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ABSTRACT 
Exact solution for scattering cross section coming from Xu’s computations is compared 
with different approximations. 

1 INTRODUCTION 
Many industrial operations involve solid-liquid suspensions. During the corresponding 
processes suspensions are put in motion. As a consequence, collisions and sticking of 
particles, i.e aggregation of particles, occurs. This phenomenon is due to Brownian 
motion in the case of sub-micronic particles and due to the velocity field heterogeneity in 
the case of larger particles. The aggregates formed usually contain a few primary 
particles because large aggregates undergo fragmentation leading to a limit size for the 
aggregates. So, primary spherical particles of metallic oxides (ZrO2, TiO2, Al2O3, SiO2) 
are used as precursors in ceramic industry. The corresponding suspensions contain 
aggregates, each one composed of less than one hundred primary particles. The on-line 
characterization of the suspension is made by spectral turbidimetry [1], i.e. attenuation 
of a light beam by particle scattering and absorption. In order to analyze the optical 
signal, i.e. turbidity, the scattering cross sections of aggregates are needed. An important 
literature is available about the calculation of the light scattering cross section of 
aggregates. For instance, Xu and Khlebtsov [2] (for more information see the references 
therein) proposed an exact calculation based on a generalization of the Mie theory. So, 
the scattering cross sections depend on the size of the primary particles, on the 
morphology of the aggregates and on the refractive index of the material and of the 
medium. This exact, but complicated theory cannot be easily used to interpret, for 
instance, turbidity spectra on-line. This is due to the time consuming calculations for a 
large amount of different aggregates (doublet, triplet...) which are produced during the 
aggregation process. The topic of this paper is to propose approximations (averaged over 
all the orientations) for scattering cross section corresponding to aggregates of few 
spherical and non absorbing particles. As the accuracy of turbidity measurements is 
more than 5%, we will consider an approximation as useful and valid if it describes the 
reality within this error. 

2 SEVERAL APPROXIMATIONS FOR SCATTERING CROSS SECTIONS 
An aggregate is composed of N primary spherical particles. The radius and the 
dimensionless size parameter of the primary particle are respectively denoted a1 and 
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properties of porous materials:  
 

Effective refractive index method. An aggregate is characterized by its effective 
diameter aN;e and its mean inner volume fraction eNaNaa ,
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1 /)(=Φ . The easiest way to 



determine the optical properties of an aggregate is to calculate its effective refractive 
index ma (see, for instance, [3]). The equation derived by Maxwell-Garnett has been 
proved to be suitable in certain case 
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where m and ma are the relative refractive index for primary particles and aggregates, 
respectively. With known diameter and effective refractive index of aggregate, the Mie 
theory [4] allows us to calculate the scattering cross section CN for a given wavelength. 
Two particular cases can be considered for choosing the effective diameter: 

 the compact sphere: the non porous sphere with the same mass of material as in the 
aggregate. Thus, 

a  N;e = N1/3  a1 ( 1=Φa and ma = m); (2) 

 the “projected area” equivalent sphere: in aggregation theory and optical properties 
modeling, the relevant parameter is the projected area Sp of the object on a plane. 
Thus, we define the radius aN;e of the equivalent sphere for an aggregate as: 

0,
2 pSa eN =π , (3) 

where 
0

pS  is the average projected area according to all aggregate orientations. 

Soft-particle methods. Generally, the object (primary particle, aggregate ...) can be 
divided into smaller identical parts (elements). Each element is polarisable. In the 
presence of a variable electric field, the element becomes an oscillating dipole, which 
itself creates an electromagnetic field. When an object is illuminated by an 
electromagnetic wave, each element receives the incident electric field and the one 
coming from the other elements. As a result, one may associate an oscillating dipole 
moment to each element. Thus, the object emits an electromagnetic wave (scattered 
wave), which includes the contribution of each oscillating dipole. 
Most often, the incident wave is randomly polarized and the object (scatterer) can 
randomly orientate. Thus, the optical properties are obtained after calculating an 
average over all the wave polarization states and object orientations.  
Several models were published, each one characterized by the polarisable element, the 
object, the calculation type. For instance, Berry and Percival [5], Khlebtsov [6] and Xu 
and Khlebtsov [2] calculate the aggregate optical properties, if the polarisable element 
are respectively: Rayleigh scatterer, Rayleigh-Debye-Gans (RDG) scatterer and Mie 
scatterer. 
So, the Khlebtsov’s [6] procedure, similar to Berry-Percival one, has been applied to 
aggregates of many particles (fractal aggregates). RDG scatterers are characterized by 

1−m << 1 and 14
1 −ma
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<< 1. Then, the scattering cross section obeys: 
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where , Ω ϑ , q are the solid angle, the scattering angle and the scattering vector, 
respectively. D is the contribution of the multiple scattering inside the aggregate [6]. 



)(1 ϑF  is proportional to the phase function corresponding to the primary particle 
(sphere). The structure factor S(q) depends on the aggregate morphology: 

S(q) = . (5) 2
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Here, Ri;j is the distance between the centers of the primary particules i and j inside the 

aggregate. However, when 14
1 −ma

λ
π

 is not small, the approximation of anomalous 

diffraction [4] can be applied. In the Rayleigh-Debye-Gans domain, there is interference 
of electromagnetic waves which are independently scattered by all small volume 
elements. In the anomalous di_raction domain, there is straight transmission and 
subsequent diffraction. In this case, the scattered intensity is concentrated near the 
original direction of propagation and the scattering cross section obeys the relation [4]: 
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Integration is performed over the object projected area Sp on a plane perpendicular to 
propagation direction. δ is the path of light through the object. This calculated path is a 
function of the projection coordinates. This kind of calculation was previously achieved 
for fractal clusters by Khlebtsov [7]. 

3 NUMERICAL INVESTIGATION 
We studied aggregates with number of particles N = 2; 4; 8; 16; 64; 100. The size 
parameter of the primary particle is in the range [0.013 ; 9.25]. For each N-aggregate, we 
consider several morphologies or compactness: chain, plane, cube... Tested materials are 
the ones with low (SiO2, m = 1.08), intermediate (Al2O3, m = 1.32) and high (TiO2, m = 
1.94) optical contrast in water. We compare exact values of scattering cross section 
derived from Xu’s theory [2] with the corresponding one from the above-described 
approximations: compact sphere (CS) (Equations. (1), (2)); effective refractive index 
(ERI) method (Equations. (1), (3)); Percival-Berry-Khlebtsov (PBK) method (Equations. 
(4), (5)); anomalous diffraction (AD) approximation (Equation (6)). Results are shown 
as the ratio of actual scattering cross section to the sum of aggregate primary particles 
cross sections CN/(NC1). 

  
 a  b 
Figure 1: RXu for linear configuration with N primary particles, case a):SiO2, b):TiO2. 

 



Consider main features of mean scattering cross sections of aggregates like it was done 
in [8]. Figures 1(a,b) represent RXu = CXu,N/(NCMie,;1) against the primary particle size 
parameter for several N-chains and for the two systems TiO2/water and SiO2/water. The 
trends are the same for compact aggregates (the compact configuration means for 
example a tetrahedron for the case of 4 primary particles, a cube for the case of 8 and so 
on). The shape of the curves RXu is similar whatever the material. RXu is a decreasing 
function of the size parameter. For very small size parameter RXu tends to N as expected 
by [4]. For high value of the size parameter RXu tends to a value in the range [0-1]. When 
we consider the data for all the aggregates we may divide the α-range into two sub-
ranges: [0,2] with sharp decrease of RXu and [2,10] with a nearly constant value of RXu. 
 

In order to compare the different approximate methods we consider for each method 
ratio Rmethod / RXu with Rmethod = Cmethod,N/(NCmethod,1). Tables 1 and 2 contain the 
performances of each method as the mean value of R (over 100 α-values) and the mean 
relative deviation (σ) between Rmethod and RXu. With the view to obtain significant 
calculations over different size parameter, we restricted the number of the primary 
particles by the values of 2, 4, 8 and 16. We also performed calculations in the case of 64 
and 100 primary particles but with less number of size parameter (CPU time is too long) 
that why there are not include in the values of these tables. 
 

Table 1: 0 < α < 2 
 
configuration linear compact 
index SiO2 AlO2O3 TiO2 SiO2 AlO2O3 TiO2

method mean σ mean σ mean σ mean σ mean σ mean σ 
CS 1.73 0.95 1.72 0.95 1.39 0.88 1.20 0.24 1.21 0.25 1.07 0.32 
ERI 1.23 0.35 1.16 0.31 1.00 0.18 1.02 0.05 0.99 0.05 0.97 0.12 
PBK 0.99 0.02 0.96 0.06 0.811 0.211 0.99 0.01 0.98 0.07 0.851 0.171

AD 0.60 0.45 0.57 0.48 0.57 0.53 0.56 0.50 0.53 0.52 0.51 0.57 
RXu 2.47 2.32 2.56 2.45 2.85 3.08 3.70 4.12 3.82 4.34 3.97 5.06 
 

 (1) 0 < α < 1 
Table 2: 0 < α <10 

 
configuration linear compact 
index SiO2 AlO2O3 TiO2 SiO2 AlO2O3 TiO2

method mean σ mean σ mean σ mean σ mean σ mean σ 
CS 1.36 0.45 0.69 0.44 0.64 0.43 1.14 0.16 0.78 0.29 0.99 0.68 
ERI 0.95 0.09 0.97 0.09 0.98 0.10 0.96 0.05 0.98 0.16 1.25 0.91 
PBK 1.08 0.13 1.51 0.62 1.462 0.562 1.12 0.22 2.57 2.19 3.072 4.262

AD 0.94 0.10 1.07 0.16 1.07 0.08 0.94 0.07 1.05 0.12 1.44 1.27 
RXu 1.19 0.25 0.87 0.18 0.83 0.18 1.40 0.50 0.76 0.38 0.64 0.43 
 

 (2) 1 < α < 10 

4 CONCLUSION 
As expected CS method is not appropriate. AD (anomalous diffraction) is a good 
approximation for 2 < α < 10. PBK is a good approximation for 0 < α < 2 but less 
efficient for material with high optical contrast. ERI seems the best for 0 < α < 10 except 
for chains of small primary particles. The last row of the Table 1 and 2 shows RXu. As it is 



expected, this approximation is not acceptable for small primary particles (0 < α < 2). 
The result becomes better for large primary particles, especially in the case of chains, but 
anyway ERI remains the best approximation. 
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