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A NEW APPROACH TO THE MODELING OF LOCAL DEFECTS

IN CRYSTALS:

THE REDUCED HARTREE-FOCK CASE

ÉRIC CANCÈS, AMÉLIE DELEURENCE, AND MATHIEU LEWIN

Abstract. This article is concerned with the derivation and the mathematical

study of a new mean-field model for the description of interacting electrons

in crystals with local defects. We work with a reduced Hartree-Fock model,

obtained from the usual Hartree-Fock model by neglecting the exchange term.

First, we recall the definition of the self-consistent Fermi sea of the perfect

crystal, which is obtained as a minimizer of some periodic problem, as was

shown by Catto, Le Bris and Lions. We also prove some of its properties

which were not mentioned before.

Then, we define and study in details a nonlinear model for the electrons of

the crystal in the presence of a defect. We use formal analogies between the

Fermi sea of a perturbed crystal and the Dirac sea in Quantum Electrodynam-

ics in the presence of an external electrostatic field. The latter was recently

studied by Hainzl, Lewin, Séré and Solovej, based on ideas from Chaix and

Iracane. This enables us to define the ground state of the self-consistent Fermi

sea in the presence of a defect.

We end the paper by proving that our model is in fact the thermodynamic

limit of the so-called supercell model, widely used in numerical simulations.

Describing the electronic state of crystals with local defects is a major issue in
solid-state physics, materials science and nano-electronics [25, 17, 33].

In this article, we develop a theory based on formal analogies between the Fermi
sea of a perturbed crystal and the polarized Dirac sea in Quantum Electrodynam-
ics in the presence of an external electrostatic field. Recently, the latter model was
extensively studied by Hainzl, Lewin, Séré and Solovej in the Hartree-Fock approx-
imation [10, 11, 13, 12], based on ideas from Chaix and Iracane [6] (see also [7, 1]).
This was summarized in the review [14]. Using and adapting these methods, we are
able to propose a new mathematical approach for the self-consistent description of
a crystal in the presence of local defects.

We focus in this article on the reduced Hartree-Fock (rHF) model in which the so-
called exchange term is neglected. To further simplify the mathematical formulas,
we do not explicitly take the spin variable into account and we assume that the
host crystal is cubic with a single atom of charge Z per unit cell. The arguments
below can be easily extended to the general case.

In the whole paper, the main object of interest will be the so-called density
matrix of the electrons. This is a self-adjoint operator 0 ≤ γ ≤ 1 acting on the
one-body space L2(R3). When γ has a finite rank, it models a finite number of
electrons. In the periodic case, the ground state density matrix γ0

per has an infinite
rank (it describes infinitely many electrons) and commutes with the translations
of the lattice. We will see in the sequel that the ground state density matrix of a
crystal with a local defect can be written as γ = γ0

per + Q, where Q is a compact

perturbation of the periodic density matrix γ0
per of the reference perfect crystal.
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In each of the above three cases (finite number of electrons, perfect crystal,
defective crystal), the ground state density matrix can be obtained by minimizing
some nonlinear energy functional depending on a set of admissible density matrices.
In the case of a crystal with a local defect, the perturbation Q is a minimizer of
some nonlinear minimization problem set in the whole space R

3, with a possible
lack of compactness at infinity. The main unusual feature compared to standard
variational problems is that Q is a self-adjoint operator of infinite rank. This was
already the case in [10, 11, 12, 13].

The paper is organized as follows. In Section 1, we recall the definition of the
reduced Hartree-Fock model for a finite number of electrons, which serves as a
basis for the theories of infinitely many electrons in a (possibly perturbed) periodic
nuclear distribution. Section 2 is devoted to the definition of the model for the
infinite periodic crystal, following mainly [4, 5] (but we provide some additional
material compared to what was done in [4, 5]). In Section 3, we define a model
for the crystal with local defects which takes the perfect crystal as reference. In
Section 4, we prove that this model is the thermodynamic limit of the supercell
model.

For the convenience of the reader, we have gathered all the proofs in Section 5.
Often, the proofs follow the same lines as those in [10, 11, 12, 13] and we shall
not detail identical arguments. But there are many difficulties associated with the
particular model under study which do not appear in previous works and which are
addressed in details here.

1. The reduced Hartree-Fock model for N electrons

We start by recalling the definition of the reduced Hartree-Fock model [31] for a
finite number of electrons. Note that the reduced Hartree-Fock model should not
be confused with the restricted Hartree-Fock model commonly used in numerical
simulations (see e.g. [8]). We consider a system containing N nonrelativistic quan-
tum electrons and a set of nuclei having a density of charge ρnuc. If for instance
there are K nuclei of charges z1, ..., zK ∈ N \ {0} located at R1, ..., RK ∈ R

3, then

ρnuc(x) :=

K∑

k=1

zk mk(x − Rk),

where m1, ..., mK are positive measures on R
3 of total mass one. Point-like nuclei

would correspond to mk = δ (the Dirac measure) but for convenience we shall deal
with smeared nuclei in the sequel, i.e. we assume that for all k = 1...K, mk is
a smooth nonnegative function such that

∫
R3 mk = 1. The technical difficulties

arising with point-like nuclei will be dealt with elsewhere.
The energy of the whole system in the reduced Hartree-Fock model reads [31, 5]

(1.1) ErHF
ρnuc

(γ) = Tr

(
−1

2
∆γ

)
+

1

2
D (ργ − ρnuc, ργ − ρnuc) .

We have chosen a system of units such that ~ = m = e = 1
4πǫ0

= 1 where m and
e are respectively the mass and the charge of an electron, ~ is the reduced Planck
constant and ǫ0 is the dielectric permittivity of the vacuum. The first term in
the right-hand side of (1.1) is the kinetic energy of the electrons and D(·, ·) is the
classical Coulomb interaction, which reads for f and g in L6/5(R3) as

(1.2) D(f, g) =

∫

R3

∫

R3

f(x) g(y)

|x − y| dx dy = 4π

∫

R3

f̂(k)ĝ(k)

|k|2 dk.
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where f̂ denotes the Fourier transform of f . In this mean-field model, the state of
the N electrons is described by the one-body density matrix γ, which is an element
of the following class

PN =

{
γ ∈ S(L2(R3)) | 0 ≤ γ ≤ 1, Tr(γ) = N, Tr

(√
−∆γ

√
−∆

)
< ∞

}
.

Here and below, S(H) denotes the space of bounded self-adjoint operators acting on
the Hilbert space H. Also we define Tr((−∆)γ) := Tr(

√
−∆γ

√
−∆) which makes

sense when γ ∈ PN . The set PN is the closed convex hull of the set of orthogonal
projectors of rank N acting on L2(R3) and having a finite kinetic energy. Each

such projector γ =
∑N

i=1 |ϕi〉〈ϕi| is the density matrix of a Hartree-Fock state

(1.3) Ψ = ϕ1 ∧ · · · ∧ ϕN

in the usual N -body space of fermionic wavefunctions with finite kinetic energy∧N
i=1 H1(R3).
The function ργ appearing in (1.1) is the density associated with the operator γ,

defined by ργ(x) = γ(x, x) where γ(x, y) is the kernel of the trace class operator γ.
Notice that for all γ ∈ PN , one has ργ ≥ 0 and

√
ργ ∈ H1(R3), hence the last term

of (1.1) is well-defined, since ργ ∈ L1(R3) ∩ L3(R3) ⊂ L6/5(R3).

It can be proved (see the appendix of [31]) that if N ≤
∑M

k=1 zk (neutral or
positively charged systems), the variational problem

(1.4) IrHF(ρnuc, N) = inf
{
ErHF

ρnuc
(γ), γ ∈ PN

}

has a minimizer γ and that the corresponding minimizing density ργ is unique.
The Hartree-Fock model [21] is the variational approximation of the time-independent

Schrödinger equation obtained by restricting the set of fermionic wavefunctions un-
der consideration to the subset of functions of the form (1.3). The HF functional
reads

(1.5) EHF
ρnuc

(γ) = ErHF
ρnuc

(γ) − 1

2

∫∫

R6

|γ(x, y)|2
|x − y| dx dy,

the last term being called the exchange energy. As the Hartree-Fock energy func-
tional is nonconvex, there is little hope to obtain rigorous thermodynamic limits in
this setting, at least with current state-of-the-art techniques. For this reason, the
exchange term is often neglected in mathematical studies.

2. The reduced Hartree-Fock model for a perfect crystal

In this article, we clamp the nuclei on a periodic lattice, optimizing only over
the state of the electrons. More precisely we are interested in the change of the
electronic state of the crystal when a local defect is introduced. To this end, we shall
rely heavily on the rHF model for the infinite perfect crystal (with no defect) which
was studied by Catto, Le Bris and Lions in [4, 5]. The latter can be obtained as the
thermodynamical limit of the rHF model for finite systems which was introduced
in the previous section. This will be explained in Section 4 below.

Let Γ = [−1/2, 1/2)3 be the unit cell. We denote by Γ∗ = [−π, π)3 the first
Brillouin zone of the lattice, and by τk the translation operator on L2

loc(R
3) defined

by τku(x) = u(x − k). We then introduce

Pper =

{
γ ∈ S(L2(R3)) | 0 ≤ γ ≤ 1, ∀k ∈ Z

3, τkγ = γτk,

∫

Γ∗

TrL2
ξ
(Γ)((1 − ∆ξ)

1/2γξ(1 − ∆ξ)
1/2) dξ < ∞

}
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where (γξ)ξ∈Γ∗ is the Bloch waves decomposition of γ, see [27, 5]:

γ =
1

(2π)3

∫

Γ∗

γξ dξ, γξ ∈ S(L2
ξ(Γ)),

L2
ξ(Γ) =

{
u ∈ L2

loc(R
3) | τku = e−ik·ξu, ∀k ∈ Z

3
}

which corresponds to the decomposition in fibers L2(R3) =
∫ ⊕

Γ∗
L2

ξ(Γ)dξ. For any

γ ∈ Pper, we denote by γξ(x, y) the integral kernel of γξ. The density of γ is then
the nonnegative Z

3-periodic function of L1
loc(R

3) ∩ L3
loc(R

3) defined as

ργ(x) :=
1

(2π)3

∫

Γ∗

γξ(x, x) dξ.

Notice that for any γ ∈ Pper
∫

Γ

ργ(x)dx =
1

(2π)3

∫

Γ∗

TrL2
ξ
(Γ)(γξ) dξ,

i.e. this gives the number of electrons per unit cell. Later we shall add the constraint
that the system is neutral and restrict to states γ ∈ Pper satisfying

∫

Γ

ργ(x)dx = Z

where Z is the total charge of the nuclei in each unit cell.
We also introduce the Z

3-periodic Green kernel of the Poisson interaction [22],
denoted by G1 and uniquely defined by






−∆G1 = 4π

(
∑

k∈Z3

δk − 1

)

G1 Z
3-periodic, min

R3
G1 = 0.

The Fourier expansion of G1 is

G1(x) = c +
∑

k∈2πZ3\{0}

4π

|k|2 eik·x

with c =
∫
Γ

G1 > 0. The electrostatic potential associated with a Z
3-periodic

density ρ ∈ L1
loc(R

3) ∩ L3
loc(R

3) is the Z
3-periodic function defined as

(ρ ⋆Γ G1)(x) :=

∫

Γ

G1(x − y) ρ(y) dy.

We also set for any Z
3-periodic functions f and g

DG1
(f, g) :=

∫

Γ

∫

Γ

G1(x − y) f(x) g(y)dx dy.

Throughout this article, we will denote by χI the characteristic function of the set
I ⊂ R and by χI(A) the spectral projector on I of the self-adjoint operator A.

The periodic density of the nuclei is given by

(2.1) µper(x) =
∑

R∈Z3

Z m(x − R).

We assume for simplicity that m is a nonnegative function of C∞
c (R3) with support

in Γ, and that
∫

R3 m(x)dx = 1. Hence
∫
Γ µper(x)dx = Z, the total charge of the

nuclei in each unit cell. The periodic rHF energy is then defined for γ ∈ Pper as

(2.2) E0
per(γ) =

1

(2π)3

∫

Γ∗

TrL2
ξ
(Γ)

(
−1

2
∆γξ

)
+

1

2
DG1

(ργ − µper, ργ − µper) .



LOCAL DEFECTS IN PERIODIC CRYSTALS 5

Introducing

(2.3) PZ
per :=

{
γ ∈ Pper |

∫

Γ

ργ = Z

}
,

the periodic rHF ground state energy (per unit cell) is given by

(2.4) I0
per = inf

{
E0
per(γ), γ ∈ PZ

per

}
.

It was proved by Catto, Le Bris and Lions in [5] that there exists a minimizer
γ0
per ∈ PZ

per to the minimization problem (2.4), and that all the minimizers of (2.4)
share the same density ργ0

per
. We give in Appendix A the proof of the following

Theorem 1 (Definition of the periodic rHF minimizer). Let Z ∈ N \ {0}. The
minimization problem (2.4) admits a unique minimizer γ0

per. Denoting by

(2.5) H0
per := −∆

2
+ (ργ0

per
− µper) ⋆Γ G1,

the corresponding periodic mean-field Hamiltonian, γ0
per is solution to the self-

consistent equation

(2.6) γ0
per = χ(−∞,ǫF ](H

0
per),

where ǫF is a Lagrange multiplier called Fermi level, which can be interpreted as a
chemical potential.

Additionally, for any ǫF ∈ R such that (2.6) holds, γ0
per is the unique minimizer

on Pper of the energy functional

γ 7→ E0
per(γ) − ǫF

∫

Γ

ργ .

Theorem 1 contains three main results that were not contained in [5]: first γ0
per

is unique, second it is a projector, and third it satisfies Equation (2.6). These three
properties are crucial for a proper construction of the model for the crystal with a
defect.

It can easily be seen that (ργ0
per

−µper) ⋆Γ G1 belongs to L2
loc(R

3). By a result of

Thomas [34] this implies that the spectrum of H0
per is purely absolutely continuous.

This is an essential property for the proof of the uniqueness of γ0
per. Let (λn(ξ))n≥1

denote the nondecreasing sequence of the eigenvalues of (H0
per)ξ. Then

σ(H0
per) =

⋃

n≥1

λn(Γ∗), H0
per =

1

(2π)3

∫

Γ∗

(H0
per)ξ dξ.

The projector γ0
per represents the state of the Fermi sea, i.e. of the infinite system

of all the electrons in the periodic crystal. Of course, it is an infinite rank projector,
meaning that

γ0
per =

∑

k

|ϕk〉〈ϕk|

should be interpreted as the one-body matrix of a formal infinite Slater determinant

Ψ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk ∧ · · · .

The fact that γ0
per is additionally a spectral projector associated with the continuous

spectrum of an operator leads to the obvious analogy with the Dirac sea which is
the projector on the negative spectral subspace of the Dirac operator [10, 11, 12, 13].

Most of our results will hold true for insulators (or semi-conductors) only. When
necessary, we shall take Z ∈ N \ {0} and make the following assumption:
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(A1) There is a gap between the Z-th and the (Z + 1)-st bands, i.e. Σ+
Z < Σ−

Z+1,

where Σ+
Z and Σ−

Z+1 are respectively the maximum and the minimum of the Z-th

and the (Z + 1)-st bands of H0
per.

We emphasize that Assumption (A1) is a condition on the solution γ0
per of the

nonlinear problem (2.4). Note that under (A1), one has γ0
per = χ(−∞,ǫF ](H

0
per) for

any ǫF ∈ (Σ+
Z , Σ−

Z+1).

3. The reduced Hartree-Fock model for a crystal with a defect

In this section, we define the reduced Hartree-Fock model describing the behavior
of the Fermi sea and possibly of a finite number of bound electrons (or holes) close to
a local defect. Our model is an obvious transposition of the Bogoliubov-Dirac-Fock
model which was proposed by Chaix and Iracane [6] to describe the polarized Dirac
sea (and a finite number of relativistic electrons) in the presence of an external
potential. Our mathematical definition of the reduced energy functional follows
mainly ideas from [10, 11]. We shall prove in Section 4 that this model can be
obtained as the thermodynamic limit of the so-called supercell model. An analogous
result was proved in [13] for the Bogoliubov-Dirac-Fock (BDF) model.

Assume that the periodic nuclear density µper defined in (2.1) is replaced by a
locally perturbed nuclear density µper + ν. The defect ν can model a vacancy, an
interstitial atom, or an impurity, with possible local rearrangement of the neigh-
boring atoms. The main idea underlying the model is to define a finite energy by
subtracting the infinite energy of the periodic Fermi sea γ0

per defined in the previous
section, from the infinite energy of the perturbed system under consideration. For
the BDF model, this was proposed first in [13]. Formally, one obtains for a test
state γ

(3.1) ErHF
µper+ν(γ) − ErHF

µper+ν(γ0
per) “ = ” Tr

(
H0

per(γ − γ0
per)
)

−
∫

R3

∫

R3

ν(x)ρ[γ−γ0
per]

(y)

|x − y| dx dy +
1

2

∫

R3

∫

R3

ρ[γ−γ0
per]

(x)ρ[γ−γ0
per]

(y)

|x − y| dx dy.

Of course the two terms in the left-hand side of (3.1) are not well-defined because
µper is periodic and because γ and γ0

per have infinite ranks, but we shall be able
to give a mathematical meaning to the right-hand side, exploiting the fact that
Q := γ − γ0

per induces a small perturbation of the reference state γ0
per. The formal

computation (3.1) will be justified by means of thermodynamic limit arguments in
Section 4.

3.1. Definition of the reduced Hartree-Fock energy of a defect. We now
define properly the reduced Hartree-Fock energy of the Fermi sea in the presence of
the defect ν. We denote by Sp the Schatten class of operators Q acting on L2(R3)
having a finite p trace, i.e. such that Tr(|Q|p) < ∞. Note that S1 is the space of
trace-class operators, and that S2 is the space of Hilbert-Schmidt operators. Let
Π be an orthogonal projector on L2(R3) such that both Π and 1 − Π have infinite
ranks. A self-adjoint compact operator Q is said to be Π-trace class (Q ∈ SΠ

1 )
when Q ∈ S2 and ΠQΠ, (1 − Π)Q(1 − Π) ∈ S1. Its Π-trace is then defined as
TrΠ(Q) = Tr(ΠQΠ + (1 − Π)Q(1 − Π)). Notice that if Q ∈ S1, then Q ∈ SΠ

1 for
any Π and TrΠ(Q) = Tr(Q). See [10, Section 2.1] for general properties related to
this definition. In the following, we use the shorthand notation

Q−− := γ0
perQγ0

per, Q++ := (1 − γ0
per)Q(1 − γ0

per),

S0
1 := S

γ0
per

1 =
{
Q ∈ S2

∣∣ Q++ ∈ S1, Q−− ∈ S1

}
and Tr0(Q) := Trγ0

per
(Q).
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We also introduce the Banach space

Q =
{
Q ∈ S0

1

∣∣ Q∗ = Q, |∇|Q ∈ S2, |∇|Q++|∇| ∈ S1, |∇|Q−−|∇| ∈ S1

}
,

endowed with its natural norm

(3.2) ||Q||Q := ||Q||
S2

+
∣∣∣∣Q++

∣∣∣∣
S1

+
∣∣∣∣Q−−

∣∣∣∣
S1

+ |||∇|Q||
S2

+
∣∣∣∣|∇|Q++|∇|

∣∣∣∣
S1

+
∣∣∣∣|∇|Q−−|∇|

∣∣∣∣
S1

.

The convex set on which the energy will be defined is

(3.3) K :=
{
Q ∈ Q | − γ0

per ≤ Q ≤ 1 − γ0
per

}
.

Notice that K is the closed convex hull of states Q ∈ Q of the special form Q =
γ − γ0

per, γ being an orthogonal projector on L2(R3). Besides, the number Tr0(Q)
can be interpreted as the charge of the system measured with respect to that of the
unperturbed Fermi sea. It can be proved [10, Lemma 2] that Tr0(Q) is always an
integer if Q is a Hilbert-Schmidt operator of the special form Q = γ − γ0

per, with γ
an orthogonal projector. Additionally, in this case, Tr0(Q) = 0 when ‖Q‖ < 1.

Note that the constraint −γ0
per ≤ Q ≤ 1 − γ0

per in (3.3) is equivalent [1, 10] to
the inequality

(3.4) Q2 ≤ Q++ − Q−−

and implies in particular that Q++ ≥ 0 and Q−− ≤ 0 for any Q ∈ K.
In order to define properly the energy of Q, we need to associate a density ρQ

with any state Q ∈ K. We shall see that ρQ can in fact be defined for any Q ∈ Q.
This is not obvious a priori since Q does not only contain trace-class operators.
Additionally we need to check that the last two terms of (3.1) are well-defined. For
this purpose, we introduce the so-called Coulomb space

C := {ρ ∈ S′(R3) | D(ρ, ρ) < ∞}

where D(f, g) = 4π
∫

R3 |k|−2f̂(k)ĝ(k)dk was already defined before in (1.2). The

dual space of C is the Beppo-Levi space C′ :=
{
V ∈ L6(R3) | ∇V ∈ L2(R3)

}
. We

now use a duality argument to define ρQ:

Proposition 1 (Definition of the density ρQ for Q ∈ Q). Assume that Q ∈ Q.
Then QV ∈ S0

1 for any V = V1 +V2 ∈ C′ +
(
L2(R3) ∩ L∞(R3)

)
and moreover there

exists a constant C (independent of Q and V ) such that

|Tr0(QV )| ≤ C ||Q||Q (||V1||C′ + ||V2||L2(R3)).

Thus the linear form V ∈ C′ +
(
L2(R3) ∩ L∞(R3)

)
7→ Tr0(QV ) can be continuously

extended to C′+L2(R3) and there exists a uniquely defined function ρQ ∈ C∩L2(R3)
such that

∀V = V1 + V2 ∈ C′ +
(
L2(R3) ∩ L∞(R3)

)
, 〈ρQ, V1〉C,C′ +

∫

R3

ρQV2 = Tr0(QV ).

The linear map Q ∈ Q 7→ ρQ ∈ C ∩ L2(R3) is continuous:

||ρQ||C + ||ρQ||L2(R3) ≤ C ||Q||Q .

Eventually when Q ∈ S1 ⊂ S0
1, then ρQ(x) = Q(x, x) where Q(x, y) is the integral

kernel of Q.

The proof of Proposition 1 is given in Section 5.2.
Assuming that (A1) holds true, we are now in a position to give a rigorous sense

to the right-hand side of (3.1) for γ − γ0
per = Q ∈ K. In the sequel, we use the

following notation for any Q ∈ Q:

(3.5) Tr0(H
0
perQ) := Tr(|H0

per − κ|1/2(Q++ − Q−−)|H0
per − κ|1/2) + κTr0(Q)
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where κ is an arbitrary real number in the gap (Σ+
Z , Σ−

Z+1) (this expression will be
proved to be independent of κ, see Corollary 1 below). Then we define the energy
of any state Q ∈ K as

(3.6) Eν(Q) := Tr0(H
0
perQ) − D(ρQ, ν) +

1

2
D(ρQ, ρQ).

The function ν is an external density of charge representing the nuclear charge of
the defect. For the sake of simplicity, we shall assume that ν ∈ L1(R3)∩L2(R3) ⊂ C
throughout the paper, although some of our results are true with a weaker assump-
tion. We shall need the following

Lemma 1. Assume that (A1) holds true. For any fixed κ in the gap (Σ+
Z , Σ−

Z+1),
there exist two constants c1, c2 > 0 such that

(3.7) c1(1 − ∆) ≤ |H0
per − κ| ≤ c2(1 − ∆)

as operators on L2(R3). In particular
∣∣∣
∣∣∣|H0

per − κ|1/2(1 − ∆)−1/2
∣∣∣
∣∣∣ ≤ √

c2,
∣∣∣
∣∣∣|H0

per − κ|−1/2(1 − ∆)1/2
∣∣∣
∣∣∣ ≤ 1/

√
c1.

Similarly, (H0
per − κ)(1 − ∆)−1 and its inverse are bounded operators.

The proof of the above lemma is elementary; it will be given in Section 5.1.1.
By the definition of Q and Lemma 1, it is clear that the right-hand side of (3.5)
is a well-defined quantity for any Q ∈ Q and any κ ∈ (Σ+

Z , Σ−
Z+1). By Proposition

1 which states that ρQ ∈ C for any Q ∈ Q, we deduce that (3.6) is a well-defined
functional.

We shall need the following space of more regular operators

(3.8) Qr := {Q ∈ Q | (−∆)Q2(−∆) ∈ S1, (−∆)(Q++ − Q−−)(−∆) ∈ S1}
and the associated convex set

Kr := K ∩Qr.

The following result will be useful (its proof will be given below in Section 5.3):

Lemma 2. The space Qr (resp. the convex set Kr) is dense in Q (resp. in K) for
the topology of Q.

Corollary 1. Assume that (A1) holds true. When Q ∈ Qr, then H0
perQ ∈ S0

1.

For any Q ∈ Q, the expression (3.5) for Tr0(H
0
perQ) does not depend on κ ∈

(Σ+
Z , Σ−

Z+1). If Q ∈ K, then

0 ≤ c1Tr((1 − ∆)1/2Q2(1 − ∆)1/2)(3.9)

≤ c1Tr((1 − ∆)1/2(Q++ − Q−−)(1 − ∆)1/2)

≤ Tr0(H
0
perQ) − κTr0(Q)

≤ c2Tr((1 − ∆)1/2(Q++ − Q−−)(1 − ∆)1/2)

where c1 and c2 are given by Lemma 1.

Proof. Let Q ∈ Qr and κ ∈ (Σ+
Z , Σ−

Z+1). Then ((H0
per−κ)Q)++ = |H0

per−κ|Q++ =

|H0
per − κ|(1 − ∆)−1(1 − ∆)Q++ ∈ S1 by Lemma 1 and the definition of Qr. A

similar argument for ((H0
per − κ)Q)−− proves that H0

perQ ∈ S0
1. Then for any

Q ∈ Qr, (3.9) is a straightforward consequence of (3.7) and (3.4). We conclude
using the density of Qr in Q and the density of Kr in K. �

The following is an adaptation of [10, Thm 1]:
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Corollary 2. Let ν ∈ L1(R3) ∩L2(R3), Z ∈ N \ {0} and assume that (A1) holds.
For any κ ∈ (Σ+

Z , Σ−
Z+1), one has for some d1, d2 > 0

(3.10) ∀Q ∈ K, Eν(Q) − κTr0(Q) ≥ d1

( ∣∣∣∣Q++
∣∣∣∣

S1
+
∣∣∣∣Q−−

∣∣∣∣
S1

+
∣∣∣∣|∇|Q++|∇|

∣∣∣∣
S1

+
∣∣∣∣|∇|Q−−|∇|

∣∣∣∣
S1

)
+ d2

(
||Q||2

S2
+ |||∇|Q||2

S2

)
− 1

2
D(ν, ν)

Hence Eν − κTr0 is bounded from below and coercive on K. Additionally, when
ν ≡ 0, Q 7→ E0(Q) − κTr0(Q) is nonnegative, 0 being its unique minimizer.

Proof. Inequality (3.10) is a straightforward consequence of (3.9) and the fact that
D(·, ·) defines a scalar product on C. The rest of the proof is obvious. �

Remark 1. The energy Eν(Q) measures the energy of a state γ = γ0
per + Q with

respect to that of γ0
per. Thus the last statement of Corollary 2 is another way of

expressing the fact that γ0
per is the state of lowest energy of the periodic system

when there is no defect.

3.2. Existence of minimizers with a chemical potential. In view of Corol-
lary 2, it is natural to introduce the following minimization problem

(3.11) Eν
ǫF

:= inf{Eν(Q) − ǫF Tr0(Q), Q ∈ K} > −∞

for any Fermi level ǫF ∈ (Σ+
Z , Σ−

Z+1). The following result is proved in Section 5.5,
following ideas from [11]:

Theorem 2 (Existence of minimizers with a chemical potential). Let ν ∈ L1(R3)∩
L2(R3), Z ∈ N \ {0} and assume that (A1) holds. Then for any ǫF ∈ (Σ+

Z , Σ−
Z+1),

there exists a minimizer Q̄ ∈ K for (3.11). Problem (3.11) may have several min-
imizers, but they all share the same density ρ̄ = ρQ̄. Any minimizer Q̄ of (3.11)
satisfies the self-consistent equation

(3.12)

{
Q̄ = χ(−∞,ǫF )(HQ̄) − γ0

per + δ,

HQ̄ = H0
per + (ρQ̄ − ν) ∗ | · |−1

where δ is a finite rank self-adjoint operator satisfying 0 ≤ δ ≤ 1 and Ran(δ) ⊆
ker(HQ̄ − ǫF ).

Remark 2. It is easily seen that (ρQ̄ − ν) ∗ | · |−1 is a compact perturbation of

H0
per, implying that HQ̄ is self-adjoint on D(H0

per) = D(−∆) = H2(R3) and that

σess(HQ̄) = σ(H0
per). Thus the discrete spectrum of HQ̄ is composed of isolated

eigenvalues of finite multiplicity, possibly accumulating at the ends of the bands.

Recall that the charge of the minimizing state Q̄ obtained in Theorem 2 is defined
as Tr0(Q̄). Similarly to [10, 11], it can be proved by perturbation theory that for
any fixed ǫF , there exists a constant C(ǫF ) such that when D(ν, ν) ≤ C(ǫF ), one
has ker(HQ̄ − ǫF ) = {0} and Tr0(Q̄) = 0, i.e. the minimizer of the energy with
chemical potential ǫF is a neutral perturbation of the periodic Fermi sea.

For a fixed external density ν and an adequately chosen chemical potential ǫF ,
one can have Tr0(Q̄) 6= 0 meaning either that electron-hole pairs have been cre-
ated from the Fermi sea, and/or that the system of lowest energy contains a finite
number of bound electrons or holes close to the defect. In the applications, one
will usually have for a positively charged nuclear defect (ν ≥ 0) that the spectrum
of HQ̄ contains a sequence of eigenvalues converging to the bottom Σ−

Z+1 of the
lowest unfilled band (conduction band), and that ǫF is chosen such that exactly q
eigenvalues are filled, corresponding to q bound electrons:

(3.13) Q̄ =
(
χ(−∞,Σ)(HQ̄) − γ0

per

)
+
(
χ[Σ,ǫF )(HQ̄) + δ

)
:= Qpol + γe− ,


