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A NEW APPROACH TO THE MODELLING OF LOCAL

DEFECTS IN CRYSTALS:

THE REDUCED HARTREE-FOCK CASE

ÉRIC CANCÈS, AMÉLIE DELEURENCE, AND MATHIEU LEWIN

Abstract. This article is concerned with the derivation and the mathematical
study of a new mean-field model for the description of interacting electrons
in crystals with local defects. We work with a reduced Hartree-Fock model,
obtained from the usual Hartree-Fock model by neglecting the exchange term.

First, we recall the definition of the self-consistent Fermi sea of the perfect
crystal, which is obtained as a minimizer of some periodic problem, as was
shown by Catto, Le Bris and Lions. We also prove some of its properties
which were not mentioned before.

Then, we define and study in details a nonlinear model for the electrons of
the crystal in the presence of a defect. We use formal analogies between the
Fermi sea of a perturbed crystal and the Dirac sea in Quantum Electrodynam-
ics in the presence of an external electrostatic field. The latter was recently
studied by Hainzl, Lewin, Séré and Solovej, based on ideas from Chaix and
Iracane. This enables us to define the ground state of the self-consistent Fermi
sea in the presence of a defect.

We end the paper by proving that our model is in fact the thermodynamic
limit of the so-called supercell model, widely used in numerical simulations.

Describing the electronic state of crystals with local defects is a major issue in
solid-state physics, materials science and nano-electronics [19, 12, 27].

In this article, we develop a theory based on formal analogies between the Fermi
sea of a perturbed crystal and the Dirac sea in Quantum Electrodynamics in the
presence of an external electrostatic field. Recently, the latter model was extensively
studied by Hainzl, Lewin, Séré and Solovej in the Hartree-Fock approximation
[7, 8, 10, 9], based on ideas from Chaix and Iracane [4]. Using and adapting these
methods, we are able to propose a new mathematical approach for the self-consistent
description of a crystal in the presence of local defects.

We focus in this article on the reduced Hartree-Fock (rHF) model in which the so-
called exchange term is neglected. To further simplify the mathematical formulas,
we do not explicitly take the spin variable into account and we assume that the
host crystal is cubic with a single atom of charge Z per unit cell. The arguments
below can be easily extended to the general case.

The paper is organized as follows. In Section 1, we recall the definition of the
reduced Hartree-Fock model for a finite number of electrons. Section 2 is devoted
to the definition of the model for the infinite periodic crystal, following mainly
[3, 2] (but we provide some additional material compared to what was done in
[3, 2]). In Section 3, we describe the model for the crystal with local defects which
takes the perfect crystal as reference. In Section 4, we prove that this model is the
thermodynamic limit of the supercell model.

For the convenience of the reader, we have gathered all the proofs in Section 5.
Often, the proofs follow the same lines as those in [7, 8, 9, 10] and we shall not detail
identical arguments. But there are many difficulties associated with the particular
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2 E. CANCÈS, A. DELEURENCE, AND M. LEWIN

model under study which do not appear in previous works and which are addressed
in details here.

1. The reduced Hartree-Fock model for N electrons

We start by recalling the definition of the reduced Hartree-Fock model [25] for
a finite quantum system. Note that the reduced Hartree-Fock model should not
be confused with the restricted Hartree-Fock model commonly used in numerical
simulations (see e.g. [5]). We consider a system containing N non-relativistic
quantum electrons and a set of nuclei having a density of charge ρnuc. If for instance
there are K nuclei of charges z1, ..., zK ∈ N \ {0} located at R1, ..., RK ∈ R3, then

ρnuc(x) :=
K∑

k=1

zk mk(x−Rk),

where m1, ...,mK are positive measures on R
3 of total mass one. Point-like nuclei

would correspond to mk = δ (the Dirac measure) but for convenience we shall deal
with smeared nuclei in the sequel, i.e. we assume that for all k = 1...K, mk is
a smooth non-negative function such that

∫
R3 mk = 1. The technical difficulties

arising with point-like nuclei will be dealt with elsewhere.
The energy of the whole system in the reduced Hartree-Fock model reads [25, 3]

(1.1) ErHF
ρnuc

(γ) = Tr

(
−1

2
∆γ

)
+

1

2
D (ργ − ρnuc, ργ − ρnuc) .

We have chosen a system of units such that ~ = m = e = 1
4πǫ0

= 1 where m and
e are respectively the mass and the charge of an electron, ~ is the reduced Planck
constant and ǫ0 is the dielectric permittivity of the vacuum. The first term in
the right-hand side of (1.1) is the kinetic energy of the electrons and D(·, ·) is the
classical Coulomb interaction, which reads for f and g in L6/5(R3) as

(1.2) D(f, g) =

∫

R3

∫

R3

f(x) g(y)

|x− y| dx dy = 4π

∫

R3

f̂(k)ĝ(k)

|k|2 dk.

where f̂ denotes the Fourier transform of f . In this mean-field model, the state of
the N electrons is described by the one-body density matrix γ, which is an element
of the following class

PN =

{
γ ∈ S(L2(R3)) | 0 ≤ γ ≤ 1, Tr(γ) = N, Tr

(
(1 − ∆)1/2γ(1 − ∆)1/2

)
<∞

}
.

Here and below, S(H) denotes the space of bounded self-adjoint operators acting
on the Hilbert space H. The set PN is the convex hull of the set of orthogonal
projectors of rank N acting on L2(R3) and having a finite kinetic energy. Each

such projector γ =
∑N

i=1 |ϕi〉〈ϕi| is the density matrix of a Hartree-Fock state

(1.3) Ψ = ϕ1 ∧ · · · ∧ ϕN

in the usual N -body space of fermionic wavefunctions with finite kinetic energy∧N
i=1H

1(R3).
The function ργ appearing in (1.1) is the density associated with the operator γ,

defined by ργ(x) = γ(x, x) where γ(x, y) is the kernel of the trace class operator γ.
Notice that for all γ ∈ PN , one has ργ ≥ 0 and

√
ργ ∈ H1(R3), hence the last term

of (1.1) is well-defined, since ργ ∈ L1(R3) ∩ L3(R3) ⊂ L6/5(R3).

It can be proved (see the appendix of [25]) that if N ≤ ∑M
k=1 zk (neutral or

positively charged systems), the variational problem

(1.4) IrHF(ρnuc, N) = inf
{
ErHF

ρnuc
(γ), γ ∈ PN

}
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has a minimizer γ and that the corresponding minimizing density ργ is unique.
The Hartree-Fock model [16] is the variational approximation of the time-independent

Schrödinger equation by restricting the set of fermionic wavefunctions under con-
sideration to the subset of functions of the form (1.3). The HF functional reads

(1.5) EHF
ρnuc

(γ) = ErHF
ρnuc

(γ) − 1

2

∫∫

R6

|γ(x, y)|2
|x− y| dx dy,

the last term being called the exchange energy. As the Hartree-Fock energy func-
tional is nonconvex, there is little hope to obtain rigorous thermodynamic limits in
this setting, at least with current state-of-the-art techniques. For this reason, the
exchange term is often neglected in mathematical studies.

2. The reduced Hartree-Fock model for a perfect crystal

In this article, we clamp the nuclei on a periodic lattice, optimizing only over
the state of the electrons. More precisely we are interested in the change of the
electronic state of the crystal when a local defect is introduced. To this end, we shall
rely heavily on the rHF model for the infinite perfect crystal (with no defect) which
was studied by Catto, Le Bris and Lions in [2, 3]. The latter can be obtained as the
thermodynamical limit of the rHF model for finite systems which was introduced
in the previous section. This will be explained in Section 4 below.

Let Γ = [−1/2, 1/2) be the unit cell. We denote by Γ∗ = [−π, π)3 the first
Brillouin zone of the lattice, and by τk the translation operator on L2

loc(R
3) defined

by τku(x) = u(x− k). We then introduce

Pper =

{
γ ∈ S(L2(R3)) | 0 ≤ γ ≤ 1, ∀k ∈ Z

3, τkγ = γτk,

∫

Γ∗

TrL2
ξ(Γ)((1 − ∆ξ)

1/2γξ(1 − ∆ξ)
1/2) dξ <∞

}

where (γξ)ξ∈Γ∗ is the Bloch waves decomposition of γ, see [21, 3]:

γ =
1

(2π)3

∫

Γ∗

γξ dξ, γξ ∈ S(L2
ξ(Γ)),

L2
ξ(Γ) =

{
u ∈ L2

loc(R
3) | τku = e−ik·ξu, ∀k ∈ Z

3
}

which corresponds to the decomposition in fibers L2(R3) ≃
∫ ⊕

Γ∗
dξL2

ξ(Γ). For any

γ ∈ Pper, we denote by γξ(x, y) the integral kernel of γξ. The density of γ is then
the non-negative Z3-periodic function of L1

loc(R
3) ∩ L3

loc(R
3) defined as

ργ(x) :=
1

(2π)3

∫

Γ∗

γξ(x, x) dξ.

Notice that for any γ ∈ PZ
per

∫

Γ

ργ(x)dx =
1

(2π)3

∫

Γ∗

TrL2
ξ(Γ)(γξ) dξ,

i.e. this gives the number of electrons per unit cell. Later we shall add the constraint
that the system is neutral and restrict to states γ ∈ Pper satisfying

∫

Γ

ργ(x)dx = Z.
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We also introduce the Z3-periodic Green kernel of the Poisson interaction [17],
denoted by G1 and uniquely defined by






−∆G1 = 4π

(
∑

k∈Z3

δk − 1

)

G1 Z
3-periodic, min

R3
G1 = 0.

The Fourier expansion of G1 is

G1(x) = κ+
∑

k∈2πZ3\{0}

4π

|k|2 e
ik·x

with κ =
∫
ΓG1 > 0. The electrostatic potential associated with a Z3-periodic

density ρ ∈ L1
loc(R

3) ∩ L3
loc(R

3) is the Z3-periodic function defined as

(ρ ⋆Γ G1)(x) :=

∫

Γ

G1(x− y) ρ(y) dy.

We also set for any Z3-periodic functions f and g

DG1(f, g) :=

∫

Γ

∫

Γ

G1(x− y) f(x) g(y)dx dy.

The periodic density of the nuclei is given by

(2.1) ρper(x) =
∑

R∈Z3

Z m(x−R).

We assume for simplicity that m is a non-negative function of C∞
c (R3) with support

in Γ, and that
∫

R3 m(x)dx = 1. Hence
∫
Γ
ρper(x)dx = Z. The periodic rHF energy

is then defined for γ ∈ Pper as

(2.2) E0
per(γ) =

1

(2π)3

∫

Γ∗

TrL2
ξ(Γ)

(
−1

2
∆γξ

)
+

1

2
DG1 (ργ − ρper, ργ − ρper) .

Introducing

(2.3) PZ
per :=

{
γ ∈ Pper |

∫

Γ

ργ = Z

}
,

the periodic rHF ground state energy (per unit cell) is given by

(2.4) I0
per = inf

{
E0
per(γ), γ ∈ PZ

per

}
.

It was proved by Catto, Le Bris and Lions in [3] that there exists a minimizer
γ0
per ∈ PZ

per of minimization problem (2.4), and that the associated density ργ0
per

is

unique. We give in Appendix A the proof of the following

Theorem 1 (Definition of the periodic rHF minimizer). Let Z > 0. Then the
minimization problem I0

per admits a unique minimizer γ0
per. Let H0

per denote the
associated periodic mean-field operator:

(2.5) H0
per := −∆

2
+ (ργ0

per
− ρper) ⋆Γ G1.

Then γ0
per is a solution of the following self-consistent equation

(2.6) γ0
per = χ(−∞,µ](H

0
per)

where µ is a Lagrange multiplier interpreted as a chemical potential
Additionally, for any µ ∈ R such that (2.6) holds, γ0

per is the unique minimizer
on Pper of the energy functional

γ 7→ E0
per(γ) − µ

∫

Γ

ργ .
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In (2.6), χI(A) is the spectral projector of A associated with the set I ⊂ R.
It can easily be seen that (ργ0

per
− ρper) ⋆ΓG1 belongs to L2

loc(R
3). By a result of

Thomas [28] this implies that the spectrum of H0
per is purely absolutely continuous.

This is an essential property for the proof of the uniqueness of γ0
per. Let (λn(ξ))n≥1

denote the non-decreasing sequence of the eigenvalues of (H0
per)ξ, then

σ(H0
per) =

⋃

n≥1

λn(Γ∗), H0
per =

1

(2π)3

∫

Γ∗

(H0
per)ξ dξ.

The projector γ0
per represents the state of the Fermi sea, i.e. of the infinite system

of all the electrons in the periodic crystal. Of course, it is an infinite rank projector,
meaning that

γ0
per =

∑

n

|ϕn〉〈ϕn|

should be interpreted as the one-body matrix of a formal infinite Slater determinant

Ψ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn ∧ · · · .
The fact that γ0

per is additionally a spectral projector associated with the continuous
spectrum of an operator leads to the obvious analogy with the Dirac sea which is
the projector on the negative spectral subspace of the Dirac operator [7, 8, 10, 9].

Most of our results will hold true for insulators only. When necessary, we shall
take Z ∈ N \ {0} and make the following assumption:

(A1) There is a gap between the Z-th and the (Z + 1)-st band, i.e. Σ+
Z < Σ−

Z+1,

where Σ+
Z and Σ−

Z+1 are respectively the maximum and the minimum of the Z-th
and the (Z + 1)-st bands.

Note that under (A1), one has γ0
per = χ(−∞,µ](H

0
per) for any µ ∈ (Σ+

Z ,Σ
−
Z+1).

3. The reduced Hartree-Fock model for a crystal with a defect

In this section, we define the reduced Hartree-Fock model describing the behavior
of the Fermi sea and possibly of a finite number of bound electrons (or holes) close to
a local defect. Our model is an obvious transposition of the Bogoliubov-Dirac-Fock
model which was proposed by Chaix and Iracane [4] to describe the polarized Dirac
sea (and a finite number of relativistic electrons) in the presence of an external
potential. Our mathematical definition of the reduced energy functional follows
mainly ideas from [7, 8]. We shall prove in Section 4 that this model can be obtained
as the thermodynamic limit of the so-called supercell model. An analogous result
was proved in [10] for the Bogoliubov-Dirac-Fock model.

Assume that the periodic nuclear density ρper defined in (2.1) is replaced by a
locally perturbed nuclear density ρper + ν. The defect ν can model a vacancy, an
interstitial atom, or an impurity, with possible local rearrangement of the neigh-
boring atoms. The main idea underlying the model is to define a finite energy by
subtracting the infinite energy of the periodic Fermi sea γ0

per defined in the pre-
vious section, to the infinite energy of the perturbed system under consideration.
Formally, one obtains for a test state γ

(3.1) ErHF
ρper+ν(γ) − ErHF

ρper+ν(γ0
per) “ = ” Tr

(
H0

per(γ − γ0
per)
)

−
∫

R3

∫

R3

ν(x)ρ[γ−γ0
per]

(y)

|x− y| dx dy +
1

2

∫

R3

∫

R3

ρ[γ−γ0
per]

(x)ρ[γ−γ0
per]

(y)

|x− y| dx dy.

Of course the two terms in the left-hand side of (3.1) are not well-defined because
ρper is periodic and because γ and γ0

per have infinite ranks, but we shall be able
to give a mathematical meaning to the right-hand side, exploiting the fact that
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Q := γ − γ0
per induces a small perturbation of the reference state γ0

per. The formal
computation (3.1) will be justified by means of thermodynamic limit arguments in
the next section.

3.1. Definition of the reduced Hartree-Fock energy of a defect. We now
define properly the reduced Hartree-Fock energy of the defect ν. We denote by Sp

the Schatten class of operators Q acting on L2(R3) having a finite p trace, i.e. such
that Tr(|Q|p) < ∞. Note that S1 is the space of trace-class operators, and that
S2 is the space of Hilbert-Schmidt operators. Let Π be an orthogonal projector on
L2(R3) such that both Π and 1 − Π have infinite ranks. A compact operator Q is
said to be Π-trace class (Q ∈ SΠ

1 ) when Q ∈ S2 and ΠQΠ, (1− Π)Q(1 − Π) ∈ S1.
Its Π-trace is then defined as TrΠ(Q) = Tr(ΠQΠ + (1 − Π)Q(1 − Π)). Notice that
if Q ∈ S1, then Q ∈ SΠ

1 for any Π and TrΠ(Q) = Tr(Q). See [7, Section 2.1] for
general properties related to this definition. In the following, we use the shorthand
notation

Q−− := γ0
perQγ

0
per, Q++ := (1 − γ0

per)Q(1 − γ0
per),

S0
1 := S

γ0
per

1 =
{
Q ∈ S2

∣∣ Q++ ∈ S1, Q
−− ∈ S1

}
and Tr0(Q) := Trγ0

per
(Q).

We also introduce the Banach space

Q =
{
Q ∈ S0

1

∣∣ Q∗ = Q, |∇|Q ∈ S2, |∇|Q++|∇| ∈ S1, |∇|Q−−|∇| ∈ S1

}
,

endowed with its natural norm

(3.2) ||Q||Q := ||Q||
S2

+
∣∣∣∣Q++

∣∣∣∣
S1

+
∣∣∣∣Q−−

∣∣∣∣
S1

+ |||∇|Q||
S2

+
∣∣∣∣|∇|Q++|∇|

∣∣∣∣
S1

+
∣∣∣∣|∇|Q−−|∇|

∣∣∣∣
S1
.

The convex set on which the energy will be defined is

(3.3) K :=
{
Q ∈ Q | − γ0

per ≤ Q ≤ 1 − γ0
per

}
.

Notice that K is the convex hull of states Q ∈ Q of the special form Q = γ −
γ0
per, γ being an orthogonal projector on L2(R3). Besides, the number Tr0(Q) can

be interpreted as the charge of the system measured with respect to that of the
unperturbed Fermi sea. It can be proved [7, Lemma 2] that Tr0(Q) is always an
integer if Q is a Hilbert-Schmidt operator of the special form Q = γ − γ0

per, with γ
an orthogonal projector. Additionally, in this case, Tr0(Q) = 0 when ‖Q‖ < 1.

Note that the constraint −γ0
per ≤ Q ≤ 1 − γ0

per in (3.3) is indeed equivalent [7]
to the inequality

(3.4) Q2 ≤ Q++ −Q−−

and implies in particular that Q++ ≥ 0 and Q−− ≤ 0 for any Q ∈ K.
In order to define properly the energy of Q, we need to associate a density ρQ

with any state Q ∈ K. We shall see that ρQ can in fact be defined for any Q ∈ Q.
This is not obvious a priori since Q does not only contain trace-class operators.
Additionally we need to check that the last two terms of (3.1) are well-defined. For
this purpose, we introduce the so-called Coulomb space

C := {ρ ∈ S′(R3) | D(ρ, ρ) <∞}

where D(f, g) = 4π
∫

R3 |k|−2f̂(k)g(k)dk was already defined before in (1.2). The

dual space of C is the Beppo-Levi space C′ :=
{
V ∈ L6(R3) | ∇V ∈ L2(R3)

}
. We

now use a duality argument to define ρQ:



LOCAL DEFECTS IN PERIODIC CRYSTALS 7

Proposition 1 (Definition of the density ρQ for Q ∈ Q). Assume that Q ∈ Q.
Then QV ∈ S0

1 for any V = V1 +V2 ∈ C′ +
(
L2(R3) ∩ L∞(R3)

)
and moreover there

exists a constant C (independent of Q and V ) such that

|Tr0(QV )| ≤ C ||Q||Q (||V1||C′ + ||V2||L2(R3)).

Thus the linear form V ∈ C′ +
(
L2(R3) ∩ L∞(R3)

)
7→ Tr0(QV ) can be continuously

extended to C′+L2(R3) and there exists a uniquely defined function ρQ ∈ C∩L2(R3)
such that

∀V = V1 + V2 ∈ C′ +
(
L2(R3) ∩ L∞(R3)

)
, 〈ρQ, V1〉C,C′

+

∫

R3

ρQV2 = Tr0(QV ).

The linear map Q ∈ Q 7→ ρQ ∈ C ∩ L2(R3) is continuous:

||ρQ||C + ||ρQ||L2(R3) ≤ C ||Q||Q .
Eventually when Q ∈ S1 ⊂ S0

1, then ρQ(x) = Q(x, x) where Q(x, y) is the integral
kernel of Q.

The proof of Proposition 1 is given in Section 5.2.
Assuming that (A1) holds true, we are now in a position to give a rigorous sense

to the right-hand side of (3.1) for γ − γ0
per = Q ∈ K. In the sequel, we use the

following notation for any Q ∈ Q:

(3.5) Tr0(H
0
perQ) := Tr(|H0

per − µ|1/2(Q++ −Q−−)|H0
per − µ|1/2) + µTr0(Q)

where µ is an arbitrary real number in the gap (Σ+
Z ,Σ

−
Z+1) (this expression will be

proved to be independent of µ, see Corollary 1 below). Then we define the energy
of any state Q ∈ K as

(3.6) Eν(Q) := Tr0(H
0
perQ) −D(ρQ, ν) +

1

2
D(ρQ, ρQ).

The function ν is an external density of charge representing the nuclear charge of
the defect. For the sake of simplicity, we shall assume that ν ∈ L1(R3)∩L2(R3) ⊂ C
throughout the paper, although some of our results are true with a weaker assump-
tion. We shall need the following

Lemma 1. Assume that (A1) holds true. For any fixed µ in the gap (Σ+
Z ,Σ

−
Z+1),

there exist two constants c1, c2 > 0 such that

(3.7) c1(1 − ∆) ≤ |H0
per − µ| ≤ c2(1 − ∆)

as operators on L2(R3). In particular
∣∣∣
∣∣∣|H0

per − µ|1/2(1 − ∆)−1/2
∣∣∣
∣∣∣ ≤ √

c2,
∣∣∣
∣∣∣|H0

per − µ|−1/2(1 − ∆)1/2
∣∣∣
∣∣∣ ≤ 1/

√
c1.

Similarly, (H0
per − µ)(1 − ∆)−1 and its inverse are bounded operators.

The proof of the above lemma is elementary; it will be given in Section 5.1.1.
By the definition of Q and Lemma 1, it is clear that the right-hand side of (3.5)
is a well-defined quantity for any Q ∈ Q and any µ ∈ (Σ+

Z ,Σ
−
Z+1). Together with

Proposition 1 which tells us that ρQ ∈ C for any Q ∈ Q, we deduce that (3.6) is a
well-defined functional.

We shall need the following space of more regular operators

(3.8) Qr := {Q ∈ Q | (−∆)Q2(−∆) ∈ S1, (−∆)(Q++ −Q−−)(−∆) ∈ S1}
and the associated convex set

Kr := K ∩Qr.

The following result will be useful (its proof will be given below in Section 5.3):
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Lemma 2. The space Qr (resp. the convex set Kr) is dense in Q (resp. in K) for
the topology of Q.

Corollary 1. Assume that (A1) holds true. When Q ∈ Qr, then H0
perQ ∈ S0

1.

For any Q ∈ Q, the expression (3.5) for Tr0(H
0
perQ) does not depend on µ ∈

(Σ+
Z ,Σ

−
Z+1). If Q ∈ K, then

0 ≤ c1Tr((1 − ∆)1/2Q2(1 − ∆)1/2)(3.9)

≤ c1Tr((1 − ∆)1/2(Q++ −Q−−)(1 − ∆)1/2)

≤ Tr0(H
0
perQ) − µTr0(Q)

≤ c2Tr((1 − ∆)1/2(Q++ −Q−−)(1 − ∆)1/2)

where c1 and c2 are given by Lemma 1.

Proof. Let Q ∈ Qr and µ ∈ (Σ+
Z ,Σ

−
Z+1). Then ((H0

per−µ)Q)++ = |H0
per−µ|Q++ =

|H0
per − µ|(1 − ∆)−1(1 − ∆)Q++ ∈ S1 by Lemma 1 and the definition of Qr. A

similar argument for ((H0
per − µ)Q)−− proves that H0

perQ ∈ S0
1. Then for any

Q ∈ Qr, (3.9) is a straightforward consequence of (3.7) and (3.4). We conclude
using the density of Qr in Q and the density of Kr in K. �

The following is an adaptation of [7, Thm 1]:

Corollary 2. Let ν ∈ L1(R3) ∩L2(R3), Z ∈ N \ {0} and assume that (A1) holds.
For any chemical potential µ ∈ (Σ+

Z ,Σ
−
Z+1), one has for some d1, d2 > 0

(3.10) ∀Q ∈ K, Eν(Q) − µTr0(Q) ≥ d1

( ∣∣∣∣Q++
∣∣∣∣

S1
+
∣∣∣∣Q−−

∣∣∣∣
S1

+
∣∣∣∣|∇|Q++|∇|

∣∣∣∣
S1

+
∣∣∣∣|∇|Q−−|∇|

∣∣∣∣
S1

)
+ d2

(
||Q||2

S2
+ |||∇|Q||2

S2

)
− 1

2
D(ν, ν)

Hence Eν − µTr0 is bounded from below and coercive on K. Additionally, when
ν ≡ 0, Q 7→ E0(Q) − µTr0(Q) is non-negative, 0 being its unique minimizer.

Proof. Inequality (3.10) is a straightforward consequence of (3.9) and the fact that
D(·, ·) defines a scalar product on C. The rest of the proof is obvious. �

Remark 1. The energy Eν(Q) measures the energy of a state γ = γ0
per + Q with

respect to that of γ0
per. Thus the last statement of Corollary 2 is another way of

expressing the fact that γ0
per is the state of lowest energy of the periodic system

when there is no defect.

3.2. Existence of minimizers with a chemical potential. In view of Corol-
lary 2, it is natural to introduce the following minimization problem

(3.11) Eν
µ := inf{Eν(Q) − µTr0(Q), Q ∈ K} > −∞

for any µ ∈ (Σ+
Z ,Σ

−
Z+1). The following result is proved in Section 5.5, following

ideas from [8]:

Theorem 2 (Existence of minimizers with a chemical potential). Let ν ∈ L1(R3)∩
L2(R3), Z ∈ N \ {0} and assume that (A1) holds. Then for any µ ∈ (Σ+

Z ,Σ
−
Z+1),

there exists a minimizer Q̄ ∈ K for (3.11). Problem (3.11) may have several min-
imizers, but they all share the same density ρ̄ = ρQ̄. Any minimizer Q̄ of (3.11)
satisfies the self-consistent equation

(3.12)

{
Q̄ = χ(−∞,µ)(HQ̄) − γ0

per + δ,

HQ̄ = H0
per + (ρQ̄ − ν) ∗ | · |−1
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Zth band (Z + 1)st band

Σ Σ−
Z+1Σ+

Z
µ

Qpol γe−

Q̄

× × ×× × σ(HQ̄)×

Figure 1. Decomposition Q̄ = Qpol + γe− for not too strong a
positively charged nuclear defect (ν ≥ 0).

where δ is a finite rank self-adjoint operator satisfying 0 ≤ δ ≤ 1 and Ran(δ) ⊆
ker(HQ̄ − µ).

Remark 2. It is easily seen that (ρQ̄ − ν) ∗ | · |−1 is a compact perturbation of

H0
per, implying that HQ̄ is self-adjoint on D(H0

per) = D(−∆) = H2(R3) and that

σess(HQ̄) = σ(H0
per). Thus the discrete spectrum of HQ̄ is composed of isolated

eigenvalues of finite multiplicity, possibly accumulating at the ends of the bands.

Recall that the charge of the minimizing state Q̄ obtained in Theorem 2 is defined
as Tr0(Q̄). Similarly to [7, 8], it can be proved by perturbation theory that for any
fixed µ, there exists a constant C(µ) such that when D(ν, ν) ≤ C(µ), one has
ker(HQ̄ − µ) = {0} and Tr0(Q̄) = 0, i.e. the minimizer of the energy with chemical
potential µ is a neutral perturbation of the periodic Fermi sea.

But for a fixed external density ν and an adequately chosen chemical potential
µ, one can have Tr0(Q̄) 6= 0 meaning either that electron-hole pairs have been
created from the Fermi sea, and/or that the system of lowest energy contains a finite
number of bound electrons or holes close to the defect. In the applications, one
will usually have for a positively charged nuclear defect (ν ≥ 0) that the spectrum
of HQ̄ contains a sequence of eigenvalues converging to the bottom Σ−

Z+1 of the
lowest unfilled band (conduction band), and that µ is chosen such that exactly q
eigenvalues are filled, corresponding to q bound electrons:

(3.13) Q̄ = χ(−∞,Σ)(HQ̄) − γ0
per + χ[Σ,µ)(HQ̄) := Qpol + γe− ,

where we have chosen as a reference the center of the gap

Σ :=
Σ+

Z + Σ−
Z+1

2
.

For not too strong a defect density ν, one has ker(HQ̄−Σ) = {0} and Tr0(Qpol) = 0.
Hence rank(γe−) = q (we assume for simplicity that q ∈ N \ {0}), i.e.

γe− = χ[Σ,µ)(HQ̄) =

q∑

n=1

|ϕn〉〈ϕn|

where (ϕn) are eigenfunctions of HQ̄ corresponding to its first q eigenvalues in
[Σ, µ):

(3.14) HQ̄ϕn = λnϕn.

Notice that

(3.15) HQ̄ = −∆/2 + (ργe−
− ν) ∗ | · |−1 + Vpol

where
Vpol = (ργ0

per
− ρper) ⋆Γ G1 + ρQpol

∗ | · |−1

is the polarization potential created by the self-consistent Fermi sea and seen by the
q electrons. Thus the q electrons solve a usual reduced Hartree-Fock equation (3.14)
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in which the mean-field operator (3.15) additionally contains the self-consistent
polarization of the medium.

The interpretation given in the previous paragraph can change if the positive
density of charge ν of the defect is strong enough to create an electron-hole pair
from the Fermi sea.

We end this section by specifying the regularity of solutions of (3.12). The proof
is given in Section 5.4.

Proposition 2. Let ν ∈ L1(R3) ∩ L2(R3), Z ∈ N \ {0} and assume that (A1)
holds. Any Q ∈ K solution of the self-consistent equation (3.12) belongs to Kr.

3.3. Existence of minimizers under a charge constraint. In the previous
section, we stated the existence of minimizers for any chemical potential in the
gap of the periodic operator H0

per, but of course the total charge Tr0(Q̄) of the
obtained solution was unknown a priori. Here we tackle the more subtle problem
of minimizing the energy while imposing a charge constraint. Mathematically this
is more difficult because although the energy Eν(Q) is convex on K and weakly
lower semi-continuous (wlsc) for the weak-∗ topology of Q (as will be shown in the
proof of Theorem 2), the γ0

per-trace functional Q ∈ K 7→ Tr0(Q) is continuous but
not wlsc for the weak-∗ topology of Q: in principle it is possible that a part of the
charge of a minimizing sequence for the charge-constrained minimization problem
escapes to infinity, leaving at the limit a state of a different charge. In fact, we
can prove that a minimizer exists under a charge constraint, if and only if some
binding conditions hold, the role of which being to prevent the lack of compactness
at infinity.

As explained above, imposing Tr0(Q) = q should intuitively lead (for a suffi-
ciently weak defect density ν) to a system of q electrons coupled to a polarized
Fermi sea. Notice that we do not impose that q =

∫
R3 ν, i.e. our model allows a

priori to treat defects with non-zero total charge.
As usual in reduced Hartree-Fock theories, we consider the case of a real charge

constraint q ∈ R:

(3.16) Eν(q) := inf{Eν(Q), Q ∈ K, Tr0(Q) = q}.

When no defect is present, E0(q) can be computed explicitly:

Proposition 3 (Defect-free charge-constrained energy). Let Z ∈ N \ {0} and as-
sume that (A1) holds. Then one has

E0(q) =

{
Σ−

Z+1q when q ≥ 0
Σ+

Zq when q ≤ 0.

The minimization problem (3.16) has no solution except when q = 0.

We now state the main result of this section, which is directly inspired from [9]:

Theorem 3 (Existence of minimizers under a charge constraint). Let ν ∈ L1(R3)∩
L2(R3), Z ∈ N \ {0} and assume that (A1) holds. The following assertions are
equivalent:

(a) Problem (3.16) admits a minimizer Q̄;

(b) Every minimizing sequence for (3.16) is precompact in Q and converges
towards a minimizer Q̄ of (3.16);

(c) ∀q′ ∈ R \ {0}, Eν(q) < Eν(q − q′) + E0(q′).

Assume that the equivalent conditions (a), (b) and (c) above are fulfilled. In
this case, the minimizer Q̄ is not necessarily unique, but all the minimizers share the
same density ρ̄ = ρQ̄. Besides, there exists µ ∈ [Σ+

Z ,Σ
−
Z+1] such that the obtained
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minimizer Q̄ is a global minimizer for Eν
µ defined in (3.11). It solves Equation

(3.12) for some 0 ≤ δ ≤ 1 with Ran(δ) ⊆ ker(DQ̄ − µ), which is finite rank if

µ ∈ (Σ+
Z ,Σ

−
Z+1) and a priori only trace-class if µ ∈ {Σ+

Z ,Σ
−
Z+1}.

Additionally the set of q’s in R satisfying the above equivalent conditions is a
non-empty closed interval I ⊆ R. This is the largest interval on which q 7→ Eν(q)
is strictly convex.

Remark 3. One has I =
{
Tr0(Q̄), Q̄ min. of Eν

µ, µ ∈ [Σ+
Z ,Σ

−
Z+1]

}
. Hence I 6= ∅

by Theorem 2.

Theorem 3 is proved in Section 5.8. Many of the above statements are very
common in reduced Hartree-Fock theories and not all the details will be given (see,
e.g. [25]). The difficult part is the proof that (b) is equivalent to (c), for which we
use ideas from [9].

Assume that Q̄ can be written as in (3.13). Then for 0 ≤ q′ < q, the interpreta-
tion of (c) is as usual that it is energetically not favorable to let q′ electrons escape
to infinity among the q electrons of the system. For q′ < 0 and q′ > q, (c) expresses
the need to avoid creation of electron-hole pairs from the Fermi sea.

4. Thermodynamic limit of the supercell model

As mentioned before, we shall now justify the model of the previous section by
proving that it is the thermodynamic limit of the supercell model.

Let us emphasize that there are several ways of performing thermodynamic lim-
its. In [3], the authors consider a box of size L, ΛL := [−L/2, L/2)3, and assume
that the nuclei are located on Z3∩ΛL. Then they consider the rHF model of Section
1 for N electrons living in the whole space, with N = ZL3 chosen to impose neu-
trality. Denoting by ρL the ground state electronic density of the latter problem,
it is proved in [3, Thm 2.2] that the energy per unit cell converges to I0

per, and that
the following holds:

(4.1)

√
L−3

∑

k∈Z3∩ΛL

ρL(x− k) →√
ργ0

per

weakly in H1
loc(R

3), strongly in Lp
loc(R

3) for all 2 ≤ p < 6 and almost everywhere
on R3 when L→ ∞.

Another way for performing thermodynamic limits is to confine the electrons in
a domain ΩL with |ΩL| → ∞, by means of Dirichlet boundary conditions. The
latter approach was chosen for the Schrödinger model with quantum nuclei in the
canonical and grand canonical ensembles [22] by Lieb and Lebowitz in the seminal
paper [14] (see also [13]), where the existence of a limit for the energy per unit vol-
ume is proved. The crystal case in the Schrödinger model was tackled by Fefferman
[6] in the same spirit. We do not know whether Fefferman’s proof can be adapted
to treat the Hartree-Fock case.

Another possibility, perhaps less satisfactory from a physical viewpoint but more
directly related to practical calculations (see e.g. [5]), is to impose periodic boundary
conditions on the box ΛL. Usually the Coulomb interaction is also replaced by a
(LZ

3)-periodic Coulomb potential, leading to the so-called supercell model which
will be described in details below. This approach has the advantage of respecting
the symmetry of the system in the crystal case. It was used by Hainzl, Lewin and
Solovej in [10] to justify the Hartree-Fock approximation of no-photon Quantum
Electrodynamics. The supercell limit of a linear model for photonic crystals is
studied in [26].
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Of course the conjecture is that the final results (the energy per unit cell and
the ground state density of the crystal) should not depend on the chosen thermo-
dynamic limit procedure. This is actually the case for the reduced Hartree-Fock
model of the crystal. See also [11] for a result in this direction for a model with
quantum nuclei.

Let us now describe the supercell model. For L ∈ N \ {0}, we introduce the
supercell ΛL = [−L/2, L/2)3 and the Hilbert space

L2
per(ΛL) =

{
ϕ ∈ L2

loc(R
3) | ϕ (LZ3)-periodic

}
.

We also introduce the LZ
3-periodic Coulomb potential GL defined as the unique

solution to 



−∆GL = 4π

(
∑

k∈L Z3

δk − 1

L3

)

GL LZ3-periodic, minR3 GL = 0.

It is easy to check that GL(x) = L−1G1(x/L) and that

GL(x) =
κ

L
+

∑

k∈ 2π
L Z3\{0}

4π

|k|2
1

L3
eik·x.

For any LZ3-periodic function g, we define

(g ⋆ΛL GL) (x) :=

∫

ΛL

GL(x − y) g(y) dy,

DGL(f, g) :=

∫

ΛL

∫

ΛL

GL(x− y) f(x) g(y) dx dy.

An admissible electronic state is then described by a one-body density matrix γ in

Psc,L =

{
γ ∈ S1(L

2
per(ΛL)) | γ∗ = γ, 0 ≤ γ ≤ 1, TrL2

per(ΛL)(−∆γ) < +∞
}
.

Any γ ∈ Psc,L has a well-defined density of charge ργ(x) = γ(x, x) where γ(x, y)
is the kernel of the operator γ. Notice that γ(x + Lz, y + Lz′) = γ(x, y) for any
z, z′ ∈ Z3, which implies that ργ is LZ3-periodic.

4.1. Thermodynamic limit without defect. Because our model with defect
uses the defect-free density matrix of the Fermi sea as a reference, we need to start
with the study of the thermodynamic limit without defect. We are going to prove
for the supercell model a result analogous to [3, Thm 2.2].

The reduced Hartree-Fock energy functional of the supercell model is defined for
γ ∈ Psc,L as

E0
sc,L(γ) = TrL2

per(ΛL)

(
−1

2
∆γ

)
+

1

2
DGL (ργ − ρper, ργ − ρper)

where we recall that ρper(x) =
∑

R∈Z3 Zm(x − R) is a Z
3- (thus LZ

3-) periodic
function. The reduced Hartree-Fock ground state energy for a neutral system in
the box of size L is then given by

(4.2) I0
sc,L = inf

{
E0
sc,L(γ), γ ∈ Psc,L,

∫

ΛL

ργ =

∫

ΛL

ρper = ZL3

}
.

Let us recall that I0
per, γ

0
per and H0

per are defined in Section 2. In Section 5.9, we
prove the following



LOCAL DEFECTS IN PERIODIC CRYSTALS 13

Theorem 4 (Thermodynamic limit of the defect-free supercell model). Let Z > 0.

i) For all L ∈ N\{0}, the minimizing problem I0
sc,L has at least one minimizer, and

all the minimizers share the same density. This density is Z3-periodic. Besides,
there is one minimizer γ0

sc,L of (4.2) which commutes with the translations τk,

k ∈ Z3.

ii) The following thermodynamic limit properties hold true:

• (Convergence of the energy per unit cell).

lim
L→∞

I0
sc,L

L3
= I0

per;

• (Convergence of the density).

(4.3)
√
ργ0

sc,L
⇀
√
ργ0

per
weakly in H1

loc(R
3),

ργ0
sc,L

→ ργ0
per

strongly in Lp
loc(R

3) for 1 ≤ p < 3 and a.e.;

• (Convergence of the mean-field Hamiltonian and its spectrum). Let

H0
sc,L = −∆

2
+ (ργ0

sc,L
− ρper) ⋆Γ G1

seen as an operator acting on L2(R3). Then, for all L ∈ N \ {0}, H0
sc,L −H0

per is a
bounded operator and

lim
L→∞

∣∣∣∣H0
sc,L −H0

per

∣∣∣∣ = 0.

Denoting by (λL
n(ξ))n∈N\{0} the non-decreasing sequence of eigenvalues of (H0

sc,L)ξ

for ξ ∈ Γ∗, one has

(4.4) lim
L→∞

sup
n∈N\{0}

sup
ξ∈Γ∗

∣∣λL
n (ξ) − λn(ξ)

∣∣ = 0

where (λn(ξ))n≥1 are the eigenvalues of (H0
per)ξ introduced in Theorem 1.

iii) Assume in addition that Z ∈ N \ {0} and that (A1) holds. Fix some µ ∈
(Σ+

Z ,Σ
−
Z+1). Then for L large enough, the minimizer γ0

sc,L of I0
sc,L is unique. It is

also the unique minimizer of the following problem

(4.5) I0
sc,L,µ := inf

{
E0
sc,L(γ) − µTrL2

per(ΛL)(γ), γ ∈ Psc,L

}
.

Remark 4. Notice that some of the above assertions are more precise for the
supercell model than for the thermodynamic limit procedure considered in [3, Thm
2.2] (compare for instance (4.3) with (4.1)). This is because the supercell model
respects the symmetry of the system, allowing in particular to have a minimizer
γ0
sc,L in the box of size L3 which is periodic for the lattice Z3. For an insulator, the

uniqueness of γ0
sc,L for large L and the convergence properties of iii) are also very

interesting for computational purposes.

4.2. Thermodynamic limit with defect. We end this section by considering
the thermodynamic limit of the supercell model with a defect. Recall that ν ∈
L1(R3) ∩ L2(R3) ⊂ C is the density of charge of the defect. First we need to
periodize this function with respect to the large box ΛL, for instance by defining

νL(x) :=
∑

z∈Z3

(1ΛLν)(· − Lz).

The reduced Hartree-Fock energy functional of the supercell model with defect is
then defined for γ ∈ Psc,L as

Eν
sc,L(γ) = TrL2

per(ΛL)

(
−1

2
∆γ

)
+

1

2
DGL (ργ − ρper − νL, ργ − ρper − νL) .
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For µ ∈ (Σ+
Z ,Σ

−
Z+1), we consider the following minimization problem

(4.6) Iν
sc,L,µ = inf

{
Eν
sc,L(γ) − µTrL2

per(ΛL)(γ), γ ∈ Psc,L

}
.

We recall that γ0
per is defined in Section 2, that Eν

µ and Q̄ are defined in Section 3.2,

and that I0
sc,L,µ is defined in Section 4.1. In Section 5.10, we prove the

Theorem 5 (Thermodynamic limit of the supercell model with defect). Let Z ∈
N \ {0}. Assume that (A1) holds and fix some µ ∈ (Σ+

Z ,Σ
−
Z+1). Then one has

(4.7) lim
L→∞

(
Iν
sc,L,µ − I0

sc,L,µ

)
= Eν

µ −
∫

R3

ν
(
(ργ0

per
− ρper) ⋆Γ G1

)
+

1

2
D(ν, ν).

Additionally, if γν
sc,L denotes a minimizer for (4.6), then one has, up to extrac-

tion of a subsequence,

(γν
sc,L − γ0

sc,L)(x, y) → Q̄(x, y)

weakly in H1
loc(R

3 × R3) and strongly in L2
loc(R

3 × R3), where Q̄ is a minimizer of
(3.11), as obtained in Theorem 2. Besides,

ργν
sc,L

− ργ0
sc,L

→ ρ̄

weakly in L2
loc(R

3), where ρ̄ is the common density of all the minimizers of (3.11).

Remark 5. In numerical simulations, the right-hand side of (4.7) is approximated
by Iν

sc,L,µ − I0
sc,L,µ for a given value of L. This approach has several drawbacks.

First, the values of L that lead to tractable numerical simulations are in many
cases much too small to obtain a correct estimation of the limit L → ∞. Second,
it is not easy to extend this method for computing Eν

µ, to the direct evaluation of
Eν(q) for a given q (i.e. the energy of a defect with a prescribed total charge). The
formalism introduced in the present article (problems (3.11) and (3.16)) suggests an
alternative way for computing energies of defects in crystalline materials. Current
work in this direction is in progress.

5. Proof of the main results

Unless otherwise stated, the operators used in the following proofs are considered
as operators on L2(R3).

5.1. Useful estimates. We gather in this section some results which we shall need
throughout the proofs. We start with the

5.1.1. Proof of Lemma 1. Recall that H0
per = −∆/2 + Vper with Vper := (ργ0

per
−

ρper) ⋆Γ G1 ∈ L∞(R3). Thus |H0
per − µ| ≥ H0

per − µ ≥ −∆/2 − C for some large

enough constant C. On the other hand, as µ ∈ (Σ+
b ,Σ

−
b+1), there exists α > 0 such

that
∣∣H0

per − µ
∣∣ ≥ α. This implies that

|H0
per − µ| ≥ max(−∆/2 − C,α) ≥ c1(1 − ∆)

for some constant c1 > 0. The proof of the upper bound in (3.7) is straightforward.
Then (−∆/2 + c)−1(H0

per − µ+ c) = 1 + (−∆/2 + c)−1(Vper − µ) is a bounded
invertible operator for c large enough, since

∣∣∣∣(−∆/2 + c)−1(Vper − µ)
∣∣∣∣ ≤ ||Vper||L∞

+ |µ|
c

.

Thus (H0
per −µ+ c)−1(−∆/2+ c) is bounded for a well-chosen c≫ 1, which clearly

implies that

(H0
per − µ)−1(−∆ + 1) =

H0
per − µ+ c

H0
per − µ

(H0
per − µ+ c)−1(−∆/2 + c)

−∆ + 1

−∆/2 + c
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is also bounded, together with its inverse. �

5.1.2. Some commutator estimates. Throughout this paper, we shall use Cauchy’s
formula to express the projector γ0

per:

(5.1) γ0
per =

1

2iπ

∫

C

(H0
per − z)−1 dz,

where C is a fixed regular bounded closed contour enclosing the lowest Z bands of
the spectrum of H0

per.

The following result will be a useful tool to replace the resolvent (H0
per − z)−1

with the operator (−∆ + 1)−1 which will be easier to manipulate. Its proof is the
same as the one of Lemma 1.

Lemma 3. The operator B(z) := (H0
per−z)−1(−∆+1) and its inverse are bounded

uniformly in z ∈ C .

The next result provides some useful properties of commutators:

Lemma 4. The operators [γ0
per,∆] and (1 − ∆) [γ0

per, |∇|] (1 − ∆) are bounded.

Proof. The boundedness of [γ0
per,∆] follows from (5.1) and from the fact that

[(H0
per − z)−1,∆] is bounded uniformly in z ∈ C by Lemma 3.

Using again (5.1), it suffices to prove that (1 − ∆)[(H0
per − z)−1, |∇|](1 − ∆) is

bounded uniformly in z ∈ C to infer that (1−∆) [γ0
per, |∇|] (1−∆) is bounded. In

order to prove the uniform boundedness of (1 − ∆)[(H0
per − z)−1, |∇|](1 − ∆), we

use the formal equality

(5.2) [(A− z)−1, B] = −(A− z)−1[A,B](A − z)−1.

We thus obtain

(5.3) (1 − ∆)[(H0
per − z)−1, |∇|](1 − ∆) = B(z)∗ [|∇|, Vper]B(z).

Using (5.1) and lemma 3, we obtain

‖(1 − ∆)[γ0
per, |∇|](1 − ∆)‖ ≤ C ||[|∇|, Vper]|| ≤ C ||∇Vper||L∞(R3) .

�

Lemma 5. Let V = V1 + V2 with V1 ∈ C′ and V2 ∈ L2(R3). Then [γ0
per, V ] ∈ S2

and there exists a positive real constant C such that

‖[γ0
per, V ]‖S2 ≤ C(‖V1‖C′ + ||V2||L2(R3)).

Proof. Formulas (5.1) and (5.2) lead to

[γ0
per, V2] =

1

4iπ

∫

C

B(z)(−∆ + 1)−1[∆, V2](−∆ + 1)−1B(z)∗ dz

=
1

4iπ

∫

C

B(z)((−∆ + 1)−1∆)V2(−∆ + 1)−1B(z)∗ dz

− 1

4iπ

∫

C

B(z)(−∆ + 1)−1V2(∆(−∆ + 1)−1)B(z)∗ dz.

As (−∆+1)−1 and (−∆+1)−1∆ are bounded operators, we obtain, using Lemma 3,
∣∣∣∣[γ0

per, V2]
∣∣∣∣

S2
≤ C

∣∣∣∣(−∆ + 1)−1V2

∣∣∣∣
S2
,
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for some constant C independent of V2. Likewise,

[γ0
per, V1] =

1

4iπ

∫

C

B(z)(−∆ + 1)−1[∆, V1](−∆ + 1)−1B(z)∗ dz

=

3∑

i=1

1

4iπ

∫

C

B(z)
(
(−∆ + 1)−1∂xi

) ∂V1

∂xi
(−∆ + 1)−1B(z)∗ dz

−
3∑

i=1

1

4iπ

∫

C

B(z)(−∆ + 1)−1 ∂V1

∂xi

(
∂xi(−∆ + 1)−1

)
)B(z)∗ dz,

which implies ∣∣∣∣[γ0
per, V1]

∣∣∣∣
S2

≤ C
∣∣∣∣(−∆ + 1)−1∇V1

∣∣∣∣
S2

for some constant C independent of V1. We then use the Kato-Seiler-Simon in-
equality (see [23] and [24, Thm 4.1])

(5.4) ∀p ≥ 2, ||f(−i∇)g(x)||
Sp

≤ (2π)−3/p ||g||Lp(R3) ||f ||Lp(R3)

to infer

(5.5)
∣∣∣∣[γ0

per, V2]
∣∣∣∣

S2
≤ C′ ||V2||L2(R3) ,

(5.6)
∣∣∣∣[γ0

per, V1]
∣∣∣∣

S2
≤ C′ ||∇V1||L2(R3) = C′ ||V1||C′ .

�

Lemma 6. The operator [ |H0
per−µ|, |∇| ] is bounded for any µ in the gap (Σ+

Z ,Σ
−
Z+1).

Proof. We have |H0
per − µ| = −(H0

per − µ)γ0
per + (H0

per − µ)(1 − γ0
per) and thus

[ |H0
per − µ|, |∇| ] = −2(H0

per − µ)[γ0
per, |∇|] + [|∇|, Vper](2γ

0
per − 1)

= −2(B(µ)∗)−1(1 − ∆)[γ0
per, |∇|] + [|∇|, Vper](2γ

0
per − 1)

which gives the result since ||[|∇|, Vper]|| ≤ ||∇Vper||L∞(R3) and (1 − ∆)[γ0
per, |∇|] is

bounded by Lemma 4. �

5.2. Proof of Proposition 1. Let V = V1 + V2 where V1 ∈ C′ and V2 ∈ L2(R3)∩
L∞(R3), and Q ∈ Q. Notice that

(QV )++ = Q++V (γ0
per)

⊥ +Q+−[γ0
per, V ](γ0

per)
⊥,

(5.7) (QV )−− = Q−−V γ0
per −Q−+[γ0

per, V ]γ0
per,

where (γ0
per)

⊥ = 1−γ0
per. We only treat the (QV )−− term, the argument being the

same for (QV )++.
First we write Q−−V γ0

per = Q−−(1 + |∇|)(1 + |∇|)−1V γ0
per and notice that

(1 + |∇|)−1V is bounded since V2 ∈ L∞(R3) by assumption and
∣∣∣∣(1 + |∇|)−1V1

∣∣∣∣
S6

≤ C ||V1||L6 ≤ C′ ||∇V1||L2 = C′ ||V1||C′

by the Kato-Simon-Seiler inequality (5.4) and the critical Sobolev embedding of
H1(R3) in L6(R3). This proves that Q−−V γ0

per is a trace-class operator. Thus the
following is true:

|Tr(Q−−V γ0
per)| = |Tr(Q−−V )|

= |Tr((1 + |∇|)Q−−(1 + |∇|)(1 + |∇|)−1V (1 + |∇|)−1)|
≤ ||Q||Q

∣∣∣∣(1 + |∇|)−1V (1 + |∇|)−1
∣∣∣∣

S∞

.
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Then
∣∣∣∣(1 + |∇|)−1V1(1 + |∇|)−1

∣∣∣∣
S∞

≤
∣∣∣∣(1 + |∇|)−1V1

∣∣∣∣
S6

∣∣∣∣(1 + |∇|)−1
∣∣∣∣

≤ C ||V1||L6 ≤ C′ ||V1||C′ ,

and
∣∣∣∣(1 + |∇|)−1V2(1 + |∇|)−1

∣∣∣∣
S∞

≤
∣∣∣∣(1 + |∇|)−1|V2|(1 + |∇|)−1

∣∣∣∣
S∞

≤
∣∣∣
∣∣∣(1 + |∇|)−1|V2|1/2

∣∣∣
∣∣∣
2

S4

≤ C ||V2||L2 .

Hence,
|Tr(Q−−V γ0

per)| ≤ C ||Q||Q (||V1||C′ + ||V2||L2).

For the second term of (5.7), we just use Lemma 5 which tells us thatQ−+[γ0
per, V ]γ0

per ∈
S1 since Q−+ ∈ S2 and [γ0

per, V ] ∈ S2. Additionally

|Tr(Q−+[γ0
per, V ]γ0

per)| ≤
∣∣∣∣Q−+[γ0

per, V ]γ0
per

∣∣∣∣
S1

≤ C
∣∣∣∣Q−+

∣∣∣∣
S2

(||V1||C′ + ||V2||L2).

The end of the proof of Proposition 1 is then obvious. �

5.3. Proof of Lemma 2. Let Q ∈ Q. For ǫ > 0, we introduce the following
regularization operator

(5.8) Rǫ := (1 + ǫ|H0
per − Σ|)−1

and set
Qǫ := RǫQRǫ.

Notice first that Qǫ ∈ Qr. Indeed, using the same notation as in Lemma 3, we
obtain

(1 − ∆)Rǫ = (1 − ∆)(H0
per − Σ)−1

H0
per − Σ

1 + ǫ|H0
per − Σ| = B(Σ)∗

H0
per − Σ

1 + ǫ|H0
per − Σ|

which shows that ‖(1−∆)Rǫ‖ ≤ ǫ−1‖B(Σ)∗‖. Similarly, ‖Rǫ(1−∆)‖ ≤ ǫ−1‖B(Σ)‖.
As Rǫ commutes with γ0

per, we infer

(1 − ∆)Q−−
ǫ (1 − ∆) = (1 − ∆)RǫQ

−−Rǫ(1 − ∆) ∈ S1.

Likewise, (1 − ∆)Q++
ǫ (1 − ∆) ∈ S1. Then we show that Qǫ ∈ Kr ⊂ K when

Q ∈ K. To prove this, we use the fact that −γ0
per ≤ Q ≤ 1 − γ0

per is equivalent to

Q2 ≤ Q++ −Q−− (see Section 3.1). As ‖Rǫ‖ ≤ 1, we obtain

(5.9) (Qǫ)
2 = RǫQ(Rǫ)

2QRǫ ≤ RǫQ
2Rǫ ≤ Rǫ(Q

++−Q−−)Rǫ = (Qǫ)
++−(Qǫ)

−−

where we have used that (Rǫ)
2 ≤ 1 and that γ0

per commutes with Rǫ. Hence, it only
remains to prove that Qǫ → Q for the Q-topology as ǫ → 0, for any fixed Q ∈ Q.
We shall need the

Lemma 7. For any 1 ≤ p <∞ and any fixed Q ∈ Sp, one has

(5.10) lim
ǫ→0

||RǫQ−Q||
Sp

= 0.

Proof. Notice that

Rǫ − 1 = − ǫ|H0
per − Σ|

1 + ǫ|H0
per − Σ|

satisfies ‖Rǫ − 1‖ ≤ 1. Hence ||(Rǫ − 1)Q||
Sp

≤ ||Q||
Sp
. By linearity and density of

“smooth” finite rank operators in Sp for any 1 ≤ p <∞, it suffices to prove (5.10)
for Q = |f〉〈f | with f ∈ H2(R3). Then

||(Rǫ − 1)|f〉〈f |||
S1

≤ ||(Rǫ − 1)f ||L2 ||f ||L2 ≤ ǫ
∣∣∣∣|H0

per − Σ|f
∣∣∣∣

L2 ||f ||L2

which converges to 0 as ǫ→ 0 and controls ||(Rǫ − 1)|f〉〈f |||
Sp

for 1 ≤ p ≤ ∞. �
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We are now able to complete the proof of Lemma 2. First, by (5.2)

[Rǫ, |∇|] = −ǫRǫ

[
|H0

per − Σ|, |∇|
]
Rǫ

and therefore by Lemma 6 there exists a constant C > 0 such that

(5.11) ‖ [Rǫ, |∇|] ‖ ≤ Cǫ.

Hence, limǫ→0 ‖ [Rǫ, |∇|] ‖ = 0. Compute now for instance

|∇|(RǫQRǫ −Q)−−|∇| = |∇|((Rǫ − 1)Q−−Rǫ +Q−−(Rǫ − 1))|∇|
= [|∇|, Rǫ]Q

−−[Rǫ, |∇|] + [|∇|, Rǫ]Q
−−|∇|Rǫ

+(Rǫ − 1)|∇|Q−−[Rǫ, |∇|] + |∇|Q−−[Rǫ, |∇|]
+(Rǫ − 1)|∇|Q−−|∇|Rǫ + |∇|Q−−|∇|(Rǫ − 1).

Applying either (5.11) or Lemma 7 to each term of the previous expression allows
to conclude that

lim
ǫ→0

∣∣∣∣|∇|(Q−−
ǫ −Q−−)|∇|

∣∣∣∣
S1

= 0.

The proof is the same for the other terms in the definition of ||·||Q. �

5.4. Proof of Proposition 2: regularity of solutions. Let Q ∈ Q be of the
form

Q = χ(−∞,µ)(H
0
per + V ) − γ0

per + δ

where 0 ≤ δ ≤ 1 is a finite rank operator with Ran(δ) ⊆ ker(H0
per + V − µ) and

V = ρ ∗ | · |−1 for some ρ ∈ C ∩ L2(R3) (in our case ρ = ρQ − ν). Note that
V ∈ C′ ∩ L∞(R3) since

||V ||L∞ ≤ (2π)−3/2

∫

R3

|V̂ (k)|dk = C

∫

R3

|ρ̂(k)|
|k|2 dk

≤ C

(∫

R3

|ρ̂(k)|2(1 + |k|2)
|k|2 dk

)1/2(∫

R3

dk

|k|2(1 + |k|2)

)1/2

<∞.

Since ker(H0
per + V − µ) ⊆ D(H0

per + V ) = D(H0
per) = H2(R3), it is clear that

the finite rank operator δ satisfies (1 − ∆)δ(1 − ∆) ∈ S1. Thus, up to a change of
µ, we can assume that ker(H0

per + V − µ) = {0} and that δ = 0:

Q = χ(−∞,µ)(H
0
per + V ) − γ0

per.

Then we remark thatQ2 = Q++−Q−−, hence we only have to prove that (1−∆)Q ∈
S2.

Let C be a smooth curve enclosing the whole spectrum of H0
per + V below µ.

Since V ∈ L∞(R3) and |H0
per + V − z| ≥ c > 0 uniformly in z ∈ C , we can mimic

the proof of Lemma 3 and find that

(5.12) sup
z∈C

‖(1 − ∆)(H0
per + V − z)−1‖ <∞.

We then use Cauchy’s formula (5.1) and iterate the resolvent formula

(H0
per + V − z)−1 = (H0

per − z)−1 − (H0
per + V − z)−1V (H0

per − z)−1

to obtain

Q =
1

2iπ

∫

C

(
(H0

per + V − z)−1 − (H0
per − z)−1

)
dz = Q1 +Q2 +Q3

with

Q1 = − 1

2iπ

∫

C

(H0
per − z)−1V (H0

per − z)−1dz,

Q2 =
1

2iπ

∫

C

(H0
per − z)−1V (H0

per − z)−1V (H0
per − z)−1dz,
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Q3 = − 1

2iπ

∫

C

(H0
per + V − z)−1V (H0

per − z)−1V (H0
per − z)−1V (H0

per − z)−1dz.

Notice that (1 − ∆)Q3 ∈ S2 by (5.12) and the estimate
∣∣∣∣V (H0

per − z)−1
∣∣∣∣

S6
≤
∣∣∣∣V (1 − ∆)−1

∣∣∣∣
S6

||B(z)∗|| ≤ C ||V ||L6

where we have used (5.4) and Lemma 3.
Let us now prove that (1 − ∆)Q1 ∈ S2. First we notice that
∫

C

(H0
per − z)−1γ0

perV γ
0
per(H

0
per − z)−1dz

=

∫

C

(H0
per − z)−1(γ0

per)
⊥V (γ0

per)
⊥(H0

per − z)−1dz = 0

by the residuum formula. Then we have

(1 − ∆)

∫

C

(H0
per − z)−1γ0

perV (γ0
per)

⊥(H0
per − z)−1dz

=

∫

C

B(z)∗[γ0
per, V ](γ0

per)
⊥(H0

per − z)−1dz

which belongs to S2 by Lemmas 3 and 5. The proof is the same for Q2. �

5.5. Proof of Theorem 2: existence of a minimizer with chemical poten-
tial. Let (Qn)n∈N be a minimizing sequence for (3.11). It follows from (3.10) that
(Qn)n∈N is bounded in Q. By Proposition 1, (ρQn)n∈N is bounded in C ∩ L2(R3).
Up to extraction, we can assume that there exists Q̄ in the convex set K such that

i) Qn ⇀ Q̄ and |∇|Qn ⇀ |∇|Q̄ weakly in S2;
ii) |H0

per − µ|1/2Q++
n |H0

per − µ|1/2 ⇀ |H0
per − µ|1/2Q̄++|H0

per − µ|1/2,

|H0
per − µ|1/2Q−−

n |H0
per − µ|1/2 ⇀ |H0

per − µ|1/2Q̄−−|H0
per − µ|1/2

for the weak-∗ topology of S1;
iii) ρQn ⇀ ρQ̄ in C ∩ L2(R3).

Recall that S1 is the dual of the space of compact operators [20, Thm VI.26]. Thus
here An ⇀ A for the weak-∗ topology of S1 means Tr(AnK) → Tr(AK) for any
compact operator K.

Then, as D(·, ·) defines a scalar product on C,

D(ρQ̄ − ν, ρQ̄ − ν) ≤ lim inf
n→+∞

D(ρQn − ν, ρQn − ν).

Now since Q++
n ≥ 0, |H0

per −µ|1/2Q++
n |H0

per −µ|1/2 is also a non-negative operator
for any n. Thus Fatou’s Lemma [24] yields

Tr(|H0
per − µ|1/2Q̄++|H0

per − µ|1/2) ≤ lim inf
n→∞

Tr(|H0
per − µ|1/2Q++

n |H0
per − µ|1/2).

The same argument for the term involving −Q̄−− ≥ 0 yields

Eν(Q̄) − µTr0(Q̄) ≤ lim inf
n→∞

(Eν(Qn) − µTr0(Qn)) = Eν
µ,

i.e. Q̄ ∈ K is a minimizer.
The proof that Q̄ satisfies the self-consistent equation (3.12) is classical: writing

that Eν((1 − t)Q̄+ tQ) ≥ Eν(Q̄) for any Q ∈ Kr and t ∈ [0, 1], one deduces that Q̄
minimizes the following linear functional
(5.13)

Q ∈ K 7→ F (Q) := Tr(|H0
per − µ|1/2(Q++ −Q−−)|H0

per − µ|1/2) +D(ρQ̄ − ν, ρQ).

Notice that when Q ∈ Kr ⊆ K, one has

F (Q) = Tr0((HQ̄ − µ)Q)
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where we have used the definition of ρQ in Proposition 1 to infer

D(ρQ̄ − ν, ρQ) = Tr0
((

(ρQ̄ − ν) ⋆ | · |−1
)
Q
)
,

since (ρQ̄ − ν) ⋆ | · |−1 ∈ C′ when ρQ̄ − ν ∈ C. Minimizers of the functional (5.13)
are easily proved to be of the form (3.12). They belong to Kr by Proposition 2. �

5.6. Proof of Proposition 3: the value of E0(q). Clearly

(5.14) E0(q) ≥ inf{Tr0(H
0
perQ), Q ∈ K, Tr0(Q) = q} := Ẽ0(q)

since D(ρQ, ρQ) ≥ 0. The value of Ẽ0(q) on the right hand side of (5.14) can easily
proved to be

Ẽ0(q) =

{
Σ−

Z+1q when q ≥ 0
Σ+

Zq when q ≤ 0,

see, e.g., the proof of Lemma 13 in [9].

Thus it remains to prove that E0(q) ≤ Ẽ0(q) which we do by a kind of scaling
argument. Let us deal with the case q ≥ 0, the other case being similar. We can
assume that Σ−

Z+1 = minξ∈Γ∗ λZ+1(ξ) = λZ+1(ξ0) since each λn(ξ) is known to be
continuous on Γ∗. For simplicity, we also assume that ξ0 is in the interior of Γ∗ (the
proof can be easily adapted if this is not the case). Let us denote by uZ+1(ξ, ·) ∈ L2

ξ

an eigenvector associated with the eigenvalue λZ+1(ξ) for any ξ ∈ Γ∗. It will be
convenient to extend it on R3 × R3 by uZ+1(ξ, x) = 0 when ξ ∈ R3 \ Γ∗. Since
H0

peruZ+1(ξ, x) = λZ+1(ξ)uZ+1(ξ, x) for any ξ ∈ Γ∗, it is clear that

sup
ξ∈R3

||∆uZ+1(ξ, ·)||L2
per(Γ) <∞,

i.e. uZ+1 ∈ L∞(R3, H2
loc(R

3)) and uZ+1 ∈ L∞(R3 × R
3) by the Z

3-periodicity
(resp. the 2πZ3-periodicity) of e−iξ·xuZ+1(ξ, x) with respect to x (resp. to ξ).

Consider now a fixed space V of dimension d = [q]+1, consisting of C∞
0 functions

f : R3 → C with support in the unit ballB(0, 1) of R3. For any λ ≥ 1, we introduce
the following subspace of L2(R3):

Wλ :=

{
gλ := λ3/2

∫

R3

f(λ(ξ − ξ0))uZ+1(ξ, ·)dξ, f ∈ V

}

which has the same dimension as V by the properties of the Bloch decomposition,
when λ is large enough such that the ball B(ξ0, λ

−1) is contained in Γ∗. Noting
that for any gλ ∈Wλ arising from some f ∈ V

|gλ(x)| ≤ λ−3/2

∫

R3

|f(ξ′)uZ+1(ξ0 + λ−1ξ, x)|dξ

≤ λ−3/2 ||uZ+1||L∞(R3×R3)

∫

B(0,1)

|f(ξ)|dξ,

≤ Cλ−3/2 ||uZ+1||L∞(R3×R3) ||f ||L2(R3) ,

we deduce by interpolation that

∀ 2 < p ≤ ∞, lim
λ→∞

sup
g∈Wλ

||g||L2(R3)=1

||g||Lp(R3) = 0.

By construction one also has for any fixed f ∈ V with associated gλ ∈ Wλ

〈
gλ, (H

0
per − Σ−

Z+1)gλ

〉
= λ3/2

∫

R3

|f(λ(ξ − ξ0))|2(λZ+1(ξ) − Σ−
Z+1)dξ →λ→∞ 0.



LOCAL DEFECTS IN PERIODIC CRYSTALS 21

Take now an orthonormal basis (ϕλ
1 , ..., ϕ

λ
[q]+1) of Wλ and introduce the operator

Qλ :=

[q]∑

n=1

|ϕλ
n〉〈ϕλ

n| + (q − [q])|ϕλ
d〉〈ϕλ

d |.

By construction γ0
perϕ

λ
n = 0 for any n = 1, ..., q and Tr0(Q

λ) = Tr(Qλ) = q, thus

Qλ ∈ K satisfies the charge constraint. Then

Tr0(H
0
perQ

λ) =

[q]∑

n=1

〈
ϕλ

n, H
0
perϕ

λ
n

〉
+ (q − [q])

〈
ϕλ

[q]+1, H
0
perϕ

λ
[q]+1

〉
→ Σ−

Z+1q

as λ→ ∞. Besides, (ρ
1/2

Qλ )λ≥1 is a bounded family in H1(R3) which converges to 0

in Lp(R3) for any p > 2. By the Hardy-Littlewood-Sobolev inequality [15], one has

(5.15) D(ρQλ , ρQλ) ≤ C
∣∣∣∣ρQλ

∣∣∣∣2
L6/5

which implies D(ρQλ , ρQλ) → 0 as λ → ∞. Eventually E0(Qλ) → Ẽ0(q) and
Proposition 3 is proved. �

5.7. Density of finite rank operators in K. This section is devoted to the
generalization of results in [9, Appendix B] concerning the density of finite rank
operators, which will be useful for proving Theorem 3.

Lemma 8. For any Q ∈ K there exists an orthogonal projector P such that P −
γ0
per ∈ K and a trace-class operator δ ∈ Q such that 0 ≤ δ ≤ 1, [P, δ] = 0 and

Q = P − γ0
per + δ.

Proof. This is an easy adaptation of [9, Lemma 19]. �

We denote for simplicity H+ = (1 − γ0
per)L

2(R3) and H− = γ0
perL

2(R3).

Proposition 4. Let P be an orthogonal projector on L2(R3) such that Q = P −
γ0
per ∈ K. Denote by (f1, ..., fN) ∈ (H+ ∩H1(R3))N an orthonormal basis of E1 =

ker(P −γ0
per−1) = ker(γ0

per)∩ker(1−P ) and by (g1, ..., gM ) ∈ (H−∩H1(R3))M an

orthonormal basis of E−1 = ker(P − γ0
per + 1) = ker(1− γ0

per)∩ ker(P ). Then there

exist an orthonormal basis (vi)i≥1 ⊂ H+∩H1(R3) of (E1)
⊥ in H+, an orthonormal

basis (ui)i≥1 ⊂ H− ∩ H1(R3) of (E−1)
⊥ in H−, and a sequence (λi)i≥1 ∈ ℓ2(R

+)
such that

(5.16) P =
N∑

n=1

|fn〉〈fn| +
∞∑

i=1

|ui + λivi〉〈ui + λivi|
1 + λ2

i

,

(5.17) 1 − P =

M∑

m=1

|gm〉〈gm| +
∞∑

i=1

|vi − λiui〉〈vi − λiui|
1 + λ2

i

.

Additionally
∑

i≥1 λ
2
i (‖∇ui‖2

L2 + ‖∇vi‖2
L2) <∞.

Proof. This is an obvious corollary of [9, Theorem 7]. �

Corollary 3. Let Q ∈ K. Then there exists a sequence {Qk}k≥1 of finite rank
operators belonging to Kr such that ||Qk −Q||Q → 0 as k → ∞ and for any k ≥ 1,
Tr0(Qk) = Tr0(Q).
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Proof. Taking λi = 0 for i > k in the decomposition of Proposition 4, one can
approximate P by another projector Pk such that Pk − γ0

per → P − γ0
per in Q as

k → ∞ and Pk − γ0
per is finite rank:

(5.18) Pk − γ0
per =

N∑

n=1

|fn〉〈fn| −
M∑

m=1

|gm〉〈gm| +
k∑

i=1

λ2
i

1 + λ2
i

(
|vi〉〈vi| − |ui〉〈ui|

)

+

k∑

i=1

λi

1 + λ2
i

(
|ui〉〈vi| + |vi〉〈ui|

)
.

It then suffices to approximate each function in (5.18) by a smoother one, for

instance by defining for ǫ ≪ 1, ũi := ||Rǫui||−1
L2 Rǫui and orthonormalizing these

new functions, where Rǫ was defined previously in Equation (5.8).
Then for any Q = P − γ0

per + δ of the form given by Lemma 8, it remains to
approximate δ by a finite rank operator δk such that [Pk, δk] = 0, which is done in
the same way. �

5.8. Proof of Theorem 3: existence of minimizers under a charge con-
straint. The proof of Theorem 3 follows ideas of [9]. The proof that any minimizer
solves (3.12) is the same as before and will be omitted.

Step 1: Large HVZ-type inequalities. Let us start by the following result,
which indeed shows that (b)⇒(c):

Lemma 9 (Large HVZ-type inequalities). Let Z ∈ N \ {0}, ν ∈ C and assume that
(A1) holds. Then, for every q, q′ ∈ R, one has

Eν(q) ≤ Eν(q − q′) + E0(q′).

If moreover there is a q′ 6= 0 such that Eν(q) = Eν(q − q′) + E0(q′), then there is
a minimizing sequence of Eν(q) which is not precompact.

Proof. Thanks to Corollary 3, the proof is exactly the same as [9, Prop. 6]. �

Step 2: A necessary and sufficient condition for compactness. The fol-
lowing Proposition is the analogue of [9, Lemma 8]:

Proposition 5 (Conservation of charge implies compactness). Let Z ∈ N \ {0},
ν ∈ C, q ∈ R and assume that (A1) holds. Assume that (Qn)n≥1 is a minimizing
sequence in Kr for (3.11) such that Qn ⇀ Q ∈ K for the weak-∗ topology of Q.
Then Qn → Q for the strong topology of Q if and only if Tr0(Q) = q.

Proof. Let (Qn)n≥1 ⊆ Kr be as stated and assume that Tr0(Q) = q. We know from
the proof of Theorem 2 that

(5.19) Eν(Q) ≤ lim
n→∞

Eν(Qn) = Eν(q),

hence Q ∈ K is a minimizer of Eν(q). Therefore Q satisfies the equation

Q = χ(−∞,µ)(HQ) − γ0
per + δ

for some µ ∈ (Σ+
Z ,Σ

−
Z+1) and where δ is a finite rank operator satisfying 0 ≤ δ ≤ 1

and Ran(δ) ⊆ ker(HQ − µ). In particular Q ∈ Kr by Proposition 2. We now
introduce

P := χ(−∞,µ)(HQ), P ′ := χ(µ,∞)(HQ) and π := χ{µ}(HQ).

Let us write

Eν(Qn) = Eν(Q) + Tr0(HQ(Qn −Q)) +
1

2
D(ρQn − ρQ, ρQn − ρQ).
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Now using [7, Lemma 1] and the hypothesis Tr0(Qn) = Tr0(Q), we obtain

Tr0(HQ(Qn −Q)) = TrP (HQ(Qn −Q)) = TrP ((HQ − µ)(Qn −Q))

= Tr(|HQ − µ|(P ′(Qn −Q)P ′ − P (Qn −Q)P )).

We have −P − δ ≤ Qn −Q ≤ 1 − P − δ which yields

(5.20) P (Qn −Q)2P + P ′(Qn −Q)2P ′ ≤ P ′(Qn −Q)P ′ − P (Qn −Q)P

and in particular P ′(Qn−Q)P ′ ≥ 0 and P (Qn−Q)P ≤ 0, i.e. Tr0(HQ(Qn−Q)) ≥ 0.
Since we know that limn→∞ Eν(Qn) = Eν(Q), we infer

lim
n→∞

Tr(|HQ − µ|P ′(Qn −Q)P ′) = lim
n→∞

Tr(|HQ − µ|P (Qn −Q)P ) = 0

and from (5.20)

lim
n→∞

Tr(|HQ − µ|P ′(Qn −Q)2P ′) = lim
n→∞

Tr(|HQ − µ|P (Qn −Q)2P ) = 0.

On the one hand, it is easy to see that

P |HQ − µ|P ≥ cP (−∆ + 1)P and P ′|HQ − µ|P ′ ≥ cP ′(−∆ + 1)P ′

for some small enough constant c > 0. On the other hand, the weak convergence
of (Qn) and the fact that π is a “smooth” finite rank operator imply that

lim
n→∞

Tr((1 − ∆)π(Qn −Q)2π) = lim
n→∞

Tr((1 − ∆)π|Qn −Q|π) = 0.

It is then clear that this implies

(5.21) lim
n→∞

Tr(∆P (Qn −Q)2P ) = lim
n→∞

Tr(∆P ′(Qn −Q)2P ′) = 0

and

(5.22) lim
n→∞

Tr((Qn −Q)2) = 0.

We then notice that

Tr(∆(Qn−Q)2) = Tr(∆P (Qn−Q)2P )+Tr(∆P ′(Qn−Q)2P ′)+Tr(∆π(Qn−Q)2π)

+ Tr([∆, P ](Qn −Q)2(π − P )) + Tr([∆, P ′](Qn −Q)2(π − P ′)).

Using now that [∆, P ] = [∆, P − γ0
per] + [∆, γ0

per], that P − γ0
per ∈ Kr and Lemma

4, we deduce that [∆, P ] is a bounded operator. Likewise, so is [∆, P ′]. Therefore
by (5.21) and (5.22)

lim
n→∞

Tr(∆(Qn −Q)2) = 0.

Writing now

(5.23) (Qn −Q)−− = P (Qn −Q)P + (γ0
per − P )(Qn −Q)γ0

per

− (P − γ0
per)(Qn −Q)(P − γ0

per) + γ0
per(Qn −Q)(γ0

per − P )

we obtain that (Qn −Q)−− → 0 in S1 since P (Qn −Q)P → 0 in S1, Qn −Q→ 0
in S2 and γ0

per − P ∈ S2. One proves that (Qn − Q)++ → 0 in S1 by the same
argument.

It remains to show that |∇|(Q−−
n − Q−−)|∇| and |∇|(Q++

n − Q++)|∇| go to
zero in S1. This is done by the same argument, using on the one hand that
|∇|P (Qn −Q)P |∇|, |∇|P ′(Qn −Q)P ′|∇| and |∇|π(Qn −Q)π|∇| go to zero in S1,
and on the other hand that [γ0

per, |∇|] is a bounded operator by Lemma 4. �
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Step 3: Proof that (c)⇒(b). We argue by contradiction. Let (Qn)n≥1 ⊆ K be
a minimizing sequence for Eν(q) which is not precompact for the topology of Q.
By the density of Kr in K, we can further assume that each Qn ∈ Kr. The bound
(3.9) on the energy tells us that (Qn)n≥1 is bounded in Q. Then, up to extraction
and by Proposition 5, we can assume that Qn ⇀ Q ∈ K where Tr0(Q) 6= q, and
that ρQn ⇀ ρQ weakly in C. We write Tr0(Q) = q − q′ with q′ 6= 0. We now prove
that

(5.24) Eν(q) ≥ Eν(q − q′) + E0(q′)

which will contradict (c). To this end, we argue like in the proof of [9, Thm. 3]:
consider a smooth radial function χ with support in B(0, 1) such that 0 ≤ χ ≤ 1

and χ ≡ 1 in B(0, 1/2); define χR(x) := χ(x/R). Then let be ηR :=
√

1 − χ2
R. Let

us introduce the following localization operators

YR := γ0
perηRγ

0
per + (γ0

per)
⊥ηR(γ0

per)
⊥, XR =

√
1 − Y 2

R.

Lemma 10. We have for all 3 < p ≤ ∞,

(5.25)
∣∣∣∣[ηR, γ

0
per]
∣∣∣∣

Sp
= O(R−1+3/p), ||YR − ηR||Sp

= O(R−1+3/p).

Moreover
∣∣∣∣X2

R − χ2
R

∣∣∣∣ = O
(
R−1

)
.

Proof. By (5.1) and (5.2)

[γ0
per, ηR] =

1

4iπ

∫

C

(H0
per − z)−1 [∆, ηR] (H0

per − z)−1 dz

which yields
∣∣∣∣[ηR, γ

0
per]
∣∣∣∣

Sp
≤ C

∣∣∣∣(1 − ∆)−1(∇ηR)
∣∣∣∣

Sp
≤ C′ ||∇ηR||Lp by the Kato-

Seiler-Simon inequality and following the proof of Lemma 5. Eventually we notice
YR − ηR =

(
1 − 2γ0

per

)
[γ0

per, ηR] and thus (5.25) is proved since γ0
per is bounded.

Finally,
∣∣∣∣X2

R − χ2
R

∣∣∣∣1/2
=
∣∣∣∣Y 2

R − η2
R

∣∣∣∣1/2
= O(R−1/2) by (5.25) and since ||YR|| ≤ 1,

||ηR|| ≤ 1. �

Lemma 11. One has

(5.26)
∣∣∣
∣∣∣
[
YR, |H0

per − Σ|1/2
]
|H0

per − Σ|−1/2
∣∣∣
∣∣∣ = O(R−1)

where we recall that Σ = (Σ+
Z + Σ−

Z+1)/2 is the middle of the gap.

Proof. We use the well-known integral representation of the square root [1]

(5.27) |H0
per − Σ|1/2 =

1

π

∫ ∞

0

|H0
per − Σ|

s+ |H0
per − Σ|

ds√
s
.

Recall that YR = γ0
perηRγ

0
per + (γ0

per)
⊥ηR(γ0

per)
⊥. For shortness, we only detail the

estimation of the term involving (γ0
per)

⊥ηR(γ0
per)

⊥. Using that |H0
per−Σ| commutes

with (γ0
per)

⊥ and that (γ0
per)

⊥ is bounded, we see that it suffices to estimate

(5.28) (γ0
per)

⊥

∫ ∞

0

[
ηR,

|H0
per − Σ|

s+ |H0
per − Σ|

]
|H0

per − Σ|−1/2 ds√
s
(γ0

per)
⊥

= −1

2

∫ ∞

0

(γ0
per)

⊥

s+ |H0
per − Σ| [ηR,−∆] |H0

per − Σ|−1/2
(γ0

per)
⊥

s+ |H0
per − Σ|

√
sds.

Then [ηR,−∆] = (∆ηR) + 2(∇ηR) · ∇, hence
∣∣∣∣[ηR,−∆] |H0

per − Σ|−1/2
∣∣∣∣ = O(R−1)

where we have used that ∇|H0
per−Σ|−1/2 is a bounded operator by Lemma 1. Then
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we use that |H0
per −Σ| ≥ ǫ for some ǫ > 0 to estimate the right hand side of (5.28)

in the operator norm by
∣∣∣
∣∣∣[ηR,−∆] |H0

per − Σ|−1/2
∣∣∣
∣∣∣×
∫ ∞

0

√
sds

(ǫ+ s)2
= O(R−1).

�

Notice now that YRQnYR ∈ K for all R ≥ 1 (the same is true for XRQnXR but
we shall actually not need it). To see this, notice for instance that

(5.29) (1 + |∇|)(YRQnYR) = −(1 + |∇|)|H0
per − Σ|−1/2

([
YR, |H0

per − Σ|1/2
]
×

× |H0
per − Σ|−1/2|H0

per − Σ|1/2QnYR + YR|H0
per − Σ|1/2QnYR

)

which belongs to S2 since |H0
per − Σ|1/2Qn ∈ S2 and

[
YR, |H0

per − Σ|1/2
]
|H0

per −
Σ|−1/2 is bounded by Lemma 11. The proof that (1 + |∇|)(YRQnYR)++(1 + |∇|)
and (1 + |∇|)(YRQnYR)−−(1 + |∇|) are trace-class is similar. Eventually, the proof
that −γ0

per ≤ YRQYR ≤ 1 − γ0
per is easy, using the equivalent condition (3.4) and

the fact that γ0
per commutes with YR.

We are now able to prove (5.24) as announced. We write, following [8],

(5.30) Eν(Qn) = Tr(XR|H0
per − Σ|1/2(Q++

n −Q−−
n )|H0

per − Σ|1/2XR)

+ Tr(YR|H0
per − Σ|1/2(Q++

n −Q−−
n )|H0

per − Σ|1/2YR) + ΣTr0(XRQnXR)

+ ΣTr0(YRQnYR) +
1

2
D(ρQn − ν, ρQn − ν) − 1

2
D(ν, ν)

where we have used that [γ0
per, XR] = [γ0

per, YR] = 0 to infer Tr0(Qn) = Tr0(XRQnXR)+
Tr0(YRQnYR). Then, by Lemma 11 and using the fact that (Qn)n≥1 is a bounded
sequence in Q, we deduce that

(5.31) Tr(YR|H0
per − Σ|1/2(Q++

n −Q−−
n )|H0

per − Σ|1/2YR)

≥ Tr(|H0
per − Σ|1/2YR(Q++

n −Q−−
n )YR|H0

per − Σ|1/2) − C/R

for some constant C > 0. Arguing similarly for the other terms, we obtain

(5.32)

Eν(Qn) ≥ Ẽ0(YRQnYR) + Tr(χR|H0
per − Σ|1/2(Q++

n −Q−−
n )|H0

per − Σ|1/2χR)

+ ΣTr(χR(Q++
n +Q−−

n )χR) +
1

2
D(ρQn − ν, ρQn − ν) − 1

2
D(ν, ν) − C′/R

for some constant C′, where

Ẽ0(Q) := Tr(|H0
per − Σ|1/2(Q++ −Q−−)|H0

per − Σ|1/2) + ΣTr0(Q).

Recall (Proposition 3)

E0(q) = inf{Ẽ0(Q), Q ∈ Kr, Tr0(Q) = q}.
Thus, using

q = Tr0(Qn) = Tr0(YRQnYR) + Tr0(XRQnXR),

and the fact that q 7→ E0(q) is Lipschitz by Proposition 3, (5.32) yields

(5.33) Eν(Qn) ≥ Tr(χR|H0
per − Σ|1/2(Q++

n −Q−−
n )|H0

per − Σ|1/2χR)

+ ΣTr(χR(Q++
n +Q−−

n )χR) + E0
(
q − Tr(χR(Q++

n +Q−−
n )χR)

)

+
1

2
D(ρQn − ν, ρQn − ν) − 1

2
D(ν, ν) − C′/R
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Let us now pass to the limit n→ ∞. First we notice

(5.34) lim inf
n→∞

Tr(χR|H0
per − Σ|1/2(Q++

n −Q−−
n )|H0

per − Σ|1/2χR)

≥ Tr(χR|H0
per − Σ|1/2(Q++ −Q−−)|H0

per − Σ|1/2χR),

(5.35) lim inf
n→∞

D(ρQn − ν, ρQn − ν) ≥ D(ρQ − ν, ρQ − ν)

by Fatou’s Lemma and the weak convergence ρQn ⇀ ρQ in C. Then

lim
n→∞

Tr(χRQ
++
n χR) = Tr(χRQ

++χR), lim
n→∞

Tr(χRQ
−−
n χR) = Tr(χRQ

−−χR)

which is obtained by writing for instance

Tr(χRQ
++
n χR) = Tr(χR(1 + |∇|)−1(1 + |∇|)Q++

n (1 + |∇|)(1 + |∇|)−1χR)

and using that χR(1 + |∇|)−1 is compact (it belongs to Sp for p > 3 by the Kato-
Simon-Seiler inequality) and that

(1 + |∇|)Q++
n (1 + |∇|) ⇀ (1 + |∇|)Q++(1 + |∇|)

for the weak-∗ topology of S1. Thus,

(5.36)

Eν(q) = lim inf
n→∞

Eν(Qn) ≥ Tr(χR|H0
per − Σ|1/2(Q++ −Q−−)|H0

per − Σ|1/2χR)

+ ΣTr(χR(Q++ +Q−−)χR) + E0
(
q − Tr(χR(Q++ +Q−−)χR)

)

+
1

2
D(ρQ − ν, ρQ − ν) − 1

2
D(ν, ν) − C′/R.

Passing now to the limit as R → ∞, we obtain (5.24). This contradicts (3) and
shows that (b)⇔(c) in Theorem 3.

Step 4: Characterization of the q’s such that (c) holds. Because q 7→ Eν(q)
is a convex function, it is classical that the set I = {q ∈ R, (c) holds} is a closed
interval of R, see e.g. [25]. It is non empty since it contains Tr0(Q̄) for any minimizer
Q̄ of Eν

µ obtained in Theorem 2, for any µ in the gap (Σ+
Z ,Σ

−
Z+1). Additionally,

q 7→ Eν(q) is linear on the connected components of R \ I and I is the largest
interval on which this function is strictly convex. Let us now state and prove the

Lemma 12. Let Z ∈ N \ {0}, ν ∈ L1(R3) ∩ L2(R3), and assume that (A1) holds.
Assume that Q1 and Q2 are respectively two minimizers of Eν(q1) and Eν(q2) with
q1 6= q2. Then ρQ1 6= ρQ2 and therefore

Eν(tq1 + (1 − t)q2) ≤ Eν(tQ1 + (1 − t)Q2) < tEν(q1) + (1 − t)Eν(q2).

Proof. Assume by contradiction that ρQ1 = ρQ2 . It is classical that the operators
Q1 and Q2 satisfy the self-consistent equations

Q1 = χ(−∞,µ1)(HQ1) − γ0
per + δ1, Q2 = χ(−∞,µ2)(HQ2) − γ0

per + δ2

where 0 ≤ δk ≤ 1 and Ran(δk) ⊆ ker(HQk
−µk) for k = 1, 2. Necessarily µ1 and µ2

are in [Σ+
Z ,Σ

−
Z+1] otherwise Q1 and Q2 would not be compact, which is not possible

since every operator of K is compact. Since HQ1 = HQ2 has only a point spectrum

in the gap, we deduce that if µk ∈ (Σ+
Z ,Σ

−
Z+1), then necessarily δk is finite rank. If

µk ∈ {Σ+
Z ,Σ

−
Z+1}, then it can easily be proved that at least δk ∈ S1. Hence Q1 and

Q2 differ by a trace-class operator: Q2 = Q1 + δ, Tr|δ| < ∞. Now 0 6= q2 − q1 =
Tr(δ) =

∫
ρδ which contradicts our assumption that ρδ = ρQ1 − ρQ2 = 0. The rest

follows from the strict convexity of ρ 7→ D(ρ, ρ). �
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Corollary 4. There is no minimizer for Eν(q) if q /∈ I, the interval on which (c)
holds. Thus (a) implies (c).

Proof. Assume that there is a minimizer Q1 for some q1 /∈ I, for instance q1 >
max I := q2. Applying Lemma 12 to q1 and q2 shows that Eν(·) cannot be linear
on [q2, q1] which contradicts the definition of I. �

5.9. Proof of Theorem 4: thermodynamic limit of the supercell model
for a perfect crystal.

Step 1. Let us first prove that lim sup
L→+∞

1

L3
I0
sc,L ≤ I0

per. Starting from the Bloch

decomposition

γ0
per =

1

(2π)3

∫

Γ∗

(γ0
per)ξ dξ

of γ0
per it is possible to construct a convenient test function γ̃0

sc,L for (4.2) as follows:

γ̃sc,L(x, y) =
1

(2π)3

∑

ξ ∈ 2π
L Z3∩Γ∗

eiξx

(∫

ξ+[− 2πη
L , 2π(1−η)

L )3
e−iξ′x(γ0

per)ξ′(x, y) eiξ′ydξ′
)
e−iξy,

with η = 0 if L is even and η = 1/2 if L is odd. It is indeed easy to check that γ̃sc,L

is in Psc,L and satisfies ργ̃sc,L
= ργ0

per
. In particular,

∫

ΛL

ργ̃sc,L
=

∫

ΛL

ρper = ZL3,

and, since both ργ0
per

and ρper are Z3-periodic,

DGL

(
ργ̃sc,L

− ρper, ργ̃sc,L
− ρper

)
= L3DG1

(
ργ0

per
− ρper, ργ0

per
− ρper

)
.

Besides,

1

L3
TrL2

per(ΛL)

(
−1

2
∆γ̃sc,L

)
=

1

(2π)3

∫

Γ∗

TrL2
ξ(Γ)

(
−1

2
∆
(
γ0
per

)
ξ

)
dξ

− 1

2(2πL)3

∑

ξ ∈ 2π
L Z3∩Γ∗

∫

ξ+[− 2πη
L , 2π(1−η)

L )3
|ξ − ξ′|2TrL2

ξ′
(Γ)((γ

0
per)ξ′) dξ′

− i

(2πL)3

∑

ξ ∈ 2π
L Z3∩Γ∗

∫

ξ+[− 2πη
L , 2π(1−η)

L )3
(ξ − ξ′) · TrL2

ξ′
(Γ)(−i∇(γ0

per)ξ′) dξ′.

It follows from the boundedness of
∫
Γ∗

TrL2
ξ(Γ)((1 − ∆)(γ0

per)ξ) dξ and from the

inequality | − 2i∇| ≤ (1−∆) that the last two terms of the above expression go to
zero, hence that

lim
L→+∞

1

L3
TrL2

per(ΛL)

(
−1

2
∆γ̃sc,L

)
=

1

(2π)3

∫

Γ∗

TrL2
ξ(Γ)

(
−1

2
(∆γ0

per)ξ

)
dξ.

Therefore limL→+∞L−3E0
sc,L(γ̃sc,L) = E0

per(γ
0
per) = I0

per and consequently

lim sup
L→+∞

1

L3
I0
sc,L ≤ lim

L→+∞

1

L3
E0
sc,L(γ̃sc,L) = I0

per.
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Step 2. Let us now establish that lim inf
L→+∞

1

L3
I0
sc,L ≥ I0

per. First, the existence of a

minimizer γL for (4.2) and the uniqueness of the corresponding density ρ0
sc,L follows

from the same arguments as in the proof of [3, Thm 2.1]. Note that, by symmetry,
ρ0
sc,L is Z3-periodic. We now define the operator γ0

sc,L as

γ0
sc,L =

1

L3

∑

k∈Z3∩ΛL

τ∗kγLτk.

By simple periodicity arguments, it is clear that τ∗kγLτk is also a minimizer for (4.2)
for all k ∈ Z3. By convexity, so is γ0

sc,L. Besides, γ0
sc,L commutes with the transla-

tions τk for all k ∈ Z3 so that its kernel γ0
sc,L(x, y) satisfies

∀(x, y, z) ∈ R
3 × R

3 × Z
3, γ0

sc,L(x+ z, y + z) = γ0
sc,L(x, y).

The optimality conditions imply that γ0
sc,L can be expanded as follows

γ0
sc,L(x, y) =

1

L3

∑

ξ∈ 2π
L Z3∩Γ∗

∑

k≥1

nL
k,ξe

iξ·xvL
k,ξ(x) v

L
k,ξ(y)e

−iξ·y

where for any ξ ∈ 2π
L Z3 ∩ Γ∗, (vL

k,ξ)k≥1 is a Hilbert basis of L2
per(Γ) consisting of

eigenfunctions of the self-adjoint operator on L2
per(Γ) defined by

−1

2
∆ − iξ · ∇ + (ρ0

sc,L − ρper) ⋆Γ G1 +
1

2
|ξ|2

associated with eigenvalues λL
1 (ξ) ≤ λL

2 (ξ) ≤ · · · The occupation numbers nL
k,ξ are

in the range [0, 1] and such that

1

L3

∑

ξ∈ 2π
L Z3∩Γ∗

∑

k≥1

nL
k,ξ = Z.

Lastly, there exists a Fermi level ǫLF ∈ R such that nL
k,ξ = 1 whenever λL

k (ξ) < ǫLF
and nL

k,ξ = 0 whenever λL
k (ξ) > ǫLF . One has

(5.37)
1

L3
I0
sc,L =

1

L3
E0
sc,L(γ0

sc,L) =
1

L3

∑

ξ∈ 2π
L Z3∩Γ∗

∑

k≥1

nL
k,ξ

2
‖(−i∇+ ξ)vL

k,ξ‖2
L2

per(Γ)

+
1

2L3
DGL(ργ̃0

sc,L
− ρper, ργ̃0

sc,L
− ρper).

We now introduce

γ̃0
sc,L(x, y) =

1

(2π)3

∫

Γ∗

∑

k≥1

nL
k,βL(ξ)e

iξ·xvL
k,βL(ξ)(x) v

L
k,βL(ξ)(y)e

−iξ·y dξ

where βL(ξ) is the unique element of 2π
L Z3∩Γ∗ such that ξ ∈ βL(ξ)+[− 2πη

L , 2π(1−η)
L )3.

It is easy to check that γ̃0
sc,L ∈ PZ

per. Thus γ̃0
sc,L ∈ PZ

per can be used as a test function

for (2.4). Therefore

(5.38) E0
per(γ̃

0
sc,L) ≥ I0

per.

As ργ̃0
sc,L

= ργ0
sc,L

is Z
3-periodic, one has

(5.39) DG1(ργ̃0
sc,L

− ρper, ργ̃0
sc,L

− ρper) =
1

L3
DGL(ργ0

sc,L
− ρper, ργ0

sc,L
− ρper).
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Besides,

(5.40)

1

(2π)3

∫

Γ∗

TrL2
ξ(Γ)

(
−1

2
∆
(
γ0
sc,L

)
ξ

)
dξ =

1

(2π)3

∫

Γ∗

∑

k≥1

nL
k,βL(ξ)

2
‖(−i∇+ξ)vL

k,βL(ξ)‖2
L2

per(Γ)

=
1

L3

∑

ξ∈ 2π
L Z3∩Γ∗

∑

k≥1

nL
k,ξ

2
‖(−i∇+ ξ)vL

k,ξ‖2
L2

per(Γ) +RL

with

RL =
1

(2π)3

∫

Γ∗

∑

k≥1

nL
k,βL(ξ)

2

(
‖(−i∇ + ξ)vL

k,βL(ξ)‖2
L2

per(Γ) − ‖(−i∇ + βL(ξ))vL
k,βL(ξ)‖2

L2
per(Γ)

)
.

Putting (5.37)–(5.40) together, we end up with 1
L3 I

0
sc,L +RL ≥ I0

per. As

|RL| ≤
(

6ZI0
sc,L

L3

)1/2
2π

L
+

3Z

2

(
2π

L

)2

,

we finally obtain lim inf
L→+∞

1

L3
I0
sc,L ≥ I0

per.

Step 3: Convergence of the density . A byproduct of Steps 1 and 2 is that
(γ̃0

sc,L)L∈N\{0} is a minimizing sequence for I0
per. The convergence results on the

density ργ0
sc,L

= ργ̃0
sc,L

immediately follows from the proof of [3, Thm 2.1].

Step 4: Convergence of the mean-field Hamiltonian and its spectrum.
One has H0

sc,L − H0
per = ΦL where ΦL solves the Poisson equation −∆ΦL =

4π(ργ0
sc,L

−ργ0
per

) on Γ with periodic boundary conditions. As it follows from Step 3

that (ργ0
sc,L

− ργ0
per

) converges to zero in L2
per(Γ), we obtain that ΦL converges to

zero in H2
per(Γ), hence in L∞(R3). Consequently,

(5.41)
∣∣∣∣H0

sc,L −H0
per

∣∣∣∣ ≤ ||ΦL||L∞ → 0

as L→ ∞. This clearly implies, via the min-max principle, that

sup
n≥1

sup
ξ∈Γ∗

∣∣λL
n(ξ) − λn(ξ)

∣∣ ≤ ‖ΦL‖L∞ −→
L→∞

0

where (λL
n(ξ))n≥1, ξ∈Γ∗ (resp. (λn(ξ))n≥1, ξ∈Γ∗) are the Bloch eigenvalues of H0

sc,L

(resp. H0
per).

Step 5: Uniqueness of γ0
sc,L for large values of L. In the remainder of the

proof, we assume that (A1) holds, i.e. that H0
per has a gap.

The spectrum of H0
sc,L considered as an operator on L2

per(ΛL) is given by

σL2
per(ΛL)(H

0
sc,L) =

⋃

n∈N\{0}

⋃

ξ∈ 2π
L Z3∩Γ∗

λL
n(ξ).

It follows from Step 4 that there exists some L0 ∈ N \ {0} such that for all L ≥ L0,
the lowest ZL3 eigenvalues of H0

sc,L (including multiplicities) are
⋃

1≤n≤Z

⋃

ξ∈ 2π
L Z3∩Γ∗

λL
n(ξ)

and there is a gap between the (ZL3)-th and the (ZL3 + 1)-st eigenvalues. As a
consequence, γ0

sc,L is uniquely defined: it is the spectral projector associated with

the lowest ZL3 eigenvalues of H0
sc,L, considered as an operator on L2

per(ΛL).
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Step 6. Let µ ∈ (Σ+
Z ,Σ

−
Z+1). For L large enough, γ0

sc,L = χ(−∞,µ](H
0
sc,L) =

χ(−∞,0](H
0
sc,L −µ) as operators acting on L2

per(ΛL). This means that γ0
sc,L satisfies

the Euler-Lagrange equation associated with I0
sc,L,µ, see (4.5). As the functional

γ 7→ E0
sc,L(γ) − µTrL2

per(ΛL)(γ) is convex on Psc,L, γ0
sc,L is a minimizer of this func-

tional. Its uniqueness follows as usual from the uniqueness of the minimizing density
and from the fact that 0 is not in the spectrum of H0

sc,L − µ.

5.10. Proof of Theorem 5: Thermodynamic limit of the supercell model
for a crystal with local defects. We follow the method of [10]. As in the
previous section, we denote by γ0

sc,L the minimizer of (4.2), which is unique for

L large enough and is also the unique minimizer of (4.5). Let KL be the set of
operators QL on L2

per(ΛL) such that γ0
sc,L +QL ∈ Psc,L. In fact

KL =
{
QL ∈ S1(L

2
per(ΛL)) | Q∗

L = QL, |∇|QL|∇| ∈ S1(L
2
per(ΛL)),

− γ0
sc,L ≤ QL ≤ 1 − γ0

sc,L

}
.

We introduce Eν
sc,L,µ := Eν

sc,L − µTrL2
per(ΛL). Let QL ∈ KL, one has

Eν
sc,L,µ(γ0

sc,L +QL) − E0
sc,L,µ(γ0

sc,L) = TrL2
per(ΛL)(H

0
sc,LQL) −DGL(ρQL , νL)

+
1

2
DGL(ρQL , ρQL)−µTrL2

per(ΛL)(QL)−DGL(νL, ργ0
sc,L

− ρper) +
1

2
DGL(νL, νL).

Note that in the above expression, H0
sc,L is considered as an operator on L2

per(ΛL).
Using Theorem 4, this equality can be rewritten, for L large enough, as

(5.42)

Eν
sc,L,µ(γ0

sc,L +QL) − E0
sc,L,µ(γ0

sc,L) = TrL2
per(ΛL)(|H0

sc,L − µ|(Q++,L
L −Q−−,L

L ))

+
1

2
DGL(ρQL − νL, ρQL − νL) −DGL(νL, ργ0

sc,L
− ρper)

where we have set

Q++,L
L = (1 − γ0

sc,L)QL(1 − γ0
sc,L) and Q−−,L

L = γ0
sc,LQLγ

0
sc,L.

It follows from (5.42) that

Iν
sc,L,µ − I0

sc,L,µ = inf
{
Eν

sc,L(QL) − µTrL2
per(ΛL)(QL), QL ∈ KL

}

−DGL(νL, ργ0
sc,L

− ρper) +
1

2
DGL(νL, νL).

where

Eν
sc,L(QL) − µTrL2

per(ΛL)(QL) := −DGL(ρQL , νL) +
1

2
DGL(ρQL , ρQL)

+ TrL2
per(ΛL)

(
|H0

sc,L − µ|1/2(Q++,L
L −Q−−,L

L )|H0
sc,L − µ|1/2

)
.

First, using ν being in L1(R3) ∩ L2(R3) and the convergence of ΦL = (ργ0
sc,L

−
ργ0

per
) ⋆Γ G1 to zero in L∞ (see Step 4 of the proof of Theorem 4 in Section 5.9),

we obtain

−DGL(νL, ργ0
sc,L

−ρper)+
1

2
DGL(νL, νL) −→ −

∫

R3

ν
(
(ργ0

per
−ρper)⋆ΓG1

)
+

1

2
D(ν, ν).

Our goal is to prove that

(5.43) lim
L→∞

Eν
µ,L = Eν

µ

where

(5.44) Eν
µ,L = inf

{
Eν

sc,L(QL) − µTrL2
per(ΛL)(QL), QL ∈ KL

}
.
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Step 1: Preliminaries. In the proof of (5.43), we shall need several times to
compare states living in L2

per(ΛL) with states living in L2(R3). To this end, we
introduce the map

iL : L2(R3) → L2
per(ΛL)

ϕ 7→
∑

z∈Z3

(1ΛLϕ)(· − Lz).

Notice that (iL)∗ : L2
per(ΛL) → L2(R3) is the operator which to any periodic

function ψ ∈ L2
per(ΛL) associates the function 1ΛLϕ ∈ L2(R3). Remark that

iL(iL)∗ = IdL2
per(ΛL) whereas (iL)∗iL = 1ΛL . Hence iL defines an isometry from

L2(ΛL) to L2
per(ΛL). The equality (iL)∗iLϕ = ϕ is only true when ϕ ∈ L2(R3) has

its support in ΛL. When ϕ ∈ H1(R3) satisfies Supp(ϕ) ⊂ ΛL, then one also has
∂xiiL(ϕ) = iL(∂xiϕ).

Notice in addition that if A ∈ S1(L
2
per(ΛL)), then (iL)∗AiL ∈ S1(L

2(ΛL)) ⊆
S1(L

2(R3)) and

TrL2
per(ΛL)(A) = TrL2(R3) ((iL)∗AiL) .

Similarly if A ∈ Sp(L
2
per(ΛL)),

(5.45) ||A||
Sp(L2

per(ΛL)) = ||(iL)∗AiL||Sp(L2(R3)) .

Finally, we shall use that for any Z3-periodic bounded function f , iLf = fiL,
where we use the same notation f to denote the multiplication operator by the
function f acting either on L2

per(ΛL) or on L2(R3). Similarly, the operator H0
sc,L =

−∆/2 + (ργ0
sc,L

− ρper) ⋆Γ G1 can be seen as acting on L2
per(ΛL) or on L2(R3) and

we use the same notation in the two cases. Then we have for any ϕ ∈ C∞
0 (R3)

satisfying Supp(ϕ) ⊆ ΛL

(5.46) H0
sc,LiLϕ = iLH

0
sc,Lϕ.

Notice that one can also define −i∇ on L2(R3) or on L2
per(ΛL) and we shall adopt

the same notation for these two operators. We gather some useful limits in the
following

Lemma 13. Let be ψ ∈ L2(R3) and ϕ ∈ C∞
0 (R3). Then we have as L→ ∞

(1) (iL)∗γ0
sc,LiLψ → γ0

perψ in L2(R3);

(2) (iL)∗H0
sc,Lγ

0
sc,LiLϕ→ H0

perγ
0
perϕ in L2(R3);

(3) (iL)∗∆γ0
sc,LiLϕ→ ∆γ0

perϕ in L2(R3);

(4) (iL)∗(1 + |∇|)iLϕ→ (1 + |∇|)ϕ in L2(R3);
(5) (iL)∗|H0

sc,L − µ|1/2iLϕ → |H0
per − µ|1/2ϕ in L2(R3) for any fixed µ in the

gap (Σ+
Z ,Σ

−
Z+1).

Proof. The operator (iL)∗γ0
sc,LiL being uniformly bounded with respect to L, it

suffices to prove the first assertion for a dense subset of L2(R3) like C∞
0 (R3). Hence

we may assume that ψ = ϕ ∈ C∞
0 (R3).

Let K be a compact set in the resolvent set of H0
per. We are going to prove that

(5.47) lim
L→∞

(iL)∗(H0
sc,L − z)−1iLϕ→L→∞ (H0

per − z)−1ϕ

in L2(R3), uniformly for z ∈ K. To this end, we first notice that by Theorem 4, K
is contained in the resolvent set of H0

sc,L for L large enough and thus
∣∣∣∣(H0

sc,L − z)−1 − (H0
per − z)−1

∣∣∣∣
B(L2

per(ΛL))
≤ C(K)

∣∣∣∣H0
sc,L −Hper

∣∣∣∣
B(L2

per(ΛL))
→ 0
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by (5.41). Hence it suffices to prove (5.47) with H0
sc,L replaced by H0

per (seen as an

operator acting on L2
per(ΛL)). Then we use its Bloch decomposition (detailed in

Appendix, see (A.2)) and compute, assuming L large enough for Supp(ϕ) ⊂ ΛL,

(iL)∗(H0
per − z)−1iLϕ(x) =

∑

k∈ 2π
L Z3∩Γ∗

∑

n≥1

L−3

λn(k) − z

(∫

R3

en(k, ·)ϕ
)1ΛL(x)en(k, x),

∣∣∣∣(iL)∗(H0
per − z)−1iLϕ

∣∣∣∣2
L2(R3)

=
∑

k∈ 2π
L Z3∩Γ∗

∑

n≥1

L−3

|λn(k) − z|2
∣∣∣∣
∫

R3

en(k, ·)ϕ
∣∣∣∣
2

.

It is then easy to see that (iL)∗(H0
per − z)−1iLϕ ⇀ (H0

per − z)−1ϕ weakly in L2(R3)

(one can take the scalar product against a function ψ ∈ C∞
0 (R3) to identify the

limit) and that
∣∣∣∣(iL)∗(H0

per − z)−1iLϕ
∣∣∣∣

L2(R3)
→
∣∣∣∣(H0

per − z)−1ϕ
∣∣∣∣

L2(R3)
, yielding

the strong convergence in L2(R3).
For the proof of (1), it then suffices to choose a curve C around the first Z bands

of H0
per and use the above convergence of the resolvent in the Cauchy formula.

Assertion (2) is an easy consequence of (1) and (5.46). Indeed, by Theorem 4, we
know that limL→∞

∣∣∣∣H0
sc,L −H0

per

∣∣∣∣
B(L2(R3))

= 0. Since (iL)∗γ0
sc,LiL is bounded, this

implies that for L large enough such that Supp(ϕ) ⊆ ΛL∣∣∣∣(iL)∗γ0
sc,L(H0

sc,LiL − iLH
0
per)ϕ

∣∣∣∣
L2(R3)

=
∣∣∣∣(iL)∗γ0

sc,LiL(H0
sc,L −H0

per)ϕ
∣∣∣∣

L2(R3)
→ 0

where we have used (5.46). Then we notice that H0
perϕ ∈ L2(R3). Hence (1) implies

that limL→∞

∣∣∣∣((iL)∗γ0
sc,LiL − γ0

per)H
0
perϕ

∣∣∣∣
L2(R3)

= 0. The argument is exactly the

same for the third assertion (3). Assertion (5) can be proved in the same way, using
(5.46) and the integral representation of the square root (5.27).

Finally, it remains to prove that (4) is true, which is done by computing explicitly,
for L large enough such that Supp(ϕ) ⊆ ΛL,

(iL)∗(1 + |∇|)iLϕ =
∑

k∈ 2π
L Z3

(2π)3/2

L3
(1 + |k|)ϕ̂(k)eik·x1ΛL(x),

||(iL)∗(1 + |∇|)iLϕ||2L2(R3) =
∑

k∈ 2π
L Z3

(2π)3

L3
|(1+|k|)ϕ̂(k)|2 →L→∞ ||(1 + |∇|)ϕ||2L2(R3) .

The strong convergence is obtained as above. �

Lemma 14. Let V ∈ C∞
0 (R3). We have as L→ ∞

(5.48) (iL)∗(1 − ∆)−1iL(V )iL → (1 − ∆)−1V,

(5.49) (iL)∗(1 + |∇|)−1iL(V )(1 + |∇|)−1iL → (1 + |∇|)−1V (1 + |∇|)−1

strongly in S2(L
2(R3)).

Proof. For L large enough, we have
∣∣∣∣(iL)∗(1 − ∆)−1iL(V )iL

∣∣∣∣
S2(L2(R3))

=
∣∣∣∣(1 − ∆)−1iL(V )

∣∣∣∣
S2(L2

per(ΛL))

=
||V ||L2(R3)

(2π)3/2




∑

k∈ 2π
L Z3

(2π/L)3

(1 + |k|2)2




1/2

,

which shows that (iL)∗(1 − ∆)−1iL(V )iL is bounded in S2(L
2(R3)) since

(5.50) lim
L→∞

∑

k∈ 2π
L Z3

(2π/L)3

(1 + |k|2)2 =

∫

R3

|g(p)|2dp, g(p) = (1 + |p|2)−1.
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Arguing as in the proof of the fourth assertion of Lemma 13, we can prove that
(5.48) holds in the strong sense, hence the convergence holds weakly in S2(L

2(R3))
towards (1 − ∆)−1V . Now

lim
L→∞

∣∣∣∣(iL)∗(1 − ∆)−1iL(V )iL
∣∣∣∣

S2(L2(R3))
=

||V ||L2(R3) ||g||L2(R3)

(2π)3/2
=
∣∣∣∣(1 − ∆)−1V

∣∣∣∣
S2(L2(R3))

and the limit holds strongly in S2(L
2(R3)).

The argument is the same for (5.49), noticing that
∣∣∣∣(iL)∗(1 + |∇|)−1iL(V )(1 + |∇|)−1iL

∣∣∣∣2
S2(L2(R3))

= TrL2
per(ΛL)

(
(1 + |∇|)−2iL(V )(1 + |∇|)−2iL(V )

)

= (2π)−3/2

∫∫

(ΛL)2
|hL(x− y)|2V (x)V (y)dx dy

→L→∞

∣∣∣∣(1 + |∇|)−1V (1 + |∇|)−1
∣∣∣∣2

S2(L2(R3))

where we have used that

hL(x) :=
∑

k∈ 2π
L Z3

(2π)3/2

L3(1 + |k|)2 e
ik·x

converges to the Fourier inverse F−1(h) of h(p) = (1 + |p|)−2, strongly in L2
loc(R

3).
�

Step 2: Upper bound . We prove here that lim supL→∞Eν
µ,L ≤ Eν

µ. Let ǫ > 0.
Using Lemma 8, Proposition 4, Corollary 3, and the notation therein, one can find
a finite rank operator Q ∈ Kr such that

(5.51) Eν
µ ≤ Eν(Q) − µTr0(Q) ≤ Eν

µ + ǫ,

of the form

(5.52) Q =

−1∑

m=−M

|vm〉〈vm| −
−1∑

n=−N

|un〉〈un| +
k∑

i=0

λ2
i

1 + λ2
i

(
|vi〉〈vi| − |ui〉〈ui|

)

+

k∑

i=0

λi

1 + λ2
i

(
|ui〉〈vi| + |vi〉〈ui|

)
+ δ′ with δ′ =

J∑

j=1

nj |wj〉〈wj |.

Let 0 < η << 1. It is possible to choose a family of orthonormal functions uη
n, vη

m,
wη

j in C∞
0 (R3) such that

(5.53) ‖uη
n − un‖H2 ≤ η, ‖vη

m − vm‖H2 ≤ η, ‖wη
j − wj‖H2 ≤ η.

for all n = −N...k, m = −M...k and j = 1...J . Let us define the Gram matrices

(Sη
−)i,j :=

〈
γ0
peru

η
i , u

η
j

〉
, (Sη

+)i,j :=
〈
(1 − γ0

per)v
η
i , v

η
j

〉

which, by (5.53) satisfy Sη
+ = IdN+k+1 + o(1)η→0 and Sη

− = IdM+k+1 + o(1)η→0.

We also introduce the orthogonal projector Πη on Span{γ0
peru

η
n, (1 − γ0

per)v
η
m} and

define (Sη
w)i,j :=

〈
(1 − Πη)wη

i , w
η
j

〉
. Clearly Sη

w = IdJ + o(1)η→0.

Now we introduce a new orthonormal system in L2
per(ΛL)

uη
i,L :=

k∑

n=−N

(S
−1/2
−,L )i,nγ

0
sc,LiLu

η
n, vη

i,L :=

k∑

m=−M

(S
−1/2
+,L )i,m(1 − γ0

sc,L)iLv
η
m,

(S−,L)i,j =
〈
γ0
sc,LiLu

η
i , iLu

η
j

〉
L2

per(ΛL)
, (S+,L)i,j =

〈
(1 − γ0

sc,L)iLv
η
i , iLv

η
j

〉
L2

per(ΛL)
.
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Notice that by the first assertion of Lemma 13, limL→∞ S±,L = Sη
±. Finally, we

introduce the projector ΠL on Span(uη
n,L, v

η
m,L) and define

wη
j,L :=

J∑

ℓ=1

(S
−1/2
w,L )j,ℓ(1 − ΠL)iLw

η
ℓ , (Sw,L)i,j =

〈
(1 − ΠL)iLw

η
i , iLw

η
j

〉
.

We now define a state in KL by

Qη
L =

−1∑

m=−M

|vη
m,L〉〈vη

m,L|−
−1∑

n=−N

|uη
n,L〉〈uη

n,L|+
k∑

i=1

λ2
i

1 + λ2
i

(
|vη

i,L〉〈vη
i,L|−|uη

i,L〉〈uη
i,L|
)

+

k∑

i=1

λi

1 + λ2
i

(
|uη

i,L〉〈vη
i,L| + |vη

i,L〉〈uη
i,L|
)

+

J∑

j=1

nj |wη
j,L〉〈wη

j,L|.

By Lemma 13, we have

(5.54) (iL)∗uη
n,L →L→∞ ũη

n, (iL)∗vη
m,L →L→∞ ṽη

m and (iL)∗wη
j,L →L→∞ w̃η

j

in L2(R3) ∩ L∞(R3), where the limits are defined by

ũη
i :=

k∑

n=−N

(Sη
−)

−1/2
i,n γ0

peru
η
n, ṽη

i :=

k∑

m=−M

(Sη
+)

−1/2
i,m, (1 − γ0

per)v
η
m,

w̃η
j :=

J∑

ℓ=1

(Sη
w)

−1/2
j,ℓ (1 − Πη)wη

ℓ .

By Lemma 13, we know that for any fixed ϕ, ψ ∈ C∞
0 (R3),

lim
L→∞

〈
i∗L(H0

sc,L − µ)γ0
sc,LiLϕ, (iL)∗γ0

sc,LiLψ
〉

=
〈
(H0

per − µ)γ0
perϕ, γ

0
perψ

〉
.

Hence, inserting the definition ofQη
L in the kinetic energy and using the convergence

of the Gram matrices, we obtain

lim
L→∞

TrL2
per(ΛL)

(
(H0

sc,L − µ)Qη
L

)
= TrL2(R3)

(
(H0

per − µ)Q̃η
)

where Q̃η is defined similarly as Qη but with the functions (ũη
n, ṽ

η
m, w̃

η
j ) instead of

(uη
n, v

η
m, w

η
j ).

Let us now prove that

lim
L→∞

DGL(ρQη
L
, ρQη

L
) = D(ρQ̃η , ρQ̃η ).

The convergence (5.54) implies that 1ΛLρQη
L

converges to ρQ̃η in particular in

L1(R3) ∩ L2(R3). Notice the definition of DGL(·, ·) implies that

(5.55) ∀ρ ∈ L1
per(ΛL) ∩ L2

per(ΛL), DGL(ρ, ρ) ≤ C
(
||ρ||2L1

per(ΛL) + ||ρ||2L2
per(ΛL)

)

for a constant C independent of L. Let us now write ρQη
L

= ρ1,L + ρ2,L where
ρ1,L is the periodic function which equals 1B(0,L/4)ρQη

L
on ΛL. The convergence of1ΛLρQη

L
towards ρQ̃η in L1(R3) ∩ L2(R3) and (5.55) give that

lim
L→∞

||ρ2,L||L1
per(ΛL) = lim

L→∞
||ρ2,L||L2

per(ΛL) = lim
L→∞

DGL(ρ2,L, ρ2,L) = 0.

Hence, it remains to show that

(5.56) lim
L→∞

DGL(ρ1,L, ρ1,L) = D(ρQ̃η , ρQ̃η ).

To this end we use the estimate [17]

sup
x∈ΛL

∣∣∣∣GL(x) − 1

|x|

∣∣∣∣ = O(L−1),



LOCAL DEFECTS IN PERIODIC CRYSTALS 35

to obtain

DGL(ρ1,L, ρ1,L) =

∫∫

(ΛL)2
GL(x−y)ρ1,L(x)ρ1,L(y)dx dy = D(1ΛLρ1,L,1ΛLρ1,L)+O(L−1)

where we have used that ||ρ1,L||L1
per(ΛL) is uniformly bounded and that x− y ∈ ΛL

for any x, y ∈ B(0, L/4), the support of ρ1,L. The convergence of 1ΛLρ1,L towards
ρQ̃η in L1(R3) ∩L2(R3) then proves (5.56). Using the same argument for the term

DGL(ρQη
L
, νL) we obtain

lim
L→∞

(
−DGL(ρQη

L
, νL) +

1

2
DGL

(
ρQη

L
, ρQη

L

))
= −D(ρQ̃η , ν) +

1

2
D
(
ρQ̃η , ρQ̃η

)
.

Finally

(5.57) lim
L→∞

Eν
sc,L(Qη

L) − µTrL2
per(ΛL)(Q

η
L) = Eν(Q̃η) − µTr(Q̃η).

Passing to the limit as η → 0 using (5.53) and the convergence of the Gram matrices
Sη
± and Sη

w, we eventually obtain

lim sup
L→∞

Eν
µ,L ≤ Eν(Q) − µTr(Q) ≤ Eν

µ + ǫ.

Step 3. Lower bound . We end the proof by showing that lim infL→∞Eν
µ,L ≥ Eν

µ.
As ΛL is bounded for any fixed L, the existence of a minimizer QL of

inf
{
Eν

sc,L(QL) − µTrL2
per(ΛL)(QL), QL ∈ KL

}

is straightforward. In addition, the spectrum of H0
sc,L, considered as an operator

on L2
per(ΛL), being purely discrete and bounded below, QL is finite rank.

Using (4.4) and reasoning as in the proof of Lemma 1 (see Section 5.1.1), we prove
that there exists a constant c > 0 (independent of L) such that |H0

sc,L−µ| ≥ c(1−∆)

on L2
per(ΛL), for L large enough. The following uniform bounds follow from Step 1:

TrL2
per(ΛL)(|H0

sc,L − µ|1/2(Q++,L
L −Q−−,L

L )|H0
sc,L − µ|1/2) ≤ C,(5.58)

TrL2
per(ΛL)((1 + |∇|)(Q++,L

L −Q−−,L
L )(1 + |∇|)) ≤ C,(5.59)

TrL2
per(ΛL)((1 + |∇|)Q2

L(1 + |∇|)) ≤ C,(5.60)

DGL(ρQL − νL, ρQL − νL) ≤ C,(5.61)

with C independent of L.
Consider now the sequence of operators Q̃L := (iL)∗QLiL acting on L2(R3). It

is bounded in S2(L
2(R3)) by (5.60) and since TrL2(R3)(Q̃

2
L) = TrL2

per(ΛL)(Q
2
L) by

(5.45). Hence Q̃L weakly converges, up to extraction, to some Q ∈ S2(L
2(R3)).

Similarly, the Hilbert-Schmidt operator RL := (iL)∗QL(1+|∇|)iL weakly converges
up to extraction to some R in S2(L

2(R3)). Let ϕ and ψ be in C∞
0 (R3) and assume

that Supp(ϕ) ∪ Supp(ψ) ⊂ ΛL. Then

〈(iL)∗QL(1 + |∇|)iLϕ, ψ〉L2(R3) =
〈
Q̃L(iL)∗(1 + |∇|)iLϕ, ψ

〉

L2(R3)

→L→∞ 〈Q(1 + |∇|)ϕ, ψ〉L2(R3),

where we have used that Q̃L ⇀ Q weakly in S2 and that (iL)∗(1 + |∇|)iLϕ→ (1 +
|∇|)ϕ strongly in L2(R3) by the third assertion of Lemma 13. Hence Q(1 + |∇|) =
R ∈ S2(L

2(R3)).

Similarly, define the operator SL := (iL)∗Q−−,L
L iL which is non positive and

yields a bounded sequence in S1(L
2(R3)) by (5.59). Up to extraction, we may
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assume that (SL) converges for the weak-∗ topology to some S ∈ S1(L
2(R3)). To

identify the limit S, we compute as above for ϕ, ψ ∈ L2(R3),

〈SLϕ, ψ〉L2(R3) =
〈
(iL)∗γ0

sc,LQLγ
0
sc,LiLϕ, ψ

〉
L2(R3)

=
〈
Q̃L(iL)∗γ0

sc,LiLϕ, (iL)∗γ0
sc,LiLψ

〉

L2(R3)
.

Using now the first assertion of Lemma 13 we obtain limL→∞ 〈SLϕ, ψ〉L2(R3) =

〈Q−−ϕ, ψ〉L2(R3). Hence Q−− = S ∈ S1. The same arguments allow to conclude

that in fact, Q ∈ K.

Now, let TL := (iL)∗|H0
sc,L − µ|1/2Q−−,L

L |H0
sc,L − µ|1/2iL which also defines a

bounded sequence in S1(L
2(R3)). Up to extraction, we may assume that TL ⇀ T

for the weak-∗ topology of S1. Arguing as above and using Lemma 13, we deduce
that T = |H0

per − µ|1/2Q−−|H0
per − µ|1/2. Now, Fatou’s Lemma yields

lim inf
L→∞

TrL2
per(ΛL)

(
|H0

sc,L − µ|1/2(−Q−−,L
L )|H0

sc,L − µ|1/2
)

= lim inf
L→∞

TrL2(R3)(−TL) ≥ TrL2(R3)

(
|H0

per − µ|1/2(−Q−−)|H0
per − µ|1/2

)

This proves that

lim inf
L→∞

TrL2
per(ΛL)

(
(H0

sc,L − µ)QL

)
≥ Tr0(H

0
perQ) − µTr0(Q).

We now study the term involving the density ρQL . First, following the proof of
Proposition 1 and using the bounds (5.58)–(5.60), we can prove that there exists
a constant C such that for all L large enough ||ρQL ||L2

per(ΛL) ≤ C. Hence, up to

extraction, we have 1ΛLρQL ⇀ ρ weakly in L2(R3) for some function ρ ∈ L2(R3).
We now introduce an auxiliary function ρL ∈ L2(R3) defined in Fourier space as
follows:

ρ̂L :=
∑

k∈ 2π
L Z3\{0}

ck,L(ρQL)

|Bk|1/2
1Bk

+
c0,L(ρQL)

|B0|1/2
1B0

where for any k ∈ (2π/L)Z3 \ {0}, Bk := B
(
k + k

10|k| ,
1

10L

)
which is chosen to

ensure that 1/|k′| ≤ 1/|k| for any k′ ∈ Bk, and B0 := B
(
0, 1

10L

)
.

Notice that ρL is bounded in L2(R3) as we have by definition
∫

R3

ρ2
L =

∫

R3

|ρ̂L|2 =
∑

k∈ 2π
L Z3

|ck,L(ρQL)|2 =

∫

ΛL

ρ2
QL
.

On the other hand (up to extraction) ρL ⇀ ρ weakly in L2(R3), the same weak
limit as 1ΛLρQL . This is easily seen by considering a scalar product against a fixed
function ϕ ∈ C∞

0 (R3). Now by the choice of the balls Bk, we also have for L≫ 1

D(ρL, ρL) = 4π

∫ |ρ̂L(k′)|2
|k′|2 dk′ ≤ DGL(ρQL , ρQL) ≤ C.

Hence, up to extraction we may assume that ρL ⇀ ρ weakly in C. Using the
regularity of ν̂, we also deduce that

lim inf
L→∞

(
−DGL(ρQL , νL) +

1

2
DGL(ρQL , ρQL)

)
≥ −D(ρ, ν) +

1

2
D(ρ, ρ).

What remains to be proved is that ρ = ρQ where Q is the weak limit of (iL)∗QLiL
obtained above. This will clearly show

lim inf
L→∞

Eν
µ,L ≥ Eµ(Q) ≥ Eν

µ
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and end the proof of Theorem 5. We identify the limit of 1ΛLρQL using its weak
convergence to ρ in L2(R3).

We start with ρQ++,L
L

and write, fixing some V ∈ C∞
0 (R3) and assuming L large

enough for Supp(V ) ⊂ ΛL,
∫

ΛL

ρQ++,L
L

V = TrL2
per(ΛL)(Q

++,L
L iL(V )) = TrL2(R3)(ALBL) with

AL := (iL)∗(1+ |∇|)Q++,L
L (1+ |∇|)iL, BL := (iL)∗(1+ |∇|)−1iL(V )(1+ |∇|)−1iL.

The sequence (AL) is bounded in S1(L
2(R3)), hence in S2(L

2(R3)), by (5.59) and
converges (up to extraction) towards (1 + |∇|)Q++(1 + |∇|) weakly in S2(L

2(R3))
(we proceed as above to identify the weak limit using the fourth assertion of
Lemma 13). By Lemma 14, BL converges towards (1+ |∇|)−1V (1+ |∇|)−1 strongly
in S2(L

2(R3)). We thus obtain

lim
L→∞

∫

ΛL

ρQ++,L
L

V = TrL2(R3)(Q
++V ) =

∫

R3

ρQ++V.

Likewise, it can be proved that the weak limit of ρQ−−,L
L

is ρQ−− .

Let us now treat ρQ+−,L
L

(the other case ρQ−+,L
L

being similar). Following the

proof of Proposition 1, we write∫

ΛL

ρQ+−,L
L

V = TrL2
per(ΛL)

(
Q+−,L

L [γ0
sc,L, iL(V )]

)

=
1

4iπ

∫

C

dzTrL2
per(ΛL)

(
Q+−,L

L (H0
sc,L − z)−1(∆iL(V ) − iL(V )∆)(H0

sc,L − z)−1
)
.

We only detail the argument to pass to the limit in

TrL2
per(ΛL)

(
Q+−,L

L (H0
sc,L − z)−1iL(V )∆(H0

sc,L − z)−1
)

= TrL2
per(ΛL)

(
∆(H0

sc,L − z)−1Q+−,L
L (H0

sc,L − z)−1(1 − ∆)(1 − ∆)−1iL(V )
)

= TrL2(R3)

(
CL(iL)∗(1 − ∆)−1iL(V )iL

)

with CL := (iL)∗∆(H0
sc,L − z)−1Q+−,L

L (H0
sc,L − z)−1(1 − ∆)iL. One has, up to

extraction, CL ⇀ ∆(H0
per − z)−1Q+−(H0

per − z)−1(1 − ∆) weakly in S2(L
2(R3)).

To see this, one first remarks that CL is bounded in S2(L
2(R3)) and then identifies

the weak limit by passing to the limit in 〈ALϕ, ψ〉 for some fixed ϕ, ψ ∈ C∞
0 (R3),

using the uniform convergence of the resolvent for z ∈ C , as shown in the proof
of Lemma 13. Then by Lemma 14 we know that (iL)∗(1 − ∆)−1iL(V )iL converges
towards (1−∆)−1V strongly in S2(L

2(ΛL)), hence we can pass to the limit in the
above expression, uniformly in z ∈ C. We conclude that

lim
L→∞

∫

R3

1ΛLρQLV =

∫

R3

ρQV

for any V ∈ C∞
0 (R3), thus ρ = ρQ. �

Appendix A. Proof of Theorem 1

Our proof uses classical ideas for Hartree-Fock theories. See [18, Section 4] for a
very similar setting. Let us consider a minimizer γ0

per of I0
per (it is known to exist by

[3, Thm 2.1]). First we note that the periodic potential Vper := (ργ0
per

− ρper) ⋆ΓG1

is in L2
loc(R

3). Thus Vper defines a ∆-bounded operator on L2(R3) with relative
bound zero (see [21, Thm XIII.96]) and therefore H0

per = −∆/2+Vper is self-adjoint

on D(−∆) = H2(R3) with form domain H1(R3). Besides, the spectrum of H0
per is

purely absolutely continuous, composed of bands as stated in [28, Thm 1-2 ] and
[21, Thm XIII.100]. The Bloch eigenvalues λk(ξ), k ≥ 1, ξ ∈ Γ∗ are known to be
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real analytic in each fixed direction and cannot be constant with respect to the
variable ξ. Hence the function

C : µ 7→
∑

k≥1

|{ξ ∈ Γ∗ | λk(ξ) ≤ µ}|

is continuous and non-decreasing on R. The operator H0
per being bounded from

below, we have C ≡ 0 on (−∞, inf λk(Γ∗)) and it is known [28, Lemma A-2] that
limµ→∞ C(µ) = ∞. We can thus choose a chemical potential µ such that

(A.1) Z = C(µ) =
∑

k≥1

|{ξ ∈ Γ∗ | λk(ξ) ≤ µ}| .

Considering a variation (1− t)γ0
per + tγ for any γ ∈ PZ

per and t ∈ [0, 1], we deduce

that γ0
per minimizes the following linear functional

γ ∈ PZ
per 7→

1

(2π)3

∫

Γ∗

TrL2
ξ(Γ)

(
(H0

per)ξγξ

)
dξ,

where H0
per is the mean-field operator defined in (2.5). We subtract the chemical

potential µ defined above and introduce the functional

γ ∈ Pper 7→ F (γ) :=
1

(2π)3

∫

Γ∗

TrL2
ξ(Γ)

(
(H0

per − µ)ξγξ

)
dξ.

Notice that since 1
(2π)3

∫
Γ∗

TrL2
ξ(Γ) (γξ) dξ = Z for any γ ∈ PZ

per, then γ0
per also

minimizes F on PZ
per.

For any ξ ∈ Γ∗, we can find orthonormal functions ek(ξ, ·) ∈ L2
ξ(Γ) such that

(A.2) (H0
per)ξ(x, y) =

∑

k≥1

λk(ξ)ek(ξ, x)ek(ξ, y),

each function (ξ, x) 7→ ek(ξ, x) being measurable on Γ∗ × Γ. Let us now define
γ0 ∈ Pper by

(γ0)ξ(x, y) =
∑

k≥1

δk(ξ)ek(ξ, x)ek(ξ, y), δk(ξ) =

{
1 if λk(ξ) ≤ µ
0 if λk(ξ) > µ.

Saying differently γ0 = χ(−∞,µ](H
0
per). Notice µ was chosen to ensure γ0 ∈ PZ

per.

We now prove that γ0 is the unique minimizer of the function F defined above,
on the set Pper without a charge constraint. Since γ0 ∈ PZ

per, this will prove that

γ0
per = γ0 and that γ0

per is the unique minimizer of F on Pper. We write

F (γ) − F (γ0) = (2π)−3

∫

Γ∗

TrL2
ξ(Γ)

(
(H0

per − µ)ξ(γ − γ0)ξ

)
dξ

=
∑

k≥1

(2π)−3

∫

Γ∗

(λk(ξ) − µ)
(
〈γξek(ξ, ·), ek(ξ, ·)〉ξ − δk(ξ)

)
dξ

where 〈·, ·〉ξ is the usual scalar product of L2
ξ(Γ). Since 0 ≤ γ ≤ 1 in L2(R3), we

have that 0 ≤ γξ ≤ 1 on L2
ξ(Γ) and thus 〈γξek(ξ, ·), ek(ξ, ·)〉 ∈ [0, 1], for almost

every ξ ∈ Γ∗. Hence, using the definition of δk(ξ),

F (γ) − F (γ0) =
∑

k≥1

(2π)−3

∫

Γ∗

|λk(ξ) − µ| ×
∣∣〈γξek(ξ, ·), ek(ξ, ·)〉 − δk(ξ)

∣∣dξ ≥ 0.

This shows that γ0 minimizes F on PZ
per. If now F (γ) = F (γ0), then necessarily

〈γξek(ξ, ·), ek(ξ, ·)〉 = δk(ξ) for almost every ξ ∈ Γ∗ and any k ≥ 1, the set {ξ ∈
Γ∗ | ∃k, λk(ξ) = µ} having a Lebesgue measure equal to zero by [28, Lemma
2]. Using now that the operators γξ and (1 − γ)ξ are nonnegative, we infer that
γξek(ξ, ·) = δk(ξ)ek(ξ, ·) for all k ≥ 1 and almost all ξ ∈ Γ∗. Hence γ = γ0 and
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γ0 is the unique minimizer of F . In particular γ0
per = γ0, i.e. γ0

per solves the
self-consistent equation (2.6).

Consider now another minimizer γ of the energy E0
per on PZ

per, we recall that

ργ = ργ0
per

as was shown in [3]. Hence the operators H0
per and γ0 defined above do

not depend on the chosen minimizer. The above argument applied to γ shows that
γ = γ0 = γ0

per, i.e. γ0
per is unique. �
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