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1. Introduction

The relative Chern character was defined by Atiyah and al. in [2, 5] as a map

(1) ChX\Y : K0(X,Y ) −→ H∗(X,Y ).

Here Y ⊂ X are finite CW-complexes, K0(X,Y ) is the relative K-group and
H∗(X,Y ) is the singular relative cohomology group.

The relative Chern character enjoys various functorial properties. In particular,
Ch is multiplicative: the following diagram

(2) K0(X,Y )

ChX\Y

��

× K0(X,Y ′)

Ch
X\Y ′

��

⊙
// K0(X,Y ∪ Y ′)

Ch
X\Y ∪Y ′

��

H∗(X,Y ) × H∗(X,Y ′)
⋄

// H∗(X,Y ∪ Y ′)

is commutative. Here Y, Y ′ ⊂ X are finite CW-complexes. and ⊙ and ⋄ denote
the products. This property was extended to the case where X is a paracompact
topological space and Y any open subset of X by Iversen in [14] (see also [12,
13]). Iversen deduces the existence of the local Chern character from functorial
properties, but his construction is not explicit.

Date: 20 February 2007.
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In this article, we work in the context of manifolds and differential forms. In-
deed, in this framework, Quillen [18] constructed a very natural de Rham relative
cohomology class associated to a smooth morphism between vector bundles, that
we call the relative Quillen Chern character. Let N be a manifold (not necessarily
compact), and let σ : E+ → E− be a morphism of complex vector bundles over N .
Let Supp(σ) be the support of σ : it is the set of points n ∈ N where σ(n) is not
invertible. We do not suppose that Supp(σ) is compact. Quillen [18] associates to
σ a couple (α, β) of differential forms, where α is given by the usual Chern-Weil
construction, and β is also constructed à la Chern-Weil, via super-connections. The
form α is a closed differential form on N representing the difference of Chern char-
acters Ch(E+)−Ch(E−) ∈ H∗(N), and β is a differential form on N \Supp(σ) such
that

α|N\Supp(σ) = dβ.

The couple (α, β) defines then an explicit relative de Rham cohomology class

Chrel(σ) ∈ H∗(N,N \ Supp(σ)).

The main purpose of this note is to show that Quillen’s relative Chern character
Chrel is multiplicative. If σ1, σ2 are two morphisms on N , then the product σ1 ⊙σ2

is a morphism on N with support equal to Supp(σ1) ∩ Supp(σ2). We prove in
Section 4 that the following equality

(3) Chrel(σ1 ⊙ σ2) = Chrel(σ1) ⋄ Chrel(σ2)

holds in H∗(N,N \ Supp(σ1 ⊙ σ2)).

Our proof of this equality is direct. Denote by [α, β] the class of (α, β) in the
de Rham relative cohomology. In order to prove the formula [α1, β1] ⋄ [α2, β2] =
[α1 ∧α2, β12], we give an explicit equality (Equality (26)) between the forms β1, β2

and β12 attached by Quillen to σ1, σ2 and σ1 ⊙ σ2. We give an explicit example of
the equalities involved in Subsection 5.3.3. Intuitively (and true in many analytic
cases), the relative Chern class could also be represented as a current supported on
Supp(σ), but currents do not usually multiply. Thus another procedure, involving
a choice of partition of unity, is needed to define the product ⋄ of relative classes
in de Rham relative cohomology.

The multiplicativity property (3) can also be deduced from the fact that Quillen’s
Chern character gives an explicit representative of Iversen’s local Chern character,
due to Schneiders functorial characterization of Iversen’s class (see [19]). Our proof
does not use Iversen’s construction. As we need the same argument for more general
situations, we feel worthwhile to present this down-to-earth proof.

When Supp(σ) is compact, there is a natural homomorphism from H∗(N,N \
Supp(σ)) into the compactly supported cohomology algebra H∗

c(N) and the image
of the Quillen relative Chern character Chrel(σ) is the Chern character Chc(σ) with
compact support. The equality (3) implies the relation

(4) Chc(σ1 ⊙ σ2) = Chc(σ1) ∧ Chc(σ2) in H∗
c(N).

This last relation is well known and follows also from the fact that Chc(σ) is the
Chern character of a difference bundle on a compactification of N .

In Theorem 5.5, we refine this relation to the case where Supp(σ1) and Supp(σ2)
are not necessarily compact by associating to the relative class Chrel(σ) a closed
differential form onN supported very near the closed set Supp(σ). Here the product
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is given by the natural wedge product of forms, but it is at the expense of fattening
the support of σ.

Acknowledgements: We are grateful to M. Karoubi, J. Lannes, P. Schapira
and J.P. Schneiders for enlightening discussions on these topics.

2. Cohomological structures

Let N be a manifold. We denote by A∗(N) the algebra of differential forms on
N and by H∗(N) the de Rham cohomology algebra of N with complex coefficients.
We denote by H∗

c(N) its compactly supported cohomology algebra. There is a
natural map H∗

c(N) → H∗(N).

2.1. Relative cohomology. Let F be a closed subset of N . To a cohomology
class on N vanishing on N \ F , we associate a relative cohomology class. Let us
explain the construction (see [9]). Consider the complex A∗(N,N \ F ) with

Ak(N,N \ F ) := Ak(N) ⊕Ak−1(N \ F )

and differential drel (α, β) =
(
dα, α|N\F − dβ

)
.

Definition 2.1. The cohomology of the complex (A∗(N,N \F ), drel) is the relative
cohomology space H∗(N,N \ F ).

The class defined by a drel-closed element (α, β) ∈ A∗(N,N \F ) will be denoted
[α, β]. We review the basic facts of the relative cohomology groups :

• There is a natural map H∗(N,N \ F ) → H∗(N).
• If F ⊂ F ′ are closed subsets of N , there is a natural restriction map
H∗(N,N \ F ) → H∗(N,N \ F ′).

• If F1 and F2 are closed subsets of N , there is a natural product

H∗(N,N \ F1) ×H∗(N,N \ F2) −→ H∗(N,N \ (F1 ∩ F2))(5)

( a , b ) 7−→ a ⋄ b .

We will use an explicit formula for ⋄ that we need to recall.

Let F1, F2 be two closed subsets of N . Let U1 := N \ F1, U2 := N \ F2 so that
U := N \(F1∩F2) = U1∪U2. Let Φ := (Φ1,Φ2) be a partition of unity subordinate
to the covering U1 ∪ U2 of U . As Φ1 + Φ2 = 1, we have dΦ1 + dΦ2 = 0. With the
help of Φ, we define a bilinear map

⋄Φ : A∗(N,N \ F1) ×A∗(N,N \ F2) → A∗(N,N \ (F1 ∩ F2))

as follows.
Let ai := (αi, βi) ∈ Aki(N) ⊕Aki−1(N \ Fi), i = 1, 2. Define

a1 ⋄Φ a2 :=
(
α1 ∧ α2,Φ1β1 ∧ α2 + (−1)k1α1 ∧ Φ2β2 − (−1)k1dΦ1 ∧ β1 ∧ β2

)
.

Remark that all forms Φ1β1∧α2, α1∧Φ2β2 and dΦ1∧β1∧β2 are well defined on
U1∪U2. Indeed the support of the form dΦ1 is contained in U1∩U2, as dΦ1 = −dΦ2.
So a1 ⋄Φ a2 ∈ Ak1+k2(N,N \ (F1 ∩ F2)).

The following relation is immediate to verify:

drel(a1 ⋄Φ a2) = (drela1) ⋄Φ a2 + (−1)k1a1 ⋄Φ (drela2).

Thus ⋄Φ defines a map H∗(N,N \ F1) ×H∗(N,N \ F2) → H∗(N,N \ (F1 ∩ F2)).
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Let us see that this product do not depend of the choice of the partition of unity.
If we have another partition Φ′ = (Φ′

1,Φ
′
2), then Φ1 − Φ′

1 = −(Φ2 − Φ′
2). It is

immediate to verify that, if drel(a1) = 0 and drel(a2) = 0, one has

a1 ⋄Φ a2 − a1 ⋄Φ′ a2 = drel

(
0, (−1)k1(Φ1 − Φ′

1)β1 ∧ β2

)
.

So the product on the relative cohomology spaces will be denoted by ⋄.

2.2. Inverse limit of cohomology with support. Let F be a closed subset of
N . We consider the set FF of all open neighborhoods U of F which is ordered
by the relation U ≤ V if and only if V ⊂ U . For any U ∈ FF , we consider the
algebra A∗

U (N) of differential forms on N with support contained in U (that is
vanishing on a neighborhood of N \ U): this algebra is stable under the de Rham
differential d, and we denote by H∗

U (N) the corresponding cohomology algebra. If
U ≤ V , we have then an inclusion map A∗

V (N) →֒ A∗
U (N) which gives rise to a

map fU,V : H∗
V (N) → H∗

U (N).

Definition 2.2. We denote by H∗
F (N) the inverse limit of the inverse system

(H∗
U (N), fU,V ;U, V ∈ FF ).

When F is compact, we have another system. For U ∈ FF , we take the vector
space H∗

c(U) and for U ≤ V , we take the canonical map hU,V : H∗
c(V ) → H∗

c(U).

We denote by H̃∗
F (N) the inverse limit of the inverse system (H∗

c (U), hU,V ;U, V ∈
FF ). Let us recall the following basic facts :

• When F is compact, H̃∗
F (N) ≃ H∗

F (N).
• H∗

F (N) = {0} if F = ∅.
• There is a natural map H∗

F (N) → H∗(N). If F is compact, this map factors
through H∗

F (N) → H∗
c(N).

• If F ⊂ F ′ are two closed subsets of N , there is a natural map H∗
F (N) →

H∗
F ′(N),

• If F and R are two closed subsets of N , there is a natural product

(6) H∗
F (N) ×H∗

R(N)
∧

−→ H∗
F∩R(N).

The operation (6) is defined via the wedge product on forms. It is well defined
since for any neighborhood W of F ∩R, we can find neighborhoods U of F and V
of R such that U ∩ V ⊂W .

Now we define a natural map from H∗(N,N \ F ) into H∗
F (N).

Let β ∈ A∗(N \F ). If χ is a function on N which is identically 1 on a neighbor-
hood of F , note that dχβ defines a differential form on N , since dχ is equal to 0 in
a neighborhood of F .

Proposition 2.3. For any open neighborhood U of F , we choose χ ∈ C∞(N) with
support in U and equal to 1 in a neighborhood of F .

• The map

(7) pχ
U (α, β) = χα+ dχβ

defines a homomorphism of complexes pχ
U : A∗(N,N \ F ) → A∗

U (N).
In consequence, let α ∈ A∗(N) be a closed form and β ∈ A∗(N \ F ) such that

α|N\F = dβ, then pχ
U (α, β) is a closed differential form supported in U .

• The cohomology class of pχ
U (α, β) in H∗

U (N) does not depend of χ. We denote
this class by pU (α, β) ∈ H∗

U (N).
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• For any neighborhoods V ⊂ U of F , we have fU,V ◦ pV = pU .

Proof. The equation pχ
U ◦ drel = d◦pχ

U is immediate to check. In particular pχ
U (α, β)

is closed, if drel (α, β) = 0. Directly: d(χα + dχβ) = dχα − dχdβ = 0. This proves
the first point. For two different choices χ and χ′, we have

pχ
U (α, β) − pχ′

U (α, β) = (χ− χ′)α+ d(χ− χ′)β

= d ((χ− χ′)β) .

Since χ−χ′ = 0 in a neighborhood of F , the right hand side of the last equation is
well defined, and is an element of A∗

U (N). This proves the second point. Finally,
the last point is immediate, since pχ

U (α, β) = pχ
V (α, β) for χ ∈ C∞(N) with support

in V ⊂ U . �

Definition 2.4. Let α ∈ A∗(N) be a closed form and β ∈ A∗(N \ F ) such that
α|N\F = dβ. We denote by pF (α, β) ∈ H∗

F (N) the element defined by the sequence
pU (α, β) ∈ H∗

U (N), U ∈ FF . We have then a morphism

(8) pF : H∗(N,N \ F ) → H∗
F (N).

The following proposition summarizes the functorial properties of p.

Proposition 2.5. • If F ⊂ F ′ are closed subsets of N , then the diagram

(9) H∗(N,N \ F )

��

p
F

// H∗
F (N)

��

H∗(N,N \ F ′)
p

F ′
// H∗

F ′(N)

is commutative.
• If F1, F2 are closed subsets of N , then the diagram

(10) H∗(N,N \ F1)

p
F1

��

× H∗(N,N \ F2)

p
F2

��

♦
// H∗(N,N \ (F1 ∩ F2))

p
F1∩F2

��

H∗
F1

(N) × H∗
F2

(N) ∧
// H∗

F1∩F2
(N)

is commutative.

Proof. The proof of the first point is left to the reader. Let us prove the second
point. LetW be a neighborhood of F1∩F2. Let V1, V2 be respectively neighborhoods
of F1 and F2 such that V1 ∩ V2 ⊂ W . Let χi ∈ C∞(N) supported in Vi and equal
to 1 in a neighborhood of Fi. Then χ1χ2 is supported in W and equal to 1 in a
neighborhood of F1 ∩F2. Let Φ1 + Φ2 = 1N\(F1∩F2) be a partition of unity relative
to the decomposition N \ (F1 ∩ F2) = N \ F1 ∪N \ F2.

Then one checks easily that

pχ1

V1
(a1) ∧ pχ2

V2
(a2) − pχ1χ2

W (a1 ⋄Φ a2)

is equal to

d
(
(−1)k1+1χ1dχ2(Φ1β1β2) + (−1)k1χ2dχ1(β1Φ2β2)

)
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for drel-closed forms ai = (αi, βi) ∈ Aki(N,N \Fi). Remark that Φ1β1β2 is defined
on N \ F2, so that dχ2(Φ1β1β2) is well defined on N and supported in V2. Thus
the form (−1)k1+1χ1dχ2(Φ1β1β2)+(−1)k1χ2dχ1(β1Φ2β2) is well defined on N and
supported in V1 ∩ V2 ⊂W . Since pχ1

V1
(a1) ∧ pχ2

V2
(a2) and pχ1χ2

W (a1 ⋄Φ a2) represent
respectively the W -component of pF1

(a1)∧pF2
(a2) and pF1∩F2

(a1 ⋄a2), this proves
that pF1

(a1) ∧ pF2
(a2) = pF1∩F2

(a1 ⋄ a2).
�

If we take F ′ = N in (9), we see that the map pF : H∗(N,N \ F ) → H∗
F (N)

factors the natural map H∗(N,N \ F ) → H∗(N).

2.3. Integration. We consider now the case where F is a compact subset of N .
We have then a map

(11) pc : H∗(N,N \ F ) −→ H∗
c(N)

which is equal to the composition of pF with the natural map H∗
F (N) → H∗

c(N).
If a ∈ H∗(N,N \ F ) is represented by the drel-closed differential form (α, β) ∈
A∗(N,N \ F ), the class pc(a) ∈ H∗

c(N) is represented by the differential form
pχ

U (α, β) = χα+ dχβ where χ is a function with compact support.

Definition 2.6. Suppose that N is oriented. If a ∈ H∗(N,N \ F ), the integral of
a is defined by ∫

N

a :=

∫

N

pc(a).

Suppose that N is oriented and compact. The elements α and pc(a) coincide
in H∗(N), hence ∫

N

a =

∫

N

α

if N is compact.
Suppose now that N is non-compact. Let a = [α, β], and assume that the form

α is integrable. The two sides of the equality above are defined. However, it is
usually not true that

∫
N
a =

∫
N
α. An interesting case is the relative Thom form

tV of a vector space V : then tV = [0, β], with β a particular closed form on V \{0}.
Here the integral of α = 0 is equal to 0, while

∫
V
tV = 1. See Example 5.3.2.

In some important cases studied in Subsection 5.2.2, we will however prove that
the integral of pc(a) is indeed the same than the integral than α. As we have

pχ
U (α, β) − α = (χ− 1)α+ dχβ

= d
(
(χ− 1)β

)
,(12)

the comparison between the integral of pc(a) and the one of α will follow from the
careful study of the behavior on N of the form (χ− 1)β.

3. Quillen’s relative Chern Character

3.1. Chern form of a super-connection. For an introduction to the Quillen’s
notion of super-connection, see [7]. If E = E+ ⊕ E− is a Z2-graded space, we set
|v| = 0, if v ∈ E+ and |v| = 1 if v ∈ E−.

If E is a complex vector bundle on a manifold N , we denote by A∗(N,End(E))
the algebra of End(E)-valued differential forms on N .
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Let ∇ be a connection on E . The curvature ∇2 of ∇ is a End(E)-valued two-form
on N . Recall that the Chern character of E is the de Rham cohomology class of

the closed differential form Chern(E) := Tr(exp(−∇2

2iπ
)). Here we simply denote by

Ch(E) ∈ H∗(N) the de Rham cohomology class of Tr(exp(∇2)). We will call it the
(non normalized) Chern character of E .

More generally, let E = E+⊕E− be a Z2-graded complex vector bundle on a man-
ifold N . Taking in account the Z2-grading of End(E), the algebra A∗(N,End(E))
is a Z2-graded algebra: A∗(N,End(E)) = [A∗(N,End(E))]+ ⊕ [A∗(N,End(E))]−,
where for example [A∗(N,End(E))]+ = A+(N,End(E)+) ⊕A−(N,End(E)−). The
super-trace on End(E) extends to a map Str : A∗(N,End(E)) → A∗(N).

Let A be a super-connection on E and F = A
2 its curvature, an element of

[A∗(N,End(E))]+. The Chern form of (E ,A) is the closed differential form

Ch(A) := Str(eF).

More precisely, in local coordinates, let E = N×E be a trivial Z2-graded complex
vector bundle with fiber a finite dimensional Z2-graded complex vector space E.
A super-connection on E is an operator A on A∗(N) ⊗ E of the form d+ A where
A ∈ [A∗(N) ⊗ End(E)]− . Then the operator A2 is given by the multiplication by
the element F = dA + A2 of [A∗(N) ⊗ End(E)]+ (that we may sometimes denote
also by A2). More explicitly, if A =

∑
aAaωa where Aa are endomorphisms of E

and ωa forms on N , then

(13) F =
∑

a

(−1)|Aa|Aadωa +
∑

a,b

(−1)|ωa||Ab|AaAbωaωb.

We will use the following transgression formulaes.

Proposition 3.1. • Let At, for t ∈ R, be a one parameter family of super-
connections on E, and let d

dt
At ∈ [A∗(N,End(E))]−. Let Ft be the curvature of At.

Then one has

(14)
d

dt
Ch(At) = d

(
Str
(
(
d

dt
At)e

Ft

))
.

• Let A(s, t) be a two-parameter family of super-connections. Here s, t ∈ R. We
denote by F(s, t) the curvature of A(s, t). Then:

d

ds
Str
(
(
d

dt
A(s, t)) eF(s,t)

)
−
d

dt
Str
(
(
d

ds
A(s, t)) eF(s,t)

)

= d

(∫ 1

0

Str
(
(
d

ds
A(s, t))euF(s,t)(

d

dt
A(s, t)) e(1−u)F(s,t)

)
du

)
.

Proof. These formulae are well known, and are derived easily from the two identi-
ties: F = A

2, and dStr(α) = Str[A, α] for any α ∈ A∗(N,End(E)).
We give for example the proof of the second point. We write A instead of A(s, t),

and F = A(s, t)2 instead of F(s, t). By Volterra’s formula (38),

d

ds
((
d

dt
A) eF) −

d

dt
((
d

ds
A) eF) =

∫ 1

0

(
d

dt
A) euF[A,

d

ds
A]e(1−u)Fdu−

∫ 1

0

(
d

ds
A) euF[A,

d

dt
A]e(1−u)Fdu.
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Now

d

(
Str
(
(
d

ds
A)euF(

d

dt
A) e(1−u)F

))
= Str

(
[A, (

d

ds
A)euF(

d

dt
A) e(1−u)F]

)

= Str
(
[A,

d

ds
A]euF(

d

dt
A) e(1−u)F

)
− Str

(
(
d

ds
A) euF[A,

d

dt
A]e(1−u)F

)
.

We can commute the even element [A, d
ds

A]euF of A∗(N,End(E)) with

( d
dt

A)e(1−u)F under the super-trace. Integrating from 0 to 1, we obtain our lemma.
�

In particular, the cohomology class defined by Ch(A) in H∗(N) is independent
of the choice of the super-connection A on E . By definition, this is the Chern

character Ch(E) of E . By choosing A =

(
∇+ 0
0 ∇−

)
where ∇± are connections

on E±, this class is just Ch(E+) − Ch(E−). However, different choices of A define
very different looking representatives of Ch(E).

3.2. Quillen’s relative Chern character of a morphism. Let E = E+ ⊕E− be
a Z2-graded complex vector bundle on a manifold N and σ : E+ → E− be a smooth
morphism. At each point n ∈ N , σ(n) : E+

n → E−
n is a linear map. The support of

σ is the closed subset of N

Supp(σ) = {n ∈ N | σ(n) is not invertible}.

Remark 3.2. It may look strange to define the support of σ at the closed set of
points where det(σ(n)) = 0, the support of a function (differential form, etc) being
the closure of the set of points where this function is not zero. But this is indeed
very natural: the fact that det(σ(n)) = 0 is equivalent to the fact that the vector
space CoKer(σ(n)) ⊕ Ker(σ(n)) is not zero.

Definition 3.3. The morphism σ is elliptic if Supp(σ) is compact.

Recall that the data (E+, E−, σ) defines an element of the K-theory K0(N) of
N when σ is elliptic.

In the following, we do not assume σ elliptic. We recall Quillen’s construction
[18] of a cohomology class Chrel(σ) in H∗(N,N \ Supp(σ)). The definition will in-
volve several choices. We choose Hermitian structures on E± and a super-connection
A on E without 0 exterior degree term.

We associate to the morphism σ the odd Hermitian endomorphism of E defined
by

(15) vσ =

(
0 σ∗

σ 0

)
.

Then v2
σ =

(
σ∗σ 0
0 σσ∗

)
is a non negative even Hermitian endomorphism of E .

The support of σ coincides with the set of elements n ∈ N where the spectrum of
v2

σ(n) contains 0.

Definition 3.4. If H is an Hermitian endomorphism of V and h ∈ R, we write
H ≥ h when (Hw,w) ≥ h‖w‖2 for any w ∈ V . Then H ≥ h if and only if the
smallest eigenvalue of H is larger than h.
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Consider the family of super-connections

(16) A
σ(t) = A + it vσ, t ∈ R.

The curvature of Aσ(t) is the even element F(σ,A, t) ∈ [A∗(N,End(E))]+ defined
by :

(17) F(σ,A, t) = (itvσ + A)2 = −t2v2
σ + it[A, vσ] + A

2.

Here −t2v2
σ is the term of exterior degree 0. As the super-connection A do not

have 0 exterior degree term, both elements it[A, vσ] and A2 are sums of terms with
strictly positive exterior degrees. For example, if A = ∇+ ⊕∇− is a direct sum of
connections, then it[A, vσ] ∈ A1(N,End(E)−) and A

2 ∈ A2(N,End(E)+).

Definition 3.5. We denote Ch(σ,A, t) the Chern form of (E ,Aσ(t)), that is

Ch(σ,A, t) := Str
(
eF(σ,A,t)

)
.

We define η(σ,A, t) := − Str
(
ivσ e

F(σ,A,t)
)
, and we call it the transgression form.

As ivσ = d
dt

Aσ(t), we have d
dt

Ch(σ,A, t) = −d(η(σ,A, t)). After integration, it
gives the following equality of differential forms on N

(18) Ch(A) − Ch(σ,A, t) = d

(∫ t

0

η(σ,A, s)ds

)
,

since Ch(A) = Ch(σ,A, 0).

Proposition 3.6. Let K be a compact subset of N and let h ≥ 0 such that v2
σ(n) ≥ h

when n ∈ K. There exists a polynomial PK of degree dimN such that, on K,

(19)
∣∣∣
∣∣∣eF(σ,A,t)

∣∣∣
∣∣∣ ≤ PK(t)e−ht2 for all t ≥ 0.

In particular, when K is contained in N \ Supp(σ), then Ch(σ,A, t) and η(σ,A, t)
tends to 0 exponentially fast when t tends to infinity.

Proof. We work on End(E)⊗A, where A = ⊕dimN
k=0 Ak(N). To estimate ‖eF(σ,A,t)‖,

we employ Lemma 6.1 of the Appendix, with H = t2v2
σ, and R = −it[A, vσ] − A2.

Here R is a sum of End(E)-valued differential forms on N with strictly positive
exterior degrees. Remark that R is a polynomial in t of degree 1. Lemma 6.1

gives us the estimate ‖eF(σ,A,t)‖ ≤ P(‖R‖)e−ht2 with P an explicit polynomial
with positive coefficients of degree dimN . Using the fact that ‖R‖ ≤ at+ b on K,
we obtain the estimate (19) on N .

If K is contained in N \ Supp(σ), we can find h > 0 such that v2
σ(n) ≥ h when

n ∈ K. Thus we see that ‖eF(σ,A,t)‖ decreases exponentially fast, when t tends to
infinity.

�

The former estimates allows us to take the limit t → ∞ in (18) on the open
subset N \ Supp(σ). There, the differential form Ch(σ,A, t) = Str

(
eF(σ,A,t)

)
tends

to 0 as t goes to ∞, and we get the following important lemma due to Quillen.

Lemma 3.7. [18] We can define on N \ Supp(σ) the differential form

(20) β(σ,A) =

∫ ∞

0

η(σ,A, t)dt

and we have Ch(A)|N\Supp(σ) = d (β(σ,A)).
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We are in the situation of Definition 2.1. The closed form Ch(A) on N and the
form β(σ,A) onN\Supp(σ) define an even relative cohomology class [Ch(A), β(σ,A)]
in H∗(N,N \ Supp(σ)).

Proposition 3.8. • The class [Ch(A), β(σ,A)] ∈ H∗(N,N \ Supp(σ)) does not
depend of the choice of A, nor on the Hermitian structure on E. We denote it by
Chrel(σ) and we call it the Quillen Chern character.

• Let F be a closed subset of N . For s ∈ [0, 1], let σs : E+ → E− be a family of
smooth morphisms such that Supp(σs) ⊂ F . Then all classes Chrel(σs) coincide in
H∗(N,N \ F ).

Proof. Although the proofs are standard, we give the details, since we will use them
in a forthcoming article in a more general context. Let us prove the first point. Let
As, s ∈ [0, 1], be a smooth one parameter family of super-connections on E without
0 exterior degree terms. Let A(s, t) = As + itvσ. Thus d

ds
A(s, t) = d

ds
As and

d
dt

A(s, t) = ivσ. Let F(s, t) be the curvature of A(s, t). We have

d

ds
Ch(As) = dγs, with γs = Str

(
(
d

ds
As)e

F(s,0)
)
,

and η(σ,As, t) = − Str
(
( d

dt
A(s, t))eF(s,t)

)
. We apply the double transgression for-

mula of Proposition 3.1, and we obtain

(21)
d

ds
η(σ,As, t) = −

d

dt
Str
(
(
d

ds
A(s, t))eF(s,t)

)
− dν(s, t)

with

ν(s, t) =

∫ 1

0

Str
(
(
d

ds
A(s, t))euF(s,t)(

d

dt
A(s, t))e(1−u)F(s,t)

)
du

=

∫ 1

0

Str
(
(
d

ds
As)e

uF(s,t)(ivσ)e(1−u)F(s,t)
)
du.

For u, s ∈ [0, 1] and t ≥ 0, we consider the element of A∗(N,End(E)) defined by

I(u, s, t) = (
d

ds
As)e

uF(s,t)(ivσ)e(1−u)F(s,t).

On a compact subset K of N \ F , σ is invertible and we can find h > 0 such
that v2

σ(n) ≥ h when n ∈ K. We have uF(s, t) = −t2uv2
σ − uRt,s, with Rt,s =

−it[As, vσ] − A2
s which is a sum of terms with strictly positive exterior degrees.

Remark that Rt,s is a polynomial of degree 1 in t. By the estimate of Lemma 6.1
of the Appendix, we obtain

∣∣∣
∣∣∣I(u, s, t)

∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣
d

ds
As

∣∣∣
∣∣∣
∣∣∣
∣∣∣vσ

∣∣∣
∣∣∣
∣∣∣
∣∣∣euF(s,t)

∣∣∣
∣∣∣
∣∣∣
∣∣∣e(1−u)F(s,t)

∣∣∣
∣∣∣

≤
∣∣∣
∣∣∣
d

ds
As

∣∣∣
∣∣∣
∣∣∣
∣∣∣vσ

∣∣∣
∣∣∣ e−uht2P(u‖Rt,s‖) e

−(1−u)ht2P((1 − u)‖Rt,s‖)

≤
∣∣∣
∣∣∣
d

ds
As

∣∣∣
∣∣∣
∣∣∣
∣∣∣vσ

∣∣∣
∣∣∣ e−ht2P(u‖Rt,s‖)P((1 − u)‖Rt,s‖)

where P is a polynomial of degree less or equal to dimN . So, we can find a constant

C such that ‖I(u, s, t)‖ ≤ C(1+t2)dim Ne−ht2 for all u, s ∈ [0, 1] and t ≥ 0. Thus we
can integrate Equation (21) in t, from 0 to ∞. Since −

∫∞

0
d
dt

[Str(( d
ds

A(s, t))eF(s,t))]dt
= γs, it follows that

(22)
d

ds
Ch(As) = dγs,

d

ds
β(σ,As) = γs − dǫs
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where

ǫs =

∫ ∞

0

ν(s, t)dt, and ν(s, t) =

∫ 1

0

I(u, s, t)du.

The first equality in Equations (22) holds on N , and the second on
N \ Supp(σ). These equations (22) exactly mean that

d

ds
(Ch(As), β(σ,As)) = drel (γs, ǫs) .

So the cohomology class [Ch(A), β(σ,A)] in H∗(N,N \ Supp(σ)) does not depend
of the choice of A.

With a similar proof, we see that the cohomology class of [Ch(A), β(σ,A)] ∈
H∗(N,N \ Supp(σ)) does not depend on the choice of Hermitian structure on E .

We now prove the second point. We consider the super-connection A(s, t) =
itvσs

+ A. Thus d
ds

A(s, t) = it d
ds
vσs

and d
dt

A(s, t) = ivσs
. Let F(s, t) be the

curvature of A(s, t). Let η(σs,A, t) = − Str(( d
dt

A(s, t))eF(s,t)). By the double
transgression formula,

(23)
d

ds
η(σs,A, t) = −

d

dt
Str
(
it(

d

ds
vσs

)eF(s,t)
)
− dν(s, t)

with

ν(s, t) =

∫ 1

0

Str
(
(
d

ds
A(s, t))euF(s,t)(

d

dt
A(s, t))e(1−u)F(s,t)

)
du

=

∫ 1

0

Str
(
(it

d

ds
vσs

)euF(s,t)(ivσs
)e(1−u)F(s,t)

)
du.

On a compact subset of N \ F , the Hermitian endomorphisms v2
σs

are strictly

positive and we can find h > 0, uniformly in s ∈ [0, 1], such that v2
σs

≥ h. The
estimate of Lemma 6.1 of the Appendix shows that we can integrate Equation (23)
in t from 0 to ∞. Here the first term of the right hand side integrates to 0. This
gives the relation d

ds
β(σs,A) = dǫs on N \ Supp(σ) with ǫs =

∫∞

0
ν(s, t)dt. Thus

we obtain
d

ds
(Ch(A), β(σs,A)) = drel (0, ǫs) ,

so that the class of (Ch(A), β(σs,A)) does not depend of s. �

We have defined a representative of the relative Chern class Chrel(σ) using the
one-parameter family Aσ(t) of super-connections, for t varying between 0 and ∞.
We can define another representative as follows. We have Ch(σ,A, t) = d(β(σ,A, t))
with

(24) β(σ,A, t) =

∫ ∞

t

η(σ,A, s)ds

Lemma 3.9. For any t ∈ R, the relative Chern character Chrel(σ) satifies

Chrel(σ) =
[
Ch(σ,A, t), β(σ,A, t)

]
in H∗(N,N \ Supp(σ)).

Proof. It is easy to check that

(25)
(

Ch(A), β(σ,A)
)
−
(

Ch(σ,A, t), β(σ,A, t)
)

= drel(δ(t), 0),

with δ(t) =
∫ t

0
η(σ,A, s)ds. �
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Remark 3.10. Quillen relative Chern character seems to be very related to the
“multiplicative K-theory” defined by Connes-Karoubi (see [15], [16]). For example,
even if E+, E− are flat bundles, the Quillen Chern character is usually non zero, as
it also encodes the odd closed differential form ω = β(σ,A).

4. Multiplicative property of Chrel

Let E1, E2 be two Z2-graded complex vector bundles on a manifold N . The space
E1 ⊗ E2 is a Z2-graded complex vector bundle with even part E+

1 ⊗ E+
2 ⊕ E−

1 ⊗ E−
2

and odd part E−
1 ⊗ E+

2 ⊕ E+
1 ⊗ E−

2 .

Remark 4.1. If E1 and E2 are super vector spaces, the super-algebra End(E1) ⊗
End(E2) is identified with the super-algebra End(E1 ⊗ E2) via the following rule.
For v1 ∈ E1, v2 ∈ E2, A ∈ End(E1), B ∈ End(E2) homogeneous

(A⊗B)(v1 ⊗ v2) = (−1)|B||v1|Av1 ⊗Bv2.

The super-algebra A∗(N,End(E1 ⊗ E2)) can be identified with
A∗(N,End(E1)) ⊗A∗(N,End(E2)) where the tensor is taken in the sense of super-
algebras. Then, if A ∈ A0(N,End(E1)

−) and B ∈ A0(N,End(E2)
−) are odd endo-

morphisms, we have (A⊗ IdE2
+ IdE1

⊗B)2 = A2 ⊗ IdE2
+ IdE1

⊗B2.

Let σ1 : E+
1 → E−

1 and σ2 : E+
2 → E−

2 be two smooth morphisms. With the help
of Hermitian structures, we define the morphism

σ1 ⊙ σ2 : (E1 ⊗ E2)
+ −→ (E1 ⊗ E2)

−

by σ1 ⊙ σ2 := σ1 ⊗ IdE+

2

+ IdE+

1

⊗ σ2 + IdE−
1

⊗ σ∗
2 + σ∗

1 ⊗ IdE−
2

.

Let vσ1
and vσ2

be the odd Hermitian endomorphisms of E1, E2 associated to σ1

and σ2 (see (15)). Then vσ1⊙σ2
= vσ1

⊗ IdE2
+IdE1

⊗ vσ2
and v2

σ1⊙σ2
= v2

σ1
⊗ IdE2

+

IdE1
⊗ v2

σ2
. Thus the square v2

σ1⊙σ2
is the sum of two commuting non negative

Hermitian endomorphisms v2
σ1

⊗ IdE2
+ IdE1

⊗ v2
σ2

. It follows that

Supp(σ1 ⊙ σ2) = Supp(σ1) ∩ Supp(σ2).

Remark 4.2. Exterior product
When N1 and N2 are two distinct manifolds and σ1 : E+

1 → E−
1 , σ2 : E+

2 → E−
2

two smooth morphisms respectively over N1, N2, the exterior product σ1 ⊙ext σ2 is
the product of σ1 ⊗ IdE2

and of IdE2
⊗ σ2 over N1 × N2. In this case, which will

be especially important in our forthcoming article on index theory of transversally
elliptic operators,

Supp(σ1 ⊙ext σ2) = Supp(σ1) × Supp(σ2).

We can now state the main result of this paper.

Theorem 4.3. (Quillen’s Chern character is multiplicative) Let σ1, σ2 be
two morphisms over N . The relative cohomology classes

• Chrel(σk) ∈ H∗(N,N \ Supp(σk)), k = 1, 2,
• Chrel(σ1 ⊙ σ2) ∈ H∗(N,N \ (Supp(σ1) ∩ Supp(σ2))),
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satisfy the following equality

Chrel(σ1 ⊙ σ2) = Chrel(σ1) ⋄ Chrel(σ2)

in H∗(N,N \ (Supp(σ1)∩ Supp(σ2))). Here ⋄ is the product of relative classes (see
(5)).

Proof. For k = 1, 2, we choose super-connections Ak, without 0 exterior degree
terms. We consider the closed forms ck(t) := Ch(σk,Ak, t) and the transgression
forms ηk(t) := η(σk,Ak, t) so that d

dt
(ck(t)) = −d(ηk(t)). Let βk =

∫∞

0 ηk(t)dt. A
representative of Chrel(σk) is (ck(0), βk).

For the symbol σ1 ⊙ σ2, we consider A(t) = A + itvσ1⊙σ2
where A = A1 ⊗

IdE2
+ IdE1

⊗ A2. Then Ch(A) = c1(0)c2(0). Furthermore, it is easy to see that
the transgression form for the family A(t) is η(t) = η1(t)c2(t) + c1(t)η2(t). Let
β12 =

∫∞

0
η(t)dt. A representative of Chrel(σ1 ⊙ σ2) is (c1(0)c2(0), β12).

We consider the open subsets U = N \ (Supp(σ1) ∩ Supp(σ2)), and Uk =
N \ Supp(σk). Let Φ1 + Φ2 = 1U be a partition of unity subordinate to the
decomposition U = U1 ∪ U2. We need the following lemma.

Lemma 4.4. The integrals

B1 =

∫

0≤t≤s

Φ1η1(s) ∧ η2(t)ds dt,

B2 =

∫

0≤s≤t

Φ2η1(s) ∧ η2(t)ds dt

are well defined differential forms supported on U .

Proof. The function (s, t) 7→ Φ1η1(s) ∧ η2(t) is a function on R2 with values in
A∗(U). We have to see that the integral B1 is convergent on the domain 0 ≤ t ≤ s.
This fact follows directly from the estimates of Proposition 3.6. Indeed, let K be
a compact subset of U . Since Φ1 is supported on U1 = N \ Supp(σ1), there exists
h > 0, and a polynomial P1 in s such that, on K,

‖Φ1η1(s)‖ ≤ P1(s)e
−hs2

for s ≥ 0.

On the other hand, there exists a polynomial P2 in t such that, on K,

‖η2(t)‖ ≤ P2(t) for t ≥ 0.

Then, when 0 ≤ t ≤ s, we have, on K: ‖Φ1η1(s) ∧ η2(t)‖ ≤ P1(s)P2(t) e
−hs2

and
the integral B1 is absolutely convergent on 0 ≤ t < s. Reversing the role 1 ↔ 2, we
prove in the same way that B2 is well defined.

We now prove

(26) Chrel(σ1,A1) ⋄Φ Chrel(σ2,A2) − Chrel(σ1 ⊙ σ2,A) = drel

(
0, B1 −B2

)
.

Indeed

Chrel(σ1,A1) ⋄Φ Chrel(σ2,A2) =
(
c1(0)c2(0),Φ1β1c2(0) + c1(0)Φ2β2 − dΦ1β1β2

)
,

so that the first member of Equality (26) is
(
0,Φ1β1c2(0) + c1(0)Φ2β2 − dΦ1β1β2 − β12

)
.
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Thus we need to check that dB2 − dB1 = Φ1β1c2(0) + c1(0)Φ2β2 − dΦ1β1β2 − β12.
We have dB1 = R1 + S1 with

R1 = dΦ1 ∧

∫

0≤t≤s

η1(s)η2(t) ds dt,

S1 = Φ1

∫

0≤t≤s

(
dη1(s)η2(t) − η1(s)dη2(t)

)
ds dt.

Now we use dηj(s) = − d
ds
cj(s), so that we obtain

S1 = Φ1

∫

0≤t≤s

(
(−

d

ds
c1(s))η2(t) + η1(s)(

d

dt
c2(t))

)
ds dt

= Φ1

(∫ ∞

0

c1(t)η2(t)dt +

∫ ∞

0

η1(s)c2(s)ds
)
− c2(0)Φ1β1,

that is S1 = Φ1β12 − c2(0)Φ1β1. Similarly, we compute dB2 = R2 + S2, with

R2 = dΦ2 ∧

∫

0≤s≤t

η1(s)η2(t) ds dt,

S2 = −Φ2β12 + c1(0)Φ2β2

So finally as dΦ1 = −dΦ2

dB2 − dB1 = −dΦ1

∫ ∞

0

∫ ∞

0

η1(s)η2(t)dsdt− β12 + c2(0)Φ1β1 + c1(0)Φ2β2

which was the equation to prove.
�

�

5. Chern character of a morphism

We employ notations of Section 3.2

5.1. The Chern Character. Let σ : E+ → E− be a morphism on N . Follow-
ing Subsection 2.2, we consider the image of Chrel(σ) through the map H∗(N,N \
Supp(σ)) → H∗

Supp(σ)(N). Applying Propositions 2.3 and 3.8, we obtain the fol-

lowing theorem.

Theorem 5.1. • For any neighborhood U of Supp(σ), take χ ∈ C∞(N) which is
equal to 1 in a neighborhood of Supp(σ) and with support contained in U . The
differential form

(27) c(σ,A, χ) = χ Ch(A) + dχβ(σ,A)

is closed and supported in U . Its cohomology class cU (σ) ∈ H∗
U (N) does not depend

of the choice of A, χ and the Hermitian structures on E±. Furthermore, the inverse
family cU (σ) when U runs over the neighborhoods of Supp(σ) defines a class

Chgood(σ) ∈ H∗
Supp(σ)(N).

The image of this class in H∗(N) is the Chern character Ch(E) of E.
• Let F be a closed subset of N . For s ∈ [0, 1], let σs : E+ → E− be a family of

smooth morphisms such that Supp(σs) ⊂ F . Then all classes Chgood(σs) coincide
in H∗

F (N).

Using Lemma 3.9 we get
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Lemma 5.2. For any t ≥ 0, the class Chgood(σ) can be defined with the forms
c(σ,A, χ, t) = χ Ch(σ,A, t) + dχβ(σ,A, t).

Proof. It is due to the following transgression

(28) c(σ,A, χ) − c(σ,A, χ, t) = d(χδ(t)),

which follows from (25). �

In some situations the Chern form Ch(σ,A, 1) enjoys good properties relative
to the integration. So it is natural to compare the differential form c(σ,A, χ) and
Ch(σ,A, 1).

Lemma 5.3. We have

c(σ,A, χ) − Ch(σ,A, 1) = d

(
χ

∫ 1

0

η(σ,A, s)ds

)
+ d
(
(χ− 1)β(σ,A, 1)

)
.

Proof. This follows immediately from the transgressions (12) and (28).
�

Definition 5.4. When σ is elliptic, we denote by

(29) Chc(σ) ∈ H∗
c (N)

the cohomology class with compact support which is the image of Chgood(σ) ∈
H∗

Supp(σ)(N) through the canonical map H∗
Supp(σ)(N) → H∗

c(N).

A representative of Chc(σ) is given by c(σ,A, χ), where χ ∈ C∞(N) is chosen
with a compact support, and equal to 1 in a neighborhood of Supp(σ) and c(σ,A, χ)
is given by Formula (27).

We will now rewrite Theorem 4.3 for the Chern classes Chgood and Chc. Let

σ1 : E+
1 → E−

1 and σ2 : E+
2 → E−

2 be two smooth morphisms. Let σ1 ⊙ σ2 :

(E1 ⊗ E2)
+ → (E1 ⊗ E2)

−
their product.

Following (6), the product of the elements Chgood(σk) ∈ H∗
Supp(σk)(N) for k =

1, 2 belongs to H∗
Supp(σ1)∩Supp(σ2)

(N) = H∗
Supp(σ1⊙σ2)(N).

Theorem 5.5. • We have the equality

Chgood(σ1) ∧ Chgood(σ2) = Chgood(σ1 ⊙ σ2) in H∗
Supp(σ1⊙σ2)(N).

• If the morphisms σ1, σ2 are elliptic, we have

Chc(σ1) ∧ Chc(σ2) = Chc(σ1 ⊙ σ2) in H∗
c(N).

Proof. The second point is a consequence of the first point. Theorem 4.3 tells
us that Chrel(σ1 ⊙ σ2) = Chrel(σ1) ⋄ Chrel(σ2) holds in H∗(N,N \ (Supp(σ1) ∩
Supp(σ2))). We apply now the maps “p” and use the diagram (10):

Chgood(σ1 ⊙ σ2) = p12

(
Chrel(σ1 ⊙ σ2)

)

= p12

(
Chrel(σ1) ⋄ Chrel(σ2)

)

= p1(Chrel(σ1)) ∧ p2(Chrel(σ2))

= Chgood(σ1) ∧ Chgood(σ2),

where pk := pFk
with Fk = Supp(σk) and p12 := pF1∩F2

.
�
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The second point of Theorem 5.5 has the following interesting refinement. Let
σ1, σ2 be two morphisms on N which are not elliptic, and assume that the product
σ1 ⊙ σ2 is elliptic. Since Supp(σ1) ∩ Supp(σ2) is compact, we consider neighbor-
hoods Uk of Supp(σk) such that U1 ∩ U2 is compact. Let χk ∈ C∞(N) supported
on Uk and equal to 1 in a neighborhood of Supp(σk). Then, the differential form
c(σ1,A1, χ1) ∧ c(σ2,A2, χ2) is compactly supported on N , and we have

Chc(σ1 ⊙ σ2) =
[
c(σ1,A1, χ1) ∧ c(σ2,A2, χ2)

]
in H∗

c(N).

Note that the differential forms c(σk,Ak, χk) are not compactly supported.

5.2. Comparison with other constructions.

5.2.1. Trivialization outside Supp(σ). Outside the support of σ, the complex vector
bundles E+ and E− are “the same”, so that it is natural to construct representatives
of Ch(E) = Ch(E+) − Ch(E−) which are zero “outside” the support of σ by the
following identifications of bundle with connections. For simplicity, we assume in
this section that σ is elliptic.

A connection ∇ = ∇+ ⊕ ∇− is said “adapted” to the morphism σ when the
following holds

∇− ◦ σ + σ ◦ ∇+ = 0,(30)

∇+ ◦ σ∗ + σ∗ ◦ ∇− = 0,

outside a compact neighborhood of Supp(σ). An adapted connection is denoted by
∇adap.

A construction of an adapted connection can be done as follows. First we choose a
Hermitian structure on E+ and a Hermitian connection ∇+ on E+ → N . Let U, V be
compact neighborhoods of Supp(σ) such that V ⊂ U . Since σ is invertible outside
V , there exists a Hermitian structure on E− such that σ is a unitary isomorphism
between E+ and E− outside V , so that σ∗ = σ−1. Define the connection ∇−

out =
−σ ◦ ∇+ ◦ σ−1 on E−. Then the connection ∇out = ∇+ ⊕∇−

out satisfies Relations
(30) on N \ V . We consider now any connection ∇in = ∇+

in ⊕ ∇−
in defined on U .

Let ψ ∈ C∞(N), supported in U and equal to 1 in a neighborhood of V . Finally
the following connection is adapted to σ:

(31) ∇adap = ψ∇in + (1 − ψ)∇out.

Proposition 5.6. Let ∇adap be a connection adapted to σ : E+ → E−. Then
the differential form Ch(∇adap) is compactly supported and its cohomology class
coincides with Chc(σ) in H∗

c(N).

Proof. Suppose that ∇adap satisfies (30) outside a compact neighborhood C of
Supp(σ). We verify that the forms Ch(∇adap) as well as the form β(σ,∇adap) are
supported on C. Thus if χ ∈ C∞(N) is equal to 1 on C, we see that the differential
forms c(σ,∇adap, χ) and Ch(∇adap) coincide. �

Remark 5.7. If F is compact, the closed differential form Ch(∇adap) represents
the Chern character of a difference bundle [D+] − [D−], where [D+] and [D−] are
complex vector bundles (isomorphic outside F ) on a compactification NF of N (see
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for example [8]). Thus Ch(∇adap) is a representative of the Chern character as de-
fined by Atiyah and al. in [2, 5]. In this case, Theorem 5.5 is just the multiplicativity
property of the Chern character in absolute theories.

5.2.2. Gaussian look. In [17], Mathai-Quillen gives an explicit representative with
“Gaussian look” of the Bott class of a complex vector bundle N → B. The purpose
of this paragraph is to compare the Mathai-Quillen construction of Chern characters
with “Gaussian look” and the Quillen relative construction.

Let N be a real vector bundle over a manifold B. We denote by π : N → B the
projection. We denote by (x, ξ) a point of N with x ∈ B and ξ ∈ Nx. Let E± → B
be two Hermitian vector bundles. We consider a morphism σ : π∗E+ → π∗E−.

We choose a metric on the fibers of the fibration N → B. We work under the
following assumption on σ.

Assumption 5.8. The morphism σ : π∗E+ → π∗E− and all its partial derivatives
have at most a polynomial growth along the fibers of N → B. Moreover we assume
that, for any compact subset KB of B, there exist R ≥ 0 and c > 0 such that1

v2
σ(x, ξ) ≥ c‖ξ‖2 when ‖ξ‖ ≥ R and x ∈ KB.

We may define the sub-algebra A∗
dec-rap(N) of forms on N such that all partial

derivatives are rapidly decreasing along the fibers. Let H∗
dec-rap(N) be the corre-

sponding cohomology algebra. Under Assumption 5.8, the support of σ intersects
the fibers of π in compact sets. We have then a canonical map from H∗

Supp(σ)(N)

into H∗
dec-rap(N). We will now compute the image of Chgood(σ) under this map.

Let ∇ = ∇+⊕∇− be a connection on E → B, and consider the super-connection
A = π∗∇ so that Aσ(t) = π∗∇+ itvσ. Then, the form Ch(σ,A, 1) has a “Gaussian”
look.

Lemma 5.9. The differential forms Ch(σ,A, 1) and β(σ,A, 1) are rapidly decreas-
ing along the fibers.

Proof. The curvature of A
σ(t) is

F(t) = π∗F− t2v2
σ + it[π∗∇, vσ].

Here F ∈ A2(B,End(E)) is the curvature of ∇. Assumption 5.8 implies that
[π∗∇, vσ] ∈ A1(N,End(π∗E)) has at most a polynomial growth along the fibers.
Furthermore, for any compact subset KB of the basis, there exists R ≥ 0 and c > 0
such that v2

σ(x, ξ) ≥ c‖ξ‖2 when ‖ξ‖ ≥ R and x ∈ KB.

To estimate eF(t), we apply Lemma 6.1 of the Appendix, with H = t2v2
σ, and

R = −π∗F − it[π∗∇, vσ]. The smallest eigenvalue of H is greater or equal to
t2c‖ξ‖2, when ‖ξ‖ ≥ R, and R is a sum of terms with strictly positive exterior
degrees. Remark that R is a polynomial in t of degree 1 and is bounded in norm
by a polynomial in ‖ξ‖ along the fibers. It follows that from Lemma 6.1 that, for
t ≥ 0, we have ∣∣∣

∣∣∣eF(t)
∣∣∣
∣∣∣(x, ξ) ≤ P(‖R‖)e−t2c‖ξ‖2

.

Our estimates on the polynomial growth of R in t and ‖ξ‖ implies that there
exists a polynomial Q such that, for t ≥ 0,

(32)
∣∣∣
∣∣∣eF(t)

∣∣∣
∣∣∣(x, ξ) ≤ Q(t‖ξ‖)e−t2c‖ξ‖2

,

1This inequality means that ‖σ(x, ξ)w‖2 ≥ c‖ξ‖2‖w‖2 for any w ∈ Ex.
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for (x, ξ) ∈ N , x ∈ KB, ‖ξ‖ ≥ R.
This implies that Ch(σ,A, 1) = Str(eF(1)) is rapidly decreasing along the fibers.

Consider now β(σ,A, 1) = −i
∫∞

1 Str(vσe
F(t))dt which is defined (at least) for ‖ξ‖ ≥

R. The estimate (32) shows also that β(σ,A, 1) is rapidly decreasing along the
fibers. We can prove in the same way that all partial derivatives of Ch(σ,A, 1) and
β(σ,A, 1) are rapidly decreasing along the fibers: hence Ch(σ,A, 1) ∈ A∗

dec-rap(N)

and β(σ,A, 1) ∈ A∗
dec-rap(N \ Supp(σ)). �

Proposition 5.10. The differential form Ch(σ,A, 1) ∈ A∗
dec-rap(N) represents the

image of the class Chgood(σ) ∈ H∗
Supp(σ)(N) in H∗

dec-rap(N).

Proof. Choosing χ supported on ‖ξ‖ ≤ R + 1 and equal to 1 in a neighborhood
of ‖ξ‖ ≤ R, the transgression formula of Lemma 5.3: c(σ,A, χ) − Ch(σ,A, 1) =

d(χ
∫ 1

0
η(σ,A, s)ds) + d ((χ− 1)β(σ,A, 1)) implies our proposition, since the form

c(σ,A, χ) represents Chgood(σ) in H∗
dec-rap(N).

�

When the fibers of π : N → B are oriented, we have an integration morphism
π∗ : H∗

dec-rap(N) → H∗(B).

Corollary 5.11. We have π∗ Ch(σ,A, 1) = π∗ Chgood(σ) in H∗(B).

Remark 5.12. Very simple examples of Mathai-Quillen classes with “Gaussian
look” as well as relative Quillen classes are given in Examples 5.3.2 and 5.3.3.

5.3. Examples. If E is a trivial bundle N ×V on a manifold N , an endomorphism
of End(E) is determined by a map fromN to End(V ). We employ the same notation
for both objects, so that if σ is a map from N to End(V ), we also denote by σ the
bundle map σ[n, v] = [n, σ(n)v], for n ∈ N and v ∈ V . We sometimes denote by
[V ] the trivial vector bundle with fiber V .

We will use the following convention. Let V = V + ⊕ V − be a Z2-graded finite
dimensional complex vector space with V ± = C. Let A be a super-commutative
algebra (the ring of differential forms on a manifold for example). The elements of
the super-algebra A⊗End(V ) will be represented by 2×2 matrices with coefficients
in A. This algebra operates on the space A⊗V . We take the following convention:
the forms are always considered as operating first: for example, if V + = C and

V − = C, the matrix

(
0 α
β 0

)
represents the operator

(33)

(
0 α
β 0

)
:=

(
0 1
0 0

)
α+

(
0 0
1 0

)
β

on A⊗ V .

5.3.1. The cotangent bundle T∗S1. We consider T∗S1 := S1 × R the cotangent
bundle to the circle S1. The group K0(T∗S1) of K-theory is generated, as a Z-
module, by the class [σ] of the following elliptic symbol.

Take E+ = E− the trivial bundles T∗S1 × C over T∗S1. Let u be a function on
R satisfying u(ξ) = 1 if |ξ| > 1 and u(ξ) = 0 if |ξ| < 1/2. The symbol σ : E+ → E−
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is defined by a smooth map σ : T∗S1 → EndC(C) = C satisfying

σ([eiθ, ξ]) =

{
u(ξ)eiθ, if ξ ≥ 0;

u(ξ), if ξ ≤ 0.

Here Supp(σ) is the set {[eiθ, ξ]; u(ξ) = 0} and is compact. Note that the class
[σ] ∈ K0(T∗S1) does not depend on the choice of the function u.

We choose on E± the trivial connections ∇+ = ∇− = d and we let A = ∇+⊕∇−

on E+ ⊕ E−. Then Ch(A) = 0.
For ξ ≥ 0, the curvature F(σ,A, t) of the super-connection

A
σ(t) =

(
d 0
0 d

)
+

(
0 itu(ξ)e−iθ

itu(ξ)eiθ 0

)

is represented by the following matrix (see Equation 13 and convention (33)) F(σ,A, t)):

(
−t2u(ξ)2 0

0 −t2u(ξ)2

)
−it

(
0 e−iθ(u′(ξ)dξ − iu(ξ)dθ)

eiθ(u′(ξ)dξ + iu(ξ)dθ) 0

)
.

For ξ ≤ 0, we have

F(σ,A, t) =

(
−t2u(ξ)2 0

0 −t2u(ξ)2

)
− it

(
0 u′(ξ)dξ

u′(ξ)dξ 0

)
.

For ξ ≥ 0, eF(σ,A,t) is represented by the matrix

(34) e−t2u(ξ)2
(

1 + it2u(ξ)u′(ξ)dξ dθ −ite−iθ(u′(ξ)dξ − iu(ξ)dθ)
−iteiθ(u′(ξ)dξ + iu(ξ)dθ) 1 − it2u(ξ)u′(ξ)dξ dθ

)
,

while for ξ ≤ 0

(35) eF(σ,A,t) = e−t2u(ξ)2
(

1 −itu′(ξ)dξ
−itu′(ξ)dξ 1

)
.

Thus η(σ,A, t) = − Str
(
ivσ e

F(σ,A,t)
)

is given by

η(σ,A, t)([eiθ , ξ]) =

{
−2ite−t2u(ξ)2u(ξ)2dθ, if ξ ≤ 0;

0, if ξ ≥ 0.

Finally, integrating η(σ,A, t) in t from 0 to ∞, we find that β(σ,A)([eiθ , ξ]) = −idθ
when ξ ≥ 0 and u(ξ) 6= 0, and β(σ,A)([eiθ , ξ]) = 0 in the other cases.

Proposition 5.13. The relative Chern class Chrel(σ) is the class [0, β(σ,A)].

For a function χ ∈ C∞(R) compactly supported and equal to 1 on [−1, 1], we
have then

c(σ,A, χ) = −i 1≥0 dχ ∧ dθ

where 1≥0 is the characteristic function of the interval [0,∞[.
We take the orientation dθ ∧ dξ on T ∗S1. The differential form c(σ,A, χ) is

compactly supported and of integral equal to −2iπ on T∗S1.

Remark 5.14. From Formulae (34) and (35), we see that the Chern character
of the super-connection Aσ(t) is thus the differential form supported on ξ ≥ 0 and
equal for ξ ≥ 0 to

Ch(A, σ, t) = 2it2e−t2u(ξ)2u(ξ)u′(ξ)dξ ∧ dθ.

For any t > 0, the integral of Ch(A, σ, t) on T∗S1 is equal to −2iπ.
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Assume that the function u is identically equal to 0 on [a, b] with a < 0 and b > 0
and strictly positive when ξ > b, so that the support of σ is the interval [a, b]. It is
easy to see then that the limit when t tends to ∞ of Ch(A, σ, t) is the current on

S1 × R given φ 7→ −i
∫ 2π

0
φ(θ, b)dθ.

5.3.2. The space R2. Now we consider the case where N = R2 ≃ C. Take E+ = E−

the trivial bundles N ×C over N . We consider Bott’s symbol σb : E+ → E− which
is given by the map σb(z) = z for z ∈ N ≃ C. The support of σb is reduced to the
origin {0}, thus σb defines an element of K0(R2). Recall that the Bott isomorphism
tells us that K0(R2) is a free Z-module with base σb.

We choose on E± the trivial connections ∇+ = ∇− = d. Let A = ∇+ ⊕∇− on

E+ ⊕ E−. The curvature F(σb,A, t) of the super-connection Aσb(t) =

(
d 0
0 d

)
+

(
0 itz
itz 0

)
has the matrix form (see (33))

F(σb,A, t) =

(
−t2|z|2 0

0 −t2|z|2

)
− it

(
0 dz
dz 0

)
.

Thus

eF(σb,A,t) = e−t2|z|2

(
1 − t2

2 dzdz −itdz

−itdz 1 + t2

2 dzdz

)
.

Thus η(t) = − Str
(
ivσb

eF(σb,A,t)
)

is equal to

−e−t2|z|2 Str

((
0 iz
iz 0

)(
1 − t2

2 dzdz itdz

itdz 1 + t2

2 dzdz

))
.

Thus

(36) η(t) = −t(zdz − zdz)e−t2|z|2 .

When z 6= 0, we obtain

β(σb,A)(z) =

∫ ∞

0

η(t)dt

=
1

2|z|2
(zdz − zdz) = −i d(arg z).

Thus we have

(37) Chrel(σb) = [0,−i d(arg z)].

It is easy that H∗(C,C − {0}) = C Chrel(σb).
Take f ∈ C∞(R) with compact support and equal to 1 in a neighborhood of

0. Let χ(z) := f(‖z‖2). Then the class Chc(σb) ∈ H∗
c(R

2) is represented by the
differential form c(σb,A, χ) = χCh(A) + dχβ(σb,A). Here the differential form
Ch(A) is identically equal to 0. We obtain

c(σb,A, χ) = d(f(|z|2)) ∧ β(σb,A)

= −f ′(|z|2)dz ∧ dz.

Remark that c(σb,A, χ) is compactly supported and of integral equal to 2iπ on
R2 (with orientation dx ∧ dy). Thus 1

2iπ
c(σb,A, χ) is a representative of the Thom

form of R
2.
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Remark 5.15. For t > 0, the Chern character of the super-connection Aσb(t) is
the degree 2 differential form with “Gaussian look”

Ch(σb,A, t) = −e−t2|z|2t2dzdz.

For any t > 0, Ch(σb,A, t) and c(σb,A, χ) coincide in the cohomology
H∗

dec-rap(R
2), as follows from Proposition 5.10. In particular they have the same

integral.
We also see that the limit, when t tends to ∞ of Ch(σb,A, t) is the Dirac distri-

bution (2iπ)δ0.

5.3.3. The multiplicativity property on C2. Following the notations of preceding
example, we consider C2 with coordinates z = (z1, z2) and morphisms σ1 = z1 and
σ2 = z2. Then the tensor product morphism is

σ1 ⊙ σ2 =

(
z1 −z2
z2 z1

)
.

The morphism σ1 ⊙ σ2 has support z1 = z2 = 0. A calculation similar to the
calculation done in the preceding section gives the following

Proposition 5.16. The relative chern class Chrel(σ1 ⊙ σ2) ∈ H∗(C2,C2 \ (0, 0)) is
represented by (0, β12), where

β12 =
−1

2|z|4

(
(z1dz1 − z1dz1) ∧ dz2 ∧ dz2 + (z2dz2 − z2dz2) ∧ dz1 ∧ dz1

)

is a closed form on C2 \ (0, 0).

Remark that β12 is invariant under the symmetry group U(2) of C2.

Recall that Chrel(σk) = [0, βk], with βk = − zkdzk−zkdzk

2|zk|2
. The wedge product

β1 ∧ β2 is not defined on C2 \ (0, 0). Introduce a partition of unity Φ1,Φ2 with
respect to the covering U1 ∪ U2 of C2 \ (0, 0), with Uk = {z, zk 6= 0}. Then the
relative product Chrel(σ1) ⋄ Chrel(σ2) has representative (0, β), with

β = −dΦ1 ∧ β1 ∧ β2.

We now compute the forms B1, B2 of the equation (5). The form ηk(t) have been
computed (Equation 36). From this it is easy to computeB1 = Φ1

∫
0≤s≤t

η1(t)η2(s)ds dt

and B2. We obtain

B1 = Φ1(z1, z2)
(z1dz1 − z1dz1) ∧ (z2dz2 − z2dz2)

4|z1|2(|z1|2 + |z2|2)
,

B2 = Φ2(z1, z2)
(z1dz1 − z1dz1) ∧ (z2dz2 − z2dz2)

4|z2|2(|z1|2 + |z2|2)
.

Here B1 −B2 is a two form which is well defined on C2 \ (0, 0) and the relation
Φ1 + Φ2 = 1 imply

β12 − β = d(B1 −B2).

This shows that the class Chrel(σ1 ⊙ σ2) is the product [0, β1] ⋄ [0, β2].

We can now look at the different representatives of the Chern class with compact
support Chc(σ1 ⊙ σ2) ∈ H∗

c(C
2).

Let f ∈ C∞(R) with compact support and equal to 1 in a neighborhood of
0. We consider the functions χ(z) = f(|z1|2 + |z2|2) and χk(zk) = f(|zk|2). Let
Ω = dz1 ∧ dz1 ∧ dz2 ∧ dz2.
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Proposition 5.17. The Chern class Chc(σ1 ⊙ σ2) ∈ H∗
c(C

2) is represented either
by

c(σ1 ⊙ σ2,A, χ) = −
f ′
(
|z1|

2 + |z2|
2
)

|z1|2 + |z2|2
Ω

or by

c(σ1,A1, χ1) ∧ c(σ2,A2, χ2) = f ′
(
|z1|

2
)
f ′
(
|z2|

2
)

Ω.

Clearly the first representative is “better”, as it is invariant by the full symmetry
group SO(4) on C2 = R4.

In a forthcoming article, for any oriented Euclidean vector bundle N → B, we
will give “canonical” explicit representatives of the relative Bott class and of the
Thom class in H∗(N,N \B), similar to the one given in Proposition 5.16.

6. Appendix

We give a proof of the estimate used in this article. It is based on Volterra’s
expansion formula: if H and R are elements in a finite dimensional associative
algebra, then e(H+R) = eH +

∑∞
k=1 Ik(H,R) where

(38) Ik(H,R) =

∫

∆k

es1HRes2HR · · ·ReskHResk+1Hds1 · · · dsk

Here ∆k is the simplex {si ≥ 0 ; s1 +s2 + · · ·+sk +sk+1 = 1} which has the volume
1
k! for the measure ds1 · · ·dsk.

Now, let A = ⊕R
i=0Ai be a complex finite dimensional graded commutative

algebra with a norm ‖ · ‖ such that ‖ab‖ ≤ ‖a‖‖b‖. We denote by A+ = ⊕R
i=1Ai.

Thus ωR+1 = 0 for any ω ∈ A+. Let V be a finite dimensional Hermitian vector
space. Then End(V ) ⊗ A is an algebra with a norm still denoted by ‖ · ‖. If
H ∈ End(V ), we denote also by H the element H ⊗ 1 in End(V ) ⊗A.

We denote Herm(V ) ⊂ End(V ) the subspace formed by the Hermitian endomor-
phisms. When H ∈ Herm(V ), we denote sm(H) ∈ R the smallest eigenvalue of H :
we have ∣∣∣

∣∣∣e−H
∣∣∣
∣∣∣ = e−sm(H), for all H ∈ Herm(V ).

Lemma 6.1. Let P(t) =
∑R

k=0
tk

k! . Then, for any R ∈ End(V ) ⊗ A+, and H ∈
Herm(V ), we have

∣∣∣
∣∣∣e−(H+R)

∣∣∣
∣∣∣ ≤ e−sm(H)P(‖R‖).

Proof. Let c = sm(H). Then ‖e−uH‖ = e−uc for all u ≥ 0. The term Ik(H,R)
of the Volterra expansion vanishes for k > R since the term es1HR · · ·Resk+1H

belongs to End(V )⊗Ak. The norm of the term Ik(H,R) is bounded by 1
k!e

−c‖R‖k.
Summing up in k, we obtain our estimate. �

The preceding estimates hold if we work in the algebra End(E)⊗A, where E is
a super-vector space and A a super-commutative algebra.
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1964, Exposé No. 6, 9 p. (At www.numdam.org)
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