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Abstract

Vowel formants play an important role in speech theories and applica-

tions, however, the same formant values measured for the steady-state part of

a vowel can correspond to different vowel categories. Experimental evidence

indicates that dynamic information can also contribute to vowel characteriza-

tion. Hence dynamically modeling formant transitions may lead to quantita-

tively testable predictions in vowel categorization. Because the articulatory

strategy used to manage different speaking rates and contrastive stress may

depend on speaker and situation, the parameter values of a dynamic formant

model may vary with speaking rate and stress. In most experiments speak-

ing rate is rarely controlled, only 2 or 3 rates are tested, and most corpora

contain just a few repetitions of each item. As a consequence, the depen-

dence of dynamic models on those factors is difficult to gauge. This article

presents a study of 2,300 [iai] or [iεi] stimuli produced by two speakers at 9 or

10 speaking rates in a carrier sentence for 2 contrastive stress patterns. The

corpus was perceptually evaluated by naive listeners. Formant frequencies
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were measured during the steady-state parts of the stimuli, and the formant

transitions were dynamically and kinematically modeled. The results indicate

that (1) the corpus was characterized by a contextual assimilation instead of a

centralization effect; (2) dynamic or kinematic modeling was equivalent as far

as the analysis of the model parameters was concerned; (3) the dependence

of the model parameter estimates on speaking rate and stress suggests that

the formant transitions were sharper for high speaking rate, but no consistent

trend was found for contrastive stress; (4) the formant frequencies measured

in the steady-state parts of the vowels were sufficient to explain the perceptual

results while the dynamic parameters of the models were not.

PACS number: 43.70, 43.71
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INTRODUCTION

Previous studies indicate that the first two formant frequencies measured in the steady-

state part of a vowel plays an important role in its characterization (Helmholtz, 1885 -

1954; Joos, 1948; Delattre, Liberman, Cooper and Gerstman, 1952). However the formants

of the same vowel uttered by different speakers, in different contexts, at different speaking

rates and with different stress patterns exhibit a lot of variability (Joos, 1948; Peterson and

Barney, 1952; Stevens and House, 1963; Lindblom, 1963).

The formant dependence on speaking rate and stress is usually described either by a

centralization process or a context assimilation. Some studies have reported that formant

frequencies of unstressed vowels or vowels uttered at fast speaking rates shift to a more

central position around (500, 1500) Hz in the (F1, F2) plane (Joos, 1948; Koopmans-van

Beinum, 1980). This is called centralization effect. A traditional view is that the vocal tract

tends to become more similar to its “schwa” configuration for unstressed vowels and for fast

utterances. In contrast, other studies have reported that vowel formants shift toward the

values of their context instead of a central position (Stevens and House, 1963; Moon and

Lindblom, 1994). This is called contextual assimilation.

An important issue related to vowel formant variability is that different vowels can be

characterized by the same steady-state values of the first two formants (Joos, 1948; Peterson

and Barney, 1952; Stevens and House, 1963). Because static formant values do not seem

sufficient to identify vowels, dynamic information is also analyzed.

Lindblom and Studdert-Kennedy (1967) showed that vowels were categorized differently

when they were presented in semi-vowel context instead of isolation. In context, listeners

heard formant values extrapolated beyond the values actually reached at the end of the

transitions. This perceptual overshoot was confirmed by Nearey (1989) for occlusive con-

texts. But another perceptual experiment presented in Nearey’s article showed that the

classification of sustained vowels was influenced by the presence of other sustained vowels.

Hence an acoustical contrast between stationary segments may also contribute to a percep-
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tual overshoot. Some results conversely suggest that listeners can perceive formant values

averaged over a full syllable, i.e. a value closer to the vowel context than the value actually

reached (Pols and van Son, 1993). van Son (1993) proposed that a listener would exhibit a

perceptual overshoot only when the vowel context has been identified.

Strange (1989a,b) presented several experiments where the vowel steady-state part of

natural CVC stimuli were excised from the speech signals and replaced by silence. The

perceptual scores of these silent-center stimuli were at least as good as the scores of the

excised stationary segments presented in isolation. She proposed the theory of dynamic

specification of vowels stating that vowels in continuous speech are better identified by

coarticulation with their context than by information intrinsic to the vowel nuclei. Strange’s

results were replicated with adults and prelingual babies aged between 6 and 12 months for

one German and one English vowel contrast (Polka and Bohn, 1996), and with adults for the

14 German monophtongs (Strange and Bohn, 1998). On the other hand Nearey and Assmann

(1986) showed that isolated Canadian English monophtongs were slightly diphtongized, i.e.

the steady-state stimuli contained significant formant frequency change over time. The same

level of diphtongization was found for the vowels produced in context. The results of their

experiments suggested that listeners may rely more on this vowel-inherent spectral change

(VISC) than dynamic specification to identify vowels. Hence, vowels in continuous speech

would be better characterized by their nuclei than by coarticulation with context. Andruski

and Nearey (1992) showed perceptual results contradicting dynamic specification of vowels,

but compatible with VISC. Jenkins, Strange and Trent (1999) presented an experiment

based on the silent-center paradigm showing the opposite, i.e. results contradicting VISC

theory but compatible with dynamic specification of vowels.

Automatic classification procedures also showed that dynamic information may help to

categorize vowels. Cassidy and Harrington (1992) compared the performance of a neural net-

work in vowel categorization for logatomes [CVd] using either static or dynamic information.

The neural network used either formant transitions or stationary formant values duplicated

several times in order to have the same segment durations in both cases. The network had
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higher identification scores when dynamic information was available. In Beautemps (1993)

a neural network could categorize [iai] and [iεi] speech signals when only one 26-ms segment

of each F1 transition of [iV] stimuli was available. Conversely the network failed a complete

categorization when the first three formants values measured in the stationary part were

used. In contrast with the two previous works Watson and Harrington (1999) showed that

a Gaussian classification algorithm could categorize vowels in a /h d/ or /h / context only

on the base of vowel duration plus formant values measured in the steady-state part of the

vowel. But /h d/ and /h / contexts produce less coarticulation than other consonant con-

texts (Stevens and House, 1963). The dynamics involved in the transitions could therefore

be insufficient to play a role.

As Nearey (1989) proposed, all the previous contradicting results suggest that listeners

may use many strategies together, but the perceptual weights given to of each of them would

depend on the situation and task. Perceptual results and automatic classification procedures

indicate that some of these strategies may rely on formant dynamics. Its characterization

could thereby improve our understanding of vowel categorization.

There are no good theories predicting formant dynamics or what dynamic features could

be used in vowel classification. It is not even clear whether the shape of a formant transition

plays a perceptual role. Carré, Chennoukh, Lindblom and Divenyi (1994) activated the

commands of a vocal tract model (Carré and Mrayati, 1992) with different mathematical

functions (linear, parabola, sine, etc.) to synthesize [iai] stimuli. An analysis of the for-

mant transitions in the (F1, F2) plane showed that the shape of the transition varied with

the mathematical form of the model commands. The perception of [a] was affected only

when the canonical formant frequencies corresponding to a good [a] were far from being

reached. Nábĕlek and Ovchinnikov (1997) perceptually compared linear and quadratic for-

mant contours in a vowel identification task. The two formant contours led to the same

categorization.

Other results suggest that the shape of formant transitions might change vowel catego-

rization. Divenyi, Lindblom and Carré (1995) showed that perceptual overshoot depends
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on transition slope. In Carré, Chennoukh, Jospa and Maeda (1996), [abi] stimuli were syn-

thesized by means of a vocal tract model (Carré and Mrayati, 1992) with different phasing

between the consonant and vowel gestures. The shape of the formant transitions varied

with this “articulatory” phasing. For some formant transitions, listeners heard an extra

vowel. The perceptual results were [aεbi], [abi] or [abei] depending on the “articulatory”

phasing. As a consequence, even if a description of formant dynamics may not need to be

highly accurate in all situations (Carré et al., 1994; Nábĕlek and Ovchinnikov, 1997), its

characterization may lead to testable predictions in vowel identification.

Some attempts have been done to describe formant dynamics. For example, Broad and

Clermont (1987) offered several models of formant transition. The more elaborate one was

an exponential fit and it had good variance explanation. In van Son and Pols (1992) a

professional radio speaker read a Dutch text at normal then fast speaking rate. Vowel

duration was normalized during formant extraction, i.e. all formant time series segments

corresponding to vowels had the same length. No differences were found between the formant

contours when the two speaking rates were compared, but this representation helped to

distinguished front from back vowels. The normalized time series were also fitted to Legendre

polynomial expansions in order to characterize the shape of the formant transitions, and the

same results were found, i.e. no fit differences for the two speaking rates and the same

classification performance. In Watson and Harrington (1999), formant time series were

fitted to discrete cosine expansions to characterize formant contours of vowels uttered in

[h d] and [h ] contexts. This representation helped to identify the diphthongs. However

good, none of these formant contour characterizations were proven sufficient to identify all

vowels in a general context. New attempts may therefore be needed. This work presents

models of formant dynamics and kinematics and analyzes how their parameters and the

formant frequencies depended on speaking rate and contrastive stress.

To model the dynamics of the first two formants, the system underlying their production

was assumed stationary during an analyzed transition. F1 and F2 were modeled separately

for two reasons. Firstly, it can be seen in Pitermann (1996) that the first two formants of the
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corpus presented here ([iai] and [iεi] stimuli) were not synchronized. Hence, two independent

models appeared a better choice. Secondly, there are more mathematical tools available to

guide one-dimensional than two-dimensional modeling.

It is often presumed that an articulatory movement can approximately be described by

a second-order linear model (Sonoda, 1987; Laboissière, Ostry and Perrier, 1995). A corpus

with simple articulatory movements was chosen (only a front-back-front tongue movement

and a jaw opening-closing may be involved in the production of [iai] and [iεi] stimuli). As a

consequence, and because it is the simplest model, the linear model was firstly selected.

In a revision of Lindblom’s original target undershoot model (Lindblom, 1963), Moon and

Lindblom (1994) proposed to describe the relationship between vowel duration and steady-

state formant frequency by a second-order linear model at critical damping. Although the

mathematical forms of a formant time series and of the relationship between vowel duration

and formant frequency may be different, these two concepts may be closely tied. This model

was therefore chosen too. One may object that the second-order linear model at critical

damping is a special case of the linear model firstly selected, hence a study of the latter

should be sufficient to back up or contradict the former. This point will be discussed in the

“Results” section IID.

A small-order linear model cannot accurately describe an asymmetrical transition. The

first- and second-half of each formant transition were therefore separately modeled. To

model a whole transition, a nonlinear dynamic model having the logistic curve among its

solutions was implemented. It will be called the logistic model in this article.

Fitting the parameters of a dynamic model or of one of its solutions (a kinematic model,

i.e. a curve fitting) may lead to different results. The reason is that the kinematic and

dynamic model equations are different, and the associated cost functions to be minimized

are different too. For example, an exponential is the solution of a first-order linear dynamic

model. Fitting an exponential or a linear model may be different. A linear least-squares

method can be used for the linear model, not for the exponential. Hence, the two fits may

lead to different results.
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For each dynamic model, one of its solutions was therefore tested: an exponential, a

combination of an exponential and time, and a logistic curve respectively for the linear,

second-order linear at critical damping, and logistic models. Only the exponential was

chosen as the solution for the linear model because, as will be justified in the “Results”

section IID, the first order was sufficient to describe the half-transitions of the corpus.

The model equations are summarized in Table I and their graphics can be seen in Figure 1.

Three general criticisms can be made about most studies dealing with speaking rate and

formants extracted from natural speech. Firstly, many corpora include a lot of different

phonemes in different contexts with few examples of each particular case, e.g. (Kuwabara,

1985; van Son and Pols, 1992). Many sources of variability may thereby be responsible for

the results, and it is difficult to assess the role of each of them. Secondly, only two or three

speaking rates are usually used in those experiments, e.g. (Imaizumi and Kiritani, 1989;

Loevenbruck and Perrier, 1993). Thirdly, the speaking rates are generally not controlled.

The speakers are usually asked to speak slowly, naturally or fast, e.g. (van Son and Pols,

1992; Beautemps, 1993).

In contrast, this article presents an analysis of approximately 2,300 [iai] or [iεi] stim-

uli uttered by two speakers in a carrier sentence at 9 or 10 speaking rates controlled by

metronome for two contrastive stress patterns. The stimuli were categorized during a per-

ceptual task. The first two formants were measured in the stationary parts of the vowels,

and three dynamic and three kinematic models were fitted to the formant transitions. The

contribution of static and dynamic information to the perceptual results was assessed, and

the centralization versus context assimilation issue was discussed in the light of the results.

The dynamic and kinematic models gave a quantitative description of the formant contours

to be related to the perceptual results. The high number of speaking rates controlled by

metronome and the high number of repetitions of each corpus item provided more accuracy

for the relationship between speaking rate and variables than what is usually presented.
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I. METHOD

A. Speech material

The first two formants of [ia] and [iε] transitions taken from [iVi] segments were analyzed

(V was [a] or [ε]). The segments were excised from two carrier sentence portions [iliVimedia]

taken from two French sentences: “Il y a immédiatement souscrit” (“He immediately sub-

scribed to it”) and “Il y est immédiatement retourné” (“He immediately returned to it”).

The carrier sentence portions were produced in an anechoic room by two French speaking

male speakers, A and B, at 10 and 9 different speaking rates respectively. All speaking

rates were controlled by metronome. The speakers had to synchronize the beginning of the

carrier segment with a metronome beat, and the plosion of [d] with the following one. The

metronome rhythms were 48, 54, 60, 69, 80, 88, 96, 104, 112 and 120 beats/minute. The low-

est rate was very slow for the speakers, the highest was the limit bearable by each of them,

i.e. the highest rate before they could not synchronize their production and the metronome

beats. The speakers were asked to produce the whole corpus placing a contrastive stress on

V, then a second time without any contrastive stress. I controlled the recording sessions, and

each combination of speaking rate, contrastive stress and vowel was repeated until 30 sat-

isfying examples were produced. Around 4,600 formant transitions were therefore analyzed

(2 vowels × 2 contrastive stresses × 19 speaking rates × 30 repetitions × 2 formants).

The signals were recorded with a microphone (NEUMAN U 87 P 48) connected to a

8-kHz low-pass filter and sampled at 32 kHz by a DAT recorder (SONY PCM-2300, 16-

bit recording). The cutoff frequency of the low-pass filter was 8,000 Hz, and its slope was

360 dB/octave. The corpus was then digitally transfered from the DAT to a computer. The

sampling frequency was thereafter reduced to 16 kHz on the computer by taking away one

sample out of two. The 8-kHz low-pass filter used during the recording sessions avoided any

potential aliasing problems when the sampling frequency was reduced from 32 to 16 kHz.
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B. Perceptual analysis

The corpus was perceptually evaluated to spot improperly produced data, i.e. [iVi] speech

signals for which the perceptual identity of V did not correspond to the instructions given

to the speakers.

Eight French speaking participants between 22 and 30 years of age and without phonetic

training took part in the experiment. No listeners reported suffering from impaired hearing.

The data of the last listener was lost due to an experimental mistake.

For each listener, one list per talker was made up of 4 different [iVi] segments for each

combination of rate, stress and vowel. For example, one list corresponding to talker B

contained 144 items (4 occurrences × 9 rates × 2 stresses × 2 vowels). Since the corpus

was large enough, no speech signals were used twice. The stationary parts of [i] were not

kept, thus the stimuli sounded more [jVj] than [iVi]. To eliminate onset and offset noise,

the signal amplitude was multiplied by a linear 12.5-ms slope at the beginning and end of

each stimulus.

Each subject listened to one list per speaker. The stimuli were randomly presented to

each listener. Two successive items were separated by a 3-second silence during presentation.

Four participants started with a speaker-A list, the other three with a speaker-B. Before

starting the perceptual test, the subjects heard 20 samples from another list to adjust the

signal intensity at a comfortable level and become familiar with the assignment.

The task was to write down each vowel identified between the two [i]. When a listener

hesitated, he or she was allowed to leave a blank or choose the closest vowel. No information

was given about the carrier sentence, the vowel to be identified or the phonetic transcription

to use. It was therefore a test with open answers.

The signals were played back on BEYER Beyerdynamic dt325 headphones connected to

a Sparc 20 SUN workstation containing a 16-bit linear digital to analog converter.

Owing to the loss of data, the results of only 28 out of 30 repetitions of each corpus item

were available. However, this only amounted to a loss of less than 7 % of the perceptual



Michel Pitermann The Journal of the Acoustical Society of America 11

data.

C. Formant measurements

Formant frequency estimation is a mathematically ill-formed problem, i.e. there are no

theorems proving that a solution exists, that a solution is unique and that a solution con-

tinuously depends on the initial conditions. Hence, several heuristics may be tried for each

problem. In this study, the outcome of dynamically modeling a formant transition may be

influenced by the quality of the formant extractor used. Several formant estimate proce-

dures were therefore compared: a pure LPC method (Atal and Hanauer, 1971), a method

combining the results of one cepstral and two LPC algorithms (Soquet, 1995a), and a pitch-

synchronous method (Soquet, 1995b). The pitch-synchronous method produced cleaner

formant time series than the two other algorithms, but all techniques led to the same con-

clusion as far as dynamic modeling was concerned. I thereby kept the LPC-based formant

extractor to stick to the simplest tool.

The speech signals were sampled at 16 kHz, then modified by means of a (1 − 0.95z)

preemphasis filter (in z-transform notation). Every 9 ms, the first two formant frequencies

were estimated by means of an 18 order covariance LPC (Linear Predictive Coding) analysis

in a 26-ms rectangular window. The lowest pole frequency was assigned to the first formant,

the second pole frequency to the second formant.

All formant time series were visually examined to check for formant misclassifications.

Formant insertions were manually erased. When a formant omission was found, the time

series of the first two formants of the speech signal were reestimated by means of a LPC

model with a different order. If no orders in the [10,20] interval could produce two time

series without omissions, the speech signal was discarded. Less than 1 % of the corpus was

rejected this way.

Values 0.70, 0.75, 0.80, 0.85, 0.90 and 0.95 were tested for the preemphasis filter. Since

these values did not lead to different results as far as dynamic modeling of formant transitions
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was concerned, 0.95 was selected in order to be consistent with the literature (Makhoul,

1975).

For each corpus item, formant frequencies of vowel [V] were defined as the F1 maximum

and F2 minimum of their time series. This means that a formant frequency was measured

at the time coordinate for which the time series took on a nearly horizontal slope inside

segment [V].

D. Formant modeling

1. Choice of models

Three dynamic models and one solution of each model was fitted to each formant tran-

sition. The three dynamic models were a linear, a second-order linear at critical damping

and a logistic model. The three kinematic models were an exponential, a combination of

exponential and time, and a logistic curve. The model equations are summarized in Table I

and their graphics can be seen in Figure 1.

2. Parameters estimations

The coefficients of the six models were estimated by means of least-squares methods

for each formant transition. Because there were approximately 4,600 formant transitions

in the corpus, around 4,600 sets of parameters were estimated for each model. The merit

function was the classical sum of the squared differences between model-generated and mea-

sured values. The coefficients of the linear model (1) that gave rise to the minimum merit

function were determined by means of a conventional linear method. The coefficients of the

nonlinear difference equation (5) and curves (2), (4) and (6) were estimated by means of

the Levenberg-Marquardt algorithm. This is an optimizer that gradually switches from a

steepest descent method to a quadratic approximation when the merit function approaches

a minimum (Press, Teukolsky, Vetterling and Flannery, 1992).
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The merit function of the second-order linear model at critical damping (3) was

E =
1

N − 2

N
∑

i=3

(xi − a0 − a1xi−1 +
a2

1

4
xi−2)

2 (7)

where E is the merit function, xi is the ith sample of the time series, N is the length of the

time series, and a0 and a1 are the parameters of the model. Setting to 0 the first derivative

of the merit function with respect ot a0 and a1 leads to a nonlinear system of two equations:















a0 = xn − a1xn−1 +
a2
1

4
xn−2

0 = σ2
xn−2

(a1

2
)3 − 3σxn−1xn−2(

a1

2
)2 + (2σ2

xn−1
+ σxnxn−2)(

a1

2
) − σxnxn−1

(8)

where:

xn−k =
1

N − 2

N
∑

i=3

xi−k (9)

σ2
xn−k

=
1

N − 2

N
∑

i=3

(xi−k − xn−k)
2 (10)

σxn−kxn−l
=

1

N − 2

N
∑

i=3

(xi−k − xn−k)(xi−l − xn−l). (11)

The procedure to estimate a0 and a1 for a time series xi was straightforward. The third-

degree polynomial (8) was solved to produce 1 or 3 real roots. For each a1 (1 or 3 values),

the corresponding a0 value was calculated by means of the first equation of (8). The couple

(a0, a1) that gave rise to the minimum merit function (7) was selected.

The order of the linear difference equation (1) was determined by analyzing the random

variable (âi − ai)/σ̂(âi), where ai is the ith unknown coefficient of the model for the full

population of all possible formant transitions, âi is its estimate based on a sample of the

population, and σ̂(âi) is the estimate of its standard error. When the conditions of applica-

tion of a linear regression are met, this variable is characterized by a t-distribution (Spiegel,

1988, chapter 14, pp. 300). The null hypothesis “H0 : ai = 0” could thereby be tested at

0.05 level for any coefficient of the model. The model order was iteratively increased by 1

until the null hypothesis for the highest-order coefficient ak could not be rejected. The last

but one order was selected.
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The [iVi] segmentation procedures were the following. Complete formant transitions

between preceding [i] and [V] were modeled by means of the logistic models (5) and (6).

The first sample of a transition was manually chosen near the end of the horizontal part of

the formant time series of the [i], the last sample was the next maximum for F1 or minimum

for F2.

In contrast to models (5) and (6), only the half-transitions before or after the points of

inflection were modeled by means of the four other models. The position of each point of

inflection was determined by means of parameter t0 of the logistic curve (6). To increase

t0-estimate accuracy, a speaker was assumed to use the same articulatory gesture for the 30

repetitions of a corpus item. Accordingly, the 30 transitions were presumed to be charac-

terized by a single coefficient vector (a, b, c) while each transition assumed a different time

position t0. I used the Viterbi algorithm in order to estimate a unique (a, b, c) vector and 30

different t0 values simultaneously using the 30 transitions (Viterbi, 1967). The method con-

sisted of alternatively estimating either one structural vector (a, b, c) or the 30 time positions

t0 while keeping the other coefficient class fixed until convergence was achieved.

II. RESULTS

A. Transition length and speaking rate

Figure 2 shows how the duration of the F1 transitions varied with speaking rate. Each

point of the plot is a median of 30 durations computed from 30 repetitions of a corpus item

in one speaking rate and contrastive stress condition. The same pattern was observed for

F2.

The graphics show that formant transition duration decreased as speaking rate increased.

A floor effect appeared after 80 beats/minute, although the speakers continued to increase

their speaking rate. Other parts of the segment sentence were therefore shortened for the

highest speaking rates.
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B. Perceptual evaluation of the corpus

The purpose of the perceptual analysis was to spot the [iVi] tokens that were incorrectly

produced.

Around 99.5 % of vowels V were labeled /a/, /ε/ or /e/. Because [e]–[ε] distinction

depended on regional accent, and because the listeners did not receive any references, labels

/e/ were replaced by /ε/. This way, 99.5 % of the labels became /a/ or /ε/, and most

mistakes were considered to be confusions between [a] and [ε].

More than 90 % of vowels [ε] were correctly identified for 35 speaking rate and contrastive

stress groups out of 38 (38 = 9 rates × 2 stresses + 10 rates × 2 stresses). The identification

scores of the remaining 3 conditions were 86 %.

Figure 3 shows the average identification scores normalized by the total number of an-

swers of the seven listeners for vowel [a] as a function of speaking rate.

More than 90 % of speaker A’s [a] were correctly identified for the seven lowest speaking

rates. The identification scores were below 85 % for the other speaking rates.

The identification scores of speaker B’s [a] were above 90 % for only 9 categories out of 18

(the stressed [a] produced at the six lowest speaking rates and the unstressed [a] produced

at the three lowest ones). For the other categories, the identification scores varied between

18 and 68 %.

C. Formant measurements

Processing about 4,600 formant transitions by means of six dynamic or kinematic models

led to around 27,600 fits. Due to noise, some of them were physically impossible and should

be considered as aberrations. To lower their impact on the statistical description of the

corpus, the median and a similar measure to semi-interquartile range were chosen instead

of the mean and square deviation. For consistency, the formants were described in the same

way.
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Instead of the semi-interquartile range, the semi-68-% range leaving 16 % instead of

25 % of the elements in each tail of the distribution was used. The advantage of the semi-

68-% compared to the semi-interquartile range is that it has the same value as the standard

deviation when the distribution is Gaussian. It is more convenient for comparisons when

different statistical feature sets are used to describe the data.

Table II shows the medians and semi-68-% ranges of the first two formants of [i], [ε] and

[a] for both speakers. Those values were computed across all repetitions, speaking rates and

stresses. The variability of [i]’s formant frequencies was lower than [a]’s but similar to [ε]’s.

Figure 4 shows the medians of the first two formants of each speakers’ [ε] and [a] computed

for each set of 30 repetitions of a corpus item for all combinations of speaking rate and

contrastive stress. The data is plotted as functions of speaking rate measured in metronome

rhythm. Table III shows the results of two-factor (rate and stress) analyses of variance for

all combinations of speaker, vowel and formant. All analyses of variance were carried out

with a linear additive model with replication. Interactions between factors were included in

the model.

D. Model parameters

The first step to analyze the corpus using a linear model (1) was to estimate its order

k. To validate the first order, the null hypothesis that a1 was equal to 0 was tested for each

formant half-transition. The hypothesis was rejected at 0.05 level in 97.7 % of the cases.

Hence a1 should be considered as different from 0, so the first order was mandatory. For the

second order, the null hypothesis was tested for a2, and it was rejected at 0.05 level in 4.5 %

of the cases. Thus a2 could not be considered as different from 0, and the first order was

sufficient to model the formant half-transitions. Accordingly, we used a first-order linear

model and one of its solutions, an exponential.

Because a first-order linear model was sufficient to describe the data, the second-order

model at critical damping proposed in Moon and Lindblom (1994) may appear inadequate.
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Being able to reject higher-order linear models, however, does not imply that a first-order

linear model was underlying the data. It only means that, with the number of points

available for each fit under the noise condition, no information could be found about higher-

order parameters by a classical linear regression.

When a constraint between model parameters is added, the parameter space suitable

for a fit is reduced. For example, when a linear second-order model at critical damping is

responsible for some data, the noise can hide information about the second order. If the

topology of the cost function is complex with many local minima, the fitting procedure may

be easily caught in a local minimum far away from the global one. However, adding the

critical constraint to the fitting process reduces the search in a 3-D space (a0, a1 and a2

from equation (1) of Table I) to a search in a 2-D space (a0 and a1 from equation (3)),

i.e. in a plane. Hence the algorithm may converge to a better local minimum or the global

one because the search is better guided by the fitting procedure. For this reason, a second-

order linear model at critical damping was also fitted to the transitions to follow Moon and

Lindblom (1994) suggestion.

In the two selected linear models (1) and (3), a1 indicated how fast a transition left an

asymptote or came close to it and was dampened near it. The lower a1, the faster a formant

left or approached its asymptotic value and was dampened. It may therefore be expected

that fast transitions were modeled with a low a1 value.

Figures 5 and 6 show the medians of the a1 estimates of the first-order linear model for

each set of 30 repetitions of a corpus item for each combination of speaker, vowel, formant,

contrastive stress and speaking rate. The data is presented as functions of speaking rate

measured in metronome rhythm. Tables IV and V show the results of two-factor (stress and

rate) analyses of variance for all combinations of speaker, vowel and formant. Figure 5 and

Table IV refer to the first-half transitions, Figure 6 and Table V to the second-half.

The results produced by means of the two linear models (1) and (3) were slightly different

in their details, but the conclusions of all analyses were the same. Therefore, only the first-

order linear model will be discussed in the rest of the paper.
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The exponential (2) and the kinematic model (4) were also fitted to the formant half-

transitions. Since the parameters a1 of the dynamic linear models were linked to their

kinematic equivalents by a1 = exp(−q∆t), this value was computed for the kinematic models

in order to compare the dynamic and kinematic results. Because the results were virtually

identical and the kinematic models did not add any new information, those kinematic models

will not be considered further in this paper.

Up to this point, only half-transition modeling has been presented because low-order

linear models with constant parameters could not describe a full transition. The logistic

models (5) and (6) permitted complete transition modeling.

In the logistic models, d of (5) and b of (6) played a similar role than a1 and q of the

linear (1) and exponential (2) models, and the relation d = exp(−b∆t) was valid. In other

words, d or b controlled the models when t → ±∞, i.e. they described how a formant left

its first asymptote and how it was dampened near the second one.

Figure 7 shows the medians of the d values of each set of 30 repetitions of a corpus item

for each combination of speaker, vowel, formant, contrastive stress and speaking rate. The

data is plotted as functions of speaking rate measured in metronome rhythm. A smaller d

value means that the formant left the initial value and was dampened near the final one more

abruptly. Table VI shows the results of two-factor (rate and stress) analyses of variance for

all combinations of speaker, vowel and formant.

Once again, dynamic or kinematic modeling produced approximately the same results.

The kinematic ones were therefore not included in this paper.

Because a second-half transition may be more influenced by following gestures than the

first-half, the logistic models was also fitted to the first-half transitions. Modeling a first-half

or a full transition led to similar results, except that there was more noise in the fits with the

first-half. However, this increase in noise was expected because fewer points were included

in the fits. The tables are not presented because they did not add any new information.

The analysis simply indicated that the first- and second-half transitions were not different

enough to lead to different conclusions.
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Table VII shows standard linear Pearson correlations measured between the perceptual

scores and the median of the formant measurements or the medians of the model parameters.

Figure 8 plots in the (F1, F2) plane the formant frequencies measured in the steady-state

parts of the [a] and [ε] stimuli correctly identified in the perceptual test. Figure 9 shows a

similar plot for the dynamic parameter a1 of the linear model (1) fitted to the second-half

transitions of F1 or F2 respectively for the x or y axis. The two ellipses formed by each

vowel in the (F1, F2) space are basically disjoint while the two vowels completely overlap in

the dynamic parameter space. The same overlap was found for the parameter a1 fitted to

the first-half formant transitions and for the parameter d of the nonlinear model (5) fitted

to complete formant transitions.

III. DISCUSSION

As explained in the “Introduction” section, fitting a dynamic or an equivalent kinematic

model can lead to different results. Both fits were compared for each model, and both fits

produced similar results every-time. This simply means that the minimization processes of

the merit functions of each dynamic and corresponding kinematic models found a minimum

in the same area of their parameter spaces. Hence both kinds of models were equivalent as

far as the analysis of their fitted parameters was concerned.

Figure 4 shows that the first two formants frequencies measured at the slowest speaking

rate were close to (400, 1800) Hz for both speakers’ [ε] and (600 − 700, 1400− 1500) Hz for

speakers’ [a]. Table II show that the first two formant frequencies of the context were close

to (250, 1950) Hz with small variation around those values. A contextual assimilation should

therefore decrease [a] and [ε] F1, and increase their F2 for high speaking rates. In contrast,

a centralization effect should not modify the [a] formant values much, but should increase

[i] and [ε] F1, and decrease their F2. Figure 4 shows a contextual assimilation for both

speakers because [ε] and [a] formant frequencies were shifted away from a central position

toward [i] formants values for high speaking rates. Table III shows that the dependence of
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the formants on speaking rate and contrastive stress was statistically significant at 0.05 level

in all cases.

This conclusion should not be generalized to any phoneme and context. The corpus was

purposely chosen to make [i] stable and [ε] and [a] varying. Firstly, French [i] is known to

need more articulatory accuracy and to have more stable formants than other vowels (Majid,

Abry, Boe and Perrier, 1987). Secondly, the carrier sentence [iliVimedia] was built to favor

the context instead of V.

The speakers did not manage their contrastive stress in the same way. Firstly Figure 4

shows that speaker A’s formants were less influenced by contrastive stress than speaker B’s,

specially for [a] (each pair of solid or dotted line was closer for speaker A than B). Secondly

speaker A’s production seemed more regular than speaker B’s. This can be seen on Figure 4

because speaker B’s unstressed [a] uttered at the six highest speaking rates and those uttered

at the three lowest ones seem different. The first two formants of the former were similar

to the speaker’s [ε] formants while the formants of the latter were clearly distinct. The

perceptual results support this hypothesis because the unstressed [a] identification scores

were less than 50 % correct for the six highest speaking rates while they were equal to 100 %

in the three other cases. On the other hand speaker B’s stressed [a] formants were shifted

more gradually toward the contextual formant values when speaking rate was increased.

This pattern suggests that speaker B did not produce his stressed and unstressed [a] in the

same way, like the other speaker did.

It is common to find data in the literature showing that speakers can increase, keep

constant or decrease their articulatory strength when they stress a syllable or speak faster

(Gay, Ushijima, Hirose and Cooper, 1974; Kuehn and Moll, 1976; Sonoda, 1987; Guenther,

1995; Marchal and Meynadier, 1996). Figure 6 suggests that the parameter a1 of the linear

model (1) fitted to the second-half transitions tended to be smaller for high speaking rates but

did not exhibit any consistent trend for contrastive stress. This result means that formants

approached their F1 maximum or F2 minimum faster for high speaking rates. Even if the

trend was consistent, table V shows that it was seldom significant at 0.05 level. It could
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mean that the trend was partly masked by the noise and that processing a bigger corpus

would confirm the results. Figure 5 shows that the results regarding the first-half transitions

were less regular.

Figure 7 shows that modeling whole transitions by means of the logistic model (5) did not

change the previous trend, although this trend appeared less clearly. The parameter d was

smaller for high speaking rates and the results were less clear for stress. This means that the

formants tended to leave their initial and reached their final values more abruptly for high

speaking rates. Once again, the trend was not always significant but consistent. The trend

suggests that the speakers used more force in their articulatory gestures for high speaking

rates. But the nonlinear relationships between the articulatory and acoustical levels may be

misleading and this conclusion must be confirmed by articulatory or EMG data.

Experiments showed that vowels can be better categorized by dynamic than static in-

formation in some situations (Strange, 1989b; Strange, 1989a; Cassidy and Harrington,

1992; Beautemps, 1993; Jenkins et al., 1999). Table VII shows that the absolute values

of the linear correlations between the perceptual scores and the medians of speakers’ for-

mants measured in the vowel steady-state parts were always greater than 0.8 for [a]. Because

the perceptual scores of [ε] were always close to 100 %, the correlations between those scores

and the formant values are not informative. Only the [a] scores will be discussed.

It is interesting to find such a high correlation between the perceptual scores and the

formant measurements for [a] because those measurements were made in the steady-state

part of the vowels. It suggests that static information was more important than expected.

To investigate this issue, the formant measurements of the 1,900 vowels [a] and [ε] correctly

identified in the perceptual experiment were plotted in the (F1, F2) plane in Figure 8. In

this acoustical representation, all but 40 vowels [a] and [ε] out of 1,900 formed two ellipses

without intersection, i.e. [a] and [ε] could be classified in this representation.

This result contrasts with Beautemps (1993) results showing greater overlap between [a]

and [ε] of a smaller but similar corpus. However he only used 40 stimuli produced by one

speaker so his results should not be generalized.
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On the other hand my results corroborate one Peterson and Barney (1952) finding.

They showed many measurements of the first two formants of 10 English vowels in the

(F1, F2) plane, and the vowels overlapped in this space. Then, they carried out a perceptual

experiment presenting the vowels with minimal context to listeners. When only the tokens

correctly identified in the perceptual assignment were plotted in the (F1, F2) plane, the

overlap between the vowels almost disappeared. Similarly, as long as a vowel in my corpus

was correctly perceived, the first two formants were sufficient to classify it.

To summarize the perceptual results so far, static information was sufficient to explain

them. But we still do not know if dynamic information could be used by the listeners to

identify the vowels in the perceptual task. Figure 9 shows that the parameter a1 of the linear

model (1) fitted to the second-half formant transitions could not distinguish the [a] from

[ε] speech signals for the subset of stimuli correctly identified in the perceptual assignment.

The same results were also found for the first-half transitions and for the parameter d of

the nonlinear model (5) fitted to whole transitions. This suggests that the part of formant

dynamics encoded in the model parameters did not play a major role in the perceptual task,

i.e. the models did not isolate an important dynamic parameter for the perception.

Furthermore, the linear correlations between the perceptual scores and the medians of

the dynamic parameter estimates are shown in Table VII. The correlations are lower and

less consistent for the model parameters than formant measurements.

It is not perfectly clear why the dynamic parameters did not capture any feature corre-

lated with the perceptual results. A first hypothesis is that the experiment could correspond

to a situation where static information was primary used. A second hypothesis is that the dy-

namic models inadequately described formant dynamics or that the fitting procedures were

inaccurate. Visual inspection of modeled and real formant contours suggested that dynamics

was properly described by the models (see an example on Figure 4), but future work should

include a study of modeling error. Because the formant values measured in the steady-state

part of the vowels were sufficient to explain the perceptual results, it seems plausible that

formant dynamics could have played a secondary role in the perceptual assignment.
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In summary, the first two formants measured in the steady-state parts of the vowels were

highly correlated with the perceptual results and were sufficient to explain them. Conversely

the dynamic parameters of the models were poorly correlated with the perceptual results

and were not sufficient to explain them. This does not imply that no dynamic information

was used in the perceptual task, but it does not back up dynamic specification of the vowels.

IV. CONCLUSION

A corpus of [iai] and [iεi] was produced by two speakers in a carrier sentence at different

speaking rates with two contrastive stress patterns. The corpus was perceptually analyzed,

the first two formant frequencies were measured in the static parts of [a] or [ε], and the

formant time series were dynamically and kinematically modeled. Relationships between

the perceptual results, the formant measurements and the model parameters were assessed.

The analysis of the first two formant frequencies measured in the steady-state part of the

vowels showed a contextual assimilation instead of a centralization effect. The same data

also suggests that the speakers did not manage their contrastive stress in the same way.

The analysis of model parameters showed that dynamic or kinematic modeling led to the

same results. The formant transitions were sharper for high speaking rate, but no systematic

trends were found for contrastive stress.

Relationships between the perceptual scores and the formants measurements or model

parameters did not support the importance of dynamic specification of vowels.
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TABLES

TABLE I. Equations of the dynamic and kinematic models. Symbol xn represents the formant

frequency at time coordinate n∆t; a, ai, b, c, c1, c2, d, p, q, t0, and x∗ are the model parameters;

k is the order of linear model (1); ∆t is the sampling step (i.e. 9 ms).

dynamic models kinematic models

linear & exp. xn = a0 +
∑k

i=1 aixn−i (1) xn = x∗ + pe−qn∆t (2)

critical damping xn = a0 + a1xn−1 −
a2
1
4 xn−2 (3) xn = x∗ + (c1 + c2n∆t)e−qn∆t (4)

logistic xn = c + a(xn−1−c)
ad+(1−d)(xn−1−c) (5) xn = c + a

1+e−b(n∆t−t0) (6)
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TABLE II. Medians and semi-68-% ranges of the first two formant frequencies (Hz) measured

in the steady-state part of speakers’ [i], [ε] or [a]. The medians were computed across all speaking

rate and stress conditions.

F1 F2

Speaker A Speaker B Speaker A Speaker B

median range median range median range median range

[i] 282 28 225 14 1965 36 1954 43

[ε] 373 20 353 32 1848 37 1890 52

[a] 530 73 513 144 1661 102 1732 168
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TABLE III. Results of analyses of variance of formant measurements for speaking rate and

contrastive stress factors. One analysis was carried out for each combination of formant, speaker

and vowel. Labels “DF”, “s:r” and “resid” stand for degree of freedom, interaction between stress

and rate, and residuals respectively. When p < 1e-10, 0 was reported in the table.

F1

Speaker A Speaker B

[ε] [a] [ε] [a]

DF F p DF F p DF F p DF F p

stress 1 17.3 3.7e-5 1 79.9 0 1 296.3 0 1 4261.3 0

rate 9 11.4 0 9 158.4 0 8 47.1 0 8 637.1 0

s:r 9 24.6 0 9 3.1 0.0011 8 11.8 0 8 83.7 0

resid 604 620 569 589

F2

Speaker A Speaker B

[ε] [a] [ε] [a]

DF F p DF F p DF F p DF F p

stress 1 37.5 1.7e-9 1 34.4 7.4e-9 1 549.4 0 1 558.3 0

rate 9 52.6 0 9 489.4 0 8 81.6 0 8 972.5 0

s:r 9 10.0 0 9 8.3 0 8 10.7 0 8 44.2 0

resid 599 620 553 584
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TABLE IV. Results of analyses of variance of a1 (linear model (1)) estimates fitted to the

first-half formant transitions for speaking rate and contrastive stress factors. One analysis was

carried out for each combination of formant, speaker and vowel. Labels “DF”, “s:r” and “resid”

stand for degree of freedom, interaction between stress and rate, and residuals respectively. When

p < 1e-10, 0 was reported in the table.

F1

Speaker A Speaker B

[ε] [a] [ε] [a]

DF F p DF F p DF F p DF F p

stress 1 0.55 0.46 1 20.83 6.3e-6 1 0.67 0.41 1 68.86 0

rate 9 0.76 0.65 9 1.98 0.040 8 5.51 1.0e-6 8 1.77 0.081

s:r 9 0.68 0.73 9 8.03 0 8 3.60 4.4e-4 8 3.41 7.9e-4

resid 444 522 539 545

F2

Speaker A Speaker B

[ε] [a] [ε] [a]

DF F p DF F p DF F p DF F p

stress 1 0.51 0.47 1 0.57 0.45 1 9.23 0.0025 1 0.87 0.35

rate 9 1.26 0.26 9 0.97 0.46 8 1.23 0.28 8 0.90 0.52

s:r 9 0.76 0.65 9 0.93 0.50 8 1.30 0.24 8 0.82 0.59

resid 514 502 514 561
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TABLE V. Results of analyses of variance of a1 (linear model (1)) estimates fitted to the

second-half formant transitions for speaking rate and contrastive stress factors. One analysis was

carried out for each combination of formant, speaker and vowel. Labels “DF”, “s:r” and “resid”

stand for degree of freedom, interaction between stress and rate, and residuals respectively. When

p < 1e-10, 0 was reported in the table.

F1

Speaker A Speaker B

[ε] [a] [ε] [a]

DF F p DF F p DF F p DF F p

stress 1 3.42 0.065 1 0.75 0.39 1 2.48 0.12 1 51.80 0

rate 9 2.35 0.013 9 1.20 0.29 8 1.29 0.24 8 18.12 0

s:r 9 1.99 0.038 9 1.06 0.39 8 2.67 0.0069 8 8.88 0

resid 570 569 548 538

F2

Speaker A Speaker B

[ε] [a] [ε] [a]

DF F p DF F p DF F p DF F p

stress 1 2.89 0.089 1 0.88 0.35 1 0.46 0.50 1 3.11 0.079

rate 9 1.35 0.21 9 1.80 0.066 8 1.62 0.12 8 3.90 1.8e-4

s:r 9 0.99 0.45 9 1.57 0.12 8 0.85 0.56 8 1.72 0.091

resid 554 596 385 448
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TABLE VI. Results of analyses of variance of d (nonlinear model (5)) estimates fitted to

complete formant transitions for speaking rate and contrastive stress factors. One analysis was

carried out for each combination of formant, speaker and vowel. Labels “DF”, “s:r” and “resid”

stand for degree of freedom, interaction between stress and rate, and residuals respectively. When

p < 1e-10, 0 was reported in the table.

F1

Speaker A Speaker B

[ε] [a] [ε] [a]

DF F p DF F p DF F p DF F p

stress 1 1.37 0.24 1 1.23 0.27 1 2.26 0.13 1 237.16 0

rate 9 12.70 0 9 20.63 0 8 8.02 0 8 2.68 0.0067

s:r 9 3.77 1.2e-4 9 10.89 0 8 7.57 0 8 6.51 3.9e-8

resid 604 615 567 586

F2

Speaker A Speaker B

[ε] [a] [ε] [a]

DF F p DF F p DF F p DF F p

stress 1 14.84 1.3e-4 1 0.037 0.85 1 2.09 0.15 1 0.99 0.32

rate 9 5.05 1.4e-6 9 18.07 0 8 1.46 0.17 8 1.17 0.32

s:r 9 2.31 0.015 9 1.68 0.091 8 0.56 0.81 8 1.05 0.40

resid 602 616 545 568
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TABLE VII. Standard linear Pearson correlations between the medians of the formant mea-

surements or the medians of the model parameters and the perceptual results for [a]. The medians

are shown in Figures 4, 5, 6 and 7, the perceptual scores are shown in Figure 3. Labels “u” or “s”

stands for unstressed or stressed [a], “Fi” for the ith formant, “a1(1)” or “a1(2)” for the parameter

a1 of the linear model (1) estimated on the first- or second-half transitions, and d for the parameter

d of the logistic model (5). Correlations printed in bold were significantly different from 0 at 0.05

level according to a two-tail standard Pearson sample correlation test. The number of degrees of

freedom were 8 and 7 respectively for speaker A and B.

F1 F2

Speaker A Speaker B Speaker A Speaker B

u s u s u s u s

Fi 0.82 0.87 0.90 0.89 -0.85 -0.87 -0.94 -0.81

a1(1) -0.52 0.84 0.35 0.74 -0.73 -0.21 0.75 0.86

a1(2) 0.79 0.46 0.02 0.49 0.89 0.96 0.68 0.53

d 0.79 0.51 -0.22 -0.78 0.83 0.82 0.68 -0.56
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FIGURES

FIG. 1. Plots of each kinematic model (solid lines) fitted to a second-half or full transition of

the first formant (dotted line) of the first part of a [iai] stimulus.

FIG. 2. Length medians of the [ia] or [iε] F1 transitions plotted as functions of speaking rate

measured in metronome rhythm: ’O’ stressed vowels, ’×’ unstressed vowels, solid lines for [ia], and

dotted lines for [iε]. Low speaking rates are on the left hand side of each graph.

FIG. 3. Normalized identification scores averaged over the seven listeners for speakers A and

B’s vowel [a] as functions of speaking rate: ’O’ stressed [a], ’×’ unstressed [a]. Low speaking rates

are on the left hand side of each graph.

FIG. 4. Medians of the first two formant frequencies (Hz) measured in the steady-state part

of speakers’ [ε] and [a] for all combinations of speaking rate and contrastive stress. The data is

plotted as functions of speaking rate measured in metronome rhythm: ’O’ stressed vowels, ’×’

unstressed vowels, solid lines for [a], and dotted lines for [ε]. Low speaking rates are on the left

hand side of each graph.

FIG. 5. Medians of parameter a1 of the linear model (1) fitted to the first-half formant transi-

tions of speakers’ [iε] or [ia] for each combination of speaking rate and contrastive stress. The data

is plotted as functions of speaking rate measured in metronome rhythm: ’O’ stressed vowels, ’×’

unstressed vowels, solid lines for [a], and dotted lines for [ε]. Low speaking rates are on the left

hand side of each graph.

FIG. 6. Medians of parameter a1 of the linear model (1) fitted to the second-half formant

transitions of speakers’ [iε] or [ia] for each combination of speaking rate and contrastive stress.

The data is plotted as functions of speaking rate measured in metronome rhythm: ’O’ stressed

vowels, ’×’ unstressed vowels, solid lines for [a], and dotted lines for [ε]. Low speaking rates are on

the left hand side of each graph.
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FIG. 7. Medians of parameter d of the logistic model (5) fitted to the whole formant transitions

of speakers’ [iε] or [ia] for each combination of speaking rate and contrastive stress. The data is

plotted as functions of speaking rate measured in metronome rhythm: ’O’ stressed vowels, ’×’

unstressed vowels, solid lines for [a], and dotted lines for [ε]. Low speaking rates are on the left

hand side of each graph.

FIG. 8. Formant measurements for the [a] and [ε] correctly identified in the perceptual exper-

iment. The ’|’ signs correspond to the [ε], the ’–’ to the [a]. The axes are linearly graduated in

Hz.

FIG. 9. Parameter a1 of the linear model (1) fitted to the second-half F1 or F2 transitions of

the [ia] or [iε] stimuli correctly identified in the perceptual experiment. The x axis corresponds to

F1, the y axis to F2, the ’|’ signs to [ε] and ’–’ to [a] stimuli.
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FIG. 1. Michel Pitermann, The Journal of the Acoustical Society of America.
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FIG. 2. Michel Pitermann, The Journal of the Acoustical Society of America.
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FIG. 3. Michel Pitermann, The Journal of the Acoustical Society of America.
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FIG. 4. Michel Pitermann, The Journal of the Acoustical Society of America.
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FIG. 5. Michel Pitermann, The Journal of the Acoustical Society of America.
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FIG. 6. Michel Pitermann, The Journal of the Acoustical Society of America.
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FIG. 7. Michel Pitermann, The Journal of the Acoustical Society of America.
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FIG. 8. Michel Pitermann, The Journal of the Acoustical Society of America.
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FIG. 9. Michel Pitermann, The Journal of the Acoustical Society of America.
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