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A simple derivation of the Lorentz transformation and of the related velocity and

acceleration formulae

J.-M. Lévya

Laboratoire de Physique Nucléaire et de Hautes Energies,

CNRS - IN2P3 - Universités Paris VI et Paris VII, Paris.

The Lorentz transformation is derived from the simplest thought experiment by using the simplest
vector formula from elementary geometry. The result is further used to obtain general velocity and
acceleration transformation equations.

I. INTRODUCTION

Many introductory courses on special relativity
(SR) use thought experiments in order to demon-
strate time dilation and length contraction from
Einstein’s two postulates by using conceptual devices
like the well known light clock or variants thereof
(see below or e.g.1 An extensive bibliography is given
in 2) However, once these two effects are established,
most authors return to the postulates to derive the
Lorentz transformation (LT), taking the route which
is usual in advanced texts but which is certainly not
the easiest one to begin with.
However, deriving the LT directly from these effects
is possible and has obvious advantages for beginners.
It allows, for example, to bypass the use of group
structure and linearity. Important as though they are
in fundamental physics, dispensing with these con-
siderations allows for a very direct first contact with
the conceptually demanding subject of SR.3 More
elaborate derivations from fundamental principles
can be left for a second pass.

In the present article, we show that the LT can
be derived from length contraction through a purely
geometrical argument which amounts to expressing
the basic vector addition formula in two frames
in rectilinear and uniform relative motion. This
reasoning leads to a very simple and possibly new
way of writing the space part of the LT, which in
turn allows for an easy derivation of the velocity and
acceleration tranformations.
This type of derivation was used already in a paper
published in this Journal a long time ago.4 However,
the author of this paper missed what we think is
the easiest way to derive the time transformation
formula and obtained it through a rather contrived
argument, introducing an artificial extension of the
’time interval’. Also, as in most papers on the
subject, the derivation was limited to transformations
between two reference frames in the so-called ’stan-
dard configuration’,5 viz. parallel axes, OX ′ sliding
along OX with cöıncident space-time origins.

The present paper is organised as follows: in order
to prevent possible objections which are often not
taken care of in the derivation of the two basic effects
using the light clock, we start by reviewing it briefly
in section II. The LT between two frames in ’standard
configuration’ is first derived from length contraction
in section III. Section IV treats the more general case
of an arbitrarily oriented relative velocity. In section
V we use the expression obtained in section IV to find
the velocity and acceleration transformation. Section
VI contains our summary and conclusions.

II. TIME DILATION AND LENGTH

CONTRACTION

A. The light clock

The light clock is the conceptual device sketched on
Fig.1 : a light signal bounces back and forth between
two parallel mirrors maintained a constant distance
apart with the aid of pegs (not drawn). The signal
triggers the registering of a tick each time it hits the
’lower’ mirror (Fig.1 left). We thus have a perfect
clock with period

T0 =
2L0

c
(1)

with L0 the distance between the mirrors and c the
speed of light.

Fig.1 The light clock at rest (left) and moving(right)

B. Time dilation

Let’s now look at the clock in a frame wherein it
travels at a constant speed v in a direction parallel
to the the mirrors. We might assume that the mir-
rors are constrained to slide in two parallel straight
grooves which have been engraved a constant distance
L0 apart, so that there cannot be any argument about
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a variation of the pegs length when they are moving.
By the first postulate, this moving clock must have
the same period in its rest frame than its twin at rest
in the laboratory.
On the other hand, the length traveled by the signal
in the lab is longer than the length it travels in the
clock rest frame (see Fig.1 right) If T is the interval
between two ticks in the lab, then by Einstein’s sec-
ond postulate and the Pythagorean theorem, we have
that

(cT/2)2 = L2
0 + (vT/2)2 (2)

from which

T =
T0

√

1 − (v
c
)2

= γT0 (3)

follows, showing that the moving clock runs more
slowly in the lab than its stationnary twin. The sec-
ond equal sign defines the ubiquitous Lorentz γ factor.

C. Length contraction

Now the moving clock is traveling in a direction per-
pendicular to the plane of its mirrors relative to the
lab observer. In this case, no check can be kept of the
inter-mirror distance. To make sure that (for the same
v) the clock period hasn’t changed, we can imagine it
accompanied by an identical second clock oriented as
before with respect to its lab velocity. Both clocks
have the same period in their common rest frame and
by the argument already given, the clock moving par-
allel to its mirrors has period T in the lab (cf. above);
therefore we can be sure that the clock moving perpen-
dicularly to its mirrors also has period T in the lab
frame. Anticipating the result which will be forced
upon us, let L be the inter-mirror distance as mea-
sured in the laboratory frame. Now consider the time
taken by the light signal to make its two-way travel
in the laboratory frame; starting from the rear mir-
ror (which was the ’lower’ mirror before the clock was
rotated), it will reach the front mirror after a time t
given by ct = L+vt and will need a further time lapse
t′ given by vt′ = L−ct′ for the return leg, which makes
a total of L

c(1− v
2

c
2
)

Equating this expression with the

one already obtained for T , one is forced to conclude
that

L = L0

√

1 − (
v

c
)2 =

L0

γ
(4)

That the distances in the directions orthogonal to the
motion are not changed can be demonstrated by in-
voking grooves arguments like the one we used for the

time dilation derivation. For example, we can imag-
ine that the rims of the mirrors are fitted with skates
gliding perpendicularly to the mirror planes in two
parallel straight grooves.

III. LORENTZ TRANSFORMATION ALONG

THE x AXIS

Let us now envision two frames in ’standard
configuration’ with K ′ having velocity v with respect
to K and let x, t (resp. x′, t′) be the coordinates of
event M in the two frames. Let O and O′ be the
spatial origins of the frames; O and O′ cöıncide at
time t = t′ = 0

Here comes the pretty argument: all we have to do
is to express the relation

OM = OO′ + O′M (5)

between vectors (which here reduce to oriented
segments) in both frames.

In K, OM = x, OO′ = vt and O′M seen from K

is x′

γ
since x′ is O′M as measured in K ′ Hence a first

relation:

x = vt +
x′

γ
(6)

In K ′, OM = x
γ

since x is OM as measured in K,

OO′ = vt′ and O′M = x′. Hence a second relation:

x

γ
= vt′ + x′ (7)

Relation (6) yields immediately

x′ = γ(x − vt) (8)

which is the x-axis ’space’ part of the LT and relation
(7) yields the inverse

x = γ(x′ + vt′) (9)

of this ’space part’. Eliminating x′ between (8) and
(9) quickly leads to the formula for the transformed
time:

t′ = γ(t − vx/c2) (10)

the inverse of which could easily be found by a similar
elimination of x.
Coordinates on the y and z axes are unchanged for
the already stated reason that distances do not vary
in the directions perpendicular to the velocity.
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IV. THE CASE OF AN ARBITRARY

VELOCITY

In the following, v will denote the velocity vector
of K ′ w.r.t. K and r (resp. r′) the position vector of
the event under consideration as measured in frame
K (resp K ′). We further define

u =
v

|v|
(11)

the unit vector parallel to v.
From our findings of section 2, we see that only the
component of r parallel to v is affected when looking
at it from the other frame, while the normal compo-
nents are unchanged. We resolve r into parallel and
perpendicular components according to

r = uu.r + (1− u ⊗ u)r = r‖ + r⊥ (12)

where the dot stands for the 3-space scalar product,
1 is the identity operator and u ⊗ u is the dyadic
which projects out the component parallel to u from
the vector it operates upon, viz

(u⊗ u)V = (u.V)u (13)

The operator which contracts the projection on u by
γ while leaving the orthogonal components unchanged
must yield:

u
u.r

γ
+ (1 − u⊗ u)r = (1 +

1 − γ

γ
u⊗ u)r (14)

Let us therefore define

Op(γ−1) = 1 +
1 − γ

γ
u⊗ u (15)

The inverse operator must correspond to multiplica-
tion of the longitudinal part by γ and is therefore

Op(γ) = Op(γ−1)−1 = 1 + (γ − 1)u⊗ u (16)

as can also be checked by multiplication of the
right-hand sides of (15) and (16) . Note that these
operators are even in u and therefore independent of
the orientation of v.

Mimicking what has been done in section 3, let us
write again

OM = OO′ + O′M (17)

but for vectors now, taking care of the invariance of
the orthogonal parts. We get in frame K:

r = vt + Op(γ−1)r′ (18)

and in frame K ′:

Op(γ−1)r = vt′ + r′ (19)

Using (16) relation (18) yields immediately:

r′ = Op(γ)(r−vt) = (1+(γ−1)u⊗u)(r−vt) (20)

which is probably the simplest way to write the space
part of the rotation free homogenous LT. The usual γ
factor of the one dimensionnal transformation is sim-
ply replaced by the operator Op(γ)
By substituting (20) into (19), we find:

Op(γ−1)r = vt′ + Op(γ)(r − vt) (21)

or, using

Op(γ)v = γv (22)

and with the explicit form of Op:

(
1 − γ

γ
− (γ − 1))

vv.r

v2
+ γvt = vt′ (23)

Using now

1 − γ2 = −(
v

c
)2γ2 (24)

and crossing away v on both sides, (23) yields:

t′ = γ(t −
v.r

c2
) (25)

i.e. the time transformation equation.

V. VELOCITY AND ACCELERATION

TRANSFORMATIONS

A. Velocity

The two formulas thus obtained for the L.T. are
so simple that they can readily be used to yield the
velocity transformation equation without the need of
complicated thought experiments and algebraic ma-
nipulations. Differentiating (20) and (25) w.r.t. t and
taking the ratio of the equalities thus obtained yields,

(with V′ =
dr′

dt′
and V =

dr

dt
) (26)

V′ =
1

γ

(1 + (γ − 1)u ⊗ u)(V − v)

1 − v.V
c2

(27)

which is the general velocity transformation formula.



4

B. Acceleration

The compact Op notation helps to keep the algebra
tidy when differentiating (27) w.r.t. t; dividing the
derivative of (27) by that of (25) one finds

A′ =
1

γ2

Op(γ)A(1 − v.V
c2 ) + Op(γ)(V − v)v.A

c2

(1 − V.v
c2 )3

(28)
Expliciting Op, simplifying and regrouping terms, one
obtains after a page of algebra:

A′ =
A − γ

γ+1
v.Av

c2 + v×(V×A)
c2

γ2(1 − V.v
c2 )3

(29)

By making the necessary substitutions: V → u′,
V′ → u, v → −V and specializing to V parallel to
Ox, one can easily check that the component equa-
tions derived from (29) agree with those published
in.2

As an example of use of this acceleration transfor-
mation, we take V = v and v.A = 0, and obtain
A′ = γ2A retrieving the known result that a particle
in a circular storage ring undergoes a proper (A′) ac-
celeration that is a factor γ2 larger than the lab (A)
acceleration.(7) Moreover, the two accelerations are
parallel, which is far from obvious a priori. Observe
that all the terms which can make A′ and A differ-
ent in direction as well as in magnitude vanish in the
c → ∞ limit, consistent with the fact that accelera-
tion is an invariant quantity under a change of inertial

frame in newtonian physics.
Setting V = v and taking v parallel to A we also
retrieve another known fact: a particle in rectilinear
motion undergoes a proper acceleration which is larger
than its lab acceleration by a factor γ3.

These two examples are but special cases of a general
formula connecting proper acceleration and accelera-
tion in the laboratory frame, which can be obtained
by setting v = V in (29), viz.

A′ = γ2Op(γ)A (30)

Here γ and Op(γ) are calculated using the labora-
tory velocity of the accelerating body that is also the
velocity of the inertial frame in which it is instanta-
neously at rest. Equation (30) can be readily inverted
to yield the laboratory acceleration given the proper
acceleration, if needed.

VI. SUMMARY AND CONCLUSION

We have shown that the general rotation free ho-
mogenous LT can be derived once length contrac-
tion has been established by writing the elementary
vector relation (sometimes dubbed ’Chasles’ relation)
OM = OO′ + O′M in the two frames considered.8

The extension from the special one dimensional case
to the 3-dimensional case is completely straightfor-
ward. The relation we have obtained allows for a sim-
ple derivation of the velocity and acceleration trans-
formations without the need for complicated thought
experiments and algebraic manipulations.
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