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ALTERNATING NORMAL FORMS FOR BRAIDS AND

LOCALLY GARSIDE MONOIDS

PATRICK DEHORNOY

Abstract. We describe new types of normal forms for braid monoids, Artin–
Tits monoids, and, more generally, all monoids in which divisibility has some
convenient lattice properties (“locally Garside monoids”). We show that, in the
case of braids, one of these normal forms turns out to coincide with the normal
form introduced by Burckel and deduce that the latter can be computed easily.
This approach leads to a new, simple description for the canonical well-order
of B

+
n in terms of that of B

+
n−1.

The first aim of this paper is to improve our understanding of the well-order of
positive braids and of the so-called Burckel normal form of [7], which after more
than a decade remain mysterious objects [16]. Here this aim is achieved, at least
partially, by giving a new, alternative construction of the Burckel normal form that
makes the latter hopefully more natural, and, in any case, very easily computable.
However, it turns out that the construction we describe below relies on a very
general scheme for which many monoids are eligible, and we may hope for further
applications beyond the case of braids.

Following the seminal work of F.A. Garside [22], we know that braid monoids
and, more generally, Artin–Tits monoids and Garside monoids that generalize them,
can be equipped with a normal form, namely the so-called greedy normal form
of [6, 1, 20, 32], which constructs for each element of the monoid a distinguished
representative word in terms of some standard generators. The latter normal form
is excellent both in theory and in practice in that it provides an automatic structure,
and it is easily computable [21, 9, 13].

What we do in this paper is to construct a new type of normal form for braid
monoids and their generalizations. Our construction keeps one of the ingredients of
the (right) greedy normal form, namely considering the maximal right divisor that
lies in some subset A of the considered monoid M , but, instead of taking for A the
finite set of so-called simple elements, i.e., the divisors of the Garside element ∆,
we choose A to be some standard parabolic submonoid M0 of M , i.e., the monoid
generated by some subset I of the standard generating set S. When I is a proper
subset of S, the submonoid M0 is a proper subset of M , and the construction
stops after one step. However, by considering two parabolic submonoids M1, M0

which together generate M , we can obtain a well-defined, unique decomposition
alternatively involving M1 and M0, according to a scheme that is usual in the case
of an amalgamated product. By considering convenient families of submonoids, we
can iterate the process and finally obtain a unique normal form for each element
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of M . When it exists, typically for all Artin–Tits monoids, such a normal form
is exactly as easy to compute as the greedy normal form, and it provides a new
solution of quadratic complexity for the word problem.

The above construction is quite general, as it only requires that the ground
monoid M is what is now called locally Garside on the right—or locally left Gaussian
in the obsolete terminology of [17]. However, our main interest in this paper lies
in the application to the specific case of the braid monoids B+

n . The key result is
that, for a convenient choice of the parameters, the alternating normal form turns
out to coincide with the Burckel normal form alluded to above. As a consequence,
we at last obtain both an easy algebraic description of the latter, and an efficient
algorithm for computing it. And, mainly, because of the known connection between
the Burckel normal form and the standard well-order of positive braids, we obtain
a new characterization of the latter. The result can be summarized as follows:

Proposition. Let B+
n denote the monoid of positive n strand braids. For x in B+

n−1,

denote by x# the image of x under the shift morphism that maps σi to σi+1 for

each i. Let φn denote the flip automorphism of B+
n that maps σi to σn−i for each i.

(i) For every x in B+
n , there exists a unique sequence (xp, ..., x0) with x0, ..., xp

in B+

n−1 satisfying

x = . . . · x4 · x#

3 · x2 · x#

1 · x0

such that, for i > 1, the only σ dividing . . . · x#

2i+1 · x2i on the right is σ1, and the

only σ dividing . . . · x2i · x#

2i−1 on the right is σn−1.
(ii) Let x, y ∈ B+

n . Let (xp, ..., x0) and (yq, ..., y0) be the decompositions of x
and y as in (i). Then x < y holds in B+

n if and only if we have either p < q, or
p = q and there exists r satisfying xi = yi for p > i > r and, respectively, xr < yr

in B+

n−1 if r is even, and φn−1(xr) < φn−1(yr) in B+

n−1 if r is odd.

In other words, via the above decomposition, the well-order on B+
n is just a

sort of lexicographical extension of the well-order on B+

n−1. As an application, one
deduces that (arbitrary) braids can be compared with respect to the braid ordering
in quadratic time. In the above statement, (i) is easy, but (ii) is not.

The organization of the paper is as follows. In Section 1, we describe what will
be called the alternating decomposition obtained when considering two submonoids
of a convenient monoid. In Section 2, we iterate the construction so as to obtain
unique normal forms. In Section 3, we concentrate on the specific case of braids and
investigate what will be called the flip decomposition and the derived flip normal
form. Finally, in Section 4, we show that the flip normal form of braids coincides
with the Burckel normal form, and deduce the above mentioned applications to the
braid order.

Remark. All constructions developed in this paper involve right divisibility and
the derived notions. This choice is dictated by the braid applications of Section 4.
Of course, we could use left divisibility instead and obtain symmetric versions for
all results, in the framework of monoids that are locally Garside on the left.

We use N for the set of all nonnegative integers.

1. Alternating decompositions

We show how to obtain unique decompositions for the elements of monoids in
which least common left multiples (left lcm’s) exist. The general idea is that, if M
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is such a monoid and A is a subset of M that is closed under the left lcm operation,
then, under weak additional assumptions, every element x admits a distinguished
decomposition x = x′x0, where x0 is a maximal right divisor of x lying in A that
will be called the A-tail of x. If we assume that every nontrivial (i.e., 6= 1) element
of M has a nontrivial A-tail, then we can consider the A-tail x1 of x′, and, iterating
the process, obtain a decomposition of x as a product of elements of A. This is
the situation exploited in the standard greedy normal form for Garside monoids.
Here, we shall skip the above additional assumption on A, but instead consider
two subsets A1, A0 of M with the property that, for every nontrivial element x
of M , at least one of the A1- or A0-tails of x is nontrivial. In this way, we obtain a
distinguished decomposition of x as an alternating product of elements of A0 and
of A1.

1.1. Locally Garside monoids. Divisibility features play the key rôle throughout
the paper, and we first fix some notation.

Notation 1.1. For M a monoid and x, y ∈ M , we say that y is a right divisor of x,
or, equivalently, that x is a left multiple of y, denoted x < y (or y 4 x), if x = zy
holds for some z; we write x ≻ y if x = zy holds for some z 6= 1. The set of all
right divisors of x is denoted by DivR(x).

The approach considered below turns out to be relevant for the following monoids:

Definition 1.2. We say that a monoid M is a locally Garside on the right, or right
locally Garside, if:

(C1) The monoid M is right cancellative, i.e., xz = yz implies x = y;
(C2) Any two elements of M that admit a common left multiple admit a left lcm;
(C3) For every x in M , there is no infinite ascending chain in (DivR(x),≺).

If M is a right locally Garside monoid, and x, y are elements of M satisfying
x < y, the element z satisfying x = zy is unique by right cancellativity, and we
denote it by x/y.

Example 1.3. According to [6] and [28], all Artin–Tits monoids are locally Garside
(on both sides). We recall that Artin–Tits monoids are the monoids generated by
the elements of a set S subject to relations of the form sts... = tst..., both sides of
the same length, and with at most one such relation for each pair of generators {s, t}.
An important example is Artin’s braid monoid B+

n , which corresponds to choosing
S = {σ1, .., σn−1} with the relations,

(1.1) σiσj = σjσi for |i − j| > 2, σiσjσi = σjσiσj for |i − j| = 1.

As the name suggests, more general examples of locally Garside monoids are the
now standard Garside monoids of [18, 13, 10, 11, 27], which include the torus knot
monoids [31], the dual braid monoids [5], and many more.

If M is locally Garside on the right, then no nontrivial element of M is invertible:
if we had xy = 1 with x 6= 1, hence y 6= 1, the periodic sequence x, 1, x, 1, ... would
contradict (C3). It follows that the right divisibility relation is antisymmetric, and,
therefore, it is a partial ordering on M . As a consequence, the left lcm of two
elements, when it exists, is unique.

Definition 1.2—which also appears in [19]—is satisfactory in that it exclusively
involves the right divisibility relation, and it directly leads to Lemma 1.5 below.
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Actually, it does not coincide with the definitions of [13] and [18], where (C3) is
replaced with some condition involving left divisibility. However, both definitions
are equivalent. For a while, we use ≺

L
for the proper left divisibility relation, i.e.,

x ≺
L

y holds if we have y = xz with z 6= 1.

Lemma 1.4. (i) If M is right cancellative, Condition (C3) is equivalent to
(C′

3) There is no infinite descending chain in (M,≺
L
).

(ii) In any case, Conditions (C3) and (C′
3) follow from

(C∗
3 ) There exists λ : M → N such that x 6= 1 implies λ(x) > 1 and z = xy

implies λ(z) > λ(x) + λ(y).

Proof. (i) Assume that M is right cancellative and (C3) fails in M . Thus there
exists x in M and a sequence x0, x1, ... in DivR(x) such that xn+1 ≻ xn holds for
every n. So, for each n, there exists yn 6= 1 satisfying xn+1 = ynxn. On the other
hand, as xn belongs to DivR(x), there exist zn satisfying x = znxn. Then we find
x = znxn = zn+1xn+1 = zn+1ynxn. By cancelling xn on the right, we deduce
zn = zn+1yn, hence zn+1 ≺

L
zn for each n, and the sequence z0, z1, ... witnesses

that (C′
3) fails.

Conversely, assume that (C′
3) fails in M . Let z0, z1, ... is a descending chain

for ≺
L
. For each n, choose yn 6= 1 satisfying zn = zn+1yn. Let x = z0, x0 = 1, and,

inductively, xn+1 = ynxn. Then, by construction, we have xn+1 ≻ xn for each n.
Now, we also have x = znxn for each n, so all xn’s belong to DivR(x). Thus the
sequence x0, x1, ... witnesses that (C3) fails.

Point (ii) should be clear. �

Condition (C∗
3 ) holds in particular in every monoid that is presented by homo-

geneous relations, i.e., relations of the form u = v where u and v are words of
the same length for, in this case, we can define λ(x) to be the length of any word
representing x. This is the case with the Artin–Tits monoids of Example 1.3.

Lemma 1.4 implies that right locally Garside monoids coincide with the monoids
called locally left Gaussian in [13], in connection with the left Gaussian monoids
of [18]. The reason for changing terminology and left/right orientation is that the
current notation is coherent with [19] and, mostly, that it is more natural: right
locally Garside monoids involve right divisibility, and the normal forms we discuss
below are connected with what is usually called the right normal form.

Assume that M is a right locally Garside. The key point in the sequel is the
existence of left lcm’s in M . Condition (C2) in Definition 1.2 is equivalent to saying
that, for every x in M , any two elements of DivR(x) admit a left lcm, and it follows
that any finite subset of DivR(x) admits a global left lcm. By the Noetherianity
condition (C3), the result extends to arbitrary subsets. We say that a set X is
closed under left lcm if the left lcm of any two elements of X exists and lies in X
whenever it exists in M , i.e., by (C2), whenever these elements admit a common
left multiple in M .

Lemma 1.5. Assume that M is a right locally Garside, and x ∈ M . Then every
nonempty subset X of DivR(x) admits a global left lcm x0; if moreover X is closed
under left lcm, then x0 belongs to X.

Proof. Assume first that X is closed under left lcm. By the axiom of dependent
choices, Condition (C3) implies that (DivR(x),≻) is a well-founded poset, so X
has to admit some ≻-minimal, i.e., some ≺-maximal, element x0: so x′x0 ∈ X
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implies x′ = 1. We claim that x0 is a global left lcm for X . Indeed, let y0 be any
element of X . By hypothesis, x0 and y0 lie in DivR(x), so, by (C2), they admit a
left lcm z0, which can be expressed as y′y0 = x′x0. The hypothesis that X is closed
under left lcm implies z0 ∈ X . The choice of x0 implies x′ = 1, and we conclude
that x0 is a left multiple of y0.

If we drop the assumption that X is closed under left lcm, we can apply the above

result to the closure X̂ of X under left lcm, i.e., to the smallest subset of DivR(x)

that includes X and is closed under left lcm. Then the global left lcm x0 of X̂ is a
global left lcm for X , but we cannot be sure that x0 lies in X—yet it is certainly
the left lcm of some finite subset of X . �

Although standard, the previous result will be crucial in the sequel. By apply-
ing Lemma 1.5 to the subset DivR(x) ∩ DivR(y) of DivR(x), we see that any two
elements x, y of a right locally Garside M admit a right gcd (greatest common
divisor), and, therefore, for every x in M , the structure (DivR(x), 4) is a lattice,
with minimum 1 and maximum x.

1.2. The A-tail of an element. The basic observation is that, for any fixed sub-
set A of the considered monoid M that is closed under left lcm, Lemma 1.5 leads
to a distinguished decomposition for every element of M .

Lemma 1.6. Assume that M is a right locally Garside monoid and A is a subset
of M that is closed under left lcm. Then, for each element x of M , there exists
a unique right divisor x0 of x that lies in A and is maximal with respect to right
divisibility, namely the left lcm of DivR(x) ∩ A.

Proof. Apply Lemma 1.5 with X = DivR(x)∩A. The latter set is closed under left
lcm as it is the intersection of two sets that are closed under left lcm. �

For M, A and x as above, Lemma 1.6 gives a distinguished decomposition

(1.2) x = x′x0

with x0 ∈ A.

Definition 1.7. For M, A, x, x0 as in (1.2), the element x0 is called the A-tail of x,
and denoted tail(x, A).

Example 1.8. Let M be an Artin–Tits monoid, with standard set of generators S.
We assume in addition that M is of spherical type, which means that the Coxeter
group obtained by adding to the presentation the relation s2 = 1 for each s in S is
finite. Then, Garside’s theory shows that any two elements of M admit a common
left multiple, hence a left lcm. We shall consider two types of closed subsets of M .
A first, standard choice consists in considering the set Σ of all so-called simple
elements in M , namely the divisors of the lcm ∆ of S. By construction, Σ is
closed under left (and right) divisor, and under left (and right) lcm, and, for every
element x of M , the Σ-tail of x is the right gcd of x and ∆.

A second choice consists in considering a subset I of S, and taking for A the
so-called standard parabolic submonoid MI of M generated by I. Then the specific
form of the Artin–Tits relations implies that MI is closed under left (and right)
divisor, and under left (and right) lcm, and therefore it is eligible for our approach.
In this case, denote by ∆I the lcm of I. Then, for every element x of M , the

MI -tail x0 of x is the right gcd of x and ∆
|x|
I , where |x| denotes the common length
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of all words representing x. Indeed, let x′
0 be the latter gcd, and let ℓ = |x|. By

definition, x0 is a right divisor of x, so we have |x0| 6 ℓ, and, as for every element z
of MI satisfying |z| 6 ℓ is, we have ∆ℓ

I < x′
0, hence x′

0 < x0. Conversely, x′
0 is an

element of DivR(x)∩MI , hence we have x0 < x′
0, and, finally, x0 = x′

0. Observe that
the previous approach does not require that M be of spherical type, but only that
MI is. Actually, MI is a closed submonoid even if it is not of spherical type—but,
then, the characterization of the MI-tail in terms of the powers of ∆I vanishes.

1.3. Alternating decompositions. In the second case considered in Example 1.8,
the involved closed subset is a submonoid of M , i.e., in addition to being closed
under left lcm, it is closed under multiplication and contains 1. This is the case on
which we shall concentrate now. Then, the decomposition of Lemma 1.6 takes a
more specific form.

Definition 1.9. Assume that M is a right locally Garside. We say that a sub-
monoid M0 of M is closed if it is closed under both left lcm and left divisor, i.e.,
every left lcm of elements of M0 belongs to M0 and every left divisor of an element
of M0 belongs to M0.

Example 1.10. If M is an Artin–Tits monoid with standard set of generators S,
then every standard parabolic submonoid of M is closed under left lcm and left
divisor. This need not be the case in a general right locally Garside monoid, or
even in a Garside monoid. For instance, the monoid 〈a, b ; aba = b2〉+ is Garside,
hence locally Garside on the right—and the associated Garside group is the braid
group B3. However, the submonoid generated by b is not closed, as it contains b2,
which is aba, but it contains neither a nor ab, which are left divisors of b2.

Notation 1.11. For M a monoid, x ∈ M and A ⊆ M , we write x ⊥ A if no
nontrivial element of A is a right divisor of x, i.e., if DivR(x)∩A is either ∅ or {1}.

Lemma 1.12. Assume that M is a right locally Garside monoid and M0 is a
closed submonoid of M . Then every element x of M admits a unique decomposition
x = x′x0 satisfying

(1.3) x0 ∈ M0 and x′ ⊥ M0;

The elements x0 and x′ are determined by x0 = tail(x, M0) and x′ = x/x0.

Proof. Let x0 = tail(x, M0) and x′ = x/x0. We claim that, for each decomposition
x = y′y0 with y0 ∈ M0, we have

(1.4) y0 = x0 ⇐⇒ y′ ⊥ M0.

First, assume z ∈ DivR(x′) ∩ M0. Then we have x′ = x′′z for some x′′, hence
x = x′′zx0, and zx0 ∈ DivR(x). As z and x0 belong to M0 and the latter is a
submonoid of M , we deduce zx0 ∈ M0, hence z = 1 by definition of x0. So x′ ⊥ M0

holds, and the direct implication in (1.4) is true.
Conversely, assume x = y′y0 with y0 ∈ M0. By definition of the M0-tail, y0 is a

right divisor of x0, i.e., we have x0 = zy0 for some z. As z is a left divisor of x0,
the assumption that M0 is closed under left divisor implies z ∈ M0. Then we find
y′y0 = x = x′x0 = x′zy0, hence y′ = x′z by cancelling y0 on the right, and finally
z ∈ DivR(y′) ∩ M0. Then DivR(y′) ∩ M0 = {1} implies z = 1, i.e., y0 = x0, and,
from there, y′ = x′. So the converse implication in (1.4) is true. �
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Assume now that M is locally Garside on the right, that M0, M1 are two closed
submonoids of M , and x belongs to M . By Lemma 1.12, we have a distinguished
decomposition x = x′x0 involving the maximal right divisor of x that lies in M0.
If x′ is not 1, and if M1 is sufficiently distinct from M0, in some sense to be
made precise, it might be that the M1-tail of x′ is not 1, and we obtain a new
decomposition x = x′′x1x0 with x1 ∈ M1 and x0 ∈ M0. If x′′ is not 1, we can
iterate the process, and, in this way, obtain, in good cases, a decomposition of x as
an alternating product of elements of M0 and M1.

Definition 1.13. Assume that M is a right locally Garside. We say that (M1, M0)
is a covering of M if M1, M0 are closed submonoids of M and, moreover, M1 ∪M0

generates M (as a monoid).

Example 1.14. Let M be an Artin–Tits monoid with standard set of generators S,
and let S0, S1 be two subsets of S satisfying S1∪S0 = S. For i = 1, 0, let Mi be the
standard parabolic submonoid of M generated by Si. Then (M1, M0) is a covering
of M . Indeed, we already mentioned that M0 and M1 are closed submonoids of M .
Moreover, S is included in M1 ∪ M0, so the latter certainly generates M .

Similar results hold for any a right locally Garside generated by a set S when
we consider subsets S1, S0 of S satisfying S1 ∪ S0 = S and we define Mi to be the
smallest closed submonoid of M generated by Si.

Notation 1.15. For each (nonnegative) integer, we denote by [i] the unique ele-
ment of {1, 0} that is equal to i mod 2.

Then we can easily establish the existence of an alternating decomposition of the
expected type.

Proposition 1.16. Assume that M is a right locally Garside monoid and (M1, M0)
is a covering of M . Then, for every nontrivial element x of M , there exists a unique
finite sequence (xp, ..., x0) satisfying x = xp...x0 with xp 6= 1 and, for each i,

(1.5) xi ∈ M[i] and xp...xi+1 ⊥ M[i].

The elements xi are determined from x(0) := x by

(1.6) xi := tail(x(i), M[i]) and x(i+1) := x(i)/xi.

Moreover, we have xi 6= 1 for p > i > 1,

Proof. Let x belong to M , and let xi, x(i) be the elements specified by (1.6). We
first prove the relations

x = x(i+1)xi · · ·x0,(1.7)

x(i+1) ⊥ M[i](1.8)

for every i > 0 using induction on i. For i = 0, Lemma 1.12 for x and M0 gives
x = x(1)x0, which is (1.7), and x(1) ⊥ M0, which is (1.8). Assume i > 1. By
definition, we have xi = tail(x(i), M[i]) and x(i+1) = x(i)/xi, hence x(i) = x(i+1)xi

by construction. Susbtituting in x = x(i)xi−1...x0, which holds by induction hy-
pothesis, we obtain (1.7). Moreover, Lemma 1.12 for x(i) and M[i] gives (1.8).

By construction, the sequence x0, x1x0, x2x1x0, ... is increasing in (DivR(x),≺).
By Condition (C3), it must be eventually constant. By right cancellability, this
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implies that there exists p such that xi = x(i) = 1 holds for all i > p. Then (1.7)
implies x = xp...x0, with xp 6= 1 provided p is chosen to be minimal and x is not 1.

At this point, we proved that the expected sequence (xp, ..., x0) exists and sat-
isfies (1.5) and (1.6). We show now that xi 6= 1 holds for all i with p > i > 1.
Indeed, assume x(i+1) 6= 1. By hypothesis, M1 ∪ M0 generates M , hence we must
have x(i+1) 6⊥ (M1 ∪ M0). By (1.8), we have x(i+1) ⊥ M[i], hence x(i+1) 6⊥ M[i+1].

Therefore the M[i+1]-tail of x(i+1), which by definition is xi+1, is not 1. (Observe

that x0 = 1 does not imply x = x(0) = 1 because x(0) ⊥ M1 need not hold).
We turn to uniqueness. Consider any decomposition x = yq...y0 satisfying yq 6= 1

with yi ∈ M[i] and yq...yi+1 ⊥ M[i] for each i. We inductively prove that yi = xi and

yq...yi+1 = x(i+1) hold for i > 0. For i = 0, by hypothesis, we have x = (yq...y1)y0

with y0 ∈ M0 and yq...y1 ⊥ M0, so Lemma 1.12 implies y0 = x0 and yq...y1 = x(1).

Assume i > 1. By induction hypothesis, we have yq...yi = x(i), and the hypotheses

about the yj’s give x(i) = (yq...yi+1)yi with yi ∈ M[i] and yq...yi+1 ⊥ M[i]. Then

Lemma 1.12 again implies yi = tail(x(i), M[i]) = xi and yq...yi+1 = x(i)/xi = x(i+1).
This completes the proof, as q > p would imply xq = yq 6= 1, contradicting the
choice of p. �

Definition 1.17. In the framework of Proposition 1.16, the sequence (xp, ..., x0)
is called the (alternating) (M1, M0)-decomposition of x.

Example 1.18. Let M be the 4 strand braid monoid B+

4 . Let M0 be the submonoid
generated by σ1 and σ2, i.e., B+

3 , and M1 be the submonoid generated by σ2

and σ3. Choose x = ∆2
4 = (σ1σ2σ1σ3σ2σ1)

2. The computation of the (M1, M0)-
decomposition of x is as follows:

x = ∆2
4 x0 = tail(x, M0) = ∆2

3,

x(1) = x/x0 = σ3σ2σ
2
1σ2σ3 x1 = tail(x(1), M1) = σ2σ3,

x(2) = x(1)/x1 = σ3σ2σ
2
1 x2 = tail(x(2), M0) = σ2σ

2
1 ,

x(3) = x(2)/x2 = σ3 x3 = tail(x(3), M1) = σ3,

x(4) = x(3)/x3 = 1,

and the computation stops. Thus the (M1, M0)-decomposition of ∆2
4 is the sequence

(σ3 , σ2σ
2
1 , σ2σ3 , ∆2

3).

Note that the decomposition changes when the submonoids are switched. For in-
stance, the (M0, M1)-decomposition of ∆2

4 is (σ1, σ2σ
2
3 , σ2σ1, (σ2σ3σ2)

2).

Remark. Instead of considering two closed submonoids (M1, M0) of M , we could
also consider any finite family of such submonoids (Mm−1, ..., M0). Provided the
union of these submonoids generates M , we can extend Proposition 1.16 and obtain
for every element x of M a distinguished decomposition x = xp...x0 such that xi

belongs to M[i] and xp...xi+1 ⊥ M[i] holds for every i, where [i] now denotes the
unique element of {0, ..., m − 1} that is equal to i mod m. The only difference is
that the condition xi 6= 1 for i > 1 has to be relaxed to xi+m−2...xi 6= 1, because
the conjunction of x 6= 1 and x ⊥ M[i] need not guarantee x 6⊥ M[i+1], but only
x 6⊥ (M[i+m−2] ∪ ... ∪ M[i+1]). Adapting is easy.
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1.4. Algorithmic aspects. Computing the alternating decomposition is algorith-
mically easy provided one can efficiently perform right division in the reference
monoid. To give a precise statement, we recall from [18] the notion of word norm
(or pseudolength) that generalizes the standard notion of word length. In the se-
quel, if S generates a monoid M , we denote by S∗ the set of all words on S, and,
for w in S∗, we denote by w the element of M represented by w.

Definition 1.19. Assume that M is a right locally Garside monoid satisfying
Condition (C∗

3 ), and S generates M . For w a word on S, we define the norm ||w||
of w to be the maximal length of a word w′ satisfying w′ = w.

Condition (C∗
3 ) is precisely what is needed to guarantee that ||w|| exists for ev-

ery word w. In the case of Artin–Tits monoids and, more generally, of monoids
presented by homogeneous relations, ||w|| coincides with the length |w|.
Proposition 1.20. Assume that M is a right locally Garside monoid generated by
some finite set S, satisfying Condition (C∗

3 ) and the following condition:

(∗) There exists an algorithm A that, for each word w in S∗ and
each letter s in S, runs in time O(||w||), recognizing if w < s holds
and, if so, returning a word representing ws−1.

Let S1, S0 ⊆ S satisfying S1 ∪ S0 = S. Let Mi be the submonoid of M generated
by Si, and suppose that M1, M0 are closed. Then there exists a algorithm that,
for w in S∗, runs in time O(||w||2) and computes the (M1, M0)-decomposition of w.

Proof. Having listed the elements of S0 and S1, and starting with w, we use A to
divide by elements of S0 until division fails, then we divide by elements of S1 until
division fails, etc. We stop when the remainder is 1. As for complexity, the point is
that, if we start with a word w of norm ℓ, then the words subsequently occurring
represent the elements x(i) of (1.6), which are left divisors of x, and, hence, their
norm, and therefore their length in the letters of S, is bounded above by ℓ. At
each step, the norm decreases by at least 1, so termination occurs after at most
card(S)× ℓ division steps. By hypothesis, the cost of each division step is bounded
above by O(ℓ), whence a quadratic global upper bound. �

Example 1.21. Let M be an Artin–Tits of spherical type, or, more generally, a
Garside monoid, and let S be the set of atoms in M . Then there exist division
algorithms running in linear time, namely those involving a rational transducer
based on the (right) automatic structure [21]. For the specific question of dividing
by an atom, the reversing method of [14] is specially convenient for a practical
implemention.

2. Iterated alternating decompositions

At this point, we obtained distinguished decompositions for every element in a
right locally Garside M , but, in general, these decompositions do not yet provide
unique normal forms, unless some unique normal form is known in each of the
component submonoids M1, M0. One case when such a normal form certainly
exists is when the considered submonoids Mi are monogenerated: the hypothesis
that M has no nontrivial invertible element and is right cancellative implies that M
is torsion free, so, in the case above, there exists a (unique) element si such that each
element of Mi is uniquely expressed as se

i for some exponent e > 0. Such a situation
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occurs when M is the 3 strand braid monoid B+

3 , and M1, M0 are the submonoids
respectively generated by σ2 and σ1. Then the (M1, M0)-decomposition yields a
unique distinguished word in the letters σ1, σ2 for each braid in B+

3 . For instance,
the normal form of ∆2

3 happens to be the word σ2σ
2
1σ2σ

2
1 , an example suggesting

that the normal form we are now addressing is rather different from the classical
greedy normal form, here ∆3 · ∆3.

The obvious idea we develop below is to iterate the alternating decomposition of
Section 1 so as to always reach the above situation of monogenerated submonoids,
and, in this way, obtain unique representative for every element of the considered
initial monoid.

2.1. Iterated alternating decomposition. The possibility of iterating the alter-
nating decomposition relies on the following trivial observation:

Lemma 2.1. Every closed submonoid of a right locally Garside monoid is a right
locally Garside monoid.

Proof. Assume M0 is a closed submonoid of some right locally Garside monoid M .
First, M0 admits right cancellation as every submonoid of a right cancellative
monoid does. Then, if x, y belong to M0 and they admit a common left multi-
ple z in M0, then z is a common left multiple of x and y in M , so, in M , the left
lcm z′ of x and y exists. The hypothesis that M0 is closed under left lcm implies
that z′ belongs to M0, and, then, z′ must be a left lcm for x and y in the sense
of M0. Finally, the right divisibility relation of M0 is included in the right divisi-
bility relation of M , so a sequence contradicting Condition (C3) in M0 would also
contradict (C3) in M . �

Now, assume that M is a right locally Garside and (M1, M0) is a covering of M .
By Lemma 2.1, M1 and M0 are locally Garside on the right, and we can repeat the
process: assuming that (Mi,1, Mi,0) is a covering of Mi for i = 1, 0, every element
of Mi admits a (Mi,1, Mi,0)-decomposition, and, therefore, every element of M
admits a distinguished decomposition in terms of elements of the four monoids M11,
M10, M01, and M00—we drop commas in indices.

Example 2.2. As in Example 1.18, let M be the 4 strand braid monoid B+

4 , and let
M1, M0 be the parabolic submonoids of M respectively generated by σ3, σ2, and by
σ2, σ1. Then let M11, M10, M01, and M00 be the submonoids respectively generated
by σ2, σ3, σ2, and σ1. Then (Mi1, Mi0) is a covering of Mi for i = 1, 0, and the
iterated alternating decomposition of ∆2

4 with respect to the above coverings turns
out to be the sequence of sequences

(2.1) ((σ3) , (σ2, σ
2
1) , (σ2, σ3) , (σ2, σ

2
1 , σ2, σ

2
1)),

which corresponds to the iterated factorization

(2.2) ∆2
4 = (σ3) · (σ2 · σ2

1) · (σ2 · σ3) · (σ2 · σ2
1 · σ2 · σ2

1).

The process can then be iterated, and we directly go to the general case involving
2n submonoids. In the sequel, we frequently have to use finite sequences of natural
numbers, in particular, finite sequences of 0’s and 1’s, and we fix some notation.

Notation 2.3. (i) A length n sequence of natural numbers (resp. of 0’s and 1’s)
is called a n-address (resp. a binary n-address); the empty address, i.e., the unique
0-address, is denoted ∅. If α, β are addresses, αβ denotes the concatenation of α
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and β, i.e., the address obtained by appending β after α; we say that α is a prefix
of γ if γ = αβ holds for some β.

(ii) If θ is an address, we denote by [θ] the binary address obtained by replacing
each number by its class mod 2.

When dealing with examples of addresses, we drop brackets and separating com-
mas. For instance, a typical 4-address is θ = 5213 and, then, we have [θ] = 1011.

Definition 2.4. Assume that M is a right locally Garside monoid. A family (Mα)α

indexed by binary m-addresses with m 6 n is called a n-covering of M if (Mα1, Mα0)
is a covering of Mα for each binary m-address α with m < n, and M∅ = M holds.

In the sequel, we write M for a generic covering (viewed as a sequence of
monoids), and, then, use Mα for the α-entry in M .

So what was previously called a covering is a 1-covering. When the monoid M
has some distinguished generating set S, we can specify an n-covering by choosing
a subset Sα of S for each binary n-address α, and, for β an m-address with m 6 n,
defining Mβ to be the submonoid generated by all Sα with β a prefix of α. We
obtain an n-covering whenever each of the submonoids Mβ turns out to be closed.
For such coverings, we can display the inclusions by drawing a binary tree—which
can be called the skeleton of the covering—as shown in Figure 1.

Example 2.5. In the case of an Artin–Tits monoid, every subset of the standard
generating set generates a closed submonoid, and the above approach is relevant.
For instance, the 2-covering of B+

4 mentioned above correspond to choosing

S11 = S01 = {σ2}, S10 = {σ3}, S00 = {σ1}
—this specific covering will be considered many times in the sequel. Writing 〈X〉
for the submonoid generated by X , we find

B+

4,11 = B+

4,01 := 〈σ2〉, B+

4,10 = 〈σ3〉, B+

4,00 = 〈σ1〉 (= B+

2 ),

whence B+

4,1 = 〈σ2, σ3〉, B+

4,0 = 〈σ1, σ2〉 (= B+

3 ), and B+

4,∅ = 〈σ1, σ2, σ3〉 = B+

4 .

σ2 σ3 σ2 σ1

σ2,σ3 σ1,σ2

σ1,σ2,σ3

Figure 1. Skeleton of the 2-covering of B+

4 of Example 2.5: a depth 2
binary tree displaying the inclusions between the generating sets of the

successive submonoids.

In order to describe iterated decompositions such as the one of (2.1), i.e., for
dealing with sequences of sequences, we introduce some more notation.

Definition 2.6. For A a set and n > 0, we define a n-sequence in A to be an
element of A for n = 0, and a finite sequence of (n−1)-sequences in A for n > 1. If
w is an n-sequence with n > 1, we define the unbracketing of w to be the ordinary
sequence—i.e., the 1-sequence—obtained from w by removing all brackets except
the first and the last ones; we use |w| for the length of w, as a sequence of (n−1)-
sequences.
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A 1-sequence in A is just an ordinary sequence in A, while ((2, 1), (0), (3, 2)) is
a typical 2-sequence in N. Its unbracketing is the sequence (2, 1, 0, 3, 2). Similarly,
the expression in (2.1) is a 2-sequence in B+

4 . With these notions at hand, we can
define the general iterated decomposition formally:

Definition 2.7. Assume that M is a right locally Garside monoid and M is an
n-covering of M . For x in M , we define the iterated M -decomposition DM (x) of x
to be the n-sequence defined by DM (x) = x for n = 0, and, inductively,

(2.3) DM (x) = (DM [p]
(xp) , . . . , DM0

(x0)),

where (xp, ..., x0) is the (M1, M0)-decomposition of x, and M i is the (n−1)-covering
of Mi such that the α-component of M i is Miα for α an (n − 1)-address. The
unbracketing D◦

M
(x) of DM (x) is called the M -decomposition of x.

For instance, if M is the 2-covering of B+

4 of Example 2.5, the results previously
established can be summarized as

DM (∆2
4) = ((σ3), (σ2, σ

2
1), (σ2, σ3), (σ2, σ

2
1 , σ2, σ

2
1)),(2.4)

D◦
M

(∆2
4) = (σ3, σ2, σ

2
1 , σ2, σ3, σ2, σ

2
1 , σ2, σ

2
1).(2.5)

In an ordinary sequence, entries are indexed by natural numbers. In an n-sequence,
entries are naturally indexed by n-addresses, i.e., by length n sequences of natural
numbers.

Definition 2.8. If w is an n-sequence, and θ is an m-address with m 6 n, the θ-
subsequence wθ of w is the (n−m)-sequence defined by w∅ = w and wiγ = (wi)γ

for i in N and γ a (n − 1)-address. We say that θ is an address in w if the θ-
subsequence of w is defined. The sequence made by all n-addresses in w enumerated
from left to right is called the address list of w.

In this way, every entry in an n-sequence w is indexed by an n-address that de-
scribes its position in the successive blocks, i.e., equivalently, in the tree associated
with w as in Figure 2. Note that the address list is just another way of specifying
the brackets and, therefore, an n-sequence is determined by its address list and its
unbracketing—this could be used as an alternative definition. For instance, in (2.1),
the address list and the unbracketing, i.e., the entry list, are

(2.6) (30, 21, 20, 11, 10, 03, 02, 01, 00) and (σ3, σ2, σ
2
1 , σ2, σ3, σ2, σ

2
1 , σ2, σ

2
1).

With the previous notation, iterating Proposition 1.16 immediately leads to:

Proposition 2.9. Assume that M is a right locally Garside monoid and M is
an n-covering of M . Let x be an element of M , and let w be the iterated M -
decomposition of x. For each address θ in w, let xθ denote the product of wθ.
Then, for each m-address θ in w with m < n, the sequence (xθp, ..., xθ0) is the
(M[θ1], M[θ0])-decomposition of xθ, where θp, ..., θ0 are the (m + 1)-addresses in w

of which θ is a prefix. The elements xθi are determined from x
(0)
θ := xθ by

(2.7) xθi = tail(x
(i)
θ , M[θi]) and x

(i+1)
θ = x

(i)
θ /xθi.

Example 2.10. For the M -decomposition of ∆2
4 considered in (2.4), typical in-

stances of (2.7) are

x0 = σ2σ
2
1σ2σ

2
1 = tail(x, B+

3 ), x1 = σ2σ3 = tail(σ3σ2σ
1
1σ2σ3, 〈σ2, σ3〉), ...
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30 21 20 11 10 03 02 01 00

3 2 1 0

∅

σ3 σ2 σ2
1 σ2 σ3 σ2 σ2

1 σ2 σ2
1

σ3 σ2σ
2
1 σ2σ3 ∆2

3

∆2
4

Figure 2. The tree associated with the 2-sequence of (2.1), repeated

twice: on the left, the addresses are displayed, on the right, the product

of the corresponding subsequences are shown; the address list specifies the

shape of the tree, and the entry list specifies the name of the leaves; for

instance, we see that the 20-subsequence is σ2
1 , while the product of the

1-subsequence is σ2σ3. The 23-subsequence does not exist, as 23 is not an

address in the considered 2-sequence.

which involve the whole of x, but then, at the next level, we have

x00 = σ2
1 = tail(σ2σ

2
1σ2σ

2
1 , B+

2 ), x01 = σ2 = tail(σ2σ
2
1σ2, 〈σ2〉), ...

which only involve the element x0, namely σ2σ
2
1σ2σ

2
1 , and not the whole of x.

2.2. Global characterization. As can be seen in Example 2.10, Proposition 2.9
is intricate and not satisfactory in that it does not give a global characterization of
what the decomposition is and how to obtain it in one step. This is what we shall do
now. The point is to observe that there is no need of considering local remainders
when computing iterated tails. This is expressed in the following result, which
is vaguely parallel to the formula tail(zy, Σn) = tail(tail(z, Σn)y, Σn) with Σn the
family of simple braids that is crucial in the construction of the right greedy normal
form in a Garside group.

Lemma 2.11. Assume M is a right locally Garside monoid, M0 is a closed sub-
monoid of M , and M00 is a closed submonoid of M0. Then, for each left divisor y
of tail(z, M0), we have

(2.8) tail((z/tail(z, M0))y, M00). = tail(y, M00).

Proof. Put z0 = tail(z, M0) and z′ = z/z0. By definition, tail(y, M00) is a right
divisor of tail(z′y, M00), hence the point is to prove that every right divisor of z′y
lying in M00 is a right divisor of y. So assume z′y = x′x with x ∈ M00. By
hypothesis, we have z0 = yz′0 for some z′0, necessarily lying in M0. Then, we have
z = z′z0 = z′yz′0 = x′xz′0. Now x ∈ M00 implies x ∈ M0, hence xz′0 ∈ M0, and xz′0
has to be a right divisor of tail(z, M0), i.e., of z0, which is also yz′0. It follows that
x is a right divisor of y, as was expected. �

In particular, when we choose y to be z0 itself, (2.8) gives

(2.9) tail(z, M00) = tail(tail(z, M0), M00).

We aim at giving a direct description of the M -decomposition without mentioning
the intermediate values xα. Consider the case of Examples 2.5 and 2.10 again. The
problem is as follows: in the case of the 1-covering of B+

3 , only two submonoids are
involved, and the final decomposition consists of alternating blocks belonging to
each of them; now, in the case of the 2-covering of B+

4 , the decomposition consists
of blocks of σ1’s, σ2’s, and σ3’s, but the order in which these blocks appear is not
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so simple. Indeed, on the left of a block of σ2’s, there can be either a block of σ1’s
or a block of σ3’s. The only way to decide is to know the current address, i.e.,
the current position in (the skeleton of) the covering as in Figure 1, typically to
know to which of the two occurrences of σ2 in the tree of Figure 1 the considered
block of σ2’s is to be associated: on the left of a block of σ2’s associated with the
rightmost σ2 in Figure 1, a block of σ1’s is to be expected, while a block of σ3’s is
to be expected on the left of a block of σ2’s associated with the leftmost σ2. This is
precisely what Proposition 2.14 below will say, namely that the M -decomposition
can be obtained directly provided we keep track of some position specified by a
binary address.

In order to browse through trees, we need the following notion of successors of
a (binary) address. It comes in two versions, according to whether we consider
general addresses, or binary addresses.

Definition 2.12. For θ an n-address and 0 6 m 6 n, the m-successor θ(m) of θ is
the n-address obtained by keeping the first m digits of θ, adding 1 to the next one,
and completing with 0’s, i.e., for θ = d1...dn, the m-successor is d′1...d

′
n with d′i = di

for i 6 m, and, if m < n holds, d′m+1 = dm+1 + 1 and d′i = 0 for i > m + 1. For α

a binary n-address and 0 6 m 6 n, the binary m-successor α[m] of α is defined to
be [α(m)], i.e., the addition of 1 is taken mod 2.

Example 2.13. Let θ = 2501. The successors of θ are

θ(0) = 3000, θ(1) = 2600, θ(2) = 2510, θ(3) = 2502, θ(4) = 2501.

Similarly, the binary successors of α = 0101 are

α(0) = 1000, α(1) = 0000, α(2) = 0110, α(3) = 0100, α(4) = 0101.

Note that θ(n) = θ holds for every n-address θ, and that, if θ′, θ are adjacent
entries in the address list of an n-sequence, θ′ is one of the successors of θ. Here
comes the main result stating that the M -decomposition can be computed directly:

Proposition 2.14. Assume that M is a right locally Garside monoid and M is
an n-covering of M . Then, for every element x of M , the entry list (xp, ..., x0) and

the address list (θp, ..., θ0) of DM (x) are inductively determined from x(0) = x and
θ0 = 0 by

(2.10) xi := tail(x(k), M[θi]) , x(i+1) := x(i)/xi , and θi+1 = θ
(m)
i ,

where m is the length of the longest prefix θ of θi that satisfies x(i+1) 6⊥ M[θ].

Proof. We use induction on n. For n = 0, everything is trivial, and, for n = 1, the
result is a restatement of Proposition 1.16: in this case, the 1-address θi is i, the
longest prefix of θi satisfying x(i+1) 6⊥ M[θ] is ∅, and the inductive formula reduces
to θi+1 = i + 1.

Assume n > 2. Let (yq, ..., y0) be the (M1, M0)-decomposition of x. By defini-
tion, we have

(2.11) DM (x) = (DM [q]
(yq) , . . . , DM0

(y0)).

For q > j > 0, let (yj,pj
, ..., yj,0) and (θj,pj

, ..., θj,0) be the entry list and the address
list in DM [j]

(yj). Then, by (2.11), we have

(2.12) (xp, ..., x0) = (yq,pq
, ..., yq,0)

⌢ . . . ⌢(y0,p0 , ..., y0,0),
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where ⌢ denotes concatenation, and, similarly,

(2.13) (θp, ..., θ0) = (qθq,pq
, ..., qθq,0)

⌢ . . . ⌢(0θ0,p0 , ..., 0θ0,0).

By induction hypothesis, the sequences of yj’s and θj,k’s satisfy the counterpart

of (2.10), and we wish to deduce (2.10), i.e., dropping the elements x(i), we wish
to prove

xi = tail(xp...xi, Mθi
) and θi+1 = θ

(m)
i

where m is the length of the maximal prefix θ of θi for which M[θ] 6⊥ xp...xi+1 holds.
We argue using induction on i > 0.

We begin with the value of xi. Assume that, in (2.12), xi corresponds to some
entry yj,k. Then, by construction, we have θi = jθj,k. Let y := yj,pj

...yj,k. By
induction hypothesis, we have

(2.14) xi = yj,k = tail(y, M[jθj,k]) = tail(y, M[θi]).

On the other hand, by construction, y is a left divisor of yj,pj
...yj,0, i.e., of yj , and

yj is the M[j]-tail of yq...yj , i.e., putting z = yq...yj , we have

(2.15) yj = tail(z, M[j]).

Applying Lemma 2.11 to the monoids M[θi] ⊆ M[j] ⊆ M , we deduce from (2.14)
and (2.15) the relation xi = tail((z/yj)y, M[θi]), which is also xi = tail(xp...xi, M[θi]),
as, by construction, (z/yj)y = xp...xi holds.

We consider now the value of θi+1. Here, two cases are possible, according to
whether xi corresponds to an initial entry or non-initial entry in some sequence
of y’s, i.e., with the above notation, according to whether pj = k holds or not.
Assume first pj > k. Then θj,k+1 exists, and the induction hypothesis implies that
θj,k+1 is the m-successor of θj,k, where m is the length of the maximal prefix θ
of θj,k for which M[jθ] 6⊥ yj,pj

...yj,k+1 holds. The latter relation is equivalent to
M[jθ] 6⊥ xp...xi+1: indeed, M 6⊥ x is equivalent to tail(x, M) 6= 1, and, as above,
Lemma 2.11 implies tail(xp...xi+1, M[jθ]) = tail(yj,pj

...yj,k+1, M[jθ]). Therefore,
θi+1, which is jθj,k+1, is the m + 1-successor of jθj,k, i.e., of θi, where m is the
length of the maximal prefix θ of θj,k for which M[jθ] 6⊥ xp...xi+1 holds, hence m+1
is the length of the maximal prefix θ′ of θi (namely jθ) for which M[θ′] 6⊥ xp...xi+1

holds.
Finally, assume pj = k, i.e., θj,k is the leftmost address in the M [j]-decomposition

of yj. In this case, by hypothesis, we have θi+1 = (j +1)0n−1. Now, the hypothesis
means that yq...yj+1 ⊥ M[j] holds, i.e., that xp...xi+1 ⊥ M[j]. So, in this case,
the only prefix θ of θi, i.e., of jθj,pj

, for which xp...xi+1 6⊥ M[θ] may hold is the
empty address ∅, which is the expected relation with m = 0 here. So the proof is
complete. �

Example 2.15. Consider the case of B+

4 and ∆2
4 again. Proposition 2.14 enables

us to directly obtain the M -decomposition of ∆2
4 as follows. We start with x = ∆2

4

and θ0 = 00. Then we compute M00-tail, i.e., here the 〈σ1〉-tail, of x(0), which
turns out to be σ2

1 , and call the remainder x′. Then the address θ1 is obtained by
looking at the maximal prefix θ of θ0, i.e., of 00, for which M[θ] 6⊥ x′ holds. In the

current case, we have x(1) ⊥ M00 and x(1) 6⊥ M0, hence θ = 0, so θ1 is obtained
from 00 by incrementing the second digit, leading to θ1 = 01, which corresponds to
Mα1 = 〈σ2〉. We take the 〈σ2〉-tail of x′, call the remainder x′′, and iterate. The
successive values are displayed in Table 1.
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i x(i) θi [θi] M[θi] xi

0 σ1σ2σ1σ3σ2σ1σ1σ2σ1σ3σ2σ1 00 00 〈σ1〉 σ2
1

1 σ2σ1σ3σ2σ1σ1σ2σ3σ1σ2 01 01 〈σ2〉 σ2

2 σ2σ1σ3σ2σ1σ1σ2σ3σ1 02 00 〈σ1〉 σ2
1

3 σ2σ3σ2σ1σ1σ2σ3 03 01 〈σ2〉 σ2

4 σ3σ2σ1σ1σ2σ3 10 10 〈σ3〉 σ3

5 σ3σ2σ1σ1σ2 11 11 〈σ2〉 σ2

6 σ3σ2σ1σ1 20 00 〈σ1〉 σ2
1

7 σ3σ2 21 01 〈σ2〉 σ2

8 σ3 30 10 〈σ3〉 σ3

9 1 - - - -

Table 1. Direct determination of the decomposition of ∆2
4: at each step,

we indicated the current remainder x(i), the current address θi with the

associated binary position [θi] in the covering, the submonoid M[θi], and

the M[θi]-tail xi that is extracted.

2.3. Dense and maximal coverings. Everything we said so far works for every
iterated covering M , and, in particular, the (iterated) M -decomposition always
exists. In the sequel, we shall be interested in converting the latter into a unique
normal form. This conversion is easy whenever the considered covering satisfies
some additional assumptions called density and atomicity that we introduce now.

In the alternating decomposition of Proposition 1.16, apart from the first factor,
no factor may be trivial unless the decomposition is complete. This situation is no
longer guaranteed with iterated coverings. Indeed, according to Proposition 2.9,
after considering some submonoid Mα, the next monoid to be considered is of the
form Mβ0m , where by hypothesis the Mβ-tail of the current remainder is not 1.
Now the latter hypothesis need not imply that the Mβ0m-tail be nontrivial, and,
if it is, it contributes a trivial factor in the M -decomposition of x: there may be
gaps in M -decompositions.

Example 2.16. Let M be the 5 strand braid monoid B+

5 , and let M be the 2-
covering defined by M00 = 〈σ1〉, M01 = 〈σ2〉, M10 = 〈σ3〉, M11 = 〈σ4〉. Let
x = σ1σ4. The M00-tail of x is σ1, and the remainder is x′ = σ4. The longest
prefix α of 00 such that the Mα-tail of x′ is not trivial is ∅. The next submonoid
to be looked at is M10, which is 〈σ3〉, and the M10-tail of x′ is trivial, so the
corresponding factor in the M -decomposition is 1. Finally, the M -decomposition
of x is (σ4, 1, σ1), which has a gap.

It is however easy to state conditions that exclude such gaps.

Definition 2.17. A n-covering M is said to be dense if, for each binary address β
of length m with 0 6 m < n,

(2.16) Mβ is generated by Mβ0 and Mβ10n−m−1 , and by Mβ1 and Mβ0n−m .

Lemma 2.18. Assume that M is a dense n-covering of M . Then gaps are impos-
sible in M -decompositions.

Proof. Owing to Proposition 2.14, the point is to prove that, if, for some binary
n-address α and some m, we have, writing β (resp. β′) for the length m (resp. m+1)
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prefix of α, both Mβ 6⊥ x and Mβ′ ⊥ x, then necessarily the Mα[m]-tail of x is not
trivial. Write β′ = βi. For i = 0, a sufficient condition for the previous implication
is that Mβ is generated by Mβ0 and Mβ10n−m−1: then, a nontrivial right divisor
of x lying in Mβ cannot be right divisible by any factor in Mβ0 and, therefore, it
must be right divisible by some factor in Mβ10n−m−1, and, by definition, we have

β10n−m−1 = α[m]. For i = 1, the argument is similar, replacing β0 with β1, and
β10n−m−1 with β0n−m. So, the two conditions in (2.16) are sufficient. �

On the other hand, as was recalled in the introduction of Section 2, a natural
framework for getting a (trivial) unique normal form in a submonoid M0 of M
is the case when M0 is generated by a single element s as every element of M0

is then uniqueley expressed in M0 as se. The latter expression remains unique
in M whenever s is an atom of M , i.e., s = xy implies x = 1 or y = 1. Now, in
the monoids we are currently considering, atoms do exist: every monoid M that
satisfies Condition (C∗

3 ) is generated by its atoms, and, then, any generating subset
of M contains all atoms of M . This should make the following definition natural.

Definition 2.19. Assume that M is a right locally Garside monoid, and s is
a sequence of atoms of M indexed by binary n-addresses. We say that an n-
covering M of M is atomic with base s if, for each n-address α, we have Mα = 〈sα〉.

For instance, the 2-covering of Example 2.5 is atomic, based on the sequence
(σ2, σ3, σ2, σ1)—with respect to a default enumeration of n-addresses going from 1n

to 0n—while the covering of Example 2.16 is based on (σ4, σ3, σ2, σ1). Note that a
base sequence must contain all atoms of M , as, by definition, it generates M . On
the other hand, if need not be true in general that every sequence of atoms defines
a covering, as the submonoid of M generated by an arbitrary family of atoms is
not necessarily closed in the sense of Definition 1.9. This however is true in braid
monoids and, more generally, in all Artin–Tits monoids. The next lemma shows
that, in the case of atomic coverings, the density condition requires that the base
sequence be highly redundant.

Lemma 2.20. Assume that M is a dense atomic n-covering of M with base s.
Then, for each n-address α, the set {sα[m] ; 0 6 m 6 n} is the atom set of M , and
the latter contains at most n + 1 elements.

Proof. Use induction on n > 0. The case d = 0 is obvious. Assume n > 1. Write
α = dβ with d = 0 or 1. Assume first d = 0. By (2.16), M is generated by
s10n−1 , which is the 0-successor of α, and M0. By induction hypothesis, the latter
is generated by the family of all s0β[m] ’s, so M is generated by the successors of α.
The argument is symmetric for d = 1, using the second part of (2.16). As, by
construction, every n-address admits n + 1 successors, we deduce that there are at
most n + 1 atoms in M . �

We shall see in Lemma 3.2 below that dense atomic n-coverings involving n + 1
atoms exist for each n. It is easy to check that, for n = 2, the only base sequence
is, up to renaming, that of Example 2.5 and Figure 1. For n = 3, several non-
isomorphic base sequences exist, as shown in Figure 3.

2.4. The normal form. We are now ready to convert the results of Sections 2.1
and 2.2 into the construction of a normal form. We recall that, for S generating M
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3 2 3 4 2 3 2 1

23 34 23 12

234 123

1234

2 3 2 4 2 3 2 1

23 24 23 12

234 123

1234

Figure 3. The two base sequences for a dense atomic 3-covering involv-

ing 4 atoms.

and w a word on S, we denote by w the element of M represented by w. We
write w(k) for the kth letter from the right in w.

Definition 2.21. Assume that M is a right locally Garside monoid with atom set S,
and M is a dense atomic n-covering of M with base s. A length ℓ word w(ℓ)...w(1)
on S is said to be M -normal if

there exist n-addresses αℓ, ..., α0 with α0 := 0n such that, for each k,

we have αk = α
[m]
k−1 with m maximal such that w(ℓ)...w(k) < sα

holds for α = α
[m]
k−1, and w(k) = sαk

.

The above definition may look convoluted at first, but handling a few examples
like the one reported in Table 3 below should make it easily understandable. In
particular, Table 3 provides a step-by-step verification of the fact that our favourite
example, here the braid word σ2σ1σ1σ2σ3σ2σ1σ1σ2σ1σ1, is M -normal with respect
to the 2-covering of Example 2.5.

The expected existence and uniqueness result is then easy:

Proposition 2.22. Assume that M is a right locally Garside monoid with atom
set S, and M is a dense atomic n-covering of M with base s. Then every element x
of M admits a unique word representative that is M -normal, namely the word
sαℓ

...sα1 , where αℓ, ..., α1 are inductively determined from x(0) = x and α0 = 0n by

(2.17) αk := α
[m]
k−1 and x(k) := x(k−1)/sαk

,

with m maximal such that x(k) < sα holds for α = α
[m]
k−1. Moreover, sαℓ

...sα1

is the word obtained from the M -decomposition of x by concatenating the (words
representing the) entries and possibly deleting the final 1.

Proof. (i) The existence follows from the assumption that M is dense, which guar-
antees that, as long as the remainder x(k) is not trivial, there must exist a succes-
sor α of the address αk−1 such that sα divides x(k) on the right. Uniqueness follows
from the choice of that successor.

(ii) The inductive construction of (2.17) is essentially the construction of the
M -decomposition as given in Proposition 2.14. The only difference is that, here,
we do not extract the whole tail of the current remainder, but only one letter at
each step. For instance, if, at some point, the generator to be looked for is s and
the current remainder x(k−1) is divisible by s2, then x(k) is x(k−1)/s, and, at the
next step, αk is the n-successor of αk−1, i.e., it is αk−1 again, and the next letter
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of the normal form will be s again. In such a case, we have m = n. By contrast, in
Proposition 2.14, the parameter m cannot be n. �

Definition 2.23. Under the hypotheses of Proposition 2.22, the word w is called
the M -normal form of x.

Input: A word w in S∗;

Procedure:

w′ := emptyword;
α := 0n;
while w 6= emptyword do

m := n;
while quotient(w, sα[m]) = error do

m := m − 1;
od;

α := α[m];
w := quotient(w, sα);
w′ := concat(sα, w′);

od.
Output: The unique M -normal word w′ that is equivalent to w.

Table 2. Algorithm for the M -normal form; we assume that S is

the atom set of M , and M is a dense atomic n-covering of M with

base s; moreover, we assume that quotient(w, s) is a subroutine

that for w a word in S∗ and s an atom in S, returns error if s is not

a right divisor of w, and returns a word representing w/s otherwise.

The construction described in Proposition 2.22 is an algorithm, explicitly dis-
played in Table 2. A typical example for the construction of the M -normal form is
given in Table 3. As for algorithmic aspects, computing the M -normal form is as
easy as computing the alternating decomposition. In our current atomic context,
the existence of the norm (Definition 1.19) is guaranteed [18].

Proposition 2.24. Assume that M is a right locally Garside monoid with atom
set S, and M is a dense atomic n-covering of M with base s. Assume moreover
that Condition (∗) of Proposition 1.20 is satisfied. Then, for each word w in S∗,
the algorithm of Table 2 runs in time O(||w||2).
Proof. The only change with respect to Proposition 1.20 is that we have to keep
track of binary addresses of fixed length n so as to know in which order the divisions
have to be tried. Getting a new letter of the normal word under construction
requires at most n + 1 divisions, but the rest is similar. �

2.5. The M-exponent sequence. We conclude this section with an alternative
construction that will be useful in Section 3 below. In the framework of Proposi-
tion 2.22, instead of associating with every element x of M a distinguished word
representative of x, we can also associate an n-sequence of natural numbers. If M
is generated by the element s, then every element x of M is determined by the
unique exponent e such that x = se holds. If M is an atomic n-covering of M ,
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k w w′ αk−1 m α
[m]
k−1 s

α
(m)
k−1

w < s
α

[m]
k−1

?

0 σ1σ2σ1σ3σ2σ1σ1σ2σ1σ3σ2σ1 - 00 2 00 σ1 yes
2 σ1σ2σ1σ3σ2σ1σ1σ2σ1σ3σ2 σ1 00 2 00 σ1 yes
2 σ2σ1σ3σ2σ1σ1σ2σ3σ1σ2 σ1σ1 00 2 00 σ1 no

1 01 σ2 yes
3 σ2σ1σ3σ2σ1σ1σ2σ3σ1 σ2σ1σ1 01 2 01 σ2 no

1 00 σ1 yes
4 σ2σ1σ3σ2σ1σ1σ2σ3 σ1σ2σ1σ1 00 2 00 σ1 yes
5 σ2σ3σ2σ1σ1σ2σ3 σ1σ1σ2σ1σ1 00 2 00 σ1 no

1 01 σ2 yes
6 σ3σ2σ1σ1σ2σ3 σ2σ1σ1σ2σ1σ1 01 2 01 σ2 no

1 00 σ1 no
0 10 σ3 yes

7 σ3σ2σ1σ1σ2 σ3σ2σ1σ1σ2σ1σ1 10 2 10 σ3 no
1 11 σ2 yes

8 σ3σ2σ1σ1 σ2σ3σ2σ1σ1σ2σ1σ1 11 2 11 σ2 no
1 10 σ3 no
0 00 σ1 yes

9 σ3σ2σ1 σ1σ2σ3σ2σ1σ1σ2σ1σ1 00 2 00 σ1 yes
10 σ3σ2 σ1σ1σ2σ3σ2σ1σ1σ2σ1σ1 00 2 00 σ1 no

1 01 σ2 yes
11 σ3 σ2σ1σ1σ2σ3σ2σ1σ1σ2σ1σ1 01 2 01 σ2 no

1 00 σ1 no
0 10 σ3 yes

12 - σ3σ2σ1σ1σ2σ3σ2σ1σ1σ2σ1σ1 10 - - -

Table 3. Computation of the M -normal form of ∆2
4, where M

is the 2-covering of B+
4 of Example 2.5, starting from the word

σ1σ2σ1σ3σ2σ1σ1σ2σ1σ3σ2σ1: at each step, we try to divide the current

word w by some generator σi and, when succesful, we add this σi on the

left of the current word w′, until no letter is left in w; the only point is to

know in which order the generators σi are tried: this is what the address α

specifies, namely we try the successive successors of α starting with the last

one, i.e., with α itself, and then we consider shorter and shorter prefixes

of α; density guarantees that we cannot get stuck.

we can similarly forget about the generators in the iterated M -decomposition, and
just keep track of the exponents, i.e., introduce an n-sequence in N, and no longer
in M .

Definition 2.25. For M and M as in Definition 2.21, and for x in M , we define the
M -exponent sequence D•

M
(x) of x to be the n-sequence in N obtained by replacing

each factor seα
α with eα in DM (x).

Example 2.26. For the usual 2-covering of B+

4 , the exponent sequence D•
M

(∆2
4) is

((1), (1, 2), (1, 1), (1, 2, 1, 2)),

corresponding to the tree displayed in Figure 4 below.
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The point is that the n-sequence D•
M

(x) contains enough information to recover
the names of the generators that have been erased. Indeed, we have:

Lemma 2.27. Assume that M is an atomic n-covering of M . Then, for every x
in M , the exponent sequence D•

M
(x) determines x.

Proof. Let s be the generator function associated with M . We recover D◦
M

(x),
and therefore x itself, from D•

M
(x) as follows. Indeed, let (ep, ..., e0) be the entry

list in D•
M

(x) and (θp, ..., θ0) be its address list. Then, if (xp, ..., x0) is the M -
decomposition D◦

M
(x) of x, we have xi = sei

[θi]
for each i. The formal proof is an

easy induction on the degree n of the covering M (see Figure 4 for an example). �

1 1 2 1 1 1 2 1 2

Figure 4. The tree associated with the 2-sequence D•

M (∆2
4); the tree

determines the missing names of the generators: for instance, the leftmost 2
has address 20 in the tree, so it corresponds to the generator s[20], which,

in the current case, is σ1; so this number 2 corresponds to a factor σ2
1 in

the iterated M -decomposition of ∆2
4.

Remark. The iterated M -decomposition DM (x) contains two types of informa-
tion, namely the brackets and the entries. What we saw above is that each type de-
termines the other: both D◦

M
(x), obtained by forgetting the brackets, and D•

M
(x),

obtained by forgetting the names of the generators, still determine x unambigu-
ously. But we cannot go farther: if both projections are applied simultaneously,
i.e., if we unbracket D•

M
(x), then x is in general lost, as easy examples show.

3. The flip normal form of braids

From now on, we concentrate on the case of braids, and investigate a natural
family of coverings that generalize the one of Example 2.5. The flip automorphism
(conjugation by ∆n) plays a significant rôle in the construction, which explains our
terminology.

In the sequel, we write n-braid for n strand braid, and n-braid word for n strand
braid word. We consider B+

n−1 as a submonoid of B+
n : an (n−1)-braid is a particular

n-braid.

3.1. The flip covering. We denote by φn the flip automorphism of B+
n that ex-

changes σi and σn−i for each i. We also use φn for n-braid words, thus denoting
by φn(w)—or φnw—the image of w under φn letter by letter.

On the shape of what was done for B+

4 in Example 2.5, we shall introduce for
each n a dense atomic (n−2)-covering of B+

n based on some sequence sn. The
construction obeys a simple inductive scheme.
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Definition 3.1. For n > 2, we inductively define a sequence sn indexed by binary
(n−2)-addresses by

(3.1) s2 = (σ1), sn := φn(sn−1)
⌢

sn−1.

As the length of the address α determines the associated number n, namely
|α| = n − 2, we shall skip n and write sα for s|α|+2,α in the sequel. Then (3.1)
develops into the explicit rules

(3.2) s∅ = σ1, s0α := sα, s1α := φ|α|+2(sα),

which determine each sα’s unambiguously. For instance, we find s3 = (σ2, σ1),
s4 = (σ2, σ3, σ2, σ1), and, more generally, sn is the length 2n suffix of some left
infinite sequence s∞ where indices are

. . . , 6, 3, 4, 3, 2, 4, 3, 4, 5, 3, 2, 3, 4, 2, 3, 2, 1.

Lemma 3.2. (i) For n > 2 and for each (n−2)-address α, we have sα = σi with

(3.3) i = −m1 + m2 − ... + (−1)rmr +

{
1 if r is even,

n if r is odd,

if α = d1...dn−2 and m1 < ... < mr are the m’s for which dm is odd.
(ii) For n > 2, the sequence sn is the base of a dense atomic covering of B+

n .

For instance, in the 7-address 0110101, there are odd digits at positions 2, 3, 5, 7,
so (3.3) gives i = (−2 + 3 − 5 + 7) + 1 = 4, hence s0110101 = σ4.

Proof. (i) Relation (3.3) holds for n = 2, where it reduces to s∅ = σ1. Assume
n > 3, and let α′ = d2...dn−2. Putting sα′ = σi′ , we aim at proving i = i′ if d1 is
even, and i = n − i′ if d1 is odd. Write S for −m1 + m2 − ... + (−1)rmr, and r′,
m′

1, m′
2, ..., S′, n′ for the similar parameters associated with α′. Assume first that

d1 is even. Then we have r = r′, and mj = m′
j + 1 for each j, hence S = S′ if r is

even, and S = S′ − 1 if r is odd. The induction hypothesis gives i′ = S′ + 1 if r is
even, S′ + n′ if r is odd. We deduce

i =

{
S + 1 = S′ + 1 = i′ if r is even,

S + n = S′ − 1 + n′ + 1 = i′ if r is odd.

Assume now that d1 is odd. Then we have r = r′ + 1, m1 = 1, and mj+1 = m′
j + 1

for each j > 1, hence S = −S′ if r is even, and S = −S′ − 1 if r is odd. The
induction hypothesis gives i′ = S′ + n′ if r is even, S′ + 1 if r is odd. We deduce

i =

{
S + 1 = −S′ + 1 = n − i′ if r is even,

S + n = −S′ − 1 + n = n − i′ if r is odd.

(ii) The generators σi are the atoms of B+
n , and we already noted that every

parabolic submonoid of B+
n is closed, so every surjective sequence of atoms defines

a covering. As for density, the point is to show that B+
n is generated by B+

n−1

and B+

n,10n−3 . Now (3.3) gives s10n−3 = σn−1, which is precisely the atom of B+
n

missing in B+

n−1. �

Definition 3.3. For n > 2, we denote B
+

n the (n−2)-covering of B+
n based on sn.
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It follows from (3.1) and (3.2) that B
+

n is recursively defined by

(3.4) B
+

2 := B+

2 , B
+

n = φn(B+

n−1)
⌢

B
+

n−1,

which develop into

(3.5) B+

2,∅ := B+

2 , B+

n,0α = B+

n−1,α, and B+

n,1α = φn(B+

n−1,α),

completed with B+

n,β = 〈B+
n,α ; β prefix of α〉 for β of length < n− 2. So, we have

B+

3,0 = B+

2 = 〈σ1〉, B+

3,1 = φ3(B
+

2 ) = 〈σ2〉, B+

3,∅ = 〈B+

3,1, B
+

3,0〉 = B+

3 . Next, we

find B+

4,00 = 〈σ1〉, B+

4,01 = B+

4,11 = 〈σ2〉, B+

4,10 = 〈σ3〉, which shows that B
+

4 is the

2-covering of B+

4 many times considered in Section 2.
As B

+

n is a dense atomic covering of B+
n , all results of Section 2 apply to B

+

n.
We fix the following notation and vocabulary.

Definition 3.4. For x in B+
n , we denote by Dn(x) (resp. D◦

n(x), resp. D•
n(x)) the

iterated B
+

n-decomposition (resp. the B
+

n-decomposition, resp. the B
+

n-exponent
sequence) of x, and call it the iteration φ-decomposition (resp. the φ-decomposition,
resp. the φ-exponent sequence) of x. Finally, a B

+

n-normal word is called φ-normal.

Thus, the example computations of Section 2 yield

D4(∆
2
4) = ((σ3), (σ2, σ

2
1), (σ2, σ3), (σ2, σ

2
1 , σ2, σ

2
1)),

D◦
4(∆

2
4) = (σ3, σ2, σ

2
1 , σ2, σ3, σ2, σ

2
1 , σ2, σ

2
1),

D•
4(∆

2
4) = ((1), (1, 2), (1, 1), (1, 2, 1, 2)).

Being a φ-normal word can be expressed in several equivalent ways. Below, we
recall the initial definition, and mention some variants. The general principle is
always:

A word w is normal if, for each k, the kth letter of w starting
from the right is the smallest σi that is a right divisor of the brraid
represented by the length k prefix of w, smallest refering here to
some local ordering of the σi’s that is updated at each step and
corresponds to a position in the skeleton of the covering B

+

n.

The formal definition includes a description of the local ordering of the σi’s, which
can be encoded in several equivalent ways, involving addresses, or numbers, or
permutations. Note that, would the local ordering be the fixed order σ1 <...<σn−1,
then a word would be normal if it simply were the lexicographically minimal repres-
entative of its equivalence class. Here, things are slightly more complicated because
the reference ordering varies.

We recall that, for α a binary address, a[m] denotes the (binary) m-successor of α
(Definition 2.12), and that, for w a braid word, w denotes the braid represented
by w.

Lemma 3.5. A length ℓ positive n-braid word w(ℓ)...w(1) is φ-normal if and only
if any one of the following equivalent conditions holds:

(i) There exist (n−2)-addresses αℓ, ..., α0 with α0 = 0n−2 such that,
for each k, αk is the maximal binary successor α of αk−1 satisfying

w(ℓ)...w(k) < sα, and we have w(k) = sαk
.

(ii) There exist numbers mℓ, ..., m1 in {0, ..., n} such that, start-

ing from α0 := 0n and inductively defining αk := α
[mk]
k−1 , then, for
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each k, we have w(ℓ)...w(k) 6< sα for every m-successor α of αk−1

with m > mk, and w(k) = sαk
.

(iii) There exist permutations πℓ, ..., π0 of {1, ..., n−1} such that π0

is the identity, and, for each k, πk is obtained by πk(1) := πk−1(p),

where p is minimal satisfying w(ℓ)...w(k) < σ
πk−1(p), πk(q) =

πk−1(q) for q > p, and (πk(2), ..., πk(p)) is the increasing (resp. de-
creasing) enumeration of {πk−1(1), ..., πk−1(p− 1)} if the latter are
> πk(1) (resp. <), and we have w(k) = σ

πk(1).

Proof. Points (i) is Definition 2.21 and (ii) are direct reformulation of it. As
for (iii), πk is the enumeration of the names of the successors of αk, starting from
the bottom, i.e., for each m, we have s

α
[m]
k

= σi with i = πk(n − m − 1). At each

step, we select the maximal successor satisfying the divisibility requirement, hence,
here, the first entry in the permutation πk−1; the updating rules come from the
specific definition of the covering B

+

n. �

A direct application of Propositions 2.22 and 2.24 then gives:

Proposition 3.6. (i) Every braid in B+
n admits a unique word representative that

is φ-normal.
(ii) Running on a positive n-braid word of length ℓ, the algorithm of Table 2

returns the unique φ-normal word that is equivalent to w in O(ℓ2n log n) steps; in
the meanwhile, it also determines the address list of the φ-decomposition of w.

Proof. As for (ii), we recall from [21, Chapter 9] that there exists a division algo-
rithm running in time O(ℓn log n). �

We refer to Table 2 for the algorithm determining the φ-normal form, and to
Table 3 for the details of the computation for ∆2

4. Note that, apart from the fact
that letters come gathered in blocks in the former, the only difference between
the φ-decomposition and the φ-normal form viewed as a sequence of letters is that
the φ-decomposition always finishes with a power of σ1, possibly σ0

1 , i.e., 1: for
instance, the φ-normal form of σ2 is σ2, i.e., the length 1 sequence (σ2), while its
φ-decomposition is the length 2 sequence (σ2, 1).

3.2. The flip splitting. By construction, (B+

n,1, B
+

n,0) is a covering of the mon-

oid B+
n in the sense of Section 1, so, by Proposition 1.16, it gives rise to a (non-

iterated) decomposition for each element of B+
n . Now, as B+

n,0 has been defined to

be B+

n−1 and B+

n,1 to be the image of B+

n−1 under φn, we can restate the results in
a more specific form. It will be convenient to introduce the following convention.

Notation 3.7. For y, x in B+
n , we write y ⋉n x for φn(y)x—a left twisted prod-

uct indeed—and extend the notation to any number of factors according to the
convention z ⋉n y ⋉n x = (z ⋉n y) ⋉n x. We use a similar notation for braid words.

So xp ⋉n ... ⋉n x0 denotes the alternated product φp
n(xp)...x2 φn(x1)x0, i.e., the

product of xp to x0 where factors of odd rank starting from the right are flipped
in B+

n . Keep in mind that the operation ⋉n is not associative.

Proposition 3.8. Every braid x in B+
n admits a unique decomposition

(3.6) x = xp ⋉n ... ⋉n x1 ⋉n x0
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with x0, ..., xp ∈ B+

n−1 such that, for each i > 1,

(3.7) the only σj dividing xp ⋉n ... ⋉n xi on the right is σ1.

The elements xi are determined from x(0) := x by

(3.8) xi := tail(x(i), B+

n−1), x(i+1) := φn(x(i)/xi).

Proof. The monoids B+

n−1 and φn(B+

n−1) are closed submonoids of B+
n , and their

union generates all of B+
n . Applying Proposition 1.16 gives the result, as y0 =

tail(y, φn(B+

n−1)) is equivalent to φn(y0) = tail(φn(y), B+

n−1), and φn is an auto-
morphism for the quotient operation / as well. �

Definition 3.9. The sequence (xp, ..., x0) involved in (3.6) will be called the φn-
splitting of x—or, simply, its φ-splitting when there is no ambiguity about n. The
parameter p is called the n-breadth of x.

Before giving an example, we enounce connections between the φ-splitting, the
φ-decomposition, and the φ-normal form.

Lemma 3.10. Assume x ∈ B+
n . If (xp, ..., x0) be the φ-splitting of x, we have

Dn(x) = (φp
nDn−1(xp), ..., φnDn−1(x1), Dn−1(x0)),(3.9)

D◦
n(x) = φp

nD◦
n−1(xp)

⌢ ... ⌢φnD◦
n−1(x1)

⌢D◦
n−1(x0),(3.10)

D•
n(x) = (D•

n−1(xp), ..., D•
n−1(x1), D

•
n−1(x0)).(3.11)

and the φ-normal form of x is wp ⋉n ...⋉n w0, where wi is the φ-normal form of xk.
(ii) Conversely, let w be the φ-normal form of x. Starting from u0 = w, let

wi be the longest suffix of ui that does not contain σn−1 if i is even (resp. does

not contain σ1 if i is odd), and let ui+1 be such that ui = ui+1wi. Then, p being
minimal such that up is empty, the φ-splitting of x is (φp

n(wp), ..., w2, φn(w1), w0).

Proof. (i) By definition, the (B+

n,1, B
+

n,0)-decomposition of x is (φp
n(xp), ..., φn(x1), x0)

and (2.3) gives

Dn(x) = (Dφ
p
nB

+
n−1

(φp
n(xp)) , . . . , D

B
+
n−1

(x0)).

Now, as φn is an automorphism of B+
n , for each y in B+

n−1, the iterated φn(B+

n−1)-
decomposition of φn(y) is the image under φn of the iterated B

+

n−1-decomposition
of y, and (3.9) follows. By projecting, we deduce (3.10) and (3.11); in the latter,
the projection is obtained by forgetting the names of the generators, so the flip no
longer appears.

As for the normal form, the result follows from (3.10), for, by construction,
each factor xi with i > 1 is divisible by σ1 on the right, so its φ-normal form is
precisely the word obtained from D◦

n(xi) by concatenating the factors, without any
difference.

(ii) By construction, we have x = wp ... w1 w0, hence x = φp
n(wp) ⋉n ... ⋉n

φn(w1) ⋉n w0. The normality assumption guarantees that, for i even, wp ... wi is

right divisible by σ1 only, and, for i odd, it is right divisible by σn−1 only, so, in

any case, φp
n(wp) ⋉n ... ⋉n φi

n(wi) is right divisible by σ1 only, which characterizes
the φ-splitting. �

Example 3.11. We saw in Table 3 that the φ-normal form of ∆2
4 is

σ3σ2σ1σ1σ2σ3σ2σ1σ1σ2σ1σ1.
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Applying Lemma 3.10(ii), we obtain the φ-splitting of ∆2
4 by gathering the gener-

ators that alternatively give words in B+

3 , and in 〈σ2, σ3〉, starting from the right.
Here we find (σ3, σ2σ1σ1, σ2σ3, σ2σ1σ1σ2σ1σ1), hence the 4-breadth of ∆2

4 is 3, and
its φ-splitting is the length 4 sequence

(σ1 , σ2σ1σ1 , σ2σ1 , σ2σ1σ1σ2σ1σ1)

obtained by flipping each other entry in the above sequence.
Conversely, in order to obtain the φ-normal form of ∆2

4, we start from its φ-
splitting above, compute the φ-splitting of each entry successively, namely

((σ1) , (σ1, σ
2
1) , (σ1, σ1) , (σ1, σ

2
1 , σ1, σ

2
1)),

and finally apply the needed flips to reobtain the 2-sequence

((σ3) , (σ2, σ
2
1) , (σ2, σ3) , (σ2, σ

2
1 , σ2, σ

2
1))

of (2.2). Observe that, in any case, the entries in the iterated φ-splitting consist of
elements of B+

2 , i.e., of powers of σ1.

We saw above that the non-final entries in a φ-splittings are never 1—we shall
say more in Lemma 3.21 below—but let us insist that the final entry may take any
value, including 1: for instance, the φ3-decomposition of σ2 is the sequence (σ1, 1),
as σ2 is not divisible by σ1.

Finally, the following example shows that the behaviour of the φ-splitting, and
therefore of the connected φ-normal form, is quite different from that of the right
greedy normal form, in particular in terms of right divisors. Let x = σe

1σ2σ1

with e > 1. Then φ-splitting of x is (σe
1, σ1, σ1), corresponding to the factorization

x = σe
1 ·φ2(σ1) ·σ1. Now we have also x = σ2σ1σ

e
2. This shows that, if (xp, ..., x0) is

the φ-splitting of x, the σi’s satisfying x < σi cannot be recovered from (x1, x0), and
that φn(x1)x0 is not the left lcm of all terms of the form φn(y1)y0 with y1, y0 ∈ B+

n−1

right dividing x, and not even at least as long as any such term: in the case above,
(x1, x0) is (σ1, σ1), and x is right divisible by σe

2, which is of the form φ3(y1)y0 with
y1, y0 ∈ B+

2 .

3.3. A linear ordering on B+
n . As B

+

n is a dense atomic n-covering of B+
n , we

know by Lemma 2.27 that the iterated φ-decomposition D◦
n(x) of every element x

of B+
n is unambiguously determined by its exponent sequence D•

n(x), which is a
degree n sequence of natural numbers. Now, such sequences can be easily ordered
using the geometry of the associated trees, and we are led to order B+

n . Actually,
for simplicity, we shall not start from the exponent sequence, but from a direct
inductive construction that will be subsequently proved to be equivalent.

Definition 3.12. For n > 2, we recursively define a relation <∗
n on B+

n by:
(i) For x, y in B+

2 , we say that x <∗
2 y holds for x = σp

1 and y = σq
1 with p < q;

(ii) For x, y in B+
n with n > 3, we say that x <∗

n y holds if, letting (xp, ..., x0)
and (yq, ..., y0) be the φn-splittings of x and y, we have either p < q, or p = q and
there exists r satisfying xi = yi for i > r and xr <∗

n−1 yr.

Thus, <∗
n is a sort of lexicographical extension of the natural order on B+

2 ,
i.e., on natural numbers, via iterated φ-splittings. The extension is not exactly
lexicographic: before comparing the sequences componentwise, we first compare
their lengths, i.e., the breadths of the considered braids. Such a comparison method
is called the ShortLex-ordering in [21].
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Proposition 3.13. (i) For n > 2, the relation <∗
n is a strict linear ordering on B+

n ,
which is a well-ordering. For each braid x, the immediate <∗

n-successor of x is xσ1.
(ii) For n > 3, the order <∗

n extends the order <∗
n−1, and B+

n−1 is the initial

segment of B+
n determined by σn−1, i.e., we have B+

n−1 = {x ∈ B+
n ; x <∗

n σn−1}.
Proof. (i) The relation <∗

2 is a strict linear ordering on B+

2 , and, then, the fact
that <∗

n is a strict linear ordering on B+
n follows from the hypothesis that <∗

n−1 is
a strict linear ordering on B+

n−1 and the uniqueness of the φn-splitting. That <∗
n

is a well-order results from a similar induction, owing to the standard result that
the ShortLex-extension of a well-order is a well-order. Finally, if the φn-splitting
of x is (xp, ..., x0), the φn-splitting of xσ1 is (xp, ..., x0σ1), making it clear that xσ1

is the immediate successor of x.
(ii) For x, y in B+

n−1, the φn-splittings of x and y simply are the length 1 se-
quences (x) and (y), so, by definition, x <∗

n y holds if and only if x <∗
n−1 y does.

On the other hand, the φn-splitting of σn−1 is (σ1, 1), so x <∗
n σn−1 holds for each x

in B+

n−1. Conversely, assume x ∈ B+
n and x <∗

n σn−1. By construction, if (x1, x0) is

an φn-splitting, x1 is not 1, hence, by (i), we have x1 >∗
n σ1. So, if x <∗

n σn−1 holds,
the only possibility is that the n-breadth of x is 1, i.e., that x belongs to B+

n−1. �

Owing to Proposition 3.13(ii), we shall skip the index n and write <∗ for <∗
n.

Example 3.14. The φ3-splittings of σ1 and σ2 respectively are (σ1) and (σ1, 1),
i.e., their respective 3-breadths are 1 and 2. Hence we have σ1 <∗ σ2.

Similarly, the φ-splittings of σ1σ2σ
4
1 and σ1σ

2
2 respectively are (σ1, σ1, σ

4
1) and

(σ1, σ
2
1 , 1). Here the 3-breadths are 3 in both cases, and we compare lexico-

graphically. The first entries coincide, but σ1 <∗ σ2
1 holds, so we conclude that

σ1σ2σ
4
1 <∗ σ1σ

2
2 holds.

In Definition 3.12, we introduced the order <∗ by means of the φ-splitting. It
can equivalently be introduced by appealing to the φ-exponent sequence and some
order on n-sequences on N.

Definition 3.15. We denote by <ShortLex the ShortLex iterated extension of the
standard order on N to n-sequences on N: if u, v are n-sequences on N, we say that
u <ShortLex

v holds if we have n = 0 and u < v, or n > 0 and u is ShortLex-smaller
than v, i.e., writing u = (up, ..., u0), v = (vq, ..., v0), we have either p < q, or p = q
and there exists r satisfying ui = vi for i > r and ur <ShortLex

vr.

Lemma 3.16. For x, y in B+
n , we have

(3.12) x <∗ y ⇐⇒ D•
n(x) <ShortLex D•

n(y).

Proof. We use induction on n > 2. The result is obvious for n = 2. Assume n > 3.
Let (xp, ..., x0) and (yq, ..., y0) be the φn-splittings of x and y. By (3.11), we have

D•
n(x) = (D•

n−1(xp), ..., D
•
n−1(x0)), D•

n(y) = (D•
n−1(yq), ..., D

•
n−1(y0)).

By induction hypothesis, D•
n−1(xi) <ShortLex D•

n−1(yi) is equivalent to xi <∗ yi, and
comparing the definitions of x <∗ y and of D•

n(x) <ShortLex D•
n(y) then gives the

expected equivalence. �

For instance, we saw in Example 3.14 that σ1σ2σ
4
1 <∗ σ1σ

2
2 holds. Another way

to see that is to compare the exponent sequences, (1, 1, 4) and (1, 2, 0) in the current
case, with respect to <ShortLex: the former is <ShortLex-smaller, as the lengths are the
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same, namely 3, as well as the leftmost entry, but the second entry in the former is
smaller than the second entry in the latter.

3.4. The braids ∇n,p. Few properties of the order <∗ are visible directly. Typi-
cally, whether x <∗ y implies zx <∗ zy is unclear because we do not know much
about the φ-splittings of zx and zy as compared with those of x and y: multiplying
by new factors on the left may change the right divisors radically, and it seems
hazardous to predict anything about the ordering of zx and zy.

In this section, we shall prove one technical result about the order <∗, namely
we determine the least upper bound of the elements of B+

n with breadth at most p.

Definition 3.17. For n > 2 and p > 1, we define

(3.13) δn = σn−1...σ1 and ∇n,p = (σ1...σn−1) ⋉n ... ⋉n (σ1...σn−1), p factors.

In other words, ∇n,p is the length p(n−1) zigzag ...σn−1...σ1σ1...σn−1 with p−1

alternations, always finishing with σn−1. For instance, we have ∇4,2 = σ3σ2σ
2
1σ2σ3.

Lemma 3.18. (i) For n > 2 and p > 1, we have

(3.14) ∆p
n = ∇n,p ∆p

n−1.

(ii) For n > 2, p > 1, and for each braid x in B+

n−1, the n-breadth of ∇n,px
is p + 1, and its φ-splittings is

(3.15) (σ1 , δn−1σ1 , ... , δn−1σ1︸ ︷︷ ︸
p−1 times

, δn−1 , x).

This holds in particular for ∇n,p with x = 1, and for ∆p
n with x = ∆p

n−1.

Proof. (i) Among the many equivalent inductive definitions of ∆n, we choose

∆1 = 1 and ∆n = σ1...σn−1∆n−1,

i.e., ∆n = ∇n,1∆n−1, so (3.14) holds for p = 1. Then, for p > 2, we use induction:

∆p
n = ∆n∆p−1

n = ∆n∇n,p−1∆
p−1
n−1 = φn(∇n,p−1)∆n∆p−1

n−1

= φn(∇n,p−1)∇n,1∆n−1∆
p−1
n−1 = ∇n,p∆

p
n−1.

(ii) When we evaluate the sequence of (3.15) by flipping each other entry, we pre-
cisely obtain ∇n,px. On the other hand, entry in (3.15) but possibly the last one is

right divisible by σ1, and not right divisible by any other σi. So, by Proposition 3.8,
the sequence must be the φ-splitting of the braid it represents. �

Example 3.19. The φ-splitting of ∆p
3 is

(3.16) (σ1 , σ2
1 , ... , σ2

1︸ ︷︷ ︸
p−1 times

, σ1 , σp
1),

which is (σ1, σ1, σ1) for p = 1, corresponding to ∆3 = σ1σ2σ1, and (σ1, σ
2
1 , σ1, σ

2
1)

for p = 2, corresponding to ∆2
3 = σ2σ

2
1σ2σ

2
1 . In other words, the 3-exponent

sequence of ∆p
3 is (1, 2, ..., 2, 1, p), p − 1 times 2.

We aim at proving that ∇n,p is the least upper bound for the n-braids with n-
breadth at most p. To do that, we must know that the φ-splitting of ∇n,p, which
has length p + 1, is minimal among all φ-splittings of length p + 1. We are thus led
to investigating the constraints satisfied by φ-splittings.
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Lemma 3.20. For n > 2, the braids in B+
n that satisfy x <∗ δn are of those of the

form σn−1...σmy with n > m > 2 and y ∈ B+

m−1.

Proof. We use induction on n > 2. For n = 2, we have δn = σ1, and the result is
true, as x <∗ σ1 implies x = 1, and 1 is the only element of B+

1 . Assume n > 3, and
x <∗ δn. The φ-splitting of δn is (σ1, δn−1). By definition, two cases are possible:
either the n-breadth of x is 1, which means that x lies in B+

n−1, or the n-breadth

of x is 2 and, letting (x1, x0) be its φ-splitting, we have either x1 <∗ σ1, which is
impossible, or x1 = σ1 and x0 <∗ δn−1. In the latter case, by induction hypothesis,
there exist m with n− 1 > m > 2 and y in B+

m−1 such that x0 = σn−2...σmy holds,

and, then, we find x = σn−1σn−2...σmy. �

Lemma 3.21. Assume n > 3 and that (xp, ..., x0) is the φn-splitting of some

element of B+
n . Then we have xp >∗ σ1, xi >∗ δn−1σ1 for p > i > 2, and x1 > δn−1

whenever p > 2 holds.

Proof. Assume that (yp, ..., y0) is a sequence of (n− 1)-braids such that yi <∗ δn−1

holds for some i with p > i > 1. We claim that (ypσ1, ..., y2σ1, y1, y0) is not a

φ-splitting. By Lemma 3.20, we have yi = σn−2...σmy for some y in B+

m−1 and
n − 1 > m > 2. As i < p holds, by construction, we have

xp ⋉n ... ⋉n xi < σn−1yiσ1 = σn−1...σmyσ1,

and, in order to show that (ypσ1, ..., y2σ1, y1, y0) is not a φ-splitting, it is sufficient to

show that some σk with k > 2 is a right divisor of σn−1...σmyσ1. Now, yσ1 belongs

to B+

m−1, hence involves σk’s with k < m − 2 only, while σn−1...σm involves σk’s

with k > m, so they commute. It follows that σm is a right divisor of σn−1...σmyσ1,

and, therefore, (ypσ1, ..., y2σ1, y1, y0) is not a φ-splitting.
Now, assume that (xp, ..., x0) is a φ-splitting for some element of B+

n . By con-
struction, each factor xi with i > 1 is divisible by σ1 on the right, hence, in
particular, we can write xi = yiσ1 for i > 2. We complete with y1 = x1. By
the claim above, we must have yi >∗ δn−1 for p > i > 2, and x1 >∗ δn−1. Now
Proposition 3.13(i) shows that x >∗ y implies xσ1 >∗ yσ1 for all x, y. So yp >∗ 1

implies xp >∗ σ1, and yi >∗ δn−1 implies xi >∗ δn−1σ1 for p > i > 2. �

Proposition 3.22. The braid ∇n,p is the <∗-least upper bound of the elements
of B+

n whose n-breadth is at most p.

Proof. By Lemma 3.18(ii), ∇n,p has n-breadth p + 1, hence x <∗ ∇n,p holds when-
ever x has n-breadth 6 p.

Conversely, assume that the n-breadth of x is at least p + 1. If it is p + 2 or
more, then x >∗ ∇n,p holds by definition of <∗. Otherwise, let (xp, ..., x0) be the
φ-splitting of x. Then Lemma 3.21 precisely says that the sequence (xp, ..., x0) is lex-
icographically larger than or equal to the sequence (σ1, δn−1σ1, ..., δn−1σ1, δn−1, 1),
which is the φn-splitting of ∇n,p. Hence we have x >∗ ∇n,p. �

4. Connection with the braid order

Defining a unique normal representative is of little interest in itself, unless the
normal form has some specific additional properties. At the moment, the most
interesting property of the flip normal form of Section 3 seems to be its connection
with the standard linear order of braids sometimes called the Dehornoy order.
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4.1. The braid order. In the sequel, we shall establish some connection between
the <∗-order on B+

n , i.e., the ordering deduced from the φ-splitting, and the stan-
dard linear order of the braids investigated in various earlier works [16]. We recall
the definition of the latter. We denote by B+

∞ the union of all B+
n ’s (consider-

ing B+

n−1 as a submonoid of B+
n ), and by B∞ the group of fractions of B+

∞, i.e.,
the braid group on unboundedly many strands.

Definition 4.1. For x, y in B∞, we say that x < y holds if the quotient braid x−1y
admits at least one word representative in which the generator σi with maximal
index occurs positively only, i.e., σi occurs but σ−1

i does not.

Proposition 4.2. (i) [12] The relation < is a linear ordering on B∞ that is com-
patible with multiplication on the left; for each n, the ordered set (B+

n , <) is the
interval (σ−1

n , σn) of (B∞, <).
(ii) [23] The restriction of < to B+

∞ is a well-order.

(iii)[7] For each n > 2, the restriction of < to B+
n is a well-order of type ωωn−2

.

In early sources (up to [16]), the flipped variant of the above order was considered,
namely the relation <̃ refering to the letter σi with minimal index, instead of
maximal as above. Both relations are essentially equivalent inasmuch as, for x, y
in Bn, the relation x < y is equivalent to φn(x) <̃ φn(y). However, many statements
look better with <, and considering <̃ seems to be an unfortunate remnant of the
intrinsic limitations inherent to the initial approach.

4.2. Adding brackets in a braid word. In order to connect the braid orders <∗

and < in Section 4.4 below, we shall compare the φ-normal form of Section 3
with some other normal form introduced by S. Burckel in his remarkable work on
braids [7, 8], and we first need to introduce some notions from the latter. The
original description of [7] is formulated in a specific tree setting, but the latter is
equivalent to the iterated sequences of Section 2, and we can easily describe in our
current framework the fragment of Burckel’s construction needed for the sequel.

In Sections 2 and 3, we associated with every braid a certain iterated sequence,
or, equivalently, a certain finite tree, called its φ-decomposition. Our construction
can be called top–down, as we start from a braid that will correspond to the root of
the tree and iteratively split it into several components until eventually atoms are
reached, here the generators σi. By contrast, Burckel’s approach is bottom–up, in
that one starts with an arbitrary word w, i.e., a sequence of generators σi, and let
a tree T (w) grow from w, so that the braid w appears at the end only. It will turn
out that both constructions lead to the same final result if and only if the word w
is φ-normal, as stated in Lemma 4.7(iii) below.

Burckel’s construction consists in associating with every n-braid word w a cer-
tain iterated sequence Tn(w) such that w is recovered when brackets are removed
in Tn(w), i.e., Tn(w) is a certain bracketing of w. For instance, we may think that,
starting from the 1-sequence of (2.5), we wish to recover the 2-sequence of (2.4),
or, equivalently, its addres list. We begin with an easy auxiliary notion.

Definition 4.3. Let w be an n-sequence of natural numbers (resp. of positive
braids). Let (θp, ..., θ0) be the address list of w, and (ep, ..., e0) (resp. (σ

ep

ip
, ..., σe0

i0
))

be its unbracketing. We define the expanded address list of w to be the sequence
consisting of θp repeated ep times, followed by θp−1 repeated ep−1 times, ..., up
to θ0 repeated e0 times.
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The expanded address list determines an n-sequence unambiguously: for an n-
sequence in N, we recover the entries by counting how many times each address
is repeated in the expanded address list, and possibly add 0 at the end if 0n is
missing; for an n-sequence of braids, we moreover use the generator function to
recover the indices of the σi’st: if the ith address is θ and the ith exponent is e,
then, by construction, the ith entry of w must be se

θ.

Example 4.4. Let w = ((σ1), (σ
2
2 , σ3), (σ1, σ

2
2 , 1)). The exponent sequence of w

is w
• = ((1), (2, 1), (2, 1, 0)), and its unbracketing is (1, 2, 1, 1, 2, 0). On the other

hand, the common address list of w and w
• is (20, 11, 10, 02, 01, 00). So the ex-

panded address list of both w and of w
• is (20, 11, 11, 10, 02, 01, 01).

Conversely, starting from the latter sequence, we recover the (unexpanded) ad-
dress list (20, 11, 10, 02, 01, 00) by deleting repeated entries and adding a final 00,
and we recover the exponent list (1, 2, 1, 1, 2, 0) by counting repetitions. Then we re-
cover ((1), (2, 1), (2, 1, 0)) as the unique 2-sequence of numbers admitting the above
address list and unbracketing. Finally, we recover ((σ1), (σ

2
2 , σ3), (σ1, σ

2
2 , 1)) as the

unique 2-sequence of braids admitting the above exponent list.

An easy induction shows that a list of n-addresses is the expanded list address
of some n-sequence (of numbers or of braids) if and only if it finishes with 0n and
each non-final entry is a successor (in the sense of Definition 2.12) of the next entry.

Definition 4.5. Let w be a length ℓ positive n-braid word. Put θ0 := 0n−2, and
inductively define θk to be the (unique) successor of θk−1 satisfying sθk

= w(k).
Then Tn(w) (resp. T •

n(w)) is defined to be the unique (n−2)-sequence of braids
(resp. of numbers) whose expanded address list is (θℓ, ..., θ0). The n-sequence Tn(w)
is called the n-bracketing of w.

The existence of Tn(w) for every braid word w follows from Lemma 2.20 which
implies that, for each address θ, every generator σi appears as associated with one,
and only one, successor of θ.

Example 4.6. Let w = σ1σ2σ2σ3σ1σ2σ2. In order to determine the 4-bracketing
of w, we first compute its expanded address list as shown in Table 4, obtain-
ing (20, 11, 11, 10, 02, 01, 01). Then, as in Example 4.4, we conclude that T4(w) is
((σ1), (σ

2
2 , σ3), (σ1, σ

2
2 , 1)).

Remark. When described as above, the process for computing the bracketing Tn(w)
is parallel to the process of constructing the φ-normal word equivalent to w: in
both cases, the point is to construct the address θk from the previous address θk−1.
Here, we choose θk so that the corresponding σ is the last letter of the current
remainder w(k−1), while, in the normalization process, we choose θk so that the
corresponding σ is the least right divisor of the braid represented by w(k−1) with
respect to the ordering of the generators encoded in θk−1.

It follows from the construction that, for each braid word w, the unbracketing
of Tn(w) is w if w finishes with σ1, and its w followed by a trivial entry 1 otherwise—
which makes the terminology “bracketing of w” coherent. The next lemma gathers
what we need to know about the bracketing operation. We recall that, for w an
n-sequence, |w| denotes the length of w as a sequence of (n−1)-sequences.

Lemma 4.7. Assume n > 3, and let w be a positive n-braid word.
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k w(k) θk−1 successors names θk

1 σ2 00 10, 01, 00 σ3, σ2, σ1 01
2 σ2 01 10, 02, 01 σ3, σ1, σ2 01
3 σ1 01 10, 02, 01 σ3, σ1, σ2 02
4 σ3 02 10, 03, 02 σ3, σ2, σ1 10
5 σ2 10 20, 11, 10 σ1, σ2, σ3 11
6 σ2 11 20, 12, 11 σ1, σ3, σ2 11
7 σ1 11 20, 12, 11 σ1, σ3, σ2 20

Table 4. Adding brackets in the word σ1σ2σ2σ3σ1σ2σ2, phase 1: con-

struction of the expanded list address; starting with 00, we scan the letters

from the right, and choose the only successor of the current address whose

name is the current letter.

(i) Let i = |Tn(w)|. Then we have |Tn(σkw)| = i for k 6 n − 2 with i odd and
for k > 2 with i even, and |Tn(σkw)| = i + 1 otherwise.

(ii) Assume w = φi
n(u)v with u finishing with σ1 and |Tn(v)| = i. Then Tn(w)

is the concatenation of φi
nTn(u) and Tn(v).

(iii) If w is φ-normal, then we have Tn(w) = Dn(w).

Proof. (i) By construction, Tn(σkw) is obtained from Tn(w) by appending the
additional entry σk at some address θ′ which is some successor of the leftmost

address θ occurring in Tn(w), say θ′ = θ(m). The hypothesis |Tn(w)| = i implies
that the first digit of θ is i − 1. Saying that the length of Tn(σkw) is i − 1, and
not i, means that θ′ is not the 0-successor of θ, i.e., that m 6= 0 holds. Now, by
definition of B

+

n, we have s[θ(0)] = σn−1 for every address θ whose first digit is even,

and s[θ(0)] = σ1 for every address θ whose first digit is odd. So m > 0 occurs if and
only if we have k 6 n − 2 if i is odd, and k > 2 if i is even.

(ii) Consider the inductive construction of Tn(w), and let θ be the leftmost
address in Tn(v). Assume that i is even. The same argument as for (i) shows that,
after completing Tn(v) and in order to continue with the final letter σ1 of u, we
must choose the 0-successor of θ, which is 0n−2, and, in particular, start a new
(n−3)-sequence. From that point, the rest of the construction of Tn(w) coincides
with the construction of Tn(u), and therefore Tn(w) is the concatenation of Tn(u)
and Tn(v). If i is odd, the argument is similar, with σn−1 replacing σ1, and the
first digit of [θ] being 0 instead of 1.

(iii) We use induction on n. For n = 2, the result is obvious. Otherwise,
assume that w is the φn-normal form of x. Let (xp, ..., x0) be the φn-splitting of x,
and, for each i, let wi be the φn−1-normal form of xi. By Lemma 3.10, we have
w = φp

n(wp)...φn(w1)w0. As w is assumed to be φ-normal, each of the words wi

with i > 1 finishes with σ1. Repeated applications of (ii) give

Tn(w) = (φp
nTn−1(wp) , ... , φnTn−1(w1) , Tn−1(w0)).

By induction hypothesis, we have Tn−1(wi) = Dn−1(xi) for each i, so we get

Tn(w) = (φp
nDn−1(xp) , ... , φnDn−1(x1) , Dn−1(x0)).

By (3.9), the latter sequence is Dn(x). �

Of course, the result of Lemma 4.7(iii) fails if w is not a normal word.
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At this point, we extended the framework of bracketings and iterated sequences
to arbitrary braid words. So, we can now use the ordering <ShortLex for arbitrary
positive braid words via their distinguished bracketings, i.e., consider the relation
T •

n(u) <ShortLex T •
n(v). The point is that, for convenient words, the word order so

obtained is connected with the braid orders <∗ and <. We begin with <∗.

Lemma 4.8. For x, y in B+
n , we have

(4.1) x <∗ y ⇐⇒ T •
n(u) <ShortLex T •

n(v),

where u and v are the φ-normal representatives of x and y.

Proof. We saw in Lemma 3.16 that x <∗ y is equivalent to D•
n(x) <ShortLex D•

n(y).
Now, by Lemma 4.7(iii), we have Dn(x) = Tn(u) and Dn(y) = Tn(v), hence
D•

n(x) = T •
n(u) and D•

n(y) = T •
n(v), and (4.1) directly follows. �

4.3. The Burckel normal form. We now appeal to the results of [7] to state a
similar connection between the braid order < and the sequence order <ShortLex.

Definition 4.9. An n strand positive braid word w is said to be Burckel normal
if T •

n(w) is <ShortLex-minimal among all expressions T •
n(w′) with w′ ≡ w.

Burckel normal words are called irreducible in [7]. As the order <ShortLex is a well-
order, each nonempty set of n-sequences in N contains a <ShortLex-minimal element,
and, therefore, every positive braid word is equivalent to a unique Burckel normal
word, i.e., every positive braid admits a unique Burckel normal representative.

Proposition 4.10 (Burckel, [7]). For x, y in B+
n , we have

(4.2) x < y ⇐⇒ T •
n(u) <ShortLex T •

n(v),

where u and v are the Burckel normal representatives of x and y.

What Burckel does in [7] is to define a combinatorial operation called reduction
so that, if a braid word w is not Burckel normal, then the reduct w′ is equivalent
to w, i.e., represents the same braid, and it satisfies Tn(w′) <ShortLex Tn(w). As the
<ShortLex-ordering is a well-ordering, it admits no infinite decreasing sequence, and
reduction must terminate in finitely many steps. However, for n > 4, it is difficult
to predict how many reduction steps are needed, and what the final irreducible
word is.

In the sequel, in addition to Proposition 4.10, we shall use the following easy
result about Burckel normal words.

Lemma 4.11. Assume that σ1 divides x on the right. Then the Burckel normal
form of x finishes with σ1.

Proof. Assume x = yσ1, and let u, v be the Burckel normal forms of x and y.
Then, we have y−1x = σ1, hence the relation y < x holds, and, therefore, by
Proposition 4.10, we have T •

n(v) <ShortLex T •
n(u), hence T •

n(vσ1) 6ShortLex T •
n(u) as, by

construction, T •
n(vσ1) is the immediate successor of T •

n(v), since it consists in keep-
ing all brackets and adding 1 to the last entry. Now, vσ1 is a word representing yσ1,
hence x, and the previous inequality shows that it is Burckel normal. �
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4.4. Connecting the normal forms and the orders. At this point, two distin-
guished word representatives have been introduced for each positive braid, namely
its flip normal form, and its Burckel normal form. They actually coincide:

Proposition 4.12. The Burckel normal form coincides with the flip normal form.

Proof. (Figure 5) We prove that every Burckel normal word is φ-normal using
induction on n > 2. For n = 2, every word, namely every power of σ1, is normal in
both senses, and the result is true. Assume n > 3, and assume for a contradiction
that w is an n-braid word that is Burckel normal and not φ-normal. There is a
unique way of decomposing w as w = wp ⋉n ... ⋉n w0 in such a way that each

word wi with i > 1 finishes with σ1. Then, as in the proof of Lemma 4.7(iii),
repeated applications of Lemma 4.7(ii) give the equality

Tn(w) = (φp
nTn−1(wp) , ... , φnTn−1(w1) , Tn−1(w0)).

Assume first that some word wi is not φ-normal. Then, by induction hypothesis,
wi is not Burckel normal, which means that there exists another word w′

i, equivalent
to wi, and satisfying T •

n−1(w
′
i) <ShortLex T •

n−1(wi). Let w′ be the word obtained
from w by replacing the subword wi with w′

i. Then w′ is equivalent to w, and, by
construction, we have T •

n(w′) <ShortLex T •
n(w): indeed, Lemma 4.7(ii) implies that

Tn(w′) is obtained from Tn(w) by substituting the entry Tn−1(wi) with Tn−1(w
′
i),

which is <ShortLex-smaller. Hence w is not Burckel normal.
Assume now that every word wi is φ-normal. Put x = w, and xi = wi for every i.

The hypothesis that w is not φ-normal implies that (xp, ..., x0) is not the φ-splitting
of x, i.e., that xp ⋉n ... ⋉n xi < σk holds for some i > 1 and some k > 2. Choose
i maximal—thus corresponding to the shortest possible prefix of w that does not
satisfy the φ-splitting condition. Then put y = xp ⋉n ... ⋉n xi, z = xi−1 ⋉n ... ⋉n x0,
and let u = wp ⋉n ... ⋉n wi and v = wi−1 ⋉n ... ⋉n w0. By construction, we have
x = φi

n(y) z and w = φi
n(u) v. By the choice of i, the sequence (xp, ..., xi) is the

φn-splitting of y. On the other hand, u is the Burckel normal form of y: indeed,
u represents y by construction, and, if u′ would be another representative of y
satisfying T •

n(u′) <ShortLex T •
n(u), then w′ = φi

n(u′)v would give a representative of x
satisfying T •

n(w′) <ShortLex T •
n(w), contradicting the hypothesis that w is Burckel

normal.
Then our hypothesis is that y = y′σk holds for some y′ and some k > 2. By

definition of the φ-splitting, we have y < σ1, and, by hypothesis, y < σk. Hence y

is divisible by the left lcm of σ1 and σk. This implies y′ < σ1: indeed, for k > 3,
we have y < σ1σk, hence y/σk < σ1, and, for k = 2, we have y < σ2σ1σ2, hence

y/σ2 < σ2σ1 and, a fortiori, y/σ2 < σ1.
Let u′ be the Burckel normal form of y′. We have y′ < σ1, so Lemma 4.11

implies that u′ finishes with σ1. Moreover, we have y′−1y = σk, hence y′ < y. By
Proposition 4.10, this implies T •

n(u′) <ShortLex T •
n(u)—this is the point.

Let v′ = φi
n(σk)v. So v′ is σkv if i is even, and is σn−kv if i is odd. The

point is that we have k > 2, and, therefore, in all cases, Lemma 4.7(i) implies
|Tn(v′)| = |Tn(v)|, hence |T •

n(v′)| = |T •
n(v)|.

Finally, let w′ := φi
n(u′) v′. By construction, w′ represents φi

n(y′)φi
n(σk)z, which

is x, so w′ is equivalent to w. On the other hand, we saw that u′ finishes with σ1,
and, therefore, φi

n(u′) finishes with σ1 or σn−1, according to whether the length i
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of Tn(v) is even or odd. In both cases, Lemma 4.7(ii) implies

Tn(w′) = φnTn(u′) ⌢Tn(v′), hence T •
n(w′) = T •

n(u′) ⌢T •
n(v′).

Then, the conjunction of T •
n(u′) <ShortLex T •

n(u), which holds by hypothesis, and of
|T •

n(v′)| = |T •
n(v)| implies T •

n(w′) <ShortLex T •
n(w). This shows that w cannot be

Burckel normal, and completes the proof. �

︸ ︷︷ ︸
T •

n(w)
︸ ︷︷ ︸

T •

n(w′)

︸ ︷︷ ︸
T •

n(u)

︸ ︷︷ ︸
T •

n(v)

︸ ︷︷ ︸
T •

n(u′)

︸ ︷︷ ︸
T •

n(v′)

>ShortLex

. . . . . . . . . . . .

T
•

n−1(wp) T
•

n−1(wi) T
•

n−1(wi−1) T
•

n−1(w0) T
•

n−1(wi−1) T
•

n−1(w0)

x

xp xi xi−1 x0 xi−1 x0

x

↑

Figure 5. Proof of Proposition 4.12: if (xp, ..., x0) is not the φ-splitting

of x, then, at some point i, some generator σk with k > 2 is a right divisor

of the remainder; then we can extract that σk from the left part Tn(u) of

the tree, and incorporate it into the right part T •

n(v), as the vertical arrow

shows; as the new left part T •

n(u′) must be <ShortLex-smaller than the old

one T •

n(u), and as the new right part cannot be really larger, the resulting

new tree T •

n(w′) is <ShortLex-smaller than the initial tree T •

n(w), which shows

that w is not Burckel normal.

It can be observed that the previous argument is reminiscent of Burckel’s re-
duction method as described in [7] or [16, Chapter 4]; it is also similar to the
well-known exchange lemma in a Coxeter group: like in the latter, the point is to
extract a generator and push it to the final position while possibly changing its
name. Some variants are possible: for instance, one can use an induction on the
rank of the word Tn(w) in the well-order <ShortLex. But, in each case, one seems to
have to appeal to Proposition 4.10 at some point.

We immediately deduce:

Proposition 4.13. For all positive braids x, y, the relations x < y and x <∗ y are
equivalent.

Proof. Let u and v be the φ-normal representatives of x and y. By Proposition 4.12,
u and v also are the Burckel normal representatives of x and y. Then the equiva-
lences

x < y ⇐⇒ T •
n(u) <ShortLex T •

n(v) ⇐⇒ x <∗ y

follow from Lemma 4.8 and Proposition 4.10. �

Once we know that the two normal forms and the two braid orders coincide,
each one inherits the properties previously established for the other.
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Corollary 4.14. (i) The Burckel normal form can be computed using the algorithm
of Table 2, and therefore in quadratic time w.r.t. the length of the initial word.

(ii) The braid order < can be decided in quadratic time: if w is an (non neces-
sarily positive) n-braid word of length at most ℓ, then whether w > 1 holds can be
decided in time O(ℓ2n3 log n).

Proof. Point (i) is clear, as we know that the flip normal form can be computed
as indicated. As for (ii), we first observe that, if u, v are positive n-braid words
of length at most ℓ, then u < v can be decided in time O(ℓ2n log n). Indeed, by
Proposition 3.6(ii), we can compute the flip decompositions T •

n(u) and T •
n(v) within

the indicated amount of time; the extra cost of then comparing these sequences with
respect to the ShortLex-ordering is linear in ℓn. Now, if w is an arbitrary n strand
braid word of length ℓ, according to [21, Chapter 9], we can find two positive braid
words u, v of length in O(ℓn2) such that w is equivalent to u−1v in time O(ℓ2n log n).
Then w > 1 is equivalent to u < v, which, by the above claim, can be decided in
time O(ℓ2n5 log n). Actually, we can drop the exponent of n to 3 because an upper
bound for the φ-normal form is O(ℓℓcn log n), where ℓc denotes the canonical length,
defined to be, say, the number of divisors of ∆n involved in the right greedy normal
form. When we go from w to u−1v, the canonical lengths of u and v are bounded
above by that of w, leading to O(ℓℓcn

3 log n) for the whole comparison process. �

So far, only trivial exponential upper bounds had been proved for the computa-
tion of the Burckel normal form, for the latter came as the final result of an iterated
reduction process whose termination is guaranteed by some well-order of transfinite
length.

Another direct consequence of Proposition 4.13 is that the order <∗ of Section 3.3
inherits the properties of the order <.

Corollary 4.15. The order <∗ is compatible with multiplication on the left, and
x <∗ xσi always holds.

4.5. The shift splitting. One of the outcomes of the current approach is a simple
connection between the braid order < on B+

n and its restriction to B+

n−1: this
is clear in the statement of Definition 3.12, which we now know is a definition
of <. Here we give an alternative formulation that avoids using the flip operation
repeatedly, and is therefore perhaps more natural. This description involves the
shift endomorphism of B+

∞.

Definition 4.16. For every positive braid x, we denote by x# the image of x under
the shift endomorphism of B+

∞ that maps σi to σi+1 for each i. For p > 0, we define

x[p] to be x if p is even, and x# if p is odd.

An immediate verification on the σi’s shows that

(4.3) φn(x) = φn−1(x)#

holds for every x in B+

n−1. Adapting Proposition 3.8 gives:

Proposition 4.17. For each braid x in B+
n , there exists a unique sequence (xp, ..., x0)

of braids in B+

n−1 satisfying

(4.4) x = x[p]
p · ... · x#

3 · x2 · x#

1 · x0
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such that the only σj dividing x
[p]
p · ... · x[i]

i on the right is σ1 if i is positive even,

and σn−1 if i is odd. For each i, we have xi = φi
n−1(x

′
i), where (x′

p, ..., x
′
0) is the

φ-splitting of x.

Definition 4.18. The sequence (xp, ..., x0) involved in Proposition 4.17 will be
called the #-splitting of x.

The only difference between the #- and φ-splittings is a flip for the entries with
odd rank (counting from the right, as always in this paper). For instance, we saw
that the φ-splitting of ∆2

4 is (σ1, σ2σ
2
1 , σ2σ1, ∆

2
3). So, the #-splitting of ∆2

4 is

(σ2 , σ2σ
2
1 , σ1σ2 , ∆2

3).

Rewriting Definition 3.12 in this context and using the equality of <∗ and <, we
obtain the following inductive characterization of the braid order:

Proposition 4.19. Assume x, y ∈ B+
n . Let (xp, ..., x0) and (yq, ..., y0) be the #-

splittings of x and y into sequences of (n−1)-braids. Then x < y holds in B+
n if

and only if we have either p < q, or p = q and there exists r satisfying xi = yi for
p > i > r and, respectively, xr < yr in B+

n−1 if r is even, and φn−1(xr) < φn−1(yr)
in B+

n−1 if r is odd.

So the order on B+
n appears as a ShortLex-extension of the order on B+

n−1,
with an extra ingredient, namely flipping the entries of odd rank. Note that, for
n = 3, the φ- and #-splittings coincide, as φ2 is the identity, and, therefore, the
order on B+

3 is a ShortLex-extension of the usual order on N. Things become more
complicated from n = 4 as, then, φn is not trivial.

5. Open questions and further work

5.1. Braids. The proof of Proposition 4.12 heavily depends on Burckel’s Propo-
sition 4.10, a highly non trivial combinatorial result in the case of 4 strands and
more.

Question 5.1. Is there a direct proof for the following results?
(i) The orders <∗ and < coincide.
(ii) The order <∗ is compatible with multiplication on the left.
(iii) The relation x <∗ xσi always holds.

We have so far no general answer. We mention below some partial results toward
a positive answer to Question 5.1 (i), i.e., toward the result that, for all braids x, y,
the relation x <∗ y implies x < y—as we are dealing with linear orderings, one im-
plication is enough. Here we consider special values for y. By Propositions 3.13(ii)
and 4.2(i), we already know that x <∗ σn−1 is equivalent to x < σn−1, as both are
equivalent to x ∈ B+

n−1. We shall prove two more results of this kind.

Lemma 5.2. Assume x = xp ⋉n ... ⋉n x0 with n > 3, p > 0 and xp, ..., x0 ∈ B+

n−1.
Then we have

(5.1) x−1 ∇n,p = x−1
0 · ∆nx−1

1 · ∆nx−1
2 ... · ∆nx−1

p · ∆−p
n−1,

and x < ∇n,p holds.
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Proof. We use induction on p > 0. For p = 0, (5.1) reduces to x−1
0 = x−1

0 ·1. Assume
p > 1, and let y := xp ⋉n ... ⋉n x1. Then we have x = y ⋉n x, i.e., x = φn(y)x0,
and we find

x−1 ∇n,p = x−1
0 φn(y−1)∇n,p by hypothesis

= x−1
0 φn(y−1)∆p

n ∆−p
n−1 by (3.14)

= x−1
0 ∆n y−1 ∆p−1

n ∆−p
n−1 as φn(y) = ∆ny∆−1

n

= x−1
0 ∆n y−1 ∇n,p−1 ∆−1

n−1 by (3.14) again

= x−1
0 ∆n x−1

1 ∆nx−1
2 ... ∆nx−1

p ∆−p+1
n−1 ∆−1

n−1 by induction hypothesis,

which is (5.1). �

Proposition 5.3. For every x in B+
n , the relation x <∗ ∇n,p implies x < ∇n,p.

Proof. Assume x <∗ ∇n,p. By Proposition 3.22, the n-breadth of x is at most p,
and we can write x = xp ⋉n ... ⋉n x0 for some xp, ..., x0 in B+

n−1. We then apply

Lemma 5.2: (5.1) leads to an expression of the quotient x−1∇n,p in which the

letter σn−1 occurs p times, while neither σ−1
n−1 nor any letter σ±1

j with j > n

does. Indeed, each factor ∆n admits a positive expression in which σn−1 occurs
once, namely the one arising from the decomposition ∆n = ∇n,1∆n−1, while the

negative factors x−1
i and ∆−p

n−1 belong to Bn−1 and therefore can be expressed using

neither σn−1 nor σ−1
n−1. Therefore x < ∇n,p holds. �

Corollary 5.4. For every x in B+
n , the relation x <∗ ∆p

n implies x < ∆p
n.

Proof. We use induction on n > 2. The result is obvious for n = 2. Assume n > 3,
and x <∗ ∆p

n. By Lemma 3.18(iii), the n-breadth of ∆p
n is p + 1. Hence, either the

n-breadth of x is at most p, in which case we have x < ∇n,p by Proposition 5.3,
and therefore x < ∆p

n as ∇n,p < ∆p
n holds, or the n-breadth of x is p + 1. Then

let (xp, ..., x0) be the φ-splitting of x. In view of the constraints on φ-splittings
established in Lemma 3.21, and of the value of the φ-decomposition of ∆p

n given in
Lemma 3.18(ii), the only possibility is xp = σ1, xi = δn−1σ1 for p > i > 2, x1 =
δn−1, and x0 <∗ ∆n

n−1. By induction hypothesis, x0 <∗ ∆n
n−1 implies x0 < ∆n

n−1.

Then we have x−1∆p
n = x−1

0 ∆p
n−1, and x < ∆p

n follows. �

By varying on the theme above, we could state a number of similar compatibility
results between <∗ and <, but, so far, we have no complete argument. The main
missing piece is a direct proof of the fact that ∇n,p 6∗ x implies ∇n,p 6 x. If the

φn-splitting of x is (yp+1σ1, ..., y2σ1, x1, x0), one deduces from (5.1)

∇−1
n,p x = ∆p

n−1φn(yp+1) ·σn−1∆
−1
n φn(yp) · ... ·σn−1∆

−1
n φn(y2) ·σn−1∆

−1
n φn(x1) ·x0.

Unfortunately, the condition x >∗ δn−1 fails to imply σn−1∆
−1
n φn(x) > 1 in general,

and we cannot conclude that x > ∇n,p holds in this way.

5.2. Artin–Tits monoids and other Garside monoids. We proved in Section 2
that M -decompositions exist in every monoid M that is locally Garside on the
right and in which enough closed submonoids exist. This is in particular the case
for every Artin–Tits monoid with respect to the standard set of generators S, as,
in this case, every subset of S generates a parabolic submonoid that is closed, i.e.,
we recall from Section 1, is closed under left lcm and left divisor. Thus, coverings
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similar to the ones of Section 3 exist for every Artin–Tits monoid M , and each
of them leads to a normal form for the elements of M . Then, we can copy the
construction of Section 3.3 and define a linear ordering <M on M by considering
the ShortLex-ordering on M -normal words, i.e., by taking (3.12) as a definition.

Question 5.5. Let M be an Artin–Tits monoid. Is any of the linear orders <M

compatible with multiplication on the left?

In type An, i.e., if M is a braid monoid, the answer to Question 5.5 is positive,
as was stated in Corollary 4.15. But our proof of that result heavily depends on the
connection between the orders <∗ and <, and, therefore, it is quite specific. The first
step toward a possible positive answer to Question 5.5 would presumably consist
in getting a direct proof in the case of braids, i.e., in answering Question 5.1(ii).

Another possible extension of the current work consists in addressing the braid
order again, but in connection with other monoids. In particular, Laver’s result
of Proposition 4.2(ii) implies that the restriction of < to any finitely generated
submonoid of B∞ generated by conjugates of the σi’s is a well-order. It follows
that the restriction of < to the Birman–Lo–Lee monoids BKLn of [5] is a well-
order. The latter monoids are Garside monoids, and they are directly relevant for
the approach developed here. In particular, natural alternating normal forms can
be defined, and investigating their connection with the braid order is an obvious
task. J. Fromentin has promising results in this direction.

5.3. Geometric and dynamic properties. Not much is known about the flip
(or Burckel) normal form of braids. Of course, as every braid admits a canonical
decomposition as a fraction xy−1 with x, y positive braids with no common right
divisor, we can extend the φ-normal form on B+

∞ into a unique normal form on B∞.
Experiments suggest that the behaviour of this normal form is rather different from
that of the greedy normal form, and many questions arise about the geometry it
induces on the Cayley graph of Bn. In particular, we raise

Question 5.6. For n > 3, does the φ-normal form on Bn define a (bi)-automatic
structure?

Also it might be interesting to investigate the dynamical properties of the φ-
normal form, along the lines addressed in [3, 29, 25, 24, 26]. The generic problem
is to study growth and stabilization in random walks in Bn or, here, B+

n : one
compares the successive normal forms, typically looking at whether the first factors
become eventually constant. Each new normal form induces a new problem. Let
b(x) denote the n-breadth of x, and ci(x) denote the ith entry (starting from the
right) in the φ-splitting of x.

Question 5.7. Let (Xk)k>0 be the random walk in B+
n defined by Xk+1 = σi Xk

with i equidistributed in {1, ..., n − 1}. What are the distributions of 1
k
b(Xk) and

1
k
|ci(Xk)| for each fixed i?

Preliminary experiments suggest that the length of c0(Xk) grows like k/(n + 2),
while ci(Xk) with i > 1 tends to stabilize to δn−1σ1, of constant length. Such
phenomena are presumably connected with their counterpart for the right greedy
normal form, where ∆n factors accumulate on the right. Finally, b(Xk) might be

connected with
√

k.
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