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QUILLEN’S RELATIVE CHERN CHARACTER IS

MULTIPLICATIVE

PAUL-EMILE PARADAN AND MICHÈLE VERGNE

Abstract. In the first part of this paper we prove the multiplicative property
of the relative Quillen Chern character. Then we obtain a Riemann-Roch
formula between the relative Chern character of the Bott morphism and the
relative Thom form.
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1. Introduction

The relative Chern character was defined by Atiyah and al. in [2, 5] as a map

(1) ChX\Y : K0(X, Y ) −→ H∗(X, Y ).

Here Y ⊂ X are finite CW-complexes, K0(X, Y ) is the relative K-group and
H∗(X, Y ) is the singular relative cohomology group.

Date: September 2008.
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2 PAUL-EMILE PARADAN AND MICHÈLE VERGNE

The relative Chern character enjoys various functorial properties. In particular,
Ch is multiplicative: the following diagram

(2) K0(X, Y )

ChX\Y

��

× K0(X, Y ′)

ChX\Y ′

��

⊙
// K0(X, Y ∪ Y ′)

ChX\Y ∪Y ′

��

H∗(X, Y ) × H∗(X, Y ′)
⋄

// H∗(X, Y ∪ Y ′)

is commutative. Here Y, Y ′ ⊂ X are finite CW-complexes and ⊙ and ⋄ denote
the products. This property was extended to the case where X is a paracompact
topological space and Y any open subset of X by Iversen in [14] (see also [12,
13]). Iversen deduces the existence of the local Chern character from functorial
properties, but his construction is not explicit.

In this article, we work in the context of manifolds and differential forms. Indeed,
in this framework, Quillen [19] constructed a very natural de Rham relative coho-
mology class associated to a smooth morphism between vector bundles, that we call
the relative Quillen Chern character. Let N be a manifold, and let σ : E+ → E− be
a morphism of complex vector bundles over N . Let Supp(σ) be the support of σ :
it is the set of points n ∈ N where σ(n) is not invertible. We do not suppose that
Supp(σ) is compact. Quillen [19] associates to σ a couple (α, β) of differential forms,
where α is given by the usual Chern-Weil construction, and β is also constructed
à la Chern-Weil, via super-connections. The form α is a closed differential form on
N representing the difference of Chern characters Ch(E+)−Ch(E−) ∈ H∗(N), and
β is a differential form on N \ Supp(σ) such that

α|N\Supp(σ) = dβ.

The couple (α, β) defines then an explicit relative de Rham cohomology class

Chrel(σ) ∈ H∗(N, N \ Supp(σ)).

The main purpose of this note is to show that Quillen’s relative Chern character
Chrel is multiplicative. If σ1, σ2 are two morphisms on N , then the product σ1 ⊙σ2

is a morphism on N with support equal to Supp(σ1) ∩ Supp(σ2). We prove in
Section 4 that the following equality

(3) Chrel(σ1 ⊙ σ2) = Chrel(σ1) ⋄ Chrel(σ2)

holds in H∗(N, N \ Supp(σ1 ⊙ σ2)).

Intuitively (and true in many analytic cases), the relative Chern class could
also be represented as a current supported on Supp(σ), but currents do not usually
multiply. Thus another procedure, involving a choice of partition of unity, is needed
to define the product ⋄ of relative classes in de Rham relative cohomology. The
multiplicativity property (3) can also be deduced from the fact that Quillen’s Chern
character gives an explicit representative of Iversen’s local Chern character, due to
Schneiders functorial characterization of Iversen’s class (see [20]). Our proof does
not use Iversen’s construction, and our explicit argument can be extended to the
case of equivariant Chern characters with generalized coefficients (see [18]).

When Supp(σ) is compact, there is a natural homomorphism from H∗(N, N \
Supp(σ)) into the compactly supported cohomology algebra H∗

c(N) and the image
of the Quillen relative Chern character Chrel(σ) is the Chern character Chc(σ) with
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compact support. The equality (3) implies the relation

(4) Chc(σ1 ⊙ σ2) = Chc(σ1) ∧ Chc(σ2) in H∗
c(N).

This last relation is well known and follows also from the fact that Chc(σ) is the
Chern character of a difference bundle on a compactification of N .

As an important example, we consider σb the Bott morphism on a complex vector
bundle σb : Λ+V → Λ−V over V , given by the exterior product by v ∈ V . This
morphism has support the zero section M of V . It leads to a relative class Chrel(σb)
in H∗(V ,V \ M). One can give a similar construction of the relative Thom form
Threl(V) ∈ H∗(V ,V \ M) of the vector bundle V → M , using the Berezin integral
instead of a super-trace. The explicit formulae for Chrel(σb) and Threl(V) allows
us to derive the “Riemann-Roch” relation between these two relative classes at the
level of differential forms. Our proof follows the same scheme than the proof of
the relation between the Chern character and the Thom class with Gaussian looks
constructed by Mathai-Quillen [17].

Acknowledgements: We are grateful to M. Karoubi, J. Lannes, P. Schapira
and J.P. Schneiders for enlightening discussions on these topics.

We wish to thank the referee for his careful reading, and suggestions for improve-
ments.

2. Cohomological structures

Let N be a manifold. We denote by A∗(N) the algebra of differential forms on
N and by H∗(N) the de Rham cohomology algebra of N . We denote by H∗

c(N) its
compactly supported cohomology algebra.

In this paper, we work with differential forms with complex or real coefficients,
depending on the context. In order to simplify the notation, we use the same
notation for A∗, H∗ and H∗

c viewed as complex or real vector space : we speak of
K-differential forms, K-cohomology classes or K-algebras with

K ∈ {R, C}.

2.1. Relative cohomology. Let F be a closed subset of N . To a cohomology
class on N vanishing on N \ F , we associate a relative cohomology class. Let us
explain the construction (see [9]). Consider the K-complex A∗(N, N \ F ) with

Ak(N, N \ F ) := Ak(N) ⊕Ak−1(N \ F )

and differential drel (α, β) =
(
dα, α|N\F − dβ

)
.

Definition 2.1. The cohomology of the complex (A∗(N, N \F ), drel) is the relative
K-cohomology space H∗(N, N \ F ).

The class defined by a drel-closed element (α, β) ∈ A∗(N, N \F ) will be denoted
by [α, β]. There is a natural K-linear map H∗(N, N \ F ) → H∗(N).

If F1 and F2 are closed subsets of N , there is a natural product

H∗(N, N \ F1) ×H∗(N, N \ F2) −→ H∗(N, N \ (F1 ∩ F2))(5)

( a , b ) 7−→ a ⋄ b ,

which is K-bilinear.
We will use an explicit formula for ⋄ that we recall. Let U1 := N\F1, U2 := N\F2

so that U := N \ (F1 ∩ F2) = U1 ∪ U2. Let Φ := (Φ1, Φ2) be a partition of unity
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subordinate to the covering U1 ∪ U2 of U . With the help of Φ, we define a bilinear
map ⋄Φ : A∗(N, N \ F1) ×A∗(N, N \ F2) → A∗(N, N \ (F1 ∩ F2)) as follows. For
ai := (αi, βi) ∈ Aki(N, N \ Fi), i = 1, 2, we define

a1 ⋄Φ a2 :=
(
α1 ∧ α2, Φ1β1 ∧ α2 + (−1)k1α1 ∧ Φ2β2 − (−1)k1dΦ1 ∧ β1 ∧ β2

)
.

Remark that all forms Φ1β1∧α2, α1∧Φ2β2 and dΦ1∧β1∧β2 are well defined on
U1∪U2. Indeed the support of the form dΦ1 is contained in U1∩U2, as dΦ1 = −dΦ2.
So a1 ⋄Φ a2 ∈ Ak1+k2(N, N \ (F1 ∩F2)). It is immediate to verify that drel(a1 ⋄Φ a2)
is equal to (drela1) ⋄Φ a2 + (−1)k1a1 ⋄Φ (drela2). Thus ⋄Φ defines a bilinear map
H∗(N, N \ F1) ×H∗(N, N \ F2) → H∗(N, N \ (F1 ∩ F2)).

Let us see that this product do not depend on the choice of the partition of
unity. If we have another partition Φ′ = (Φ′

1, Φ
′
2), then Φ1 − Φ′

1 = −(Φ2 − Φ′
2). It

is immediate to verify that, if drel(a1) = 0 and drel(a2) = 0, one has

a1 ⋄Φ a2 − a1 ⋄Φ′ a2 = drel

(
0, (−1)k1(Φ1 − Φ′

1)β1 ∧ β2

)
.

So the product on the relative cohomology spaces will be denoted by ⋄.

2.2. Inverse limit of cohomology with support. Let F be a closed subset of
N . We consider the set FF of all open neighborhoods U of F which is ordered
by the relation U ≤ V if and only if V ⊂ U . For any U ∈ FF , we consider the
K-algebra A∗

U (N) of differential forms on N with support contained in U (that is
vanishing on a neighborhood of N \ U): this algebra is stable under the de Rham
differential d, and we denote by H∗

U (N) the corresponding cohomology K-algebra.
If U ≤ V , we have then an inclusion map A∗

V (N) →֒ A∗
U (N) which gives rise to a

K-linear map fU,V : H∗
V (N) → H∗

U (N).

Definition 2.2. We denote by H∗
F (N) the inverse limit of the inverse system

(H∗
U (N), fU,V ; U, V ∈ FF ). It is a K-vector space.

If F1, F2 are two closed subsets of N , there is a K-bilinear map

(6) H∗
F1

(N) ×H∗
F2

(N)
∧

−→ H∗
F1∩F2

(N)

which is defined via the wedge product on forms.

Now we define a K-linear map from H∗(N, N \ F ) into H∗
F (N).

Let β ∈ A∗(N \F ). If χ is a function on N which is identically 1 on a neighbor-
hood of F , note that dχβ defines a differential form on N , since dχ is equal to 0 in
a neighborhood of F .

Proposition 1. For any open neighborhood U of F , we choose χ ∈ C∞(N) with
support in U and equal to 1 in a neighborhood of F .

• The map

(7) pχ
U (α, β) = χα + dχβ

defines a homomorphism of complexes pχ
U : A∗(N, N \ F ) → A∗

U (N).
Let α ∈ A∗(N) be a closed form and β ∈ A∗(N \ F ) such that α|N\F = dβ.

Then pχ
U (α, β) is a closed differential form supported in U .

• The cohomology class of pχ
U (α, β) in H∗

U (N) does not depend on χ. We denote
this class by pU (α, β) ∈ H∗

U (N).
• For any neighborhoods V ⊂ U of F , we have fU,V ◦ pV = pU .
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Proof. The equation pχ
U ◦ drel = d◦pχ

U is immediate to check. In particular pχ
U (α, β)

is closed, if drel (α, β) = 0. This proves the first point. For two different choices

χ and χ′, we have pχ
U (α, β) − pχ′

U (α, β) = d ((χ − χ′)β). Since χ − χ′ = 0 in a
neighborhood of F , the term (χ − χ′)β is a well defined element of A∗

U (N). This
proves the second point. Finally, the last point is immediate, since pχ

U (α, β) =
pχ

V (α, β) for χ ∈ C∞(N) with support in V ⊂ U . �

Definition 2.3. Let α ∈ A∗(N) be a closed form and β ∈ A∗(N \ F ) be such that
α|N\F = dβ. We denote by pF (α, β) ∈ H∗

F (N) the element defined by the sequence
pU (α, β) ∈ H∗

U (N), U ∈ FF . We have then a morphism of K-vector spaces

(8) pF : H∗(N, N \ F ) → H∗
F (N).

Proposition 2. If F1, F2 are closed subsets of N , then we have

(9) pF1∩F2
(a1 ⋄ a2) = pF1

(a1) ∧ pF2
(a2)

for any ak ∈ H∗(N, N \ Fk).

Proof. Let W be a neighborhood of F1 ∩ F2. Let V1, V2 be respectively neighbor-
hoods of F1 and F2 such that V1 ∩ V2 ⊂ W . Let χi ∈ C∞(N) be supported in Vi

and equal to 1 in a neighborhood of Fi. Then χ1χ2 is supported in W and equal to
1 in a neighborhood of F1 ∩ F2. Let Φ1 + Φ2 = 1N\(F1∩F2) be a partition of unity
relative to the decomposition N \ (F1 ∩ F2) = N \ F1 ∪ N \ F2.

Then one checks easily that

pχ1

V1
(a1) ∧ pχ2

V2
(a2) − pχ1χ2

W (a1 ⋄Φ a2)

is equal to

d
(
(−1)k1+1χ1dχ2(Φ1β1β2) + (−1)k1χ2dχ1(β1Φ2β2)

)

for drel-closed forms ai = (αi, βi) ∈ Aki(N, N \Fi). Remark that Φ1β1β2 is defined
on N \ F2, so that dχ2(Φ1β1β2) is well defined on N and supported in V2. Thus
the form (−1)k1+1χ1dχ2(Φ1β1β2)+(−1)k1χ2dχ1(β1Φ2β2) is well defined on N and
supported in V1∩V2 ⊂ W . This proves that pF1

(a1)∧pF2
(a2) = pF1∩F2

(a1⋄a2). �

The map pF : H∗(N, N \ F ) −→ H∗
F (N) factors the natural map

H∗(N, N \ F ) → H∗(N).

2.3. Integration. We consider first the case where F is a compact subset of an
oriented manifold N . Let H∗(N, N \ F ) be the relative K-cohomology group. Let
π : N → {•} be the projection to the point. We will describe an integration
morphism π∗ : H∗(N, N \ F ) → K.

We have a K-linear map

(10) pc : H∗(N, N \ F ) −→ H∗
c(N)

which is equal to the composition of pF with the natural map H∗
F (N) → H∗

c(N).
If a ∈ H∗(N, N \ F ) is represented by the drel-closed differential form (α, β) ∈
A∗(N, N \ F ), the class pc(a) ∈ H∗

c(N) is represented by the differential form
pχ

U (α, β) = χα + dχβ where χ is a function with compact support.
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Definition 2.4. If a ∈ H∗(N, N \ F ), then π∗(a) ∈ K is defined by

π∗(a) :=

∫

N

pc(a).

If N is compact, the elements α and pc(a) coincide in H∗(N), hence π∗(a) =
∫

N α.
When N is non-compact, an interesting situation is the case of a relative class
a = [α, β] where the closed form α is integrable. The two terms π∗(a) and

∫
N

α
are defined. However, it is usually not true that they coincide. An interesting case
is the relative Thom form Threl(V ) of a real oriented vector space V (see Section
6.2). Here N = V , F = {0}, and the relative class Threl(V ) is represented by [0, β]
with β a particular closed real form on V \ {0}. Here the integral of α = 0 is equal
to 0, while π∗(Threl(V )) = 1. See Example 5.3.2.

In some important cases studied in Subsection 5.2.2, we will however prove that
the integral of pc(a) is indeed the same as the integral of α. As we have

pχ
U (α, β) − α = (χ − 1)α + dχβ

= d
(
(χ − 1)β

)
,(11)

the comparison between the integral of pc(a) and the one of α will follow from the
careful study of the behavior on N of the form (χ − 1)β.

We consider now the case of an oriented real vector bundle π : V → M . We will
describe a push-forward K-linear map π∗ : H∗(V ,V \ M) → H∗(M).

Let A∗
fiber cpt(V) be the K-subalgebra of A∗(V) formed by the differential forms

which have a compact support in the fibers of π. Let H∗
fiber cpt(V) be the corre-

sponding K-cohomology space. We have a morphism
∫
fiber

: H∗
fiber cpt(V) → H∗(M)

of integration along the fibers.
We define a K-linear map

(12) pfiber cpt : H∗(V ,V \ M) −→ H∗
fiber cpt(V)

by setting that pfiber cpt([α, β]) is the class represented by χα + dχβ, where χ is a
function on V with compact support in the fibers, and equal to 1 in a neighborhood
of the zero section.

Definition 2.5. If a ∈ H∗(V ,V \ M), the class π∗(a) ∈ H∗(M) is defined by

π∗(a) :=

∫

fiber

pfiber cpt(a).

In Section 6.2, we will describe a relative Thom class Threl(V) which is charac-
terized by the fact that π∗(Threl(V)) = 1 in H∗(M).

3. Quillen’s relative Chern Character

In this section, we work with differential forms with complex coefficients.

3.1. Chern form of a super-connection. For an introduction to the Quillen’s
notion of super-connection, see [7].

If E is a complex vector bundle on a manifold N , we denote by A∗(N, End(E))
the complex algebra of End(E)-valued differential forms on N .

Let ∇ be a connection on E . The curvature ∇2 of ∇ is a End(E)-valued two-form
on N . Recall that the Chern character of E is the de Rham cohomology class of

the closed differential form Chern(E) := Tr(exp(−∇2

2iπ )). Here we simply denote by
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Ch(E) ∈ H∗(N) the de Rham cohomology class of Tr(exp(∇2)). We will call it the
(non normalized) Chern character of E .

More generally, let E = E+⊕E− be a Z2-graded complex vector bundle on a mani-
fold N . Taking in account the Z2-grading of End(E), the algebra A∗(N, End(E)) is a
Z2-graded algebra: for example [A∗(N, End(E))]+ is equal to
A+(N, End(E)+) ⊕ A−(N, End(E)−). The super-trace on End(E) extends to a
C-linear map Str : A∗(N, End(E)) → A∗(N).

Let A be a super-connection on E and F = A2 be its curvature, an element of
[A∗(N, End(E))]+. The Chern form of (E , A) is the closed differential form

Ch(A) := Str(eF).

We will use the following transgression formulaes.

Proposition 3. • Let At, for t ∈ R, be a one parameter family of super-connections
on E, and let d

dtAt ∈ [A∗(N, End(E))]−. Let Ft be the curvature of At. Then one
has

(13)
d

dt
Ch(At) = d

(
Str
(
(

d

dt
At) eFt

))
.

• Let A(s, t) be a two-parameter family of super-connections. Here s, t ∈ R. We
denote by F(s, t) the curvature of A(s, t). Then:

d

ds
Str
(
(

d

dt
A(s, t)) eF(s,t)

)
−

d

dt
Str
(
(

d

ds
A(s, t)) eF(s,t)

)

= d

(∫ 1

0

Str
(
(

d

ds
A(s, t)) euF(s,t)(

d

dt
A(s, t)) e(1−u)F(s,t)

)
du

)
.

Proof. These formulae are well known, and are derived easily from the two identi-
ties: F = A2, and d Str(α) = Str[A, α] for any α ∈ A∗(N, End(E)) (see [7]). �

In particular, the cohomology class defined by Ch(A) in H∗(N) is independent
on the choice of the super-connection A on E . By definition, this is the Chern

character Ch(E) of E . By choosing A =

(
∇+ 0
0 ∇−

)
where ∇± are connections

on E±, this class is just Ch(E+) − Ch(E−). However, different choices of A define
very different looking representatives of Ch(E).

3.2. Quillen’s relative Chern character of a morphism. Let E = E+ ⊕E− be
a Z2-graded complex vector bundle on a manifold N and σ : E+ → E− be a smooth
morphism. At each point n ∈ N , σ(n) : E+

n → E−
n is a linear map. The support of

σ is the closed subset of N

Supp(σ) = {n ∈ N | σ(n) is not invertible}.

Recall that the morphism σ is elliptic when Supp(σ) is compact : in this situation
the data (E+, E−, σ) defines an element of the K0-theory of N .

In the following, we do not assume σ elliptic. We recall Quillen’s construction [19]
of a C-cohomology class Chrel(σ) in H∗(N, N \Supp(σ)). The definition will involve
several choices. We choose Hermitian structures on E± and a super-connection A

on E without 0 exterior degree term.
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We associate to the morphism σ the odd Hermitian endomorphism of E defined
by

(14) vσ =

(
0 σ∗

σ 0

)
.

Then v2
σ =

(
σ∗σ 0
0 σσ∗

)
is a non negative even Hermitian endomorphism of E .

The support of σ coincides with the set of elements n ∈ N where the spectrum of
v2

σ(n) contains 0.

Definition 3.1. Let E be a finite dimensional Hermitian vector space. If H is an
Hermitian endomorphism of E and h ∈ R, we write H ≥ h when (Hw, w) ≥ h‖w‖2

for any w ∈ E. Then H ≥ h if and only if the smallest eigenvalue of H is larger
than h.

Consider the family of super-connections

(15) A
σ(t) = A + it vσ, t ∈ R.

The curvature of Aσ(t) is the even element F(σ, A, t) ∈ [A∗(N, End(E))]+ defined
by :

(16) F(σ, A, t) = (itvσ + A)2 = −t2v2
σ + it[A, vσ] + A

2.

Here −t2v2
σ is the term of exterior degree 0. As the super-connection A do not

have 0 exterior degree term, both elements it[A, vσ] and A
2 are sums of terms with

strictly positive exterior degrees. For example, if A = ∇+ ⊕∇− is a direct sum of
connections, then it[A, vσ] ∈ A1(N, End(E)−) and A2 ∈ A2(N, End(E)+).

Definition 3.2. We denote by Ch(σ, A, t) the Chern form of (E , Aσ(t)), that is

Ch(σ, A, t) := Str
(
eF(σ,A,t)

)
.

As ivσ = d
dtA

σ(t), we have the transgression formula d
dt Ch(σ, A, t) =

−d(η(σ, A, t)) with

(17) η(σ, A, t) := − Str
(
ivσ eF(σ,A,t)

)
.

After integration, the transgression formula gives the following equality of differen-
tial forms on N

(18) Ch(A) − Ch(σ, A, t) = d

(∫ t

0

η(σ, A, s)ds

)
,

since Ch(A) = Ch(σ, A, 0).

Proposition 4. Let K be a compact subset of N and let h ≥ 0 be such that v2
σ(n) ≥

h when n ∈ K. There exists a polynomial PK of degree dimN such that, on K,

(19)
∣∣∣
∣∣∣ eF(σ,A,t)

∣∣∣
∣∣∣ ≤ PK(t) e−ht2 for all t ≥ 0.

In particular, when K is contained in N \ Supp(σ), then Ch(σ, A, t) and η(σ, A, t)
tends to 0 exponentially fast when t tends to infinity.
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Proof. We work on End(E)⊗A, where A = ⊕dim N
k=0 Ak(N). To estimate ‖ eF(σ,A,t) ‖,

we employ Lemma 9 of the Appendix, with H = t2v2
σ, and R = −it[A, vσ] − A2.

Here R is a sum of End(E)-valued differential forms on N with strictly positive
exterior degrees. Remark that R is a polynomial in t of degree 1. Lemma 9 gives

us the estimate ‖ eF(σ,A,t) ‖ ≤ P(‖R‖) e−ht2 with P an explicit polynomial with
positive coefficients of degree dim N . Using the fact that ‖R‖ ≤ at + b on K, we
obtain the estimate (19) on N .

If K is contained in N \ Supp(σ), we can find h > 0 such that v2
σ(n) ≥ h when

n ∈ K. Thus we see that ‖ eF(σ,A,t) ‖ decreases exponentially fast, when t tends to
infinity. �

The former estimates allows us to take the limit t → ∞ in (18) on the open
subset N \ Supp(σ). There, the differential form Ch(σ, A, t) = Str

(
eF(σ,A,t)

)
tends

to 0 as t goes to ∞, and we get the following important lemma due to Quillen.

Lemma 1. [19] We can define on N \ Supp(σ) the differential form

(20) β(σ, A) =

∫ ∞

0

η(σ, A, t)dt

and we have Ch(A)|N\Supp(σ) = d (β(σ, A)).

We are in the situation of Definition 2.1. The closed form Ch(A) on N and the
form β(σ, A) on N\Supp(σ) define an even relative cohomology class [Ch(A), β(σ, A)]
in H∗(N, N \ Supp(σ)).

Proposition 5. • The class [Ch(A), β(σ, A)] ∈ H∗(N, N\Supp(σ)) does not depend
on the choice of A, nor on the Hermitian structure on E. We denote it by Chrel(σ)
and we call it the Quillen Chern character.

• Let F be a closed subset of N . For s ∈ [0, 1], let σs : E+ → E− be a family of
smooth morphisms such that Supp(σs) ⊂ F . Then all classes Chrel(σs) coincide in
H∗(N, N \ F ).

Proof. Let us prove the first point. Let As, s ∈ [0, 1], be a smooth one parameter
family of super-connections on E without 0 exterior degree terms. Let A(s, t) =
As+itvσ. Thus d

dsA(s, t) = d
dsAs and d

dtA(s, t) = ivσ. Let F(s, t) be the curvature of

A(s, t). We have d
ds Ch(As) = dγs with γs = Str

(
( d

dsAs) eF(s,0)
)

and η(σ, As, t) =

− Str
(
( d

dtA(s, t)) eF(s,t)
)
. We apply the double transgression formula of Proposition

3, and we obtain

(21)
d

ds
η(σ, As, t) = −

d

dt
Str
(
(

d

ds
A(s, t)) eF(s,t)

)
− dν(s, t)

with

ν(s, t) =

∫ 1

0

Str
(
(

d

ds
A(s, t)) euF(s,t)(

d

dt
A(s, t)) e(1−u)F(s,t)

)
du

=

∫ 1

0

Str
(
(

d

ds
As) euF(s,t)(ivσ) e(1−u)F(s,t)

)
du.

For u, s ∈ [0, 1] and t ≥ 0, we consider the element of A∗(N, End(E)) defined by
I(u, s, t) = ( d

dsAs) euF(s,t)(ivσ) e(1−u)F(s,t).
On a compact subset K of N \ F , σ is invertible and we can find h > 0 such

that v2
σ(n) ≥ h when n ∈ K. We have uF(s, t) = −t2uv2

σ − uRt,s, with Rt,s =
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−it[As, vσ] − A2
s which is a sum of terms with strictly positive exterior degrees.

Remark that Rt,s is a polynomial of degree 1 in t. By the estimate of Lemma 9 of
the Appendix, we obtain

∣∣∣
∣∣∣I(u, s, t)

∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣ d

ds
As

∣∣∣
∣∣∣
∣∣∣
∣∣∣vσ

∣∣∣
∣∣∣
∣∣∣
∣∣∣ euF(s,t)

∣∣∣
∣∣∣
∣∣∣
∣∣∣ e(1−u)F(s,t)

∣∣∣
∣∣∣

≤
∣∣∣
∣∣∣ d

ds
As

∣∣∣
∣∣∣
∣∣∣
∣∣∣vσ

∣∣∣
∣∣∣ e−ht2 P(u‖Rt,s‖)P((1 − u)‖Rt,s‖)

where P is a polynomial of degree less or equal to dimN . So, we can find a constant

C such that ‖I(u, s, t)‖ ≤ C(1+t2)dim N e−ht2 for all u, s ∈ [0, 1] and t ≥ 0. Thus we
can integrate Equation (21) in t, from 0 to ∞. Since −

∫∞

0
d
dt [Str(( d

dsA(s, t)) eF(s,t))]dt
= γs, it follows that

(22)
d

ds
Ch(As) = dγs,

d

ds
β(σ, As) = γs − dǫs

where ǫs =
∫∞

0
ν(s, t)dt and ν(s, t) =

∫ 1

0
I(u, s, t)du. The first equality in Equations

(22) holds on N , and the second on N \ Supp(σ). These equations (22) exactly
mean that

d

ds
(Ch(As), β(σ, As)) = drel (γs, ǫs) .

So the cohomology class [Ch(A), β(σ, A)] in H∗(N, N \ Supp(σ)) does not depend
on the choice of A. With a similar proof, we see that this cohomology class does
not depend on the choice of Hermitian structure on E .

The proof of the second point is similar. �

We have defined a representative of the relative Chern class Chrel(σ) using the
one-parameter family Aσ(t) of super-connections, for t varying between 0 and ∞.
We can define another representative as follows. We have Ch(σ, A, t) = d(β(σ, A, t))
with

(23) β(σ, A, t) =

∫ ∞

t

η(σ, A, s)ds.

Lemma 2. For any t ∈ R, the relative Chern character Chrel(σ) satisfies Chrel(σ) =
[Ch(σ, A, t), β(σ, A, t)] in H∗(N, N \ Supp(σ)).

Proof. It is easy to check that

(24)
(

Ch(A), β(σ, A)
)
−
(

Ch(σ, A, t), β(σ, A, t)
)

= drel(δ(t), 0),

with δ(t) =
∫ t

0
η(σ, A, s)ds. �

Remark 1. Quillen relative Chern character seems to be very related to the “mul-
tiplicative K-theory” defined by Connes-Karoubi (see [15], [16]). For example, even
if E+, E− are flat bundles, the Quillen Chern character is usually non zero, as it
also encodes the odd closed differential form ω = β(σ, A).

4. Multiplicative property of Chrel

Let E1, E2 be two Z2-graded complex vector bundles on a manifold N . The space
E1 ⊗ E2 is a Z2-graded complex vector bundle with even part E+

1 ⊗ E+
2 ⊕ E−

1 ⊗ E−
2

and odd part E−
1 ⊗ E+

2 ⊕ E+
1 ⊗ E−

2 .
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The complex super-algebra A∗(N, End(E1 ⊗ E2)) can be identified with
A∗(N, End(E1)) ⊗A∗(N, End(E2)) where the tensor is taken in the sense of super-
algebras. Then, if vk ∈ A0(N, End(Ek)−) are odd endomorphisms, we have (v1 ⊗
IdE2 + IdE1 ⊗ v2)

2 = (v1)
2 ⊗ IdE2 + IdE1 ⊗ (v2)

2.

Let σ1 : E+
1 → E−

1 and σ2 : E+
2 → E−

2 be two smooth morphisms. With the help
of Hermitian structures, we define the morphism

σ1 ⊙ σ2 : (E1 ⊗ E2)
+
−→ (E1 ⊗ E2)

−

by σ1 ⊙ σ2 := σ1 ⊗ IdE+
2

+ IdE+
1
⊗ σ2 + IdE−

1
⊗ σ∗

2 + σ∗
1 ⊗ IdE−

2
.

Let vσ1 and vσ2 be the odd Hermitian endomorphisms of E1, E2 associated to σ1

and σ2 (see (14)). Then vσ1⊙σ2 = vσ1 ⊗ IdE2 +IdE1 ⊗ vσ2 and v2
σ1⊙σ2

= v2
σ1

⊗ IdE2 +

IdE1 ⊗ v2
σ2

. It follows that

Supp(σ1 ⊙ σ2) = Supp(σ1) ∩ Supp(σ2).

We can now state one of the main result of this paper.

Theorem 4.1. (Quillen’s Chern character is multiplicative) Let σ1, σ2 be
two morphisms over N . The relative cohomology classes

• Chrel(σk) ∈ H∗(N, N \ Supp(σk)), k = 1, 2,
• Chrel(σ1 ⊙ σ2) ∈ H∗(N, N \ (Supp(σ1) ∩ Supp(σ2))),

satisfy the following equality

Chrel(σ1 ⊙ σ2) = Chrel(σ1) ⋄ Chrel(σ2)

in H∗(N, N \ (Supp(σ1)∩ Supp(σ2))). Here ⋄ is the product of relative classes (see
(5)).

Proof. For k = 1, 2, we choose super-connections Ak, without 0 exterior degree
terms. We consider the closed forms ck(t) := Ch(σk, Ak, t) and the transgression
forms ηk(t) := η(σk, Ak, t) so that d

dt(ck(t)) = −d(ηk(t)). Let βk =
∫∞

0 ηk(t)dt. A
representative of Chrel(σk) is (ck(0), βk).

For the symbol σ1 ⊙ σ2, we consider A(t) = A + itvσ1⊙σ2 where A = A1 ⊗
IdE2 + IdE1 ⊗ A2. Then Ch(A) = c1(0)c2(0). Furthermore, it is easy to see that
the transgression form for the family A(t) is η(t) = η1(t)c2(t) + c1(t)η2(t). Let
β12 =

∫∞

0
η(t)dt. A representative of Chrel(σ1 ⊙ σ2) is (c1(0)c2(0), β12).

We consider the open subsets U = N \ (Supp(σ1) ∩ Supp(σ2)), and Uk =
N \ Supp(σk). Let Φ1 + Φ2 = 1U be a partition of unity subordinate to the
decomposition U = U1 ∪ U2. The proof will be completed if one shows that

(25) (c1(0), β1) ⋄Φ (c2(0), β2) − (c1(0)c2(0), β12)

is drel-exact. We need the following lemma.

Lemma 3. The integrals

B1 =

∫∫

0≤t≤s

Φ1η1(s) ∧ η2(t)ds dt,

B2 =

∫∫

0≤s≤t

Φ2η1(s) ∧ η2(t)ds dt

are well defined differential forms on U .
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Proof. The function (s, t) 7→ Φ1η1(s) ∧ η2(t) is a function on R2 with values in
A∗(U). We have to see that the integral B1 is convergent on the domain 0 ≤ t ≤ s.
This fact follows directly from the estimates of Proposition 4. Indeed, let K be a
compact subset of U . Since Φ1 is supported on U1 = N \ Supp(σ1), there exists
h > 0, and a polynomial P1 in s such that, on K,

‖Φ1η1(s)‖ ≤ P1(s) e−hs2

for s ≥ 0.

On the other hand, there exists a polynomial P2 in t such that, on K,

‖η2(t)‖ ≤ P2(t) for t ≥ 0.

Then, when 0 ≤ t ≤ s, we have, on K: ‖Φ1η1(s) ∧ η2(t)‖ ≤ P1(s)P2(t) e−hs2

and
the integral B1 is absolutely convergent on 0 ≤ t < s. Reversing the role 1 ↔ 2, we
prove in the same way that B2 is well defined. �

We now prove that (25) is equal to drel

(
0, B1 − B2

)
. Indeed

(c1(0), β1) ⋄Φ (c2(0), β2) =
(
c1(0)c2(0), Φ1β1c2(0) + c1(0)Φ2β2 − dΦ1β1β2

)
,

so that (25) is equal to
(
0, Φ1β1c2(0) + c1(0)Φ2β2 − dΦ1β1β2 − β12

)
. Thus we

need to check that dB2 − dB1 = Φ1β1c2(0) + c1(0)Φ2β2 − dΦ1β1β2 − β12. We have
dB1 = R1 + S1 with

R1 = dΦ1 ∧

∫∫

0≤t≤s

η1(s)η2(t) ds dt,

S1 = Φ1

∫∫

0≤t≤s

(
dη1(s)η2(t) − η1(s)dη2(t)

)
ds dt.

Now we use dηj(s) = − d
dscj(s), so that we obtain

S1 = Φ1

∫∫

0≤t≤s

(
(−

d

ds
c1(s))η2(t) + η1(s)(

d

dt
c2(t))

)
ds dt

= Φ1

(∫ ∞

0

c1(t)η2(t)dt +

∫ ∞

0

η1(s)c2(s)ds
)
− c2(0)Φ1β1,

that is S1 = Φ1β12 − c2(0)Φ1β1. Similarly, we compute that dB2 is equal to
dΦ2 ∧

∫∫
0≤s≤t

η1(s)η2(t) ds dt − Φ2β12 + c1(0)Φ2β2. So finally, as dΦ1 = −dΦ2,
we get

dB2 − dB1 = −dΦ1

∫ ∞

0

∫ ∞

0

η1(s)η2(t)dsdt − β12 + c2(0)Φ1β1 + c1(0)Φ2β2

which was the equation to prove. �

5. Chern character of a morphism

We employ notations of Section 3.2. We work here with differential forms with
complex coefficients.
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5.1. The Chern Character. Let σ : E+ → E− be a morphism on N . Following
Subsection 2.2, we consider the image of Chrel(σ) through the map H∗(N, N \
Supp(σ)) → H∗

Supp(σ)(N). Applying Propositions 1 and 5, we obtain the following

theorem.

Theorem 5.1. • For any neighborhood U of Supp(σ), take χ ∈ C∞(N) which is
equal to 1 in a neighborhood of Supp(σ) and with support contained in U . The
differential form

(26) c(σ, A, χ) = χ Ch(A) + dχ β(σ, A)

is closed and supported in U . Its cohomology class cU (σ) ∈ H∗
U (N) does not depend

on the choice of A, χ and the Hermitian structures on E±. Furthermore, the inverse
family cU (σ) when U runs over the neighborhoods of Supp(σ) defines a class

Chsup(σ) ∈ H∗
Supp(σ)(N).

The image of this class in H∗(N) is the Chern character Ch(E) of E.
• Let F be a closed subset of N . For s ∈ [0, 1], let σs : E+ → E− be a family of

smooth morphisms such that Supp(σs) ⊂ F . Then all classes Chsup(σs) coincide
in H∗

F (N).

Using Lemma 2 we get

Lemma 4. For any t ≥ 0, the class Chsup(σ) can be defined with the forms
c(σ, A, χ, t) = χ Ch(σ, A, t) + dχ β(σ, A, t).

Proof. It is due to the following transgression

(27) c(σ, A, χ) − c(σ, A, χ, t) = d(χδ(t)),

which follows from (24). �

In some situations, Quillen’s Chern character ChQ(σ) = Ch(σ, A, 1) enjoys good
properties relative to the integration. So it is natural to compare the differential
forms c(σ, A, χ) and ChQ(σ).

Lemma 5. We have

c(σ, A, χ) − ChQ(σ) = d

(
χ

∫ 1

0

η(σ, A, s)ds

)
+ d
(
(χ − 1)β(σ, A, 1)

)
.

Proof. This follows immediately from the transgressions (11) and (27). �

Definition 5.1. When σ is elliptic, we denote by

(28) Chc(σ) ∈ H∗
c (N)

the cohomology class with compact support which is the image of Chrel(σ) through
the map pc : H∗(N, N \ Supp(σ)) → H∗

c(N) (see (10)).

A representative of Chc(σ) is given by c(σ, A, χ), where χ ∈ C∞(N) is chosen
with a compact support, and equal to 1 in a neighborhood of Supp(σ) and c(σ, A, χ)
is given by Formula (26).

We will now rewrite Theorem 4.1 for the Chern classes Chsup and Chc. Let

σ1 : E+
1 → E−

1 and σ2 : E+
2 → E−

2 be two smooth morphisms. Let σ1 ⊙ σ2 :

(E1 ⊗ E2)
+
→ (E1 ⊗ E2)

−
be their product.

Following (6), the product of the elements Chsup(σk) ∈ H∗
Supp(σk)(N) for k = 1, 2

belongs to H∗
Supp(σ1)∩Supp(σ2)(N) = H∗

Supp(σ1⊙σ2)
(N).
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Theorem 5.2. • We have the equality

Chsup(σ1) ∧ Chsup(σ2) = Chsup(σ1 ⊙ σ2) in H∗
Supp(σ1⊙σ2)(N).

• If the morphisms σ1, σ2 are elliptic, we have

Chc(σ1) ∧ Chc(σ2) = Chc(σ1 ⊙ σ2) in H∗
c(N).

Proof. The second point is a consequence of the first point. Theorem 4.1 tells
us that Chrel(σ1 ⊙ σ2) = Chrel(σ1) ⋄ Chrel(σ2) holds in H∗(N, N \ (Supp(σ1) ∩
Supp(σ2))). We apply now the morphism “p” and use the relation (9) to get the
first point. �

The second point of Theorem 5.2 has the following interesting refinement. Let
σ1, σ2 be two morphisms on N which are not elliptic, and assume that the product
σ1 ⊙ σ2 is elliptic. Since Supp(σ1) ∩ Supp(σ2) is compact, we consider neighbor-
hoods Uk of Supp(σk) such that U1∩U2 is compact. Let χk ∈ C∞(N) be supported
on Uk and equal to 1 in a neighborhood of Supp(σk). Then, the differential form
c(σ1, A1, χ1) ∧ c(σ2, A2, χ2) is compactly supported on N , and we have

Chc(σ1 ⊙ σ2) =
[
c(σ1, A1, χ1) ∧ c(σ2, A2, χ2)

]
in H∗

c(N).

Note that the differential forms c(σk, Ak, χk) are not compactly supported.

5.2. Comparison with other constructions.

5.2.1. Trivialization outside Supp(σ). Outside the support of σ, the complex vector
bundles E+ and E− are “the same”, so that it is natural to construct representatives
of Ch(E) = Ch(E+) − Ch(E−) which are zero “outside” the support of σ by the
following identifications of bundles with connections. For simplicity, we assume in
this section that σ is elliptic.

A connection ∇ = ∇+ ⊕ ∇− is said “adapted” to the morphism σ when the
following holds

∇− ◦ σ + σ ◦ ∇+ = 0,(29)

∇+ ◦ σ∗ + σ∗ ◦ ∇− = 0,

outside a compact neighborhood of Supp(σ). An adapted connection is denoted by
∇adap. It is easy to construct an adapted connection.

Proposition 6. Let ∇adap be a connection adapted to σ : E+ → E−. Then the dif-
ferential form Ch(∇adap) is compactly supported and its cohomology class coincides
with Chc(σ) in H∗

c(N).

Proof. Suppose that ∇adap satisfies (29) outside a compact neighborhood C of
Supp(σ). We verify that the forms Ch(∇adap) as well as the form β(σ,∇adap) are
supported on C. Thus if χ ∈ C∞(N) is equal to 1 on C, we see that the differential
forms c(σ,∇adap, χ) and Ch(∇adap) coincide. �

Remark 2. If F is compact, the closed differential form Ch(∇adap) represents the
Chern character of a difference bundle [D+]− [D−], where [D+] and [D−] are com-
plex vector bundles (isomorphic outside F ) on a compactification NF of N (see for
example [8]). Thus Ch(∇adap) is a representative of the Chern character as defined
by Atiyah and al. in [2, 5]. In this case, Theorem 5.2 is just the multiplicativity
property of the Chern character in absolute theories.
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5.2.2. Gaussian look. In [17], Mathai-Quillen gives an explicit representative with
“Gaussian look” of the Bott class of a complex vector bundle N → B. The purpose
of this paragraph is to compare the Mathai-Quillen construction of Chern characters
with “Gaussian look” and the Quillen relative construction.

Let N be a real vector bundle over a manifold B. We denote by π : N → B the
projection. We denote by (x, ξ) a point of N with x ∈ B and ξ ∈ Nx. Let E± → B
be two Hermitian vector bundles. We consider a morphism σ : π∗E+ → π∗E−.

We choose a metric on the fibers of the fibration N → B. We work under the
following assumption on σ.

Assumption 1. The morphism σ : π∗E+ → π∗E− and all its partial derivatives
have at most a polynomial growth along the fibers of N → B. Moreover we assume
that, for any compact subset KB of B, there exist R ≥ 0 and c > 0 such that1

v2
σ(x, ξ) ≥ c‖ξ‖2 when ‖ξ‖ ≥ R and x ∈ KB.

We may define the sub-algebra A∗
dec-rap(N) of forms on N such that all partial

derivatives are rapidly decreasing along the fibers. Let H∗
dec-rap(N) be the corre-

sponding cohomology algebra. Under Assumption 1, the support of σ intersects
the fibers of π in compact sets. We have then a canonical map from H∗

Supp(σ)(N)

into H∗
dec-rap(N). We will now compute the image of Chsup(σ) under this map.

Let ∇ = ∇+⊕∇− be a connection on E → B, and consider the super-connection
A = π∗∇ so that Aσ(t) = π∗∇ + itvσ. Then, the Quillen Chern character form
ChQ(σ) := Ch(σ, A, 1) has a “Gaussian” look.

Lemma 6. The differential forms Ch(σ, A, 1) and β(σ, A, 1) are rapidly decreasing
along the fibers.

Proof. The curvature of Aσ(t) is

F(t) = π∗F− t2v2
σ + it[π∗∇, vσ].

Here F ∈ A2(B, End(E)) is the curvature of ∇. Assumption 1 implies that [π∗∇, vσ] ∈
A1(N, End(π∗E)) has at most a polynomial growth along the fibers. Furthermore,
for any compact subset KB of the basis, there exists R ≥ 0 and c > 0 such that
v2

σ(x, ξ) ≥ c‖ξ‖2 when ‖ξ‖ ≥ R and x ∈ KB.

To estimate eF(t), we apply Lemma 9 of the Appendix, with H = t2v2
σ, and

R = −π∗F − it[π∗∇, vσ]. The smallest eigenvalue of H is greater or equal to
t2c‖ξ‖2, when ‖ξ‖ ≥ R, and R is a sum of terms with strictly positive exterior
degrees. Remark that R is a polynomial in t of degree 1 and is bounded in norm by
a polynomial in ‖ξ‖ along the fibers. It follows that from Lemma 9 that, for t ≥ 0,
we have ∣∣∣

∣∣∣ eF(t)
∣∣∣
∣∣∣(x, ξ) ≤ P(‖R‖) e−t2c‖ξ‖2

.

Our estimates on the polynomial growth of R in t and ‖ξ‖ implies that there
exists a polynomial Q such that, for t ≥ 0,

(30)
∣∣∣
∣∣∣ eF(t)

∣∣∣
∣∣∣(x, ξ) ≤ Q(t‖ξ‖) e−t2c‖ξ‖2

,

for (x, ξ) ∈ N , x ∈ KB, ‖ξ‖ ≥ R.
This implies that Ch(σ, A, 1) = Str(eF(1)) is rapidly decreasing along the fibers.

Consider now β(σ, A, 1) = −i
∫∞

1
Str(vσ eF(t))dt which is defined (at least) for ‖ξ‖ ≥

1This inequality means that ‖σ(x, ξ)w‖2 ≥ c‖ξ‖2‖w‖2 for any w ∈ Ex.
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R. The estimate (30) shows also that β(σ, A, 1) is rapidly decreasing along the
fibers. We can prove in the same way that all partial derivatives of Ch(σ, A, 1) and
β(σ, A, 1) are rapidly decreasing along the fibers: hence Ch(σ, A, 1) ∈ A∗

dec-rap(N)

and β(σ, A, 1) ∈ A∗
dec-rap(N \ Supp(σ)). �

Proposition 7. Quillen’s Chern character form ChQ(σ) ∈ A∗
dec-rap(N) represents

the image of the class Chsup(σ) ∈ H∗
Supp(σ)(N) in H∗

dec-rap(N).

Proof. Choosing χ supported on ‖ξ‖ ≤ R + 1 and equal to 1 in a neighborhood
of ‖ξ‖ ≤ R, the transgression formula of Lemma 5: c(σ, A, χ) − Ch(σ, A, 1) =

d(χ
∫ 1

0
η(σ, A, s)ds) + d ((χ − 1)β(σ, A, 1)) implies our proposition, since the form

c(σ, A, χ) represents Chsup(σ) in H∗
dec-rap(N). �

When the fibers of π : N → B are oriented, we have an integration morphism∫
fiber

: H∗
dec-rap(N) → H∗(B).

Corollary 1. We have
∫
fiber

ChQ(σ) =
∫
fiber

Chsup(σ) in H∗(B).

5.3. Examples. If E is a trivial bundle N ×E on a manifold N , an endomorphism
of End(E) is determined by a map from N to End(E). We employ the same notation
for both objects, so that if σ is a map from N to End(E), we also denote by σ the
bundle map σ[n, v] = [n, σ(n)v], for n ∈ N and v ∈ E.

We will use the following convention. Let E = E+ ⊕ E− be a Z2-graded finite
dimensional complex vector space. Let A be a super-commutative algebra (the ring
of differential forms on a manifold for example). The elements of the super-algebra
A ⊗ End(E) will be represented by matrices with coefficients in A. This algebra
operates on the space A ⊗ E. We take the following convention: the forms are
always considered as operating first: for example, if E+ = C and E− = C, the

matrix

(
0 α
β 0

)
represents the operator

(31)

(
0 α
β 0

)
:=

(
0 1
0 0

)
α +

(
0 0
1 0

)
β

on A⊗ E.

5.3.1. The cotangent bundle T∗S1. We consider T∗S1 := S1 × R the cotangent
bundle to the circle S1. The group K0(T∗S1) of K-theory is generated, as a Z-
module, by the class [σ] of the following elliptic symbol.

Take E+ = E− the trivial bundles T∗S1 × C over T∗S1. Let u ∈ C∞(R) be
a function satisfying u(ξ) = 1 if |ξ| > 1 and u(ξ) = 0 if |ξ| < 1/2. The symbol
σ : E+ → E− is defined by the map σ : T∗S1 → EndC(C) = C :

σ(eiθ, ξ) =

{
u(ξ) eiθ, if ξ ≥ 0;

u(ξ), if ξ ≤ 0.

Here Supp(σ) = {(eiθ, ξ); u(ξ) = 0} is compact. Note that the class [σ] ∈ K0(T∗S1)
does not depend on the choice of the function u.

We choose on E± the trivial connections ∇+ = ∇− = d and we let A = ∇+⊕∇−

be the trivial connection on E+ ⊕ E−. Then Ch(A) = 0. The curvature F(σ, A, t)
of the super-connection

A
σ(t) =

(
d 0
0 d

)
+

(
0 itu(ξ) e−iθ

itu(ξ) eiθ 0

)
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is represented by the matrix

(
a −b
b a

)
where a(t, (eiθ, ξ)) = −t2u(ξ)2 and

b(t, (eiθ, ξ)) =

{
−it e−iθ(u′(ξ)dξ − iu(ξ)dθ), if ξ ≥ 0;

−itu′(ξ)dξ, if ξ ≤ 0.

Then eF(σ,A,t) is represented by the matrix e−t2u(ξ)2
(

A −b
b A

)
, where

A(t, (eiθ, ξ)) =

{
1 + it2u(ξ)u′(ξ)dξ dθ, if ξ ≥ 0;

1, if ξ ≤ 0.

Thus η(σ, A, t) = − Str
(
ivσ eF(σ,A,t)

)
is given by

η(σ, A, t)(eiθ, ξ) =

{
−2it e−t2u(ξ)2 u(ξ)2dθ, if ξ ≤ 0;

0, if ξ ≥ 0.

Finally, integrating η(σ, A, t) in t from 0 to ∞, we find that β(σ, A) (which is defined
on {(eiθ, ξ); u(ξ) 6= 0} = T∗S1 \ Supp(σ)) is equal to

(32) β(σ, A)(eiθ, ξ) =

{
−idθ, if ξ ≥ 0, u(ξ) 6= 0

0, if ξ ≤ 0, u(ξ) 6= 0.

We have then proved the following

Proposition 8. • The relative Chern class Chrel(σ) is represented (0, β(σ, A)).
• The Chern class with compact support Chc(σ) is represented by the differential

form −i 1≥0 dχ ∧ dθ where χ ∈ C∞(R) is compactly supported and equal to 1 on
[−1, 1], and 1≥0 is the characteristic function of the interval [0,∞[

Note that the differential form −i 1≥0 dχ∧dθ is of integral −2iπ on T∗S1 (which
is oriented by dθ ∧ dξ).

5.3.2. The space R2. Now we consider the case where N = R2 ≃ C. Take E+ = E−

the trivial bundles N ×C over N . We consider Bott’s symbol σb : E+ → E− which
is given by the map σb(z) = z for z ∈ N ≃ C. The support of σb is reduced to the
origin {0}, thus σb defines an element of K0(R2). Recall that the Bott isomorphism
tells us that K0(R2) is a free Z-module with base σb.

We choose on E± the trivial connections ∇+ = ∇− = d. Let A = ∇+ ⊕ ∇− be
the trivial connection on E+⊕E−. The curvature F(σb, A, t) of the super-connection

A
σb(t) =

(
d 0
0 d

)
+

(
0 itz

itz 0

)
has the matrix form (see (31))

F(σb, A, t) =

(
−t2|z|2 0

0 −t2|z|2

)
− it

(
0 dz
dz 0

)
.

Thus

eF(σb,A,t) = e−t2|z|2

(
1 − t2

2 dzdz −itdz

−itdz 1 + t2

2 dzdz

)

and η(σb, A, t) = − Str
(
ivσb

eF(σb,A,t)
)

is equal to

(33) η(σb, A, t) = −t(zdz − zdz) e−t2|z|2 .
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When z 6= 0, we obtain that β(σb, A)(z) =
∫∞

0
η(σb, A, t)dt is equal to 1

2|z|2 (zdz −

zdz) = −i d(arg z). Thus we have

(34) Chrel(σb) = [0,−i d(arg z)].

It is easy to see that Chrel(σb) is a basis of the vector space H∗(C, C \ {0}).
Take f ∈ C∞(R) with compact support and equal to 1 in a neighborhood of

0. Let χ(z) := f(|z|2). Then the class Chc(σb) ∈ H∗
c(R

2) is represented by the
differential form c(σb, A, χ) = χ Ch(A) + dχβ(σb, A). Here the differential form
Ch(A) is identically equal to 0. We obtain

c(σb, A, χ) = d(f(|z|2)) ∧ β(σb, A)

= −f ′(|z|2)dz ∧ dz.

Remark that c(σb, A, χ) is compactly supported and of integral equal to 2iπ on
R2 (with orientation dx ∧ dy). Thus 1

2iπ c(σb, A, χ) is a representative of the Thom

form of R2.

Remark 3. For t > 0, the Chern character of the super-connection A
σb(t) is the

degree 2 differential form with “Gaussian look”

Ch(σb, A, t) = − e−t2|z|2 t2dzdz.

For any t > 0, Ch(σb, A, t) and c(σb, A, χ) coincide in the cohomology H∗
dec-rap(R

2),
as follows from Proposition 7. In particular they have the same integral.

5.3.3. The multiplicativity property on C2. Following the notations of preceding
example, we consider C2 with coordinates z = (z1, z2) and morphisms σ1 = z1 and
σ2 = z2. Then the tensor product morphism is

σ1 ⊙ σ2 =

(
z1 −z2

z2 z1

)
.

The morphism σ1 ⊙ σ2 has support z1 = z2 = 0. A calculation similar to the
calculation done in the preceding section gives the following

Proposition 9. The relative chern class Chrel(σ1 ⊙ σ2) ∈ H∗(C2, C2 \ (0, 0)) is
represented by (0, β12), where

β12 =
−1

2|z|4

(
(z1dz1 − z1dz1) ∧ dz2 ∧ dz2 + (z2dz2 − z2dz2) ∧ dz1 ∧ dz1

)

is a closed form on C2 \ (0, 0).

Remark that β12 is invariant under the symmetry group U(2) of C2.

Recall that Chrel(σk) = [0, βk], with βk = − zkdzk−zkdzk

2|zk|2
. The wedge product

β1∧β2 is not defined on C2\(0, 0). Introduce a partition of unity Φ1, Φ2 with respect
to the covering U1 ∪ U2 of C2 \ (0, 0), with Uk = {z, zk 6= 0}. Then the relative
product Chrel(σ1) ⋄ Chrel(σ2) has representative (0, β), with β = −dΦ1 ∧ β1 ∧ β2.

We now compute the forms B1, B2 of the equation (5). The form ηk(t) have been
computed (Equation 33). From this it is easy to compute B1 = Φ1

∫
0≤s≤t

η1(t)η2(s)ds dt

and B2. We obtain

B1 = Φ1(z1, z2)
(z1dz1 − z1dz1) ∧ (z2dz2 − z2dz2)

4|z1|2(|z1|2 + |z2|2)
,

B2 = Φ2(z1, z2)
(z1dz1 − z1dz1) ∧ (z2dz2 − z2dz2)

4|z2|2(|z1|2 + |z2|2)
.
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Here B1 − B2 is a two form which is well defined on C2 \ (0, 0) and the relation
Φ1 + Φ2 = 1 imply

β12 − β = d(B1 − B2).

This shows that the class Chrel(σ1 ⊙ σ2) is the product [0, β1] ⋄ [0, β2].

We can now look at the different representatives of the Chern class with compact
support Chc(σ1 ⊙ σ2) ∈ H∗

c(C
2). Let f ∈ C∞(R) with compact support and equal

to 1 in a neighborhood of 0. We consider the functions χ(z) = f(|z1|
2 + |z2|

2) and
χk(zk) = f(|zk|

2). Let Ω = dz1 ∧ dz1 ∧ dz2 ∧ dz2.

Proposition 10. The Chern class Chc(σ1 ⊙ σ2) ∈ H∗
c(C

2) is represented by any
of the following differential forms

c(σ1 ⊙ σ2, A, χ) = −
f ′
(
|z1|

2 + |z2|
2
)

|z1|2 + |z2|2
Ω

c(σ1, A1, χ1) ∧ c(σ2, A2, χ2) = f ′
(
|z1|

2
)
f ′
(
|z2|

2
)

Ω.

Clearly the first representative is “better”, as it is invariant by the full symmetry
group SO(4) on C2 = R4.

6. Riemann-Roch formula in relative cohomology

In this section, we work with differential forms with real coefficients until Sub-
section 6.4.

6.1. Some notations. Let V be an Euclidean vector space of dimension d, with
oriented orthonormal basis e1, e2, . . . , ed. We identify the Lie algebra so(V ) of
SO(V ) with Λ2V as follows: to an antisymmetric matrix A in so(V ), we asso-
ciate the element

∑
i<j(Aei, ej)ei ∧ ej of Λ2V . This identification will be in place

throughout this section.
The Berezin integral T : ΛV → R is the R-linear map which vanishes on ΛiV

for i < d and is such that T(e1 ∧ e2 ∧ · · · ∧ ed) = 1.

6.2. Thom class in relative cohomology. Let M be a manifold. Let p : V → M
be a real oriented Euclidean vector bundle over M of rank d. In this section, we
give a construction for the relative Thom form, analogous to Quillen’s construction
of the Chern character. Here, we use the Berezin integral which is the “super-
commutative” analog of the super-trace for endomorphisms of a super-space.

Recall the sub-space A∗
fiber cpt(V) ⊂ A∗(V) of (real) differential forms on V which

have a compact support in the fibers of p : V → M . We have also defined the sub-
space A∗

dec-rap(V). The integration over the fiber, that we denote by p∗, is well

defined on the three spaces A∗(V ,V \ M), A∗
fiber cpt(V) and A∗

dec-rap(V) and take

values in A∗(M). A Thom form on V will be a (real) closed element which integrates
to the constant function 1 on M .

Let ∇ be an Euclidean connection on V . As the structure group of V is the
Lie group SO(V ) with Lie algebra so(V ), the curvature F of ∇ is a two-form with
values antisymmetric transformations of V . We will identify the curvature to an
element F ∈ A2(M, Λ2V) according to the isomorphism so(V ) ∼ Λ2V described
above. Let T : Γ(M, ΛV) → C∞(M) be the Berezin integral that we extend to a R-
linear map T : A∗(M, ΛV) → A∗(M). The pfaffian of an element L ∈ A∗(M, Λ2V)
is defined by: Pf(L) := T(eL).
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Definition 6.1. Let ∇ be an Euclidean connection on V, with curvature form
F. The Euler form Eul(V ,∇) ∈ A∗(M) of the bundle V → M is the closed real
differential form on M defined by Eul(V ,∇) := Pf

(
− F

2π

)
. The class of Eul(V ,∇),

which does not depend on ∇, is denoted by Eul(V) ∈ Hd(M).

Remark 4. Since the pfaffian vanishes when the rank of V is odd, the Euler class
Eul(V) ∈ Hd(M) is identically equal to 0 when the rank of V is odd.

Let us consider the vector bundle p∗V → V equipped with the pull-back con-
nection p∗∇. Let x be the canonical section of the bundle p∗V . We consider
the Z/2Z graded algebra A∗(V , Λp∗V) which is equipped with the Berezin integral
T : A∗(V , Λp∗V) → A∗(V).

Let f∇
t ∈ A∗(V , Λp∗V) be the element defined by the equation

(35) f∇
t = −t2‖x‖2 + t p∗∇x +

1

2
p∗F.

We consider the real differential forms on V defined by

Ct
∧ := T

(
ef∇

t

)
,(36)

ηt
∧ := −T

(
x ef∇

t

)
.(37)

Here the exponentials are computed in the super-algebra A∗(V , Λp∗V). To be more
concrete, this calculation is performed explicitly for a rank two bundle in Example
6.2 at the end of this subsection.

Lemma 7. The differential form Ct
∧ is closed. Furthermore,

(38)
d

dt
Ct

∧ = −d(ηt
∧).

Proof. The proof of the first point is given in [7] (Chapter 7, Theorem 7.41). We re-
call the proof. We denote by ι∧(x) the derivation of the super-algebra A∗(V , Λp∗V)
such that ι∧(x)s = 〈x, s〉 when s ∈ A0(V , Λ1p∗V). We extend the connection p∗∇
to a derivation ∇∧ of A∗(V , Λp∗V). We consider the derivation ∇∧ − 2tι∧(x) on
A∗(V , Λp∗V). It is easy to verify that

(39) (∇∧ − 2tι∧(x))f∇
t = 0.

Then, the exponential ef∇
t satisfies also (∇∧−2tι∧(x))(ef∇

t ) = 0. The Berezin inte-
gral is such that T(ι∧(x)α) = 0 and T(∇∧α) = d(T(α)) for any α ∈ A∗(V , Λp∗V).

This shows that d
(
T(ef∇

t )
)

= 0.

Let us prove the second point. We have d ◦ T
(
x ef∇

t

)
=

T ◦ (∇∧ − 2tι∧(x))
(
x ef∇

t

)
, and since (∇∧ − 2tι∧(x)) ef∇

t = 0, we get

(∇∧ − 2tι∧(x))
(
x ef∇

t

)
=

(
(∇∧ − 2tι∧(x)) · x

)
ef∇

t

= (∇∧x − 2t‖x‖2) ef∇
t

=
d

dt
ef∇

t .

�

When t = 0, then C0
∧ is just equal to Pf(F

2 ) = (−π)d/2 Eul(V ,∇). When t = 1,

then C1
∧ = T(ef∧

1 ) = e−‖x‖2

Q is a closed form with a Gaussian look on V : Q
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a differential form on V with a polynomial growth on the fiber of V → M (we
will be more explicit in a short while). This differential form was considered by
Mathai-Quillen in [17].

We have ηt
∧ = e−t2‖x‖2

Q(t) where Q(t) is a differential form on V with a poly-
nomial growth on the fiber of V and which depends polynomially on t ∈ R. Thus,
if x 6= 0, when t goes to infinity, ηt

∧ is an exponentially decreasing function of t.
We can thus define the following differential form on V \ M :

(40) β∧ =

∫ ∞

0

ηt
∧ dt.

If we integrate (38) between 0 and ∞, we get C0
∧ = d(β∧) on V \ M . Thus the

couple (C0
∧, β∧) defines a canonical relative class

(41)
[
Pf(F

2 ), β∧

]
∈ H∗(V ,V \ M)

of degree equal to the rank of V .
We give the explicit formula for this relative class in the case of a rank two

Euclidean bundle in Example 6.2.
Consider now the cohomology with compact support in the fiber of V . Let CV be

the image of
[
Pf(F

2 ), β∧

]
through the map pfiber cpt : H∗(V ,V \M) → H∗

fiber cpt(V).

Proposition 11. Let χ ∈ C∞(V) be a function with compact support in the fibers
and equal to 1 in a neighborhood of M . The form

Cχ
V = χ Pf(F

2 ) + dχβ∧

is a closed differential form with compact support in the fibers on V. Its cohomology
class in H∗

fiber cpt(V) coincides with CV : in particular, it does not depend on the

choice of χ. We have 1
ǫd

p∗ (Cχ
V) = 1, with ǫd = (−1)

d(d−1)
2 πd/2. Thus 1

ǫd
Cχ

V is a

Thom form in A∗
fiber cpt(V).

Proof. The first assertions are consequence of the definition of CV . To compute
p∗ (Cχ

V), we may choose χ = f(‖x‖2) where f ∈ C∞(R) has a compact support and
is equal to 1 in a neighborhood of 0. We work with a local oriented orthonormal
frame (e1, . . . , ed) of V : we have x =

∑
i xiei, and p∗∇x =

∑
i dxiei + xip

∗∇ei.
The component of maximal degree in the fibers of the differential form ηt

∧ is

(−1)
d(d−1)

2 td−1 e−t2‖x‖2 ∑
k(−1)kxkdx1 · · · d̂xk · · · dxd (see Proposition 13). Then,

the component of maximal degree in the fibers of the differential form dχ ∧ ηt
∧ is

−2(−1)
d(d−1)

2 td−1f ′(‖x‖2)‖x‖2 e−t2‖x‖2

dx1 · · · dxd.

Hence, using the change of variables x → 1
t x,

p∗ (Cχ
V) = −2(−1)

d(d−1)
2

∫ ∞

0

td−1

(∫

Rd

f ′(‖x‖2)‖x‖2 e−t2‖x‖2

dx

)
dt

= (−1)
d(d−1)

2

∫ ∞

0

(∫

Rd

f ′(
‖x‖2

t2
)(
−2‖x‖2

t3
) e−‖x‖2

dx

)

︸ ︷︷ ︸
I(t)

dt.

Since for t > 0, I(t) = d
dt

(∫
Rd f(‖x‖2

t2 ) e−‖x‖2

dx
)
, we have p∗ (Cχ

V) =

(−1)
d(d−1)

2

∫
Rd e−‖x‖2

dx = (−1)
d(d−1)

2 πd/2. �
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Using the differential form C1
∧, it is possible to construct representatives of a

Thom form with Gaussian look.

Proposition 12 (Mathai-Quillen). The differential form C1
∧ is a closed form which

belongs to A∗
dec-rap(V). We have 1

ǫd
p∗
(
C1

∧

)
= 1, with ǫd = (−1)

d(d−1)
2 πd/2. Thus

1
ǫd

C1
∧ is a Thom form in A∗

dec-rap(V).

Proof. By Proposition 13, the component of maximal degree in the fibers of the

differential form C1
∧ is the term (−1)

d(d−1)
2 e−‖x‖2

dx1 · · ·dxd. �

We summarize Propositions 11 and 12 in the following theorem.

Theorem 6.1. Let p : V → M be an oriented Euclidean vector bundle of rank d

equipped with an Euclidean connection ∇, with curvature F. Let ǫd := (−1)
d(d−1)

2 πd/2.
Let T : A∗(V , Λp∗V) → A∗(V) be the Berezin integral. Let

f∇
t = −t2‖x‖2 + tp∗∇x +

1

2
p∗F,

ηt
∧ = −T

(
x ef∇

t

)
,

β∧ =

∫ ∞

0

ηt
∧dt.

• Threl(V ,∇) = 1
ǫd

(
Pf(F

2 ), β∧

)
is a Thom form in A∗(V ,V \ M). It defines a

Thom class

Threl(V) ∈ H∗(V ,V \ M).

• Thc(V ,∇, χ) = 1
ǫd

Cχ
V = 1

ǫd

(
χ Pf(F

2 ) + dχβ∧

)
is a Thom form in A∗

c(V). Here

χ ∈ C∞(V) is a function with compact support in the fibers of V and equal to 1 in
a neighborhood of M . It defines a Thom class

Thc(V) ∈ H∗
c(V).

• The Mathai-Quillen form ThMQ(V ,∇) = 1
ǫd

C1
∧ = 1

ǫd
T
(
ef∇

1

)
is a Thom form

in A∗
dec-rap(V). It defines a Thom class

ThMQ(V) ∈ H∗
dec-rap(V).

Thus the use of the Berezin integral allowed us to give slim formulae for Thom
forms in relative cohomology, as well as in compactly supported cohomology or in
rapidly decreasing cohomology.

Example 6.2. Vector bundle of rank 2.
We write explicitly the formulae of this subsection in the case of an Euclidean

bundle V → M of rank 2 in a local frame. Let (e1, e2) be a local oriented or-
thonormal frame. Let ∇ be an Euclidean connection on V, so that ∇e1 = ηe2,
∇e2 = −ηe1, where η is a real valued one form on M . Then

F = dη(e1 ∧ e2), p∗∇x = η1e1 + η2e2

with η1 = dx1 − x2η, η2 = dx2 + x1η, and

f∇
t = −t2‖x‖2 + t(η1e1 + η2e2) +

1

2
dη(e1 ∧ e2).

The exponential of f∇
t in the super-algebra A∗(V , Λp∗V) is
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ef∇
t = e−t2‖x‖2

(
1 +

dη

2
e1 ∧ e2 + t(η1e1 + η2e2) − t2(η1 ∧ η2)e1 ∧ e2

)
.

Thus we have the formulae:

Ct
∧ = e−t2‖x‖2

(
dη

2
− t2η1 ∧ η2),

ηt
∧ = t e−t2‖x‖2

(x1η2 − x2η1),

β∧ =
x1η2 − x2η1

2‖x‖2
.

So Thom forms are given by

• Threl(V) =
−1

2π

[
dη, η +

x1dx2 − x2dx1

‖x‖2

]
,

• Thc(V) =
−1

2π

(
2f ′(‖x‖2)dx1 ∧ dx2 + d

(
f(‖x‖2) ∧ η

) )
,

where f is a compactly supported function on R, identically equal to 1 in a neigh-
borhood of 0,

• ThMQ(V) =
1

2π
e−‖x‖2

(
2dx1 ∧ dx2 − dη + d

(
‖x‖2

)
∧ η
)
.

6.3. Explicit formulae for the Thom forms of a vector bundle. Let us give
explicit local formulae for a general Euclidean vector bundle.

Given a local oriented orthonormal frame (e1, . . . , ed) of the vector bundle V ,
we work with the identification (m, x) 7→

∑
i xiei(m) from M × Rd into V . The

element p∗∇x is then equal to
∑

i ηiei with ηi = dxi +
∑

k xk(∇ek, ei).
If I = [i1, i2, . . . , ip] (with i1 < i2 < · · · < ip) is a subset of [1, 2, . . . , d], we

use the notations eI = ei1 ∧ · · · ∧ eip
and ηI = ηi1 ∧ · · · ∧ ηip

. The curvature F
decomposes as F :=

∑
i<j Fijei ∧ ej . For any subset I of [1, 2, . . . , d], we consider

the two form FI :=
∑

i<j,i∈I,j∈I Fijei ∧ ej with values in ΛVI , where VI is the

sub-bundle generated by the ei, i ∈ I. Let Pf(FI) be its pfaffian. One sees easily
that

(42) e
F

2 =
∑

I

Pf(FI

2 ) eI in A∗(M, ΛV).

Only those I with |I| even will contribute to the sum (42), as otherwise the pfaffian
of FI vanishes.

If I and J are two disjoint subsets of {1, 2, . . . , d}, we denote by ǫ(I, J) the sign
such that eI ∧ eJ = ǫ(I, J) eI∪J .

Proposition 13. • We have Threl(V) = 1
ǫd

[
Pf(F

2 ), β∧

]
with

β∧ =
∑

k,I,J

γ(k,I,J) Pf
(
FI

2

) xkηJ

‖x‖|J|+1
,

with

γ(k,I,J) = −
1

2
(−1)

|J|(|J|+1)
2 Γ

(
|J|+1

2

)
ǫ(I, J)ǫ({k}, I ∪ J).
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Here for 1 ≤ k ≤ d, the sets I, J vary over the subsets of {1, 2, . . . , d} such that
{k}∪ I ∪J is a partition of {1, 2, . . . , d}. Only those I with |I| even will contribute
to the sum.

• The class Thc(V) is represented by the closed differential form

1

ǫd

(
f(‖x‖2) Pf(F

2 ) + 2f ′(‖x‖2)(
∑

xidxi)β∧

)

where f is a compactly supported function on R, identically equal to 1 in a neigh-
borhood of 0.

• We have

ThMQ(V) =
1

(π)d/2
e−‖x‖2∑

I

(−1)
|I|
2 ǫ(I, I ′) Pf(FI

2 )ηI′ .

Here I runs over the subset of {1, 2, . . . , d} with an even number of elements, and
I ′ denotes the complement of I.

Proof. It follows from the explicit description of our forms and from the formula∫∞

0
e−t2 tadt = 1

2Γ(a+1
2 ).

�

6.4. More notations. We recall notations from [7]. Let V be an Euclidean vector
space of even dimension d = 2n with oriented orthonormal basis e1, e2, . . . , ed. Let
C(V ) be the Clifford algebra of V . Then C(V ) is generated by elements ci with
relations cicj + cjci = 0, for i 6= j, and c2

i = −1. We denote by Σ : C(V ) →
ΛV the symbol isomorphism. Thus, for 1 ≤ i1 < i2 < · · · < ik ≤ d, we have
Σ(ci1ci2 · · · cik

) = ei1 ∧ ei2 ∧ · · · ∧ eik
. Let C [i](V ) = Σ−1(ΛiV ). We denote by

τ : C [2](V ) → so(V ) the map such that τ(c)v = cv − vc, for c ∈ C [2](V ) and v ∈ V .
Then τ(cicj)(ei) = 2ej , for i 6= j. We denote by S = S+ ⊕ S− the complex spinor
space. We denote by c the Clifford action of C(V ) on S. If v ∈ V , then c(v) on
S interchanges S+ and S− and satisfies c(v)2 = −‖v‖2IdS . The supertrace of the
action of the even element c1c2 . . . cd on S is (−2i)n.

Let V = Re1⊕Re2 be of dimension 2 . We consider the super-algebra A⊗C(V )
where A is a super-commutative algebra. Then for a1, a2 odd elements in A, and b
an even element of A, we have

exp(a1c1 + a2c2 + bc1c2) = cos(b) + sin(b)c1c2

+
sin(b)

b
(a1c1 + a2c2) +

sin(b) − b cos(b)

b2
a1a2 −

sin(b)

b
a1a2c1c2.

This formula can be verified using, for example, the differential equation d
dt exp(tX) =

X exp(tX) for the exponential (see also [7], proof of Proposition 7.43).

6.5. Riemann-Roch relation. Let p : V → M be an oriented Euclidean vector
bundle of even rank d = 2n with spin structure, and let S → M be the corre-
sponding spin super-bundle. Let C(V) → M be the Clifford bundle. We denote
by

c : C(V) → EndC(S)

the bundle map defined by the spinor representation.
The vector bundle S is provided with an Hermitian metric such that c(v)∗ =

−c(v) for v ∈ V . Consider the morphism σV : p∗S+ → p∗S− defined by

σV := −ic(x)
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where x : V → p∗V is the canonical section. Then the odd linear map vσV : p∗S →
p∗S is equal to −ic(x).

Let ∇ be an Euclidean connection on V . Then as explained in Subsection 6.2,
the curvature F of ∇ may be identified to an element of A(M, Λ2V). Thus Σ−1F
is an element of A(M, C(V)), where Σ : C(V) → ΛV is the symbol bundle map.
The connection ∇ induces a connection ∇S on S with curvature FS (see Lemma
8). We work with the family of super-connections on p∗S:

A
σ
t := p∗∇S + tc(x)

We see that the curvature of the super-connection Aσ
t is the even element Fc

t ∈
A∗(V , p∗EndC(S)), given by

Fc

t = −t2‖x‖2 + tc(p∗∇x) + p∗FS

where FS ∈ A2(M, EndC(S)) is the curvature of ∇S .

Lemma 8. • The following relation holds in A2(M, EndC(S)):

FS =
1

2
c(Σ−1F).

• We have Fc
t = c(f̃t), where f̃t ∈ A∗(V , p∗C(V)) is given by

f̃t = −t2‖x‖2 + tp∗∇x +
1

2
p∗Σ−1F.

• The image of f̃t by the bundle map Σ is equal to the map f∇
t ∈ A∗(V , p∗ΛV)

defined in (35).

We consider now in parallel the closed differential forms

Ch(σV ,∇V , t) := Str (exp(Fc

t )) , Ct
∧ := T

(
exp∧(f∇

t )
)
.

In the first case the exponential is computed in the super-algebra
A∗(V , p∗EndC(S)), and the forms Ch(σV ,∇V , t) have complex coefficients. In the
second case, the exponential is computed in the super-algebra A∗(V , p∗ΛV), and
the forms Ct

∧ have real coefficients.
In Example 6.4, we will perform the explicit calculation of exp(Fc

t ) for a bundle
of rank two.

We also consider in parallel the differential forms

ηt
c := − Str (c(x) exp(Fc

t )) , ηt
∧ := −T

(
x · exp∧(f∇

t )
)
.

Note that the forms ηt
c have complex coefficients, and that the forms ηt

∧ have real
coefficients.

In the next definition, we return to the original definition of the curvature F
of the Euclidean connection ∇, that is we consider F as a 2-form with values
antisymmetric transformations of V .

Definition 6.2. We associate to the vector bundle V, equipped with the connection
∇, the closed real differential form on M defined by

Â(∇) := det 1/2

(
F

e
F

2 − e−
F

2

)
.

Its cohomology class Â(V) ∈ H∗(M) is the Â-genus of V.
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Proposition 14. We have the following equalities of differential forms on V:

Ch(σV ,∇V , t) = (−2i)n Â(∇)−1 Ct
∧

and

ηt
c

= (−2i)n Â(∇)−1 ηt
∧.

Proof. The proof of the first relation is done in [7], Section 7. The same proof
works for the second equality. Let us give here a brief idea of the proof. Let StrC

be the super-trace on A∗(V , p∗C(V)) such that StrC(a) = Str(c(a)) for any element
a ∈ A∗(V , p∗C(V)). We have then to show that

(43) StrC

(
expC(f̃t)

)
= (−2i)n Â(∇)−1 T

(
exp∧(Σf̃t)

)

and

(44) StrC

(
x · expC(f̃t)

)
= (−2i)n Â(∇)−1 T

(
x · exp∧(Σf̃t)

)
.

If V is an oriented Euclidean vector space of even dimension 2n, we have the
following fundamental relation between StrC(expC(a)) and T(exp∧(Σa)) for a ∈
C2(V ):

(45) StrC(expC(a)) = (−2i)n det 1/2

(
e

τ(a)
2 − e−

τ(a)
2

τ(a)

)
T(exp∧(Σa))

(see [7], Section 3). We see then that (43) is an extension of (45) to the case where
a ∈ A− ⊗ C1(V ) + A+ ⊗ C2(V ) (here A is a super-commutative super-algebra).
This is verified by an explicit computation when V is of dimension 2, using the
formula for the exponential that we recalled in Subsection 6.4.

�

We can now conclude with the

Theorem 6.3. • We have the following equality in H∗(V ,V \ M):

(46) Chrel(σV ) = (2iπ)n Â(V)−1 Threl(V).

• We have the following equality in H∗
c(V):

(47) Chc(σV ) = (2iπ)n Â(V)−1 Thc(V).

• We have the following equality in H∗
dec-rap(V):

(48) ChQ(σV) = (2iπ)n Â(V)−1 ThMQ(V).

Remark that these identities holds at the level of the representatives.

Example 6.4. Vector bundle of rank two.
We return to Example 6.2, and keep the same notations. Then we have

f̃t = −t2‖x‖2 + t(η1c1 + η2c2) +
1

2
(dη)c1c2.

We use the formula for the exponential recalled in Subsection 6.4, and we obtain
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ef̃t = e−t2‖x‖2
(

cos(
dη

2
) + sin(

dη

2
)c1c2 + t

sin(dη
2 )

(dη
2 )

(η1c1 + η2c2)

+ t2
sin(dη

2 ) − (dη
2 ) cos(dη

2 )

(dη
2 )2

η1η2 − t2
sin(dη

2 )

(dη
2 )

η1η2c1c2

)
.

The supertrace of the action of c1c2 on S is −2i. Thus we obtain

Ch(σV ,∇V , t) = (−2i) e−t2‖x‖2
(

sin(
dη

2
) − t2

sin(dη
2 )

(dη
2 )

η1η2

)
,

ηt
c

= (−2i) t e−t2‖x‖2 sin(dη
2 )

(dη
2 )

(
x1η2 − x2η1

)
,

βc = (−2i)
sin(dη

2 )

(dη
2 )

(x1η2 − x2η1)

2‖x‖2

Finally, the relative Chern character form associated to σV is

(49) Chrel(σV ) = (−i)
sin(dη

2 )

(dη
2 )

[
dη, η +

(x1dx2 − x2dx1)

‖x‖2

]
.

We have

det 1/2

(
F

e
F

2 − e−
F

2

)
=

(dη
2 )

sin(dη
2 )

.

Thus we see that we have the relations

(50) Chrel(σV) = (2iπ) Â(V)−1 Threl(V),

(51) Chc(σV) = (2iπ) Â(V)−1 Thc(V),

and

(52) ChQ(σV) = (2iπ) Â(V)−1 ThMQ(V)

at the level of differential forms.

7. Appendix

We give a proof of the estimate used in this article. It is based on Volterra’s
expansion formula: if H and R are elements in a finite dimensional associative
algebra, then e(H+R) = eH +

∑∞
k=1 Ik(H, R) where

(53) Ik(H, R) =

∫

∆k

es1H R es2H R · · ·R eskH R esk+1H ds1 · · · dsk

Here ∆k is the simplex {si ≥ 0 ; s1 +s2 + · · ·+sk +sk+1 = 1} which has the volume
1
k! for the measure ds1 · · ·dsk.

Now, let A = ⊕R
i=0Ai be a complex finite dimensional graded commutative

algebra with a norm ‖ · ‖ such that ‖ab‖ ≤ ‖a‖‖b‖. We denote by A+ = ⊕R
i=1Ai.

Thus ωR+1 = 0 for any ω ∈ A+. Let E be a finite dimensional Hermitian vector
space. Then End(E) ⊗ A is an algebra with a norm still denoted by ‖ · ‖. If
H ∈ End(E), we denote also by H the element H ⊗ 1 in End(E) ⊗ A.
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We denote by Herm(E) ⊂ End(E) the subspace formed by the Hermitian endo-
morphisms. When H ∈ Herm(E), we denote by sm(H) ∈ R the smallest eigenvalue
of H : we have ∣∣∣

∣∣∣ e−H
∣∣∣
∣∣∣ = e−sm(H), for all H ∈ Herm(E).

Lemma 9. Let P(t) =
∑R

k=0
tk

k! . Then, for any R ∈ End(E) ⊗ A+, and H ∈
Herm(E), we have ∣∣∣

∣∣∣ e−(H+R)
∣∣∣
∣∣∣ ≤ e−sm(H) P(‖R‖).

Proof. Let c = sm(H). Then ‖ e−uH ‖ = e−uc for all u ≥ 0. The term Ik(H, R)
of the Volterra expansion vanishes for k > R since the term es1H R · · ·R esk+1H

belongs to End(E)⊗Ak. The norm of the term Ik(H, R) is bounded by 1
k! e−c ‖R‖k.

Summing up in k, we obtain our estimate. �

The preceding estimates hold if we work in the algebra End(E)⊗A, where E is
a super-vector space and A a super-commutative algebra.
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[11] L. Illusie, Compléments de K-théorie, Séminaire Henri Cartan, 16 no. 1, 1963-1964, Exposé
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55-87.
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