF] sections 10.6-10.13 or [5] section 8.9.

See,[START_REF] Normand | Block orthogonal polynomials: I. Definitions and properties[END_REF] at the end of section 1. In particular, it is recalled that: -monic polynomials, i.e. with the coefficient of the highest power equal to one, and also any related quantities are denoted by hatted letters, e.g., P n and h n ; -classical orthogonal polynomials are defined according to[START_REF] Szegö | Orthogonal Polynomials Colloquium Publications[END_REF] chapter 22,[START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] chapter X or[START_REF] Bateman | Higher Transcendental Functions[END_REF] section 8.9.

These equations generalize the formulae given in[START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF] (4) (resp. (19)) for the special case i = 1 (resp. i = 2 for the odd polynomials) with different choices of w, w 2 and normalization, see equation (E.12) and footnote 50 (resp. 51)

This generalizes the formula given in[START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF] [START_REF] Giraud | Constrained orthogonal polynomials[END_REF] for the special case i = 1 with different choices of w and w 2 , see footnote 50.

This generalizes the formula given in[START_REF] Mehta | Orthogonal polynomials sets with finite codimensions C[END_REF] [START_REF] Mehta | Probability density of the determinant of a random Hermitian matrix[END_REF] for the special case i = 1 with different choices of w and w 2 , see footnote 50.

See,[START_REF] Gradshteyn | Table of Integrals[END_REF] 7.414 4. or[START_REF] Prudnikov | Integrals and Series[END_REF] 2.19.14.6. p 477, using also the linear transformation formula[START_REF] Hohenberg | Inhomogeneous electron gas[END_REF] 15.3.6.

What is new in the Laguerre case with respect to the Hermite one is that a shift of i in the powers of x can be interpreted as a shift in the parameter α. This is why in the Hermite case, this argumentation can be used with i = 0 only.

This generalizes the formula given in[START_REF] Giraud | Constrained orthogonal polynomials[END_REF] (3) for the special case i = 1 with different choices of w and w 2 , see footnote 52.

This generalizes the formula given in[START_REF] Giraud | Constrained orthogonal polynomials[END_REF] (6) for the special case i = 1 with different choices of w and w 2 , see footnote 52.

P i+1;n -2 P i;n -(n -i -1) P i+1;n-1 + (α + i + n) P i;n-1 = 0 . (3.42)24 Keeping the term P ′ i;n provides another first order differentiation formula.
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Appendix A. Hermite polynomials

It is shown in appendix I-A that all the relevant quantities (Z n , h n , Q n , a m,n , b m,n , . . .) can be expressed in terms of determinants with the metric tensor components as elements, except possibly for the last raw, g j,k := (x j , x k ) = c j+k := b a dx w(x) x j+k .

(A.1)

These general results are now applied to the classical orthogonal polynomials, i.e. for particular choices of the measure defining the scalar product. Thereby, well-known results are recovered using a unique method based on the calculation of some special determinants with gamma functions as elements (see lemma D in appendix D) and also the evaluation of some finite sums involving binomial coefficients and ratios of gamma functions (see lemmas C.1 and C.2 in appendix C). In addition, since the weight functions w considered satisfy some differential equations, integrations by part with vanishing boundary conditions yield some relations between scalar products (this is still valid for particular SBO polynomial, see sections 2.3 and 3.3.).

(1) Definition. Hermite polynomials H n , n = 0, 1, . . ., are defined with the measure and normalization 26 ,

2)

3)

The measure being symmetric with respect to the origin, H n (-x) = (-1) n H n (x).

(2) Connection coefficients. From equation (A.1) and the Euler integral 27 the nonzero moments read

Therefore, all the determinants which occur in equations I-(A.17)-I-(A.28) can be obtained with lemma D and the duplication formula (see footnote 6). For n = 0, 1, . . . and m = 0, . . . , n, one finds 28 ,

26 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.13 (1) and (4). 27 See, e.g., [3] 6.1.1.

28 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.13 (4) for h n , (9) for the expansion (A.9), (4) for r n only (see footnote 47 in paper I), [START_REF] Mehta | Probability density of the determinant of a random Hermitian matrix[END_REF] for H n (0) and (5) for the three term recurrence formula.

Similarly, the connection coefficient b m,n , not given in the standard textbook already quoted, can be obtained from equations I-(A.10), I-(A.22), I-(A.28), (D.2), (C.3) and the duplication formula (see footnote 6). For m = 0, . . . , n one has 29 ,

These expressions of b m,n can also be obtained directly with the following lemma, setting ρ k = (-) k 2 2k Γ 1 2 + k and σ j = Γ 1 2 + j . Lemma A. With ρ j and σ j some non-zero complex numbers, the matrices A and B defined by, A j,k := (-1) j k j ρ k /σ j and B j,k := (-1) j k j σ k /ρ j for j, k = 0, 1 . . ., are inverse one from the other. Proof. Since the binomial coefficient k j vanishes if k < j, the matrices A and B are triangular with zeros under the diagonal and nonzero diagonal elements. Then, this known lemma 30 , is a direct consequence of the binomial formula. Indeed, AB is also a triangular matrix and one has

(3) Three term recurrence formula. From equations I-(3.55), (A.3) and (A.10), one has for n = 0, 1, . . . 31 ,

) Differentiation formulae. With w defined by equation (A.2) and f and g some polynomials, one has

These equations can be used in two ways to generate differentiation formulae for n = 0, 1, . . ..

j=0 α j H j where, from the orthogonality relation I-(A.2) and equation (A.18),

29 See, [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] table 22.12 where, the numerical values of b m,n , and also a m,n , are listed up to n = 12, but the general expressions (A.12)- (A.14) are not given there. Formulae (A.12) and (A.13) can be found in [START_REF] Andrews | Special Functions[END_REF] chapter 6, exercise 6 p 339.

30 See, e.g., [START_REF] Rademacher | Topics in Analytic Number Theory[END_REF] p 3, going from equation (1.8) to equation (1.91).

31 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.13 [START_REF] Gradshteyn | Table of Integrals[END_REF].

Since H ′ j -2xH j is a polynomial of degree j + 1, the scalar product above, and thus α j , vanishes for j = 0, . . . , n -2. Computing the coefficient of

Following the same steps, first order differentiation formula for x p H ′ n , with p = 0, 1, . . ., can thereby be obtained. Thus, for p = 1, considering the polynomial xH ′ n of degree n, one finds

α j H j where, from equation (A.19),

Since H ′′ j -2xH ′ j is a polynomial of degree j, α j vanishes for j = 0, . . . , n -1. Computing the coefficient of

Thereby, H n satisfies the second order differential equation (2.36) 33 ,

• Second method (permutating n and j in the relations above) Only this method can be extended to the SBO polynomials as shown in section 2.3.

For j = 0, . . . , n, the polynomial H ′ j of degree j -1 is orthogonal to H n , and with equation (A.18),

Hence, the particular polynomial H ′ n -2xH n of degree n + 1 is orthogonal to the subspace P n+1 , and thus it reads α n+1 H n+1 . Computing the coefficient of x n+1 in H ′ n -2xH n fixes α n+1 . One gets

Following the same steps, first order differentiation formula for x p H ′ n , with p = 0, 1, . . ., can thereby be obtained. Thus, with p = 1, considering the polynomial xH ′ j of degree j, one finds

Actually, all these differentiation formulae and the three term recurrence formula are not independent. Using simple algebra (substitutions and derivations), it can be checked that: (i) all these differentiation formulae follow from the first order differentiation formula (A.21) and the three term recurrence formula (A.16); (ii) more generally, among the equations (A.16), (A.21), (A.24) and (A.26), any pair of equations implies the other two equations. In particular, the first order differentiation formula, e.g., (A.26), and the second order differential equation (A.24) yield the recurrence equation (A.16). This kind of method is used in section 2.4 to find a five term recurrence formula with respect to the degree for the Hermite SBO polynomials in the special case w 2 := e -2x 2 ; (iii) note that the differentiation formulae (A.22) and (A.27) relate Hermite polynomials having the same parity. From both equations, one gets the recurrence formula,

which can be obtained also iterating the three term recurrence formula (A.16).

32 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.13 [START_REF] Normand | Calculation of some determinants using the s-shifted factorial[END_REF]. 33 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.13 [START_REF] Bateman | Higher Transcendental Functions[END_REF].
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(5) Generating function. The most common generating function reads 34 , 

Similarly, the connection coefficient b m,n , not given in the standard textbook already quoted, can be obtained from equations I-(A.10), (D.2) and (C.3). For m = 0, . . . , n one has

34 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.13 (19). 35 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.12 (1) and ( 2). According to [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] 22.2.12, α is written between parentheses to avoid any confusion with a power index.

36 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.12 (2) for h n , [START_REF] Giraud | Constrained orthogonal polynomials[END_REF] for a m,n , (2) for r n only (see footnote 47 in paper I) and [START_REF] Slater | Generalized Hypergeometric Functions[END_REF] for

n (0). 37 See, [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] table 22.10 where, the values of b m,n , and also a m,n , are listed only up to n = 12, but the general expression (B.9) is not given.

Appendix C. Pochammer symbol and some related relations

Definition and properties of the Pochammer symbol or rising factorial (z) n are detailed in [START_REF] Slater | Generalized Hypergeometric Functions[END_REF][START_REF] Normand | Calculation of some determinants using the s-shifted factorial[END_REF] 44 . With n a non-negative integer and z some complex number, one has 45 , (z

The Pochammer symbol satisfies the binomial formula, i.e. with n a non-negative integer and z and w some complex numbers 46 ,

Lemma C.1. With j and k non-negative integers and c some complex number not zero or a negative integer, one has

where, the binomial coefficient j k vanishes if j < k. Proof. Setting n = k, z = c + j and w = -c -k + 1 in the binomial formula (C.2) yields

Then, it follows from equation (C.1) that,

thereby recovering equation (C.3) provided c + j = 0, -1, . . .. This identity can be proved also directly by recurrence on k.

43 See, e.g., [START_REF] Bateman | Higher Transcendental Functions[END_REF] 10.13 (2) and (3). 44 See, e.g., [START_REF] Slater | Generalized Hypergeometric Functions[END_REF] appendix I or [START_REF] Normand | Calculation of some determinants using the s-shifted factorial[END_REF] section 2.

45 See, e.g., [3] 6.1.5, 6.1.21 and 6.1.22. 46 See, e.g., [START_REF] Normand | Calculation of some determinants using the s-shifted factorial[END_REF] section 2.6.

Appendix D. Some determinants with gamma functions as entries Lemma D. With n a positive integer and c some complex number not zero or a negative integer, let M be an n × n matrix which element M j,k is equal to Γ(c + j + k), except possibly for the last row,

Then, one has

Proof. A determinant is not changed if one adds to any column a linear combination of other columns.

Replacing for k = 0, . . . , n -1 the column C k of det M by,

yields a new matrix M ′ with an equal determinant and which is triangular. Indeed, from definition of M and lemma C.1, one has for j = 0, . . . , n -2 and k = 0, . . . , n -1,

which vanishes for j < k. Then, the determinant is the product of the diagonal elements j! Γ(c + j) for j = 0, . . . , n -2 and M ′ n-1,n-1 . From equation (D.4), this last element reads 

Appendix E. Special cases of Hermite standard bloc orthogonal polynomials

With the weight functions, x ∈ (-∞, ∞), w := e -x 2 and w 2 := e -2x 2 , one has:

48 See, e.g., [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] 15.1.20 or [START_REF] Slater | Generalized Hypergeometric Functions[END_REF] (1.7.6).

49 See [START_REF] Mehta | Probability density of the determinant of a random Hermitian matrix[END_REF] equation (A.12) or [START_REF] Normand | Calculation of some determinants using the s-shifted factorial[END_REF] equation (4.5).

Appendix F. Special cases of Laguerre standard bloc orthogonal polynomials

With the weight functions, x ∈ [0, ∞), w := e -x x α and w 2 := e -2x x α , α > -1, one has: In the case i = 1, 'modification of Laguerre polynomials by a constraint of zero average' have already been considered in [START_REF] Giraud | Constrained orthogonal polynomials[END_REF]