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Bidimensional study of the Maxwell-Bloch
model in a nonlinear crystal

Olivier Saut*

Abstract

This article presents a numerical scheme for a model ([5plettro-
magnetic wave propagation in a nonlinear optical crystahio dimensions
in space. It uses Maxwell’s equations to describe the waletdied Bloch’s
equations for the medium at the quantum-mechanical leved h&ve al-
ready described the discretization of the model in the umédisional case
in [14]. In this paper, we discretize the model in the bidigienal case,
while ensuring a scheme of order 2. Finally, several nurakgmnulations
are performed. We insist on physical effects that could eatliserved with
an unidimensional model.

Keywords: Nonlinear optics; Harmonic Generation; Quantum desaipof
light and matter; Nonlinear optical crystal.

PACS: 42.65.An; 42.65.Ky; 42.50Ct; 42.70.Mp.

1 Introduction

To study the propagation of ultrashort laser pulses in meili crystals, it has be-
come necessary to develop models closer to the physicsednéte such pulses,
the response of the medium can not be assumed instantaridaiss.most clas-
sical models in nonlinear optics like systems of nonlinearr8dinger equations
[2, 12] are no longer valid .

In [5], we have described a Maxwell-Bloch model appropriatenonlinear
crystals. This model was compared to several macroscopitel®@nd proved
to be more accurate when studying wave-matter interaati¢rii In this model,
the electromagnetic field is described classically by theawdl equations in the
time domain. We shall model the interaction of the electrgnadic field with
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the material medium by means of the Bloch equations at thetgoamechanical
level.

In [14], we have described a scheme for the Maxwell-Bloch ehgtanisotropic
media in the unidimensional case (the wave-field depengsambne variable in
space). However, with this unidimensional scheme, we carstualy physical
effects on the shape of the pulse such as the diffractioneKérr effect. In
practical applications, these effects are important ag ¢beld, for instance, de-
crease the efficiency of second harmonic generation [16poradje the crystal
through the self-focusing [11] of the laser beam. Thesectfferould be taken
into account with a bidimensional model.

The organization of this paper is as follows: Section 2 glyiekposes the
physical context and the Maxwell-Bloch model.

In Section 3, we shall start by recalling the classical Ydeeate providing a
discretization scheme for the electromagnetic field in Metkequations. These
equations also involve the density matrix. We then diszedtie Bloch equations
describing the matter evolution. Finally we discretize podarization term re-
lating the wave-field and the medium. Throughout the coreplétcretization of
the Maxwell-Bloch equations, we try to highlight the metbadged to ensure a
second order scheme.

In Section 4, we describe the boundary conditions we have tesperform
numerical simulations.

Eventually, in Section 5, we perform several numerical expentations to
check the validity of our model.

2 Physical context

2.1 Experimental setup

In this paper, let us consider the following experimentalgeA wave-field prop-
agates in a linear medium, before traveling through a nealicrystal.
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Figure 1: Experimental setup.
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2.2 Maxwell Equations

The incoming plane wave is represented by the (faiB), whereE is the elec-
tric field andB the magnetic induction. The fields andB obey the Maxwell

equations:
oB

— = —rotE

ot ’

oE 1 _, _10P

== B— -

5 Hos rot € 5 (1)
divB =0,

divD =0,

whereg is the static linear susceptibility tensae( a 3x 3 matrix) of the medium
in which the wave travels. We recall tHat= €E + P. From now, we denote by
the tensog 1.

As shown on Figure 1, the wave propagates along the direztidiie shall
make the assumption that the fieEBsandB depend only of the two space vari-
ablesy andz Then the previous system (1) can be developed as the Faraday
equations governing the magnetic inducti®n

at Bx = _ayEz -+ azEy,
atBy = _aZEX7 (2)
at Bz - ayEX7
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and the Ampere equations leading the evolution of the édefidtd E,

OtEx = % [nxx(asz - asz) + NxydzBx — r]xzayBx]
_[nat P]Xv

OEy = % [Nyx(0yBz — 07By) + Nyy07Bx — Ny0yBx|
_[nat P]yv

OE, = % n zx(asz - asz) + Nzy0Bx — r]zzayBx]
- [r] at P]Za

Furthermore, as it was described in [6, 14], the refereimtiahich the Maxwell
equations are written, can be chosen to minimize the numibeom-vanishing
components of the tensgr By choosing an adequate system of axes to describe
the wave-field, we are then able to simplify the Ampere equatas

3)

OEx = % [nxx(asz — asz) - r]xzayBx] — [NotPlx,
OEy = nydBx—[ndPly, (4)
oE, = % [nzx(asz — asz) — r]zzayBx] — [nat P]z,

The constitutive laws (diB = divD = 0) yield in the bidimensional case

ayBy + asz = 0,

As equations (2) and (4) suffice to fully determine the etmoignetic field, these
laws do not play any role in the sequel.

2.3 Bloch equations

The crystal is described at the quantum-mechanical levkls $ystem evolves
under the action of an Hamiltonia#, classically decomposed in = #p+V,
Ho being the free Hamiltonian and the potential resulting from the action of
the electromagnetic field. We make the assumption that geeHiamiltonianip
has N distinct eigenvalueg; = hwy, ..., En = hoy. For convenience, we write
Wnm = Wn — Wm.

We do not assume that the quantum system is in a pure quardten $hus
we shall use a statistical description of the system thrahghdensity matrixp
(see page 379 of [15] for instance). The diagonal elementheoflensity ma-
trix represent the population levels of the correspondiggrespace of the free
Hamiltonian, while the off-diagonal terms represent thieerences between these
levels.
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It is straightforward (e.g. see [8, 11]) to show that the dgmaatrix p obeys
the Bloch equations:

) i
atpjk=—|00jkpjk—ﬁ[vap]jk (5)

forall 1 < j,k <N, where we recallA,B] = AB— BA.
In the dipolar approximation, the potentialis given by

V = —E.u= —Expix — Eylly — Ezlz, (6)

wherepis a square matrix of dimensid#? whose coefficients are vectors@?.
The matrixp is called thedipolar matrixand is computed from the eigenvectors
of the free Hamiltonian and the position operator (see [$fdlinstance). We
denote byuy, py andp, the matrices obtained by taking one coordinate of each
vector of (their coefficients are thus complex numbers).

To simplify the equations, we introduce the operator R defimg R(p)jx =
—1WjkPjk-

1J'heJ two sets of equations (1) and (5) are related by the pal#onP which
is given by

P= Ntr(up)a (7)

where( is the density of molecules per unit volume.
Hence, equations (1), (5) and (7) form a closed system.

3 Discretization

In the previous section, we wrote the system of equatiortstkanow intend to
solve numerically. Before proceeding with numerical ekpentations, we need
a scheme for discretizing these equations.

3.1 Maxwell equations

To discretize the Maxwell equations, we adapt Yee'’s schdmgl8].
First, let us introduce a notation. L@ k) a sequel indexed by j and k. We
define the finite differences operators:

a- 1 —a 1
+3. 7 8-3,
(DYa), = NERN LA i
: 5
for j = j+ 3, we clearly obtain,
aj+1, — &,
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and along the direction,
A1k 1
0z ’
) _&kt1—ak
+3 oz '

For the time derivatives, we also define,

(D%a) k=

(]D)Za)qk

an+% . an—%
N ot ’
an+l _g"

ot

(Dt a)n
(]D)t a) 3 _

We define the average operatoby

a 1 +a . 1
145, 145,
(AVa)j = %,

using the same idea, we definé andAY? by
+ aj—%,k—% +aj+%’k_
4

Classically, we discretize the electric fidkland the magnetic inductioB

shifted by half a step in time as in Figure 2.
The Faraday equations (2) do not depengbptiey are easily discretized:
(Dt Bx)n = —(DyEz)n 1 + (DZEy)?Jr:—ZL,kJrl

ik} = ik :

Rl TR L 3

NI

(A¥%a)j k

(D'By)]y, 3 = —(D°E0y, (8)

t n _ y n
(D BZ)jJr%.k =D EX)H%,k

which gives us a scheme of order 2. Hence, given the electlit E" at time
t" = ndt, we can compute the magnetic inductB? 2 at timet™2 = (n+ 1)at.

Following the scheme of Figure 2, we then write the Ampereaéquas (4) for
timet™3:

n+3 n+3 n+3 n+j
(]D)tEx)J'J(2 = % (]D)yBZ)j,kz_(]D)ZBV)LK2 _%Z(DyBX)J"kz (9)

n+3

n+3
—WXX(atPX)h,k —WXZ(atPZ)h,k .

According to Figure 2, the magnetic inducti®y is only computed at the

1
points(j + 3,k + ). Hence, we have to approximate the vaIuéI@Bfo)th.
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Figure 2: Modified Yee’s scheme for discretizing the elettagnetic wave-fields
and the density matrig.
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Ex
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For this purpose, we use the following approximations (ofeoi2)

n+2 1 n+2 n+2
B|J+1k 2<BX|JJrz 1+Bx| k)

n_;’_2 1 n+2 n+%
which give,
n+3 n+
n+3 (DVBX) 2 +(DyBX) 22
(DYBy)j i ~ 2 ' (10)
n+l_

Finally, we obtain the expression B
1 1
EX|TI1 = B+ %nxx {(DVBZ)?IZ — (D"By)j x ]
1
zpo Nxz {(D BX)n+2 + (]D)VBX)TJrz J (11)

(@R 2 — Bt (@) [

For the second component of the electric fiélg the discretization is the
same as in the isotropic case, that is to say,

N Nyy n+3 n+3
(D'Ey); § E(DZBX)H;*— nyy(atpy)|j+;k,

which yields

BT =E

1
Z
i+3k + HO”W(D BX) — Nyt (0 Py)| " (12)

J+k

We still have to compute the third componeng&gfwhich is given by

n+3 2 N3 N n+3 n+3
(DtEZ)j,szr% = TJO nzz(]D)yBx)- 2; + f]_ (asz)| 2 — (02 By)|1,k42r%
+3 n+%
—Nzx(0 Px)| —NzA0P,)]. R
jkt3
according to the scheme of Figure 2.
To compute(asz)| ikt 1, we use the approximation:
n+3 3 3 o 3
B, |J+ k+1+BZ|J+%,k Bz|jf%.k+l Bz|j—%.k

N3
(ayBZ) |j,k+% 26y
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1
We also have to estima(ész)|?tj1. However By is only known on points
T2
of the kind(j,k+ 3).
We then use L .
n+ n+
0 )|n+% N Bylj ki1~ Byljx’
Byl i 5z

But, every term of the previous equation is also to be contpieugh
n+3 1 n+3 n+3
B~ 3 (B, B ).

elo1 g1 g 1
i ~3 (B, 8, )

Finally, we obtain the expression E£|?ﬁl:
K3

n+3 n+:2L
E |n+l = En 6tY]zz(]D)yB )”*% 3t zx By‘j,k+%7 y‘j.k—%

Zikts T THiked Ho ik+d T Ho 257

nt 3 nt i (13)
+ Btnz)( (DyBZ)J“kElJF(DyBZ)J‘sz
Ho 2
BOPME, — i (aRy)|"
Nz tFx Pkt Nz P, S

3.2 Bloch equations

The discretization of the Bloch equations (5) is the same #sa unidimensional

case [14]. For the reader’s convenience, we recall it brieflfe use a Strang

splitting method. Each component of the Bloch equationsliges! separately.
The part of the equation involving the free Hamiltonian is

OtPjk = —iWKPjks

forall 1 < j,k <N, which can easily be rewritten as a diagonal system. We shall
call S, the solving operator of this part of the splitting.
The interaction of the electric fiel with the crystal is rendered by

at p=- Iﬁ [V7 p]
which is solved with the analytical solution of the previagation:

p(t) = e—ig .ISV(S)dsp(O)e+iE j'(t,V(s)ds.
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We shall callS,,;, the solving operator of this part of the splitting. The cdete
discretization, which preserves the algebraic propediabe density matrix is
described in [14].

As we wish to obtain an accurate overall scheme, we use agStnathod,
which is of order 2. The density matrix is computed by

3 1
p’”? Sz Sg{ Sﬂ{o ph 2. (14)

3.3 Discretization of the polarization term

Up to now, we have used the classical scheme of Yee to dizerdie wave-
field. In this section, we will show how to discretize the paationP to obtain
a second order scheme.
The Ampere equations (4) involve the time-derivative oflb&arizationP.
Let us recall that the polarizatidh= (P, Ry, P,) is given by

P = altr(uxp),
Ry = 2ACtr(pyp),
= A(tr(UzP).

To express the time-derivatives of the polarization, wethedloch equations
(5). We have
0Py = A tr(Hadip), d € {x,y,z},

then the Bloch equations give us

aIPd = Ntr(IJ.dR(p)) - tr(ud[V, p])v de {vav Z}' (15)

in
h
1

We shall now write inject this equation in equation (11) tcmpmteEthz

1 1
Equation (11) involve$atPX)|Tj:2 and(o PZ)|TI?.
Using equation (15), we have

3 1
@RI = R - SV o)
@P)1iE =2t (RN ~ StV T olf2)).

N
The potent|a1/|j.k2 is given by

n+3

n+ nt3
| P UXEX|J K llyEy|j,k2 - HzEz|j,k ;

V
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where we take

1
nJr2 Ex|?I +EX|T’k

EX| 2 9
n+1 n+ n

3 Ey|j+%.k+Ey| +EV|J+ K Ey|j7%k

EY| 4 ’
n+1

nid E2|Jk+1+EZ| 1+EZ|Jk+1+EZ|

Ez|j.k 4
The equation (12) ofy involves(d Py)| 1 © which is computed as
n+i n+ 3 i n+i n+3
@RI} F, =Rl 2 ) -tV S ol E ).

The dipolar matrix on the pointg + 5, k) is calculated by (an approximation
of order 2)

n+2 n+2
pln+% N p|j+1k+p|
j+3.k 2 ’
the potential is given by
n+3 n+3
V|J+1l< xEx|J+1k llyEy|J+1k Hz Z|J+1k

The coordinates of the electric field are obtained from

1 1
n+} NEX|Tjr_l.k+EX|?I + Bl 1+ Bk

Bl i 4
n+1
n+3 Ey|J+ K y|1+1k
ik 2 ’
n+3 n+1 n+1 n+1
7l g~ <EZ|J+lk 1+EZ|J+lk+1+EZ|Jk+1+EZ|Jk ;
n
Ez|j+l.k 1+EZ|J+1k+1+EZ|Jk+1+EZ|Jk 1)

Finally, we shall inject the polarlzat|on terms in the thikdhpere equation
(13). We need to computé; PX)| and(at PZ)| from
@R[ 2, =i mﬁﬁ»—ﬁm Vel

The foIIowing approximation gives the dipolar matrix

n+2

kil 1)), d e {xz}.

n+1 n+3
i Plada el

Pligiy ™ 2
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n+2
To compute the potent|al| Lkt 1 = pXEX|J ! |1yEy|J ! |12Ez|J ey
we use
E E
E|n+% Z|jk+1+ y|Jk+
Zik+s ™ 2 ’
n+1 n+1 n n
E |n+% Exlikra + Exlii + BExlfiia + Bl
k3 4
n+3 n+1 n+1 nd-1 n+l
Ey|j,k+ (EV|J+ it B j+3, K EV' 1 P Ey

n n
EV|J+1 kr1 T EV|J+1 Kt Ey|j—%,k+1+ EV'j—%,k) :

Thus, we have shown how to compute the polarization termhiegbin the
Ampere equations, using approximations of order 2 in spaddime.

3.4 Final scheme

Finally, we need to replace the time-derivatives of the poédion P by their
expressions (obtained in Section 3.3) in the Ampere equs(ibl), (12) and (13).
To simplify the expressions, let us introduce the followmgdations

Td = Ntr (de(p))? de {Xay’ Z},

i
Td17d2 = ?tr (p'dl["'ldmp])) dla dz € {X7y7 Z}'
The first equation (11) oBy s,

BT = Bl e | (DBI]LE - (Dsz)n+2

(08 k+%+<DyBX>J 4 (16)
2

_%r]xz

1 1
—Nyxdt (0t Px) |TI 2 NxzOt (0tPy)| TIZ

From Section 3.3, we know that

E +E/™1 +E/N ., +E)
y 1 Yy 1 Yy 1 Yy 1 1
nt3 j—3.k j+3.K j+3.k i— 2k n+
(atF’x)ljk =T ik’ + 2 Tyl
1
n EZ|:HI;+1 +Ez|n -3 +EZ|J k+3 +EZ|J k-1 n+3

4 2T><z|Jk )
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and
n+1 n
n+3 n+3 X|',k +EX|',k n+3
OPIi* =Toljy? + 55Tl %
n+l n+1
Ey -|-Ey|JJr k-i-Ey|JJr k—|-Ey|J %k |n+2
4 Tzy
Collecting the above equations, we obtain
) n+
EX|n+1 — ;m_ |:yx Ttl r]xxat Jk TXZ| 2
(1+2nudtTox " 2)

(17)

(AVEy);
_E'>t(nXXTXy|J K +nXZsz n+1)%} ,

whereyx|”Jrl depends only on terms computed before tifhé. Its expression is

DYB,)" 2, + (DVB )“+2
ot + L1 ot (DYBx ,k+ )i k1
I = Bl o (0BT - 0B — S 22 :
L1 (AVE) 41 (AZE) i1
~ Mot Tl + 5 Tyl + 5 Tl 2
-+ X| k +3 (AVE) +3
_anét [T2|n 2 2J sz|n 2 TszP 2 .
For the second coordinate of the electric field, we obtain
n+1
n+1 o +1 AyEX)H-z n+2
E)/|JJr kK yn _nyyét Tyx|
AVZE,) L (18)
( Z>'+1k n+3
Nyt —— 25Ty, 2
yy 2 Y J+%»k’
1 e qi
wherey3,|1_+%k is given by
n+1 _ n St 7 3
yy|J+ ko Ey|j+%,k+ponyy(D(B>;)j;r%,k
1 Ex)" 1
—Nyydt [Tﬂtfk J+ K y,><|r;j:§k
(AyZEZ) 1 1
4 J+2kTy.z|r.1+§ ,
2 j+3.k

and depends only on variables computed before tithe
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After replacing the time-derivatives of the polarizati®im equation (13), we
obtain

1 1 (AZE ):Hk#lr n+
|n+ 1= n+1 r]zzét —2 sz| 2
jk+3 " nzx&sz\er J+ k j, k+

2 ikt (19)

y.zg \n+1
(& E >j k+1
(nszxy|

—ot 1 +r]zszy|

jk+ Jk+)

where

n+3 n+3
6“]22 B n+3 ot By|j.k+ By|J k-3
DBy~ " 282

n+1
yz'] k+3 |j k+3

n+3
6tnzx (DY BZ)J k+1+ (DYBy);
Ho 2

yz
N3 (ATE )Jk+z n+3

E|jk+2
1Tyl 21
jkt3 2 XYkt 3

2

e .
n+2 i, k+2 sz|n+2 AV’ZE )n+1 1T2y|n+2 ‘|

Tx z|

n+
— Nzdt |‘Tx|J kil +

—NzAt [Tzh k+31 2 jkt+3 2( k3 Y k3
Proposition 1 The discretization scheme given by equations (8), (17), (18)
and (14) is of order two.

If the three coordinates of the electric fidid are collected in one big vector
(of size 3x My x M; where we denote bil, the number of points of the grid in
the directiony andM; in the directionM;), the three equations (17), (18) and (19)
can be rewritten as a linear system.

Zn-&-l AE n+1+ Bn (20)

where the vectoB" depend one" and is obtained from the variablgs This
linear system is not trivial to solve as the matvx= | — Ais neither diagonal nor
trigonal. However, the matrix is sparse, each of its rowdaios less than 7 non
vanishing coefficients.

To solve the linear system (20), we use a GMRES method impieeddn
[3, 4]. Hence, we obtaiz "1 = (I — A)~1B", which contains the electric fiel
on the domain at timg"2,
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4 Boundary Conditions

The equations describing the propagation of a laser pulsarimedium are then
fully discretized.

We consider that before traveling through the medium, thesvieeld propa-
gates in a linear medium (as shown in Figure 1), whose indekdsen to min-
imize the reflexion at the interfaces. This greatly simgdifiee boundary condi-
tions and the introduction of an incident wave.

4.1 Boundary conditionsin thedirection of propagation

To approach the physical conditions, in which the boundaare transparent for
the wave, we shall use the classical Silver-Muller condifib/] as in the unidi-
mensional case [14]. We denote bthé speed of light in the linear medium.

The interfaces at the entry and the exit of the domain (see€i)) are repre-
sented in Figure 3, where the first point of the grid along theationzis denoted
by 1 and the last one y,.

Figure 3: Boundary conditions in the direction of propagafi.

z

| |

| |
B | Ey
B OF OE @&
Ey E E Ey
EX Q EZ Q EZ EX
Ey E E Ey

1 % Mz — % M,

At the domain entry, the Silver-Mdller condition is written
(E—E)xn—g&(B—B')xn)xn=0,

where(E;, Bj) is the incident electromagnetic wave amthe outer normal vector
to the domain.
At the domain exit, the condition becomes

Exn—¢&Bxn)xn=0.
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By detailing for each coordinate it gives

—Ey+Ey+&(B—B)) =0, (21)
Ex— Ex+&By—B) =0, (22)
for the entry and
Ey+€B«=0, (23)
— 8B, =0, (24)

for the exit.
In a first step, let us discretize equation (21) for the tif'é and the points
(i—3,3) Vi. We get

1 i |
-5 Ey|n+ +Ey|n+ Bx|n+2 +B><| % o | =EBIMT 5 - Eumh%
2 —3:2 i=3:3 =3

_13
2

s

In order to computBX| 1 3 we use the Faraday equation

nt-3 n+3 ot
B, 2.= 2 E n+1 _E n+1
A7 4=Bd ]y 5 BT B
Ot = nt1 n+1
+5,E J_;Z—EyI 1)
which yields
1 neld " .
L G PR SR s B
5,1 1+C6_Z i—3.3 1=3%:3% =353
1 ot ot
—E—(E™ —E"5) — (1-E)EyME, )
e (S ey BN e,

The equation (24) is written for tim&** and the pointgj, %), Y

n+3 n+
(Ex|n+1+Ex|n+l) (By| 2+By| 2> _ X +CBy|n+1

The Faraday equations give

n+1 ot

n+
By| 2 _ By|j’g (Ex|n+l Ex|n+l)
Finally, EX|n+1 is computed by the equation
=t
|n+l _ 1 < ZCBy|n+2 + 2F! |n§1+268iy|r,1§1> _ 1_C62 |n+1.
1+C§z XJ)Z IB 1_|_§th
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Using the same method, we can express the conditions at ithef ¢éixe do-
main:

&

EV'TJ—F%M - —= Ey|r']t]1-M—l_i66t X|r']J—r%M—1
3:Mz 1"’5 J=5.Mz 1+E J=2:Mz—=3
65_?} n+1 n+1
* 1+& (Eelim-3 ~EdiZam 1)
ot .
BT =~ Bt T Bl
1+% 1+%5 M2

4.2 Boundary conditionsin the transverse direction

In the transverse directioy) we use periodic boundary conditions: the first and
last rows of the grid are identical. As we expect to study @silganishing near
the transverse boundaries, we take simple conditions.

That is to say, the following relations are satisfied by thealdes

Ex(1, k) =Ex(My, k),

Ez(1,k) =Ez(My, K),

By(1,k) =By (My,k),
P(1,k) =p(My,k),

whereMy is the number of points of the grid in the directipn

5 Numerical experimentations

In order to validate the scheme, let us proceed with seveparénentations. In a
first section, we show that the bidimensional scheme givesssiresults than the
unidimensional scheme [14] when the wave-field does notriépe the variable
y. Finally, we study the light propagation in a KDP crystal.eTdipolar matrixu
describing the KDP crystal is given in [5]. The correspomdimodel has 5 states
and the lower energy state is 3-fold degenerate. It can lbtosgtudy harmonic
generation.

In the sequel, we highlight several physical effects thatdarensional model
can render contrary to a unidimensional model.

For instance, we can now take the diffraction into accourgmatudying laser
propagation. The effect of diffraction on a very thin laseain is represented in
Figure 4. The incoming wave is aQbum and 20fs Gaussian pulse polarized in
the directiory (see Figure 1). Its width is.Bum. The peak-amplitude of the pulse
is 16°V/m. For this run, we take 100 points per wave-length in thectime z
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and 20 in the directiog. The time-step is given bgdf, /=, + %2 =0.75, where
€is the speed of light in the linear medium=£70.826%cy).

Figure 4. Amplitude of the electric field (in V/m) of a very th(% um) laser beam
after a short propagation (undep#h) in a KDP crystal.

x10 x10°

-
. 1

However, this is a pure linear effect and this phenomenotdcloave been
studied with a classical Yee scheme without the polarinagom.

5.1 Reduction to the unidimensional case

In this section, we consider the case when the electric BEetothd the magnetic
inductionB do not depend on the second variable in spacé/e should obtain
results close to those obtained from the unidimensiona&rsehdescribed in [14].
We run an experiment of second harmonic generation. For plameation of
second harmonic generation, one can see, for instance t&¢Hapf [8]. The
incoming wave is a 20fs Gaussian pulse of ¥@m polarized along the direction
y at the phase matching angle. Numerically, we choose to tGRepbints per
wave-length in space in the directiopandz, the time-step is computed to ensure
the CFL condition (which yields different time-steps foetfivo schemes). Hence,

we take the time stefit such thatdt | /= + 5_;1/2 =0.75< 1, wherec’s the speed

of light in the medium@®y anddz the two space steps.

Let us recall that even harmonics should appear in the coemi@ of the
electric field and odd harmonics B,. In Figures 5 and 6, we have plotted the
evolution (in space) of the two componefsandE, for both schemes.
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Figure 5: Evolution of the compd=igure 6: Evolution of the compo-
nentEy for both schemes. nentE, for both schemes.
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The results given by the two different schemes are in goodeamgent. The
results obtained by the bidimensional scheme do not depiethe goint chosen
in the directiony.

5.2 Second Harmonic Generation in a KDP crystal

In this section, we study second harmonic generation in a KiyBtal with our
complete bidimensional model. We use the dipolar matrixegiin [5], which
describes rather accurately a KDP crystal.

The incoming wave is a 20fs Gaussian pulse &>110°V /m at the wave-
length 106um propagating in a 2m KDP crystal.

The electric fieldt is polarized along thg-axis (see Figure 1). The second
harmonic wave and all harmonics of even order should appehek-axis. Cubic
harmonic and higher odd harmonics should also be obserued #hey-axis.

In this run, we take 125 points per wave-length along thectiva z. The
space step in the directignis given bydy = 856z (the grid has 400 points in the
directiony). The time stegdt is given bydt = 0.756%, using the same

V 522 +V
notations as in the previous section.

Figure 7 shows a snapshot of the two components of the edigtid after a
20pm propagation in the crystal. As the wave propagates thrtughrystal, the
intensity of the componeity is increasing. One can also observe the thickness
of Ex compared tdE,: second-harmonic generation could be used to increase the
contrast of a pulse.
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Figure 7: Amplitude of the electric field in V/m after a progpgign of 20um in
the crystal. The left figure represents the compoignthe right oneE,.

Now, we observe the evolution over time of the electric figltha center of
the pulse and compare its intensity with the one computedthhynaimensional
scheme. First let us represent the spectrum of the eledtit; fn its two compo-
nentsEy andEy, at the center of the pulse.

Figure 8: Spectrum of the electric field for several timesriniteary units after a
propagation of 20m in the crystal. The left figure represents the compofgnt
the right oneEy. The frequency is relative to the frequency of the incomiagev
(For the plot ofEy, we use dotted lines when the wave is not entirely entered in
the crystal.)
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As we expected, the intensity of the second harmonic (as slwthe right-
most plot of Figure 8) is increasing as the wave travels thindbe crystal. We can
also observe optical rectification which leads to the cosatif lower frequencies.
The intensity of the fundamental harmonic is also slowlyrdasing as the pulse
propagates (as the length of propagation is short, thisteferather difficult to
observe in Figure 8).

At the center of the pulse, the intensity of the electric fieldomputed by the
bidimensional scheme is identical to the one computed vkighunidimensional
scheme [14]. Thisis also in good agreement with physicaterpents (see [14]).



Bidimensional study of the Maxwell-Bloch model 21

In the unidimensional case, at the phasing matching arfggecamponenty
contains only even harmonics. In the bidimensional cass,ighno longer the
case. In Figure 5.2, we have plotted the compoigrdfter a short propagation
of the crystal. The evolution dEx for four different points in the directiog is
represented on the right part of the figure.

Figure 9: Evolution ofgy far from the centery(= 0) of the pulse for the points
y = 2.8832x 10°m, 5.7664x 10 °m, 8.6496x 10 °m and 115328x 10 °m

(from the left to the right, the top to the bottom). For thehtimost pictures, the X-
coordinate represents the width in meters (in the diredi@amd the Y-coordinate
the amplitude of the field in V/m.
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In Figure 5.2, we can see that the shape of the component i&aatsian
as it would have been with the unidimensional model. Far ftbencenter of
the pulse, the componeBy is mainly composed of the same frequencies as the
incoming wave. This comes from the te@yB, involved in the first equation
of the system (3). This term is vanishing in the unidimenalaase. For short
distances of propagation, the nonlinearity introduced3ig negligible before
this linear effect.

Another difference between the two models can also be obdéfwe con-
sider electric field of higher intensities. In Figure 10, wew the results of
running the same experiment but with an intensity of°A0/m. The left part
of the figure represents the componé&ntat the center computed with a bidi-
mensional scheme and the right one the result obtained filerartidimensional
scheme [14].
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Figure 10: Evolution of the componeBy for both schemes. The left plot rep-
resents the amplitude computed by the bidimensional schiéraeight one the
amplitude computed by the unidimensional scheme.
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The intensity computed by the bidimensional scheme is #jidtigher than
the intensity computed by the unidimensional case. Thiddcba an effect of
the focusing of the beam. Indeed, the unidimensional scleamaot render this
effect also known as the Kerr effect. The Kerr effect incesabe intensity of the
pulse at its center, thus increasing the efficiency of thersgtarmonic genera-
tion. However, after a longer distance of propagation thisiceffect disturbs the
phase matching and decreases the efficiency of the conuéssie [16]).

6 Conclusion

In this paper, we have shown how to extend the scheme deddrnij#4] to the
bidimensional case. Thus we are able to study new physiffald®acting on the
shape of the laser beam.

However, the accuracy of this microscopic model has a rdtigérnumerical
cost. This model is not suitable for long distance of propiaga Nonetheless,
the computation times can be significantly reduced thankatallelization (with
MPI [9, 10]). This has been studied in [13], the domain of epitessor [1] is
decomposed in the transverse direction. In the Bloch egustithe space vari-
ables act as parameters so the equations can be solved fopeiat in space
in parallel. Thus we have observed a quasi-linear speedtlipedolving of the
Bloch equations with the number of processors. As the egistin the electric
field E and the magnetic inductioB are not written in the same points in time,
the Yee scheme is easy to parallelize. Thanks to the libi@rythie solving of
the Maxwell equations with the polarization part can alspaellelized. Hence,
we were able to parallelize the entire solving of the MaxviBdtich model. The
speedup for this entire solving is far from being optimals tharallelization is
still a work-in-progress.
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