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1 Introduction.

Let V ⊆ Gn
m ⊆ Pn be a geometrically irreducible variety which is not torsion (i. e.

not a translate of a subtorus by a torsion point). For θ > 0 let V (θ) be the set of
α ∈ V (Q) of Weil’s height h(α) ≤ θ. By the toric case of Bogomolov conjecture
(which is a theorem of Zhang),

µ̂ess(V ) = inf{θ > 0, V (θ) = V } > 0 .

If we assume moreover that V is not a translate of a subtorus by a point (eventually
of infinite order) we can give a lower bound for µ̂ess(V ) depending only on deg(V )
(see [Bom-Zan 1995], [Dav-Phi 1999], [Sch 1996]).

Let us define the obstruction index ω(V ) as the minimum degree of an hyper-
surface containing V . We remark that ω(V ) ≤ n deg(V )1/ codim(V ) ([Cha]). As-
sume that V is not transverse (i. e. is not contained in a translate of a subtorus).
In [Amo-Dav 2003] we conjecture

µ̂ess(V ) ≥ c(n)ω(V )−1

for some c(n) > 0 and we prove

µ̂ess(V ) ≥ c(n)ω(V )−1(log(3ω(V ))−λ(codim(V ))

where λ(k) =
(

9(3k)k+1
)k

.
The aim of this paper is to give a more simple proof of a slightly improved (and

explicit) version of this result (theorem 4.1), based on a very simple determinant
argument (see section 2). More precisely the proof presented here

• avoid the use of the absolute Siegel’s lemma of Zhang (see [Dav-Phi 1999],
lemme 4.7)

• don’t need any variant of zero’s lemma and the subsequent combina-
torial arguments (section 4 of [Amo-Dav 2003])
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• don’t use the weighted obstruction index ω(T ; V ) defined in [Amo-Dav 2003],
definition 2.3.

Let
V 0 = V \

⋃

B⊆V

B.

where the union is on the set of translates B of subgroups of positive dimension
contained in V . In [Amo-Dav 2006], theorem 1.5 we deduce from a lower bound
for the essential minimum of V , a lower bound for height for all but finitely points
of V 0. Here we prove (theorem 5.1) an again slightly improved (and explicit) ver-
sion of that result. We also correct a mistake which appears in that paper: in
op. cit., theorem 1.5, δ(V ) must be defined as the minimum degree δ such that
V is, as a set, intersection of hypersurface of degree ≤ δ (see remark 5.2 for details).

The determinant argument allow us to prove also very precise results con-
cerning the normalized height ĥ(V ) of an hypersurface V (see section 3 for the
definition). In this special case we conjecture :

Conjecture 1.1 Assume one of the following:

i) V is geometrically irreducible and it is not a translate of a subtorus.

ii) V is defined and irreducible over the rationals and is not torsion.

Then, there exists an absolute constant c > 0 such that ĥ(V ) ≥ c.

We remark that Lehmer’s conjecture implies conjecture ii), via an argument of
Lawton. We shall prove

Theorem 1.2 Let V ⊆ Gn
m be an hypersurface of multi-degrees (D1, . . . , Dn) with

discrete stabilizer. Then, if n ≥ 9 and

max Dj ≤ 32n

we have

ĥ(V ) ≥ 1

23
.

This result shows that an eventual example contradicting conjecture i) in n
variable must be realized by polynomials of very big degree (or comes from an
hypersurface of less variables). This could suggests an even more optimistic con-
jecture:

Let V be a geometric irreducible hypersurface of Gn
m with discrete stabilizer. Then

ĥ(V ) ≥ f(n), where f(n) → +∞ for n → ∞.

In section 3 we also provide a counterexample to this last statement.
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2 A determinant argument.

The following proposition is the key argument for the proof of the main theorems.
Let S ⊆ Pn and let I ⊂ C[x] be the ideal defining its Zariski closure. For ν ∈ N

we denote by H(S; ν) the Hilbert function dim[C[x]/I]ν . Let T be a positive
integer and let I(T ) be the T -symbolic power of I, i. e. the ideal of polynomials
vanishing on S with multiplicity ≥ T . We put H(S, T ; ν) = dim[C[x]/I(T )]ν .

Similarly, if S ⊆ (P1)
n and ν = (ν1, . . . , νn) ∈ Nn we denote its multi-

homogeneous Hilbert function by

H(S;ν) = dim([Q[x1, . . . , xn]/I]ν1,...,νn)

where I ⊂ C[x] is the ideal defining S. More generally, if T is a positive integer
we put H(S, T ;ν) = dim([Q[x1, . . . , xn]/I(T )]ν1,...,νn).

Proposition 2.1 Let ν, T be positive integers and let p be a prime number. Let
also h be a positive real number and S be a subset (eventually infinite) of Gn

m of
points of height ≤ h. Then

h ≥
(

1 − H(S, T ; ν)

H(ker[p] · S; ν)

)

T log p

pν
− n

2ν
log(ν + 1) . (2.1)

In particular, if

H(S, T ; ν) ≤ 1

2
H(ker[p] · S; ν) (2.2)

and
T log p ≥ 2np log(ν + 1) , (2.3)

then

h ≥ T log p

4pν
≥ n log(ν + 1)

2ν
.

Proof. Let for brevity S′ = ker[p]S. We consider the (eventually infinite) matrix

(βλ) β∈S′

|λ|≤ν

of rang L = H(ker[p] · S; ν). We select β1, . . . ,βL ∈ S′ and λ1, . . . ,λL with
|λj | ≤ ν such that the determinant

∆ =
∣

∣ det(β
λj

i )i,j=1,...,L

∣

∣

is non-zero. Let L0 = H(ker[p] ·S; ν)−H(S, T ; ν). Then, by definition, there exist

linearly independent polynomials Gk =
∑L

j=1 gkjx
λj (k = 1, . . . , L0) vanishing

on S with multiplicity ≥ T . Let K be a sufficiently large field and let v be a
non archimedean place of K dividing p. After renumbering the multi-indexes
λ1, . . . ,λL and after making some linear combinations, we can assume

Gk =

L−k+1
∑

j=1

gkjx
λj
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and moreover

|gk,j |v
{

≤ 1, if j = 1, . . . , L − k;

= 1, if j = L − k + 1;

for k = 1, . . . , L0. By elementary operations on columns we replace the last L0

columns of ∆ by the columns

τ
(

Gk(β1), . . . , Gk(βL)
)

, k = 1, . . . , L0 .

Let ∆′ the new determinant; then |∆′|v = |∆|v. Since Gk vanish on S with
multiplicity ≥ T and since its coefficients are v-integers, we also have

|Gk(βi)|v ≤ p−T/(p−1) max{1, |βi,1|v, . . . , |βi,n|v}ν (i = 1, . . . , L; k = 1, . . . , L0) .

By developping ∆′ with respect to the last L0 columns we obtain

|∆′|v = |∆|v ≤ p−L0T/(p−1)
L
∏

i=1

max{1, |βi,1|v, . . . , |βi,n|v}νL .

By the product’s formula (using a trivial lower bound for v ∤ p)

1 ≤ p−L0T/(p−1)LL/2eνhL

and, using L ≤
(

ν+1
n

)

≤ (ν + 1)n,

log h ≥ L0

L
× T log p

pν
− n

2ν
log(ν + 1)

and the statement of proposition 2.1 follows.

�

The following is a multihomogeneous version of proposition 2.1.

Proposition 2.2 Let ν1, . . . , νn, T be positive integers and let p be a prime num-
ber. Let also h1, . . . , hn be a positive real number and S be a subset (eventually
infinite) of Gn

m of points α satisfying h(αj) ≤ hj for j = 1, . . . , n. Then

ν1h1 + · · · + νnhn ≥
(

1 − H(S, T ;ν)

H(ker[p] · S; ν)

)

T log p

p
− n

2
log(νmax + 1) (2.4)

where νmax = max{ν1, . . . , νn}.

Proof. Let for brevity S′ = ker[p]S. We consider the matrix

(βλ) β∈S′

|λ1|≤ν1,...,|λn|≤ν1
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of rang L = H(ker[p] · S;ν). We select β1, . . . ,βL ∈ S′ and λ1, . . . ,λL with
|λj,l| ≤ νl such that the determinant

∆ =
∣

∣ det(β
λj

i )i,j=1,...,L

∣

∣

is non-zero. Let L0 = H(ker[p]·S;ν)−H(S, T ;ν). Then, by definition, there exists

linearly independent polynomials Gk =
∑L

j=1 gkjx
λj (k = 1, . . . , L0) vanishing on

S with multiplicity ≥ T . Let K be a sufficiently large field and let v be a non
archimedean place of K dividing p. After renumbering the multi-index λ1, . . . ,λL

and after making some linear combinations, we can assume

Gk =
L−k+1
∑

j=1

gkjx
λj

and moreover

|gk,j |v
{

≤ 1, if j = 1, . . . , L − k;

= 1, if j = L − k + 1;

for k = 1, . . . , L0. By elementary operations on columns we replace the last L0

columns of ∆ by the columns

τ
(

Gk(β1), . . . , Gk(βL)
)

, k = 1, . . . , L0 .

Let ∆′ the new determinant; then |∆′|v = |∆|v. Since Gk vanish on S with
multiplicity ≥ T and since its coefficients are v-integers, we also have

|Gk(βi)|v ≤ p−T/(p−1)
n
∏

j=1

max{1, |βi,j |v}νj (i = 1, . . . , L; k = 1, . . . , L0) .

By developping ∆′ with respect to the last L0 columns we obtain

|∆′|v = |∆|v ≤ p−L0T/(p−1)
L
∏

i=1

n
∏

j=1

max{1, |βi,j |v}νjL .

By the product’s formula (using a trivial lower bound for v ∤ p)

1 ≤ p−L0T/(p−1)LL/2e(ν1h1+···+νnhn)L

and, using L ≤ (νmax + 1)n,

ν1h1 + · · · + νnhn ≥ L0

L
× T log p

p
− n

2
log(νmax + 1)

and the statement of proposition 2.2 follows.

�
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3 Hypersurfaces.

In this section we are interested in the case of a hypersurface V . For these varieties
we have a “natural” definition of height (which coincide with the previous one)
since we can extend the Mahler measure to polynomials in several variables. Let
f ∈ C[x1, . . . , xn]; we define its Mahler measure as:

M(P ) = exp

∫ 1

0
· · ·
∫ 1

0
log |f

(

e2πit1 , . . . , e2πitn
)

|dt1 . . . dtn.

Let now K be a number field and let V be an hypersurface in Gn
m defined over K:

V = {α ∈ Gn
m such that f(α) = 0}

for some polynomial f ∈ K[x] (irreducible over Q[x]). We define:

ĥ(V ) =
1

[K : Q]

∑

v∈MK

[Kv : Qv] log Mv(f),

where Mv(f) is the maximum of the v-adic absolute values of the coefficients of
f if v is non archimedean, and Mv(f) is the Mahler measure of σf if v is an
archimedean place associated with the embedding σ : K →֒ Q.

We prove:

Proposition 3.1 Let V ⊆ Gn
m be an hypersurface of multi-degrees D1, . . . , Dn

and assume that V is not a translated of a torus. Let Dmax = max{D1, . . . , Dn}.
Then, for any prime number p ≥ 5,

ĥ(V ) ≥ log p

7p
− nk′ log p

pk′ − n log(n2Dmax)

2pk′ . (3.5)

where k′ is the codimension of the stabilizer of V .

Proof. Since V is not a translated of a torus, k′ ≥ 2. This implies n ≥ 2 and
pk′ ≥ 9.

We assume first that p ∤ [Stab(V ) : Stab(V )0], so that V ′ = ker[p]V is a union

of pk′
translate of V , and we prove

ĥ(V ) ≥ log p

7p
− nk′ log p

pk′ − n log(nDmax)

2pk′ , (3.6)

Let ε > 0 and assume Dmax = Dn. The proposition 2.7 of [Amo-Dav 2000]
shows that the set

S = {(ζ1, . . . , ζn−1, α) ∈ V (Q), ζ1, . . . , ζn−1 roots of unity, h(α) ≤ ĥ(V )/Dn + ε}

is Zariski dense in V . We apply proposition 2.2 with h1 = · · · = hn−1 = 0 and

hn = ĥ(V )/Dn + ε. We choose, for j = 1, . . . , n − 1,

νj = npk′
Dj − 1
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and νn = pk′
Dn − 1. We remark that νmax = max{ν1, . . . , νn} ≤ npk′

Dmax − 1.

We also choose T = [pk′
/2]. Then

H(V, T ;ν) = (ν1 + 1) · · · (νn + 1) − (ν1 − TD1 + 1) · · · (νn − Dn + 1)

= nn−1pk′n − 1

2

(

n − 1

2

)n−1

pk′n

and

H(V ′;ν) = (ν1 + 1) · · · (νn + 1) − (ν1 − pk′
D1 + 1) · · · (νn − pk′

Dn + 1)

= nn−1pk′n

so that

1 − H(V, T ;ν)

H(V ′;ν)
≥ 1

2

(

1 − 1

2n

)n−1

≥ 1

2
√

e
.

Inequality (2.4) now gives

νnhn = (pk′
Dn − 1)

(

ĥ(V )

Dn
+ ε

)

≥ T log p

2
√

ep
− n

2
log(νmax + 1)

≥ pk′
log p

4
√

ep
− log p

2
√

ep
− n

2
log(npk′

Dmax)

≥ pk′
log p

7p
− nk′ log p − n

2
log(nDmax) .

By letting ε 7→ 0 we obtain the lower bound (3.6).
If Stab(V ) is not connected, by inspection of the proof of proposition 2.4

of [Amo-Dav 2000] we obtain an hypersurface W with connected stabilizer of the
same codimension k′, multi-degree (D′

1, . . . , D
′
n) with D′

j ≤ nDj and normalized

height ĥ(W ) ≤ ĥ(V ). Therefore, by (3.6),

ĥ(V ) ≥ ĥ(W ) ≥ log p

7p
− nk′ log p

pk′ − n log(n2Dmax)

2pk′ .

�
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Let now assume k′ = n, i. e. Stab(V ) discrete. Choosing p = 5 we obtain:

Theorem 3.2 Let V ⊆ Gn
m be an hypersurface of multi-degrees (D1, . . . , Dn) with

discrete stabilizer. Then, if n ≥ 9 and

max Dj ≤ 32n

we have

ĥ(V ) ≥ 1

23
.

Proof. We apply the proposition above with p = 5, assuming Dmax ≤ 32n
and

k′ = n. We obtain

ĥ(V ) ≥ log 5

35
− n2 log 5

5n
− n log(n2Dmax)

2 × 5n

≥ log 5

35
− n2 log 5

5n
− 2n log n

2 × 5n
− n2n log 3

2 × 5n
=: f(n) .

An easy computation shows that f is an increasing function and f(9) > 1/23.

�

As stated in the introduction, we could conjecture that for any geometric ir-
reducible hypersurface V ⊆ Gn

m with discrete stabilizer we had ĥ(V ) ≥ f(n) for
some function f(n) → +∞ for n → ∞. This is false, as the the following example
prove. Let F (x1) = x3

1 − x1 − 1 and define inductively

Fn(x1, . . . , xn) = F ∗(x1, . . . , xn−1)xn − F (x1, . . . , xn−1)

where F ∗ indicated the reciprocal polynomial. Since the rational function

R(x1, . . . , xn−1) =
F (x1, . . . , xn−1)

F ∗(x1, . . . , xn−1)

satisfy |R(z1, . . . , zn−1)| = 1 for |z1| = · · · = |zn−1| = 1, we have for any integer n
M(Fn) = θ0 where θ0 is the root > 1 of F1. Moreover, it is easy to see that Fn is
irreducible (over Q if n ≥ 2) and that Vn = {Fn = 0} has trivial stabilizer.

We conclude this section with a more a general (and technical) lower bound
for the normalized height of an hypersurface:

Theorem 3.3 Let V ⊆ Gn
m be an hypersurface of multi-degrees (D1, . . . , Dn) and

assume that V is not a translated of a torus. Then,

ĥ(V ) ≥ 1

56
× max

(

log(n log(n2Dmax))

k′
, 1

)

×
(

log(n log(n2Dmax))

28nk′ log(n2Dmax)

)1/(k′−1)

where k′ is the codimension of the stabilizer of V and Dmax = max Dj. In partic-
ular,

ĥ(V ) ≥ log(n log(n2Dmax))
2

6272n log(n2Dmax)
.
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Proof. Let

N =

(

28nk′ log(n2Dmax)

log(n log(n2Dmax))

)1/(k′−1)

(3.7)

and choose a prime number p such that N ≤ p ≤ 2N . By

log x ≤ x1/2 (x > 0) (3.8)

we have log(n log(n2Dmax)) ≤ log(n(n2Dmax)
1/2) ≤ log(n2Dmax); hence

pk′−1 ≥ 28nk′ .

We also remark that, again by (3.8),

log p ≥ log(28n1/2k′ log(n2Dmax)
1/2)

k′ − 1
≥ log(n log(n2Dmax))

2k′
(3.9)

Therefore,

pk′−1 log p ≥ 14n log(n2Dmax) .

Thus, by proposition 3.1 we have

ĥ(V ) ≥ log p

7p
− nk′ log p

pk′ − n log(n2Dmax)

2pk′

≥ log p

7p
− log p

28p
− log p

28p

=
log p

14p
.

By (3.9) we obtain:

ĥ(V ) ≥ 1

14
× max

(

log(n log(n2Dmax))

2k′
, log 2

)

× 1

2N

≥ 1

56
× max

(

log(n log(n2Dmax))

k′
, 1

)

×
(

log(n log(n2Dmax))

28nk′ log(n2Dmax)

)1/(k′−1)

.

This prove the first inequality of theorem 3.3. For the second one, we remark that
k′ ≥ 2 and k′(nk′)1/(k−1) ≤ 4n. So

ĥ(V ) ≥ 1

56
× max

(

log(n log(n2Dmax))

k′
, 1

)

×
(

log(n log(n2Dmax))

28nk′ log(n2Dmax)

)1/(k′−1)

≥ log(n log(n2Dmax))
2

56 × 28 × 4n log(n2Dmax)

=
log(n log(n2Dmax))

2

6272n log(n2Dmax)
.

�
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4 Essential minimum.

In this section we prove the following theorem, which slightly umprove theorem
1.4 of [Amo-Dav 2003]:

Theorem 4.1 Let V be a subvariety of Gn
m of codimension k < n. Then either

there exists a translate B of a subgroup such that V ⊆ B ( Gn
m and

deg(B)1/ codim(B) ≤
(

250n3 log(2nω(V ))
)λ(k)+1

ω(V )

or
µ̂ess(V ) ≥

(

2400n4 log(2nω(V ))
)−λ(k)

ω(V )−1

where λ(k) = k+1
k

(

(k + 1)k − 1
)

− 1 ≤ nn − 3.

Proposition 2.1 gives the following result:

Proposition 4.2 Let V be a subvariety of Gn
m et let ω = ω(V ). Let also p be a

prime, 3 ≤ p ≤ ω and assume :

µ̂ess(V ) <
log p

10npω
.

Then,

ω([p]V ) ≤ 18n2ω log(5nω)

log p
.

Proof. Let h such that µ̂ess(V ) < h < log p
10npω and let

S = {α ∈ V, h(α) < h} .

Thus H(S, T ; ν) = H(V, T ; ν) and H(ker[p] ·S; ν) = H(ker[p] · V ; ν). Let us define

T =

[

7np log(5nω)

log p

]

and ν = (2n + 1)ωT . We first show that there exists a a non zero polynomial
F ∈ Q[x1, . . . , xn] of total degree ≤ ν, vanishing on ker[p]V . Since 3 ≤ p ≤ ω, we
have

ν + 1 ≤ 3nω · 7np · 5nω + 1 ≤ (5nω)3

and T log p ≥ 6np log(5nω). Thus inequality (2.3) of proposition 2.1, i. e. T log p ≥
2np log(ν + 1), is satisfied. We also have

T log p

4pν
=

log p

4p(2n + 1)ω
> h .

By proposition 2.1, we must have

H(ker[p] · V ; ν) < 2H(V, T ; ν) ≤ 2

((

ν + n

n

)

−
(

ν − ωT + n

n

))

.
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We remark that

(

ν + n

n

)(

ν − ωT + n

n

)−1

=

n
∏

j=1

ν + j

ν − ωT + j
≤
(

1 +
ωT

ν − ωT

)n

=

(

1 +
1

2n

)n

≤ √
e < 2 .

Thus

H(ker[p] · V ; ν) <

(

ν + n

n

)

,

i. e. there exists a non zero polynomial F ∈ Q[x1, . . . , xn] vanishing on ker[p]V
of total degree ≤ ν. By the zero’s lemma of P. Philippon (see [Phi 1986]), there
exists a variety Z containing V such that

deg(ker[p]Z) ≤ νcodim(Z) .

Indeed, let W be the algebraic set defined by the equations F (ζx) = 0 for
ζ ∈ ker[p]. Since F vanishes on ker[p]V , there exists a geometrically irriducible
component Z of W containing V . Since W is stable by translation by p-torsion
points, all ζV are components of W for ζ ∈ ker[p]. Proposition 3.3 of [Phi 1986]
(with p = 1, N1 = n and D1 = ν) then gives the desired upper bound for
deg(ker[p]Z).
Since

deg(ker[p]Z) = deg([p]−1[p]Z) = pcodim(Z) deg([p]Z)

we obtain
ω([p]V ) ≤ deg([p]Z)1/ codim(Z) ≤ p−1ν .

We finally remark that

1

p
ν ≤ 1

p
· 5

2
nω · 7np log(5nω)

log p
<

18n2ω log(5nω)

log p
.

�

In order to prove theorem 4.1 we need, as in [Amo-Dav 2003], a descent ar-
gument. In what follows we fix a geometrically irreducible subvariety V ( Gn

m

of dimension k < n (thus n ≥ 2) and we let ω = ω(V ). For j = 1, . . . , k let
ρj = (k + 1)k−j+1 − 1 and Pj = (2∆)ρj where ∆ = Cn3 log(2nω) and C = 120.

The following elementary relations will be used several time

Lemma 4.3 We have:

i) log(2nω) > 1 and ∆ > 960.

11



ii) For j ∈ {0, . . . , k} we have

k
∑

l=j+1

ρl = (k + 1)
(k + 1)k−j − 1

k
− (k − j) .

Definition 4.4 Let W be the set of triples (s,p,W), where s ∈ [0, k] is an integer,
p = (p1, . . . , ps) is a s-tuple of prime numbers with Pi/2 ≤ pi ≤ Pi, and where
W = (W0, . . . ,Ws) is a (s+1)-tuple of strict geometrically irreducible subvarieties
( Gn

m, satisfying:

i) V ⊆ W0. Moreover, for i = 1, . . . , s,

[pi]Wi−1 ⊆ Wi and pi ∤ [Stab(Wi−1) : Stab(Wi−1)
0] ;

ii) For i = 0, . . . , s

deg(Wi)
1/ codim(Wi) ≤ ∆k−ipi+1 · · · pkω([p1 . . . pi]V ) ;

iii) For i = 1, . . . , s

ω([p1 . . . pi]V ) ≤ ∆ω([p1 . . . pi−1]V ) .

Remark 4.5 Let (s,p,W) ∈ W and assume 0 ≤ i ≤ j ≤ s. Then

ω([p1 . . . pj ]V ) ≤ ∆j−iω([p1 . . . pi]V ) .

We want to prove that there exists (s,p,W) ∈ W, such that dim(Wi−1) =
dim(Wi) for at least one index i. Let

W0 = {(s,p,W) ∈ W, such that dim(W0) < dim(W1) < · · · < dim(Ws)} .

Proposition 4.6 Assume

µ̂ess(V ) <
(

10n∆k−1P1 · · ·Pkω
)−1

. (4.10)

Then W0 6= W.

In order to prove proposition 4.6, we endow the set of finite sequences of integers
with the following (total) order 4. Let (v) = (vi)0≤i≤s and (v′) = (v′j)0≤j≤s′ two

such sequences. Then (v) 4 (v′) if

(vi)0≤i≤min{s,s′} < (v′i)0≤i≤min{s,s′}

for the lexicographical order, or if (vi)0≤i≤min{s,s′} = (v′i)0≤i≤min{s,s′} and s ≥ s′.
We also need the following technical lemma:
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Lemma 4.7 Let s ∈ N, p1, . . . , ps, ps+1 positive integers, W0, . . . ,Ws ( Gn
m ge-

ometrically irreducible subvarieties. Let us assume V ⊆ W0 and [pi]Wi−1 ⊆ Wi

for i = 1, . . . , s. Then, there exists an integer s′ ∈ [0, s + 1] and a geometrically
irreducible subvariety Zs′ of degree

deg(Zs′) ≤ ps′+1 . . . ps+1ω([p1 . . . ps+1]V ) deg(Ws′) , (4.11)

such that [ps′ ]Ws′−1 ⊆ Zs′, codim(Zs′) = codim(Ws′) + 1 (with the following con-
vention: codim(Ws+1) = 0, deg(Ws+1) = 1, W−1 = V and p0 = 1) and:

(dim(W0), . . . ,dim(Ws′−1),dim(Zs′)) ≺ (dim(W0), . . . ,dim(Ws)) . (4.12)

Proof. Let Zs+1 be an hypersurface containing [p1 . . . ps+1]V of minimal degree
ω([p1 . . . ps+1]V ). Thus if s′ = s + 1 (4.11) is satisfied. We construct by induction
subvarieties Z0, . . ., Zs such that, for i = 0, . . . , s,

i) Zi ⊆ Wi and Zi 6= Wi ⇒ codim(Zi) = codim(Wi) + 1.

ii) [pi+1 . . . ps+1]Zi ⊆ Zs+1.

iii) [pi+1]Zi ⊆ Zi+1.

iv) deg(Zi) ≤ pi+1 . . . ps+1ω([p1 . . . ps+1]V ) deg(Wi).

We start by the construction of Z0. If [p1 . . . ps+1]W0 ⊆ Zs+1, we set Z0 = W0.
Otherwise we choose for Z0 a geometrically irreducible component of maximal
dimension of W0 ∩ [p1 . . . ps+1]

−1Zs+1 containing V . By Bézout’s inequality we
have:

deg(Z0) ≤ deg(W0) deg([p1 . . . ps+1]
−1Zs+1) ≤ p1 . . . ps+1ω([p1 . . . ps+1]V ) deg(W0) .

Let now i ∈ [0, s − 1] be an integer and assume that Z0, . . . , Zi satisfy conditions
i)–iv). If

[pi+2 . . . ps+1]Wi+1 ⊆ Zs+1 ,

we set Zi+1 = Wi+1. Otherwise we choose for Zi+1 a geometrically irreducible com-
ponent of maximal dimension of [pi+2 . . . ps+1]

−1Zs+1 ∩ Wi+1 containing [pi+1]Zi.
We can do this, since [pi+1]Wi ⊆ Wi+1 (by assumption) Zi ⊆ Wi (by induction i))
and since

[pi+1 . . . ps+1]Zi ⊆ Zs+1

(by induction i)). The variety Zi+1 verify conditions i)–iii). As before, by Bézout’s
inequality we have:

deg(Zi+1) ≤ pi+2 . . . ps+1ω([p1 . . . ps+1]V ) deg(Wi+1) .

and the variety Zi+1 also verify condition iv).

We now choose the integer s′. We define s′ as the least integer i such that
Zi ( Wi, if such an integer exists. Otherwise we set s′ = s + 1. We remark that
in both cases (4.12) holds.

�

13



Proof of proposition 4.6. The set W0 is a finite non-empty set (indeed, let
W0 be an hypersurface of Gn

m containing V of degree ω; then (0, ∅, (W0)) ∈ W0).
Thus, there exists a minimal element (s,p,W) ∈ W0, i. e.

(dim Wi)0≤i≤s 4 (dim W ′
i )0≤i≤s′ .

for all (s′,p′,W′) ∈ W0. We remark that s ≤ k − 1, since

n − k = dim(V ) ≤ dim(W0) < dim(W1) < · · · < dim(Ws) ≤ n − 1 .

We need the following computation:

Lemma 4.8 There exists a prime ps+1 such that Ps+1/2 ≤ ps+1 ≤ Ps+1 and

ps+1 ∤ [Stab(Ws) : Stab(Ws)
0] .

Proof. By Theorems 9 and 10 of [Ros-Sch 1962],
∑

p≤x log p ≤ 1.02x for x ≥ 1

and
∑

p≤x log p ≥ 0.84x for x ≥ 101. Thus

∑

Ps+1/2≤p≤Ps+1

log p ≥
(

0.84 − 1.02/2
)

Ps+1

> Ps+1/4 .

If for any prime p with Ps+1/2 ≤ p ≤ Ps+1 we had p | [Stab(Ws) : Stab(Ws)
0],

then
2 log deg(Ws) ≥ Ps+1/4 ,

since deg(Stab(Ws)) ≤ deg(Ws)
2. By assertion ii) of definition 4.4 and by re-

mark 4.5, we have :

log deg(Ws) ≤ codim(Ws)
(

k log(∆ +
k
∑

j=s+1

log Pj + log(ω)
)

≤ k
(

(

k +
k
∑

j=s+1

log ρj

)

log(2∆) + log ω
)

.

Using the inequality log x < x1/3 (x > 100) with x = 2∆ (see lemma 4.3 i)) we
obtain

log deg(Ws) ≤ k
(

k + 1 +
k
∑

j=s+1

log ρj

)

(2Cn3)1/3 log(2nω) .

Since s ≤ k − 1, we have, using lemma 4.3 ii),

k
(

k + 1 +

k
∑

j=s+1

log ρj

)

= k(k + 1) + (k + 1)k−s+1 − (k + 1) − k(k − s)

= (k + 1)k−s+1 + ks − 1

≤ 2(k + 1)2(k−s) .
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Thus, by setting a = (k + 1)(k−s) ≥ 2,

2 log deg(Ws) ≤ 4a2(2Cn3)1/3 log(2nω)

and

Ps+1/4

2 log deg(Ws)
≥

(

2Cn3 log(2nω)
)a−1

16a2(2Cn3)1/3 log(2nω)

≥
(

16C
)a−4/3

16a2
=: f(a) .

An easy computation shows that f(a) ≥ f(2) > 1. Contradiction.

�

By the previous lemma, there exists a prime number ps+1 ∈ [Ps+1/2, Ps+1]
such that ps+1 ∤ [Stab(Ws) : Stab(Ws)

0]. We want to apply proposition 4.2 to the
variety V ′ = [p1 . . . ps]V choosing p = ps+1. We have

µ̂ess(V ′) ≤ p1 . . . psµ̂
ess(V )

and, by iii) of definition 4.4

ω(V ′) ≤ ∆sω(V ) .

Thus, by assumption (4.10),

ω(V ′)µ̂ess(V ′) ≤ ∆sp1 · · · psωµ̂ess(V )

< (10nPs+1)
−1

≤ log ps+1

10nps+1
.

Proposition 4.2 shows that:

ω([ps+1]V
′) ≤ 18n2 log(5nω(V ′))

log ps+1
ω([p1 . . . ps]V )

≤ 18n2 log(5nω(V ′))ω(V ′) .

Since s ≤ k − 1 ≤ n, we have, using remark 4.5,

5nω(V ′) ≤ 5n∆sω ≤
(

(C
√

5/32)(2nω)5
)n

.

Thus

∆ − 18n2 log(5nω(V ′)) ≥ Cn3 log(2nω) − 18n3 log
(

(C
√

5/32)(2nω)5
)

≥ n3
(

(C − 18 × 5) log(4) − 18 log(C
√

5/32)
)

> 0
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and
ω([p1 . . . ps+1]V ) = ω([ps+1]V

′) ≤ ∆ω(V ′) = ∆ω([p1 . . . ps]V ) .

We apply now lemme 4.7. We obtain an integer s′ such that 0 ≤ s′ ≤ s+1 ≤ k
and a subvariety Zs′ satisfying the properties described in this lemma. We want
to show that

(s′, (p1, . . . , ps′), (W0, . . . ,Ws′−1, Zs′)) ∈ W .

All conditions i)–iii) of definition 4.4 are trivially verified, except eventually for the
upper bound of deg(Zs′). Using inequality (4.11) of lemma 4.7, the upper bound
for the degree of Ws′ (point ii) of definition 4.4), remark 4.5 and the relation
codim(Zs′) = codim(Ws′+1) + 1, we get:

deg(Zs′) ≤ ps′+1 . . . ps+1ω([p1 . . . ps+1]V ) deg(Ws′)

≤ ps′+1 . . . ps+1∆
s−s′+1ω([p1 . . . ps′ ]V ) deg(Ws′)

≤ ∆k−s′ps′+1 · · · pkω([p1 . . . ps′ ]V ) deg(Ws′)

≤
(

∆k−s′ps′+1 · · · pkω([p1 . . . ps′ ]V )
)1+codim(Ws′+1)

≤
(

∆k−s′ps′+1 · · · pkω([p1 . . . ps′ ]V )
)codim(Zs′ )

.

Thus (s′, (p1, . . . , ps′), (W0, . . . ,Ws′−1, Zs′)) ∈ W. Since

(dim(W0), . . . ,dim(Ws′−1),dim(Zs′)) ≺ (dim(W0), . . . ,dim(Ws))

by relation (4.12) of lemma 4.7 and since (s,p,W) is a minimal element of W0,
we deduce that:

(s′, (p1, . . . , ps′), (W0, . . . ,Ws′−1, Zs′)) 6∈ W0 .

�

4.1 Proof of theorem 4.1

Let V be a geometrically irreducible subvariety of Gn
m of codimension k < n

which satisfy the assumption of proposition 4.6. By this proposition, there exists
(s,p,W) ∈ W \W0. Thus there exists an index i such that

codim(Wi−1) = codim(Wi) = r, [pi]Wi−1 ⊆ Wi, [p1 . . . pi−1]V ⊆ Wi ;

and pi ∤ [Stab(Wi−1) : Stab(Wi−1)
0].
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Assume first that Wi is a translate of a subtorus. Then the same is true for
the connected component B of [p1 . . . pi]

−1Wi containing V and we have, using ii)
of definition 4.4 and remark 4.5,

(deg B)1/ codim(B) ≤ (p1 · · · pi)
1/r∆kpi+1 · · · pk

≤ ∆kP1 · · ·Pk

≤ (2∆)λ(k)+1

where

λ(k) + 1 = k +

k
∑

j=1

ρj =
k + 1

k

(

(k + 1)k − 1
)

.

Assume now that Wi is not a translate of a subtorus. Thus

pi deg(Wi−1) ≤ deg(Wi) .

Since Wi−1 ⊇ [p1 . . . pi−1]V , we have, using ii) and iii) of definition 4.4,

ω([p1 . . . pi−1]V ) ≤
(

deg(Wi−1)
)1/r

≤ p
−1/r
i

(

deg(Wi)
)1/r

≤ p
−1/r
i ∆k−ipi+1 · · · pkω([p1 . . . pi]V )

≤ p
−1/r
i ∆k−ipi+1 · · · pk × ∆ω([p1 . . . pi−1]V ) .

Since r ≤ k and Pi/2 ≤ pi ≤ Pi, we get :

p
−1/r
i ∆k−ipi+1 · · · pk∆ ≤ P

−1/k
i 21/k∆k−i+1Pi+1 · · ·Pk

< P
−1/k
i (2∆)k−i+1Pi+1 · · ·Pk

= (2∆)b

where (see lemma 4.3 ii))

b = −ρi

k
+ k − i + 1 +

k
∑

j=i+1

ρj

= −(k + 1)k−i+1 − 1

k
+ (k − i + 1) + (k + 1)

(k + 1)k−i − 1

k
− (k − i)

= 0 .
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This is a contradiction. Hence

µ̂ess(V ) ≥
(

10n∆k−1P1 · · ·Pkω(V )
)−1

.

We finally remark that

10n∆k−1P1 · · ·Pk ≤
(

20n∆
)λ(k)

.

Theorem 4.1 is proved.

�

5 Petit points.

Given an algebraic set V ⊆ Gn
m we define, following [Bom-Zan 1995] and [Sch 1996],

V 0 = V \
⋃

B⊆V

B.

where the union is on the set of translates B of subgroups of positive dimension
contained in V . In this section we prove a slightly improved version of theorem
1.5 of [Amo-Dav 2006]:

Theorem 5.1 Let V ( Gn
m be an algebraic set defined by equations of degree ≤ δ.

Then, for all but finitely many α ∈ V 0 we have

ĥ(α) ≥ θ :=
(

2400n3 log(2nδ)
)−nn+3

δ−1 .

More precisely, the set of α ∈ V of height < θ is contained in a finite union
B1 ∪ · · · ∪ Bm of translate of subtori such that

deg(Bj) ≤
(

250n3 log(2nδ)
)(2n)n

δ2codim(Bj)−1

Proof.

It is enough to prove the following statement:

Let V ( Gn
m be an algebraic set defined by equations of degree ≤ δ and let Z

be a geometrically irreducible subvariety of V of positive dimension, satifying

µ̂ess(Z) ≤
(

2400n3 log(2nδ)
)−nn+3

δ−1 . (5.13)

Then, there exists a translate B of a subtorus of codimension r such that Z ⊆ B ⊆
V and

deg(B) ≤
(

250n3 log(2nδ)
)(2n)n

δ2r−1 .
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We prove this last statement by induction on n. If n = 2 it is easily implied
by theorem 4.1. Assume n ≥ 3 and that the conclusion holds for all algebraic set
defined by equations of degree ≤ δ′ in Gn−1

m . Assume further that there exists
a positive integer δ, an algebraic set V ( Gn

m defined by equations of degree
≤ δ and a geometrically irreducible subvariety Z of V which satisfies (5.13). Let
k = codim(Z). In particular, since ω(Z) ≤ δ and λ(k) ≤ nn − 3, theorem 4.1 gives
a translate B = αH of codimension k′ containing Z, and such that

(deg(B)
)1/k′

≤
(

250n3 log(2nδ)
)nn−2

δ . (5.14)

We can assume α ∈ Z and ĥ(α) ≤ 2µ̂ess(Z); thus we have :

µ̂ess(α−1Z) ≤ ĥ(α−1) + µ̂ess(Z) ≤ nĥ(α) + µ̂ess(Z) ≤ 3nµ̂ess(Z) . (5.15)

We now fix a Z-base a1, . . .ak′ of the Z-module

Λ :=
{

λ ∈ Zn, t.q. ∀x ∈ H, xλ = 1
}

⊆ Zn

and we consider the n × k′matrix A = (ai,j). Let E = Λ ⊗Z R. Then (see for
instance [Ber-Phi 1988]) the degree of H is the maximum of the absolute values
of the k′ × k′ subdeterminants of A, and Vol(E/Λ) is their quadratic mean. Thus

Vol(E/Λ) ≤
(

n

k′

)1/2

deg(B) ≤ nk′
deg(B) .

Let us consider the cube [−1/2, 1/2]n ⊂ Rn ; by a theorem of Vaaler (see [Vaaler 1979])

Vol(C ∩ E) ≥ 1 .

Thus, by Minkowski’s theorem on convex bodies, there exists a non-zero λ ∈ Λ
such that:

max
1≤i≤n

{|λi|} ≤ n deg(B)1/k′
.

Since H is connected, we can assume λ1, . . . , λn coprime and also λn = D. Then
the equation

xλ = 1

defines a subtorus H ′ ⊇ H of codimenion 1 and degree

D ≤ n deg(B)1/k′ ≤ (2n)−2
(

250n3 log(2nδ)
)nn

δ . (5.16)

If αH ′ ⊆ V we are done. Asume the contrary. We consider the isogeny Gn−1
m ։ H ′

defined by

ϕ(x) =
(

xλn

1 , . . . , xλn

n−1, x
−λ1
1 · · ·x−λn−1

n−1

)

.
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We remark that, for any β ∈ Gn−1
m ,

h
(

ϕ(β)
)

≥ h
(

βλn
)

= λnh
(

β
)

= Dh(β) . (5.17)

Let
V ′ = ϕ−1

(

α−1V ∩ H
)

⊆ Gn−1
m

Since αH ′ 6⊆ V we have V ′ ( Gn−1
m . Moreover, let Fj(x) (j = 1, . . . , N) be

equations defining V ; then V ′ is defined by the equations

Fj

(

xλn

1 , . . . , xλn

n−1, x
−λ1
1 . . . x

−λn−1

n−1

)

= 0

of degree
≤ δ′ = max{λn, |λ1 + · · · + λn−1|}δ ≤ nDδ .

Let Z ′ be a geometrically irreducible component of ϕ−1
(

α−1Z ∩ H
)

⊆ V ′. We
have, by (5.17) and (5.15),

Dµ̂ess(Z ′) ≤ µ̂ess(ϕ(Z ′)) = µ̂ess(α−1Z) ≤ 3nµ̂ess(Z) .

Using the upper bound for µ̂ess(Z) and the inequality δ′ ≤ nDδ, we deduce

µ̂ess(Z ′) ≤ 3nD−1
(

2400n3 log(2nδ)
)−nn+3

δ−1

≤ 3n2
(

2400n3 log(2nδ)
)−nn+3

δ′−1

Using the inequalities δ′ ≤ nDδ, (5.16) and log x < x we get

2nδ′ ≤ 2n2Dδ ≤ (250n3 · 2nδ)nn

δ ≤ (2nδ)(250n3)n−1
. (5.18)

Thus

(

2400(n − 1)3 log(2(n − 1)δ′)
)(n−1)n−1−3 ≤ (3n2)−1(2400n3)a log(2nδ)nn−3

where
a = 1 + n

(

(n − 1)n−1 − 3
)

≤ nn − 3 .

Therefore

µ̂ess(Z ′) ≤
(

2400(n − 1)3 log(2(n − 1)δ′)
)−(n−1)n−1+3

δ′−1

By induction there exists a translate B′ ⊆ V ′ of a subtorus of codimension r′ such
that Z ′ ⊆ B′ and

deg(B′) ≤
(

250n3 log(2nδ′)
)(2n)n−1

δ′2
r′−1 .

Let for brevity K = 250n3 log(2nδ). From the inequalities (5.18) and δ′ ≤ nDδ we
get

deg(B′) ≤ K2n−1nn

(nDδ)2
r′−1 .
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Then Z = αϕ(Z ′) ⊆ ϕ(B′) ⊆ V , r = codim ϕ(B′) = r′ + 1 and

deg ϕ(B′) ≤ D deg(B′)

≤ K2n−1nn

n2r′−1D2r′

δ2r′−1

≤ K2n−1nn+2r′nn

δ2r′+1−1

≤ K(2n)n

δ2r−1

where we have used the upper bound (5.16) for D.

�

Remark 5.2 In [Amo-Dav 2006], theorem 1.5 we assume that V is geometrically
irreducible (which is not necessary) and that V is incompletely defined by forms
of degree ≤ δ, i. e. it is a component of a complete intersection of hypersurfaces of
degree ≤ δ. Unfortunately, there is a mistake in the proof: at page 561, point (a),
we cannot ensure that V ′ is incompletely defined by forms of degree ≤ nDδ. The
problem is the following: if V is incompletely defined by forms of degree ≤ δ, Z is
an hpersurface of degree ≤ δ which not contains V , then an irreducible component
of V ∩ Z is not a priori incompletely defined by forms of degree ≤ δ.
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de groupes algébriques commutatifs. Ill”. J. Math., t. 32, pages 263–280,
1988.

[Bom-Zan 1995] E. Bombieri and U. Zannier. “Algebraic points on subvari-
eties of Gn

m”. Internat. Math. Res. Notices, 7 (1995), 333-347.

[Cha] M. Chardin – “Une majoration de la fonction de Hilbert et ses
conséquences pour l’interpolation algébrique”, Bulletin de la Société
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