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On the controllability of linear parabolic equations with an arbitrary control location for stratified media

We prove a null controllability result with an arbitrary control location in dimension greater than or equal to two for a class of linear parabolic operators with non-smooth coefficients. The coefficients are assumed to be smooth in all but one directions.

Résumé

De la contrôlabilité des équations paraboliques linéaires avec une localisation arbitraire du contrôle pour des milieux stratifiés. Nous prouvons un résultat de contrôlabilité à zéro avec une localisation arbitraire de la zone de contrôle en dimension plus grande que deux pour une classe d'opérateurs paraboliques avec des coefficients non réguliers. Les coefficients sont supposés singuliers dans une seule direction.

Version franc ¸aise abrégée

. On ne traite donc que le cas linéaire.

Soit Ω un ouvert borné de R n , avec Ω = Ω ′ × (0, H), où Ω ′ est un ouvert non vide de R n-1 de frontière C 2 . On pose x = (x ′ , x n ) ∈ Ω ′ × (0, H). Soit B(x), une matrice n × n qui possède la forme diagonale par blocs

B(x ′ , x n ) = diag(c 1 (x n )C 1 (x ′ ), c 2 (x n )) où c 1 ∈ L ∞ (0, H), c 2 ∈ BV(0, H) et C 1 ∈ C 1 (Ω ′ , M n-1 (R))
. La matrice C 1 (x ′ ) est symétrique. On suppose 0 < c min ≤ c i (x n ) ≤ c max , x n ∈ (0, H), i = 1, 2, et 0 < c min I n-1 ≤ C 1 (x ′ ) ≤ c max I n-1 , x ′ ∈ Ω ′ , où I k est la matrice identité d'ordre k, ce qui implique une ellipticité uniforme. Soit l'opérateur autoadjoint A = -∇ x • (B∇ x ) dans L 2 (Ω) de domaine D(A) = {u ∈ H 1 0 (Ω); ∇ x • (B∇ x u) ∈ L 2 (Ω)}. Soit T > 0 et Q T = (0, T ) × Ω. On considère le système (2) où q 0 ∈ L 2 (Ω) et ω est un ouvert non vide de Ω tel que ω ⋐ Ω. On choisit ω ′ un ouvert non vide de Ω ′ et ω n un ouvert non vide de (0, H) tels que ω ′ × ω n ⊂ ω. On suppose de plus que le coefficient c 2 est de classe C 1 dans un ouvert non vide de ω n . Notre résultat principal de contrôlabilité à zéro est le suivant. Théorème 1 Sous les hypothèses précédentes, pour tout T > 0 et tout q 0 ∈ L 2 (Ω), il existe u ∈ L 2 ((0, T ) × Ω) tel que la solution associée, q, du système [START_REF] Fursikov | Controllability of evolution equations[END_REF] vérifie q(T ) = 0 p.p. dans Ω.

Un conséquence immédiate est l'observabilité pour le système homogène adjoint du système [START_REF] Fursikov | Controllability of evolution equations[END_REF]. Nous donnons maintenant un esquisse de la démonstration du Théorème 1.

On introduit les espaces H k = vect{ϕ k,p ; p ≥ 1} = {φ k ⊗ f ; f ∈ L 2 (0, H)} où les φ k , k ∈ N * , sont les fonctions propres de l'opérateur

A ′ = -∇ x ′ • (C 1 ∇ x ′ ), de domaine D(A ′ ) = {u ∈ H 1 0 (Ω ′ ); ∇ x ′ • (C 1 ∇ x ′ u) ∈ L 2 (Ω ′
)}, associées aux valeurs propres µ 1 ≤ µ 2 ≤ . . . , que l'on choisit formant une base orthonormée de L 2 (Ω ′ ). On définit les espaces

E j = ⊕ k≤2 j H k pour j ∈ N * , et on vérifie que ∪ j∈N E j = ⊕ k∈N * H k = L 2 (Ω).
On décompose l'intervalle de temps (0, T ), (0,

T ) = ∪ j∈N [a j , a j+1 ], a j+1 -a j = 2T j , avec T j = Kσ -ρ j , σ j = 2 j , avec K choisi tel que 2 ∞ j=0 T j = T et ρ ∈ (0, 2 3(n-1)
). Comme dans [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], on construit une suite de contrôles u j de L 2 ((a j , a j + T j ) × Ω), j ≥ j 0 pour un certain j 0 ∈ N, chargés de ramener à 0 la composante suivant E j de la solution de (2) au temps a j + T j . Le contrôle est en revanche nul dans l'intervalle de temps [a j + T j , a j+1 ], afin de profiter de la décroissance exponentielle en temps de la solution (qui se trouve dans E ⊥ j à l'instant t = a j + T j ). L'inégalité de Carleman pour l'opérateur [START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF] permet d'estimer en fonction de µ σ j le coût d'un contrôle agissant sur Ω ′ × ω n pendant l'intervalle de temps [a j , a j + T j ]. Puis, en utilisant l'inégalité [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF] relative aux fonctions propres de l'opérateur A ′ [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], on déduit une estimation du coût d'un contrôle, u j , agissant sur ω ′ × ω n pendant l'intervalle de temps [a j , a j + T j ]. Ce coût est de la forme :

∂ t + A k , où A k = -∂ x n (c 2 (x n )∂ x n ) + c 1 (x n )µ k de domaine D(A k ) = {u ∈ H 1 0 (0, H); c 2 ∂ x n u ∈ H 1 (0, H)}, prouvée dans
u j L 2 ((a j ,a j +T j )×Ω) ≤ Ce Cµ 2/3 σ j q j L 2 (Ω) , (1) 
pour j suffisamment grand, où q j est la valeur de la solution de (2) au temps t = a j . On peut alors conclure comme dans [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. Remarque 2 Comme dans [START_REF] Fursikov | Controllability of evolution equations[END_REF], le résultat obtenu pour un contrôle distribué permet d'obtenir un résultat pour un contrôle frontière (ici sur une partie de la frontière Ω ′ × {0} ou Ω ′ × {H}).

A = c 1 (x n )A ′ -∂ x n c 2 (x n )∂ x n avec c 1 ∈ L ∞ (0, H), c 2 ∈ BV(0, H) (vérifiant

Introduction

The question of the null controllability of linear parabolic partial differential equations with smooth coefficients was solved in the 1990's [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Fursikov | Controllability of evolution equations[END_REF]. In the case of discontinuous coefficients in the principal part of the parabolic operator, the controllability issue and its dual counterpart, observability, are not fully solved yet. A result of controllability for a semilinear parabolic equation with a discontinuous coefficient was proven in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] by means of a Carleman observability estimate. Roughly speaking, as in the case of hyperbolic systems (see e.g. [7, page 357]), the authors of [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] proved their controllability result in the case where the control is supported in the region where the diffusion coefficient is the 'lowest'. In both cases, however, the approximate controllability, and its dual counterpart, unique-ness, are true without any restriction on the monotonicity of the coefficients. It is then natural to question whether or not an observability estimate holds in the case of non-smooth coefficients and arbitrary observation location.

Recently, in the one-dimensional case, the controllability result for parabolic equations was proven for general piecewise C 1 coefficients in [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF], and for coefficients with bounded variations (BV) in [START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF]. The proof relies on global Carleman estimates, which moreover allows to treat semilinear equations. Such global Carleman estimates are also of interest to prove stability results for some inverse problems. A controllability result for parabolic equations with general bounded coefficients was independently proven in [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF]. The method used there to achieve null controllability is that of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], which limits the field of applications to linear equations.

In the n-dimensional case, n ≥ 2, the controllability with an arbitrary control location is still open. In particular, an extension based on the proof of the Carleman estimate in the one dimensional case, leads to uncontrolled tangential terms at the interfaces of discontinuities of the coefficient. This work provides a positive answer to the controllability question for a class of discontinuous coefficients: the main assumption we make is that the coefficients are smooth w.r.t. to all but one variables, which includes the case of stratified media. The proof relies both on the Carleman estimates of [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF][START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF] in the one-dimensional case and the method of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. We thus only treat linear equations.

We let Ω be an open subset in R n , with Ω = Ω ′ × (0, H), where Ω ′ is an nonempty regular bounded open subset of R n-1 with C 2 boundary. We shall use the notation x = (x ′ , x n ) ∈ Ω ′ × (0, H). For a real Hilbert space X, • X (resp. (., .) X ) will denote the norm (resp. the real scalar product) in X. Let B(x), x ∈ Ω, be with values in M n (R), the space of square matrices with real coefficients of order n. We make the following assumption. Assumption 1.1 The matrix diffusion coefficient B(x ′ , x n ) has the following block-diagonal form

B(x ′ , x n ) =           c 1 (x n )C 1 (x ′ ) 0 0 c 2 (x n )           , where c 1 ∈ L ∞ (0, H), c 2 ∈ BV(0, H) and C 1 ∈ C 1 (Ω ′ , M n-1 (R)). The matrix C 1 (x ′ ) is symmetric. We further assume 0 < c min ≤ c i (x n ) ≤ c max , x n ∈ (0, H), i = 1, 2, and 0 < c min I n-1 ≤ C 1 (x ′ ) ≤ c max I n-1 , x ′ ∈ Ω ′
, where I k is the identity matrix of order k, which implies uniform ellipticity.

We consider the selfadjoint operator

A = -∇ x • (B∇ x ) in L 2 (Ω) with domain D(A) = {u ∈ H 1 0 (Ω); ∇ x • (B∇ x u) ∈ L 2 (Ω)}. Let T > 0.
We shall use the notation Q T = (0, T ) × Ω. We consider the following parabolic system

             ∂ t q -∇ x • (B∇ x q) = 1 ω u in Q T , q(t, x) = 0 on (0, T ) × ∂Ω, q(0, x) = q 0 (x) in Ω, (2) 
(coefficients and solutions are real valued) where q 0 ∈ L 2 (Ω) and ω is a nonempty open subset of Ω such that ω ⋐ Ω.

We choose ω ′ a nonempty open subset of Ω ′ and ω n a nonempty open subset of (0,

H) such that ω ′ × ω n ⊂ ω. Assumption 1.2 The coefficient c 2 is of class C 1 in some nonempty open subset of ω n .
We analyze the null controllability of System (2), or equivalently its exact controllability to the trajectories, when a distributed control u ∈ L 2 ((0, T ) × Ω) acts on the system. The main result is the following theorem. Theorem 1.3 Under Assumption 1.1, for arbitrary time T > 0 and initial condition q 0 ∈ L 2 (Ω), there exists u ∈ L 2 ((0, T ) × Ω) such that the corresponding solution q of System (2) satisfies q(T ) = 0 a.e. in Ω. Corollary 1.4 There exists an observability inequality for the homogeneous adjoint system of System [START_REF] Fursikov | Controllability of evolution equations[END_REF].

The proof makes use of the technique introduced by G. Lebeau and L. Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], as well as the onedimensional Carleman estimates of [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF][START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF].

In this article, when the constants C or C ′ , etc, are used, their values may change from one line to the other. If we want to keep track of the value of a constant we shall use another letter.

Spectral properties

Similarly to A, we define the selfadjoint operator

A ′ = -∇ x ′ • (C 1 ∇ x ′ ), in L 2 (Ω ′ ), with domain D(A ′ ) = {u ∈ H 1 0 (Ω ′ ); ∇ x ′ • (C 1 ∇ x ′ u) ∈ L 2 (Ω ′ )}.
With orthonormal eigenfunctions (φ k ) k≥1 , associated to the eigenvalues, with finite multiplicities, µ 1 ≤ µ 2 ≤ ... ≤ µ k ≤ µ k+1 ≤ ..., we construct a Hilbert basis of L 2 (Ω ′ ).

We also define the selfadjoint operators

A k , k ∈ N * , on L 2 (0, H) by A k = -∂ x n (c 2 (x n )∂ x n ) + c 1 (x n )µ k with domain D(A k ) = {u ∈ H 1 0 (0, H); c 2 ∂ x n u ∈ H 1 (0, H)}. We denote by ψ k,p (x n ), p ∈ N * , orthonormal eigenfunctions with associated eigenvalues λ k,1 ≤ λ k,2 ≤ • • • ≤ λ k,p ≤ λ k,p+1 ≤ . . . . Note that we have λ k,p > c min µ k .
From the separation of variables in the coefficients of the matrix B, we have the following proposition.

Proposition 2.1 The eigenfunctions of the operator A given by ϕ

k,p (x ′ , x n ) = (φ k ⊗ ψ k,p )(x ′ , x n ) = φ k (x ′ )ψ k,p (x n ) with associated eigenvalue λ k,p , k, p ∈ N * , form a Hilbert basis of L 2 (Ω).
Let us denote by H k the following closed infinite dimensional subspace of L 2 (Ω):

H k = span{ϕ k,p ; p ≥ 1} = {φ k ⊗ f ; f ∈ L 2 (0, H)}
and let us set E j = ⊕ k≤2 j H k for j ∈ N * . In the sequel we shall denote by Π E j the orthogonal projection onto E j in L 2 (Ω). We have the following proposition. Proposition 2.2 The following properties hold:

(i) E j ⊂ E j+1 , j ∈ N, and

∪ j∈N E j = ⊕ k∈N * H k = L 2 (Ω);
(ii) The operator (-A, D(A)) generates a C 0 -semigroup of contraction, S (t) = e -tA for t ≥ 0, and for all f ∈ L 2 (Ω) we have S (t) f = k,p≥1 e -tλ k,p ( f, ϕ k,p )ϕ k,p ; (iii) For all k ≥ 1, S (t) is reduced by the space H k . See for instance [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF] or [START_REF] Reed | Methods of modern Mathematical Physics[END_REF].

Existence and estimation of a control acting on E j

Following [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], for ρ ∈ (0, 2 3(n-1) ), we set T j = Kσ -ρ j , with σ j = 2 j , for all j ∈ N. The constant K is adjusted so that 2 ∞ j=0 T j = T . Then, we set a 0 = 0, a j+1 = a j + 2T j , for j ≥ 0. We show that for all q j ∈ L 2 (Ω), j ≥ j 0 , for some j 0 ∈ N, there exists u j ∈ L 2 (a j , a j + T j ; L 2 (Ω)) such that the solution q to              ∂ t q -∇ x • (B∇ x q) = 1 ω u j in (a j , a j + T j ) × Ω, q(t, x) = 0 on (a j , a j + T j ) × ∂Ω, q(a j , x) = q j (x)

in Ω,

satisfies Π E j q(a j + T j , x) = 0. Since S (t) and Π E j commute, this is equivalent to the observability inequality [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and application to controllability[END_REF] y(a j , .)

2 L 2 (Ω) ≤ C 2 T j a j +T j a j ω |y(t)| 2 dt dx, ( 4 
)
for the solution y ∈ C ([a j , a j + T j ]; E j ) of the adjoint system

-∂ t y -∇ x • (B∇ x y) = 0 in (a j , a j + T j ) × Ω, and y(a j + T j ) = y 0 in Ω, y 0 ∈ E j , (5) 
which moreover yields the existence of a control u j ∈ L 2 ((a j , a j + T j ); L 2 (Ω)) such that

u j L 2 ((a j ,a j +T j )×Ω) ≤ C T j Π E j q j E j ≤ C T j q j L 2 (Ω) . (6) 
We now prove (4). We first recall a Carleman estimate for a parabolic operator with a BV diffusion coefficient proven in [START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF]. For a positive function β, we introduce β = β + K with K = m β ∞ and m > 1. For λ > 0 and t ∈ (a j , a j + T j ), we define the following weight functions [START_REF] Fursikov | Controllability of evolution equations[END_REF] 

ϕ(t, x) = e λβ(x) (t -a j )(a j + T j -t) , η(t, x) = e λβ -e λβ(x) (t -a j )(a j + T j -t)
, with β = 2m β ∞ . 

= λ 0 (H, O, c min , c max ) > 0, s 0 = s0 (H, O, c min , c max )(T j + T 2 j ) > 0 and a positive constant C = C(H, O, c min , c max ) so that s -1 a j +T j a j H 0 e -2sη ϕ -1 (|∂ t z| 2 + |∂ x (γ∂ x z)| 2 ) dxdt + sλ 2 a j +T j a j H 0 e -2sη ϕ |∂ x z| 2 dxdt + s 3 λ 4 a j +T j a j H 0 e -2sη ϕ 3 |z| 2 dxdt ≤ C s 3 λ 4 a j +T j a j O e -2sη ϕ 3 |z| 2 dxdt + a j +T j a j H 0 e -2sη | f | 2 dxdt ,
for s ≥ s 0 , λ ≥ λ 0 and for all z (weak) solution of

∂ t z + ∂ x (γ∂ x z) = f in (a j , a j + T j ) × (0, H), z(t, 0) = z(t, H) = 0, and z(a j + T j , x) = z 0 (x) in (0, H), with z 0 ∈ L 2 (0, H) and f ∈ L 2 ((a j , a j + T j ) × (0, H)).
With the previous Carleman estimate we can prove an observability inequality for the parabolic operator -∂ t +A k . Proposition 3.2 There exist positive constants C = C(H, ω n , c min , c max ), and C ′ = C ′ (H, ω n , c min , c max ) such that, for all k ∈ N * and for s k = max(C ′ T 2 j µ 2/3 k , s0 (T j + T 2 j )), the solutions to

       -∂ t z + A k z = 0 in (a j , a j + T ) × Ω, z(t) = 0 on (a j , a j + T j ) × ∂Ω, (7) 
satisfy z(a j , •) 2 L 2 (0,H) ≤ 1 T j Ce Cs k T -2 j a j +T j a j
ω n |z(t, x)| 2 dx dt. Proof. We apply Theorem 3.1, with f = -c 1 µ k z, γ = c 2 , λ = λ 0 and s ≥ s0 (T j + T 2 J ), and obtain

a j +T j a j H 0 e -2sη ϕ 3 (s 3 -Cϕ -3 µ 2 k )|z| 2 dx n dt ≤ C ′′ s 3 a j +T j a j ω n e -2sη ϕ 3 |z| 2 dx n dt.
Noting that ϕ -1 ≤ CT 2 j , the coefficient s 3 -Cϕ -3 µ 2 k will be positive for s

≥ C ′ T 2 j µ 2/3 k . Setting s = s k = max(C ′ T 2 j µ 2/3 k , s0 (T j + T 2 j ))
, we obtain

a j +3T j /4 a j +T j /4 H 0 |z| 2 dx n dt ≤ Ce Cs k T -2 j a j +T j a j
ω n |z| 2 dx n dt. Making use of the parabolic "dissipation effect", i.e. d dt |z(t)| 2 ≥ 0 here, we obtain the desired inequality. We can now obtain the observability in the space E j . Proposition 3.3 Let ω ′ be a nonempty open subset of Ω ′ with ω ′ ⋐ Ω ′ . There exists j 0 ∈ N such that, if j ≥ j 0 , solutions of ( 5) satisfy ( 4) with C T j = Ce Cµ 2/3 σ j .

To prove Proposition 3.3, we shall need the following result which was first proven in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF].

Theorem 3.4 There exists C = C(Ω ′ , ω ′ , c min , c max ) > 0 such that for all l ∈ N * , k≤l |b k | 2 ≤ Ce C √ µ l ω ′ k≤l b k φ k (x ′ ) 2 dx ′ , (b 1 , ..., b l ) ∈ R l . (8) 
Proof of Proposition 3.3. The definition of E j implies that y(t, x ′ , x n ) = k≤σ j φ k (x ′ )y k (t, x n ) and one sees that y is solution in C ([a j , a j + T j ]; E j ) of ( 5), if and only if each function y k , 1 ≤ k ≤ σ j , is solution in C ([a j , a j + T j ]; L 2 (0, H)) of ( 7) and y k (a j + T j ) = y 0,k , where

y 0 (x ′ , x n ) = k≤σ j φ k (x ′ )y 0,k (x n ). We then have y(t, .) 2 L 2 (Ω) = k≤σ j y k (t, .) 2 L 2 (0,H) and similarly y(t, .) 2 L 2 (Ω ′ ×ω n ) = k≤σ j y k (t, .) 2 L 2 (ω n ) for t ∈ [a j , a j + T ].
According to the Weyl formula [12, Theorem 14.6, p. 250], µ σ j ∼ C(Ω ′ )(σ j ) 2 n-1 , we see that, for j sufficiently large, we have s

σ j = CT 2 j µ 2/3 σ j . We then have T -2 j max 1≤k≤σ j s k = T -2 j s σ j = Cµ 2/3 σ j . From Proposition 3.2 we obtain y(a j , .) 2 L 2 (Ω) ≤ Ce Cµ 2/3 σ j a j +T j a j ω n k≤σ j |y k (t, x n )| 2 dtdx n . (9) 
If we use y k (t, x n ) in place of b k in (8), we deduce

y(a j , .) 2 L 2 (Ω) ≤ Ce Cµ 2/3 σ j a j +T j a j ω n C ′ e C ′ √ µ σ j ω ′ k≤σ j φ k (x ′ )y k (t, x n ) 2 dx ′ dx n dt. ( 10 
)
Following the method of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], with the value of C T j we have obtained and the choice made for T j , the result of Theorem 1.3 follows.

Remark 1 For the sake of presentation, we chose to take the open set Ω of the form Ω ′ × (0, H) with Ω ′ a bounded open subset of R n-1 . There are other situations that can be handled by the method we have presented. We could for instance consider an uniformly elliptic operator in cylindrical coordinates and address the case of a ring with variations of the medium in the radial direction. In this case, the interfaces that locate the jumps of the coefficients of the diffusion matrix (in the case of piecewise continuous coefficients) do not reach the boundary of the domain Ω. As before we can address the case of a BV-type regularity in the radial direction.

One other natural extension would be the case of a domain of the form M × (0, H) where M is a smooth (n -1)-dimensional Riemannian compact manifold with or without a boundary. The parabolic operators under consideration would then be of the form ∂ t + A, where A = c 1 (x n )A ′ -∂ x n c 2 (x n )∂ x n with c 1 ∈ L ∞ (0, H), c 2 ∈ BV(0, H) (satisfying the same assumptions as those given above), and say A ′ = -∆, with ∆ the Laplace operator on M. In such a case, estimate (8) can be found in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. Remark 2 As usual, as in [START_REF] Fursikov | Controllability of evolution equations[END_REF], the result obtained on distributed controls yields a boundary control result. Here the control function could act in a nonempty open region of Ω ′ × {0} or Ω ′ × {H} as a boundary condition for the parabolic system under consideration. This is of particular interest for geometrical situations like that described in the previous remark.

  les mêmes hypothèses que celles données plus haut), et par exemple A ′ = -∆, avec ∆ le Laplacien sur M.

Theorem 3 . 1

 31 Let O ⋐ (0, H) be a nonempty open set and γ ∈ BV(0, H) with 0 < c min ≤ γ ≤ c max and γ of class C 1 in O. There exist a positive continuous function β, and λ 0
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