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Abstract

In these notes, we present some methods and applications of large deviations to

finance and insurance. We begin with the classical ruin problem related to the Cramer’s

theorem and give en extension to an insurance model with investment in stock market.

We then describe how large deviation approximation and importance sampling are

used in rare event simulation for option pricing. We finally focus on large deviations

methods in risk management for the estimation of large portfolio losses in credit risk

and portfolio performance in market investment.
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1 Introduction

The area of large deviations is a set of asymptotic results on rare event probabilities and

a set of methods to derive such results. Large deviations is a very active area in applied

probability, and questions related to extremal events both in finance and insurance appli-

cations, play an increasingly important role. For instance, recent applications of interest

concern ruin probabilities in risk theory, risk management, option pricing, and simulation

of quantities involved in this context.

Large deviations appear historically in insurance mathematics with the ruin probability

estimation problem within the classical Cramer-Lundberg model. The problem was then

subsequently extended to more general models involving for example Lévy risk processes.

In finance, large deviations arise in various contexts. They occur in risk management for

the computation of the probability of large losses of a portfolio subject to market risk or

the default probabilities of a portfolio under credit risk. Large deviations methods are

largely used in rare events simulation and so appear naturally in the approximation of

option pricing, in particular for barrier options and far from the money options.

We illustrate our purpose with the following toy example. Let X be a (real-valued)

random variable, and consider the problem of computing or estimating P[X > ℓ], the

probability that X exceeds some level ℓ. In finance, we may think of X as the loss of a

portfolio subject to market or credit risk, and we are interested in the probability of large

loss or default probability. The r.v. X may also correspond to the terminal value of a stock

price, and the quantity P[X > ℓ] appears typically in the computation of a call or barrier

option, with a small probability of payoff when the option is far from the money or the

barrier ℓ is large. To estimate p = P[X > ℓ], a basic technique is Monte Carlo simulation :

generate n independent copies X1, . . . ,Xn of X, and use the sample mean :

S̄n =
1

n

n
∑

i=1

Yi, with Yi = 1Xi>ℓ.

The convergence of this estimate (when n → ∞) follows from the law of large numbers,

while the standard rate of convergence is given, via the central limit theorem, in terms of

the variance v = p(1 − p) of Yi :

P[|S̄n − p| ≥ a√
n

] → 2Φ( − a√
v
),

where Φ is the cumulative distribution function of the standard normal law. Furthermore,

the convergence of the estimator S̄n is precised with the large deviation result, known here

as the Cramer’s theorem, which is concerned with approximation of rare event probabilities

P[S̄n ∈ A], and typically states that

P[|S̄n − p| ≥ a] ≃ Ce−γn,

for some constants C and γ.

Let us now turn again to the estimation of p = P[X > ℓ]. As mentioned above, the rate

of convergence of the naive estimator S̄n is determined by :

Var(S̄n) =
Var(1X>ℓ)

n
=

p(1 − p)

n
,
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and the relative error is

relative error =
standard deviation of S̄n

mean of S̄n
=

√

p(1 − p)√
np

.

Hence, if p = P[X > ℓ] is small, and since
√

p− p2/p → ∞ as p goes to zero, we see that

a large sample size (i.e. n) is required for the estimator to achieve a reasonable relative

error bound. This is a common occurence when estimating rare events. In order to improve

the estimate of the tail probability P[X > ℓ], one is tempted to use importance sampling

to reduce variance, and hence speed up the computation by requiring fewer samples. This

consists basically in changing measures to try to give more weight to “important” outcomes,

(increase the default probability). Since large deviations theory also deals with rare events,

we can see its strong link with importance sampling.

To make the idea concrete, consider again the problem of estimating p = P[X > ℓ], and

suppose that X has distribution µ(dx). Let us look at an alternative sampling distribution

ν(dx) absolutely continuous with respect to µ, with density f(x) = dν/dµ(x). The tail

probability can then be written as :

p = P[X > ℓ] =

∫

1x>ℓµ(dx) =

∫

1x>ℓφ(x)ν(dx) = Eν [1X>ℓφ(X)],

where φ = 1/f , and Eν denotes the expectation under the measure ν. By generating

i.i.d. samples X̃1, . . . , X̃n, . . . with distribution ν, we have then an alternative unbiased and

convergent estimate of p with

S̃n =
1

n

n
∑

i=1

1X̃i>ℓφ(X̃i),

and whose rate of convergence is determined by

Varν(S̄n) =
1

n

∫

(1x>ℓ − pf(x))2φ2(x)ν(dx).

The minimization of this quantity over all possible ν (or f) leads to a zero variance with

the choice of a density f(x) = 1x>ℓ/p. This is of course only a theoretical result since it

requires the knowledge of p, the very thing we want to estimate! However, by noting that

in this case ν(dx) = f(x)µ(dx) = 1x>ℓµ(dx)/P[X > ℓ] is nothing else than the conditional

distribution of X given {X > ℓ}, this suggests to use an importance sampling change of

measure that makes the rare event {X > ℓ} more likely. This method of suitable change of

measure is also the key step in proving large deviation results.

The plan of these lectures is the following. In Section 2, we give some basic tools and re-

sults on large deviations, in particular the most classical result on large deviations, Cramer’s

theorem. We illustrate in Section 3 the first applications of large deviations to ruin prob-

lems in insurance industry, and give some extension to an insurance model with financial

investment opportunity. Section 4 is concerned with the large deviations approximation for

rare event simulation in option pricing, and we shall use asymptotic results from large de-

viations theory : Fredilin-Wentzell theory on sample path large deviations, and Varadhan’s

integral principle. Finally, Section 5 is devoted to applications of large deviations in risk

management, where we use conditional and control variants of the Ellis-Gartner theorem.
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2 Basic tools and results on large deviations

2.1 Laplace function and exponential change of measures

If X is a (real-valued) random variable on (Ω,F) with probability distribution µ(dx), the

cumulant generating function (c.g.f.) of µ is the logarithm of the Laplace function of X,

i.e. :

Γ(θ) = ln E[eθX ] = ln

∫

eθxµ(dx) ∈ (−∞,∞], θ ∈ R.

Notice that Γ(0) = 0, and Γ is convex by Hölder inequality. We denote D(Γ) = {θ ∈ R :

Γ(θ) <∞}, and for any θ ∈ D(Γ), we define a probability measure µθ on R by :

µθ(dx) = exp(θx− Γ(θ))µ(dx). (2.1)

Suppose that X1, . . . ,Xn, . . . , is an i.i.d. sequence of random variables with distribution µ

and consider the new probability measure Pθ on (Ω,F) with likelihood ratio evaluated at

(X1, . . . ,Xn), n ∈ N∗, by :

dPθ

dP
(X1, . . . ,Xn) =

n
∏

i=1

dµθ

dµ
(Xi) = exp

(

θ

n
∑

i=1

Xi − nΓ(θ)
)

. (2.2)

By denoting Eθ the corresponding expectation under Pθ, formula (2.2) means that for all

n ∈ N∗,

E

[

f(X1, . . . ,Xn)
]

= Eθ

[

f(X1, . . . ,Xn) exp
(

− θ

n
∑

i=1

Xi + nΓ(θ)
)]

, (2.3)

for all Borel functions f for which the expectation on the l.h.s. of (2.3) is finite. Moreover,

the random variables X1, . . . ,Xn, n ∈ N∗, are i.i.d. with probability distribution µθ under

Pθ. Actually, the relation (2.3) extends from a fixed number of steps n to a random number

of steps, provided the random horizon is a stopping time. More precisely, if τ is a stopping

time in N for X1, . . . ,Xn, . . ., i.e. the event {τ < n} is measurable with respect to the

algebra generated by {X1, . . . ,Xn} for all n, then

E

[

f(X1, . . . ,Xτ )1τ<∞
]

= Eθ

[

f(X1, . . . ,Xτ ) exp
(

− θ

τ
∑

i=1

Xi + τΓ(θ)
)

1τ<∞
]

, (2.4)

for all Borel functions f for which the expectation on the l.h.s. of (2.4) is finite.

The cumulant generating function Γ records some useful information on the probability

distributions µθ. For example, Γ′(θ) is the mean of µθ. Indeed, for any θ in the interior of

D(Γ), differentiation yields by dominated convergence :

Γ′(θ) =
E[XeθX ]

E[eθX ]
= E[X exp (θX − Γ(θ))] = Eθ[X]. (2.5)

A similar calculation shows that Γ′′(θ) is the variance of µθ. Notice in particular that if 0

lies in the interior of D(Γ), then Γ′(0) = E[X] and Γ′′(0) = V ar(X).
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Bernoulli distribution

Let µ the Bernoulli distribution of parameter p. Its c.g.f. is given by

Γ(θ) = ln(1 − p+ peθ).

A direct simple algebra calculation shows that µθ is the Bernoulli distribution of parameter

peθ/(1 − p+ peθ).

Poisson distribution

Let µ the Poisson distribution of intensity λ. Its c.g.f. is given by

Γ(θ) = λ(eθ − 1).

A direct simple algebra calculation shows that µθ is the Poisson distribution of intensity

λeθ. Hence, the effect of the change of probability measure Pθ is to multiply the intensity

by a factor eθ.

Normal distribution

Let µ the normal distribution N (0, σ2), whose c.g.f. is given by :

Γ(θ) =
θ2σ2

2
.

A direct simple algebra calculation shows that µθ is the normal distribution N (θσ2, σ2).

Hence, if X1, . . . ,Xn are i.i.d. with normal distribution N (0, σ2), then under the change of

measure Pθ with likelihood ratio :

dPθ

dP
(X1, . . . ,Xn) = exp

(

θ

n
∑

i=1

Xi − n
θ2σ2

2

)

,

the random variables X1, . . . ,Xn are i.i.d. with normal distribution N (θσ2, σ2) : the effect

of Pθ is to change the mean of Xi from 0 to θσ2. This result can be interpreted as the

finite-dimensional version of Girsanov’s theorem.

Exponential distribution

Let µ the exponential distribution of intensity λ. Its c.g.f. is given by

Γ(θ) =

{

ln ( λ
λ−θ ), θ < λ

∞, θ ≥ λ

A direct simple algebra calculation shows that for θ < λ, µθ is the exponential distribution

of intensity λ− θ. Hence, the effect of the change of probability measure Pθ is to shift the

intensity from λ to λ− θ.

2.2 Cramer’s theorem

The most classical result in large deviations area is Cramer’s theorem. This concerns large

deviations associated with the empirical mean of i.i.d. random variables valued in a finite-

dimensional space. We do not state the Cramer’s theorem in whole generality. Our purpose
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is to put emphasis on the methods used to derive such result. For simplicity, we consider the

case of real-valued i.i.d. random variables Xi with (nondegenerate) probability distribution

µ of finite mean EX1 =
∫

xµ(dx) < ∞, and we introduce the random walk Sn =
∑n

i=1Xi.

It is well-known by the law of large numbers that the empirical mean Sn/n converges in

probability to x̄ = EX1, i.e. limn P[Sn/n ∈ (x̄ − ε, x̄ + ε)] = 1 for all ε > 0. Notice also,

by the central limit theorem that limn P[Sn/n ∈ [x̄, x̄ + ε)] = 1/2 for all ε > 0. Large

deviations results focus on asymptotics for probabilities of rare events, for example of the

form P[Sn

n ≥ x] for x > EX1, and state that

P[
Sn

n
≥ x] ≃ Ce−γx,

for some constants C and γ to be precised later. The symbol ≃ means that the ratio is one

in the limit (here when n goes to infinity). The rate of convergence is characterized by the

Fenchel-Legendre transform of the c.g.f. Γ of X1 :

Γ∗(x) = sup
θ∈R

[θx− Γ(θ)] ∈ [0,∞], x ∈ R.

As supremum of affine functions, Γ∗ is convex. The sup in the definition of Γ∗ can be

evaluated by differentiation : for x ∈ R, if θ = θ(x) is solution to the saddle-point equation,

x = Γ′(θ), then Γ∗(x) = θx − Γ(θ). Notice, from (2.5), that the exponential change of

measure Pθ put the expectation of X1 to x. Actually, exponential change of measure is a

key tool in large deviations methods. The idea is to select a measure under which the rare

event is no longer rare, so that the rate of decrease of the original probability is given by

the rate of decrease of the likelihood ratio. This particular change of measure is intended

to approximate the most likely way for the rare event to occur.

By Jensen’s inequality, we show that Γ∗(EX1) = 0. This implies that for all x ≥ EX1,

Γ∗(x) = supθ≥0 [θx− Γ(θ)], and so Γ∗ is nondecreasing on [EX1,∞).

Theorem 2.1 (Cramer’s theorem)

For any x ≥ EX1, we have

lim
n→∞

1

n
ln P[

Sn

n
≥ x] = −Γ∗(x) = − inf

y≥x
Γ∗(y). (2.6)

Proof. 1) Upper bound. The main step in the upper bound ≤ of (2.6) is based on Chebichev

inequality combined with the i.i.d. assumption on the Xi :

P[
Sn

n
≥ x] = E[1Sn

n
≥x] ≤ E[eθ(Sn−nx)] = exp (nΓ(θ)− θnx), ∀θ ≥ 0.

By taking the infimum over θ ≥ 0, and since Γ∗(x) = supθ≥0[θx− Γ(θ)] for x ≥ EX1, we

then obtain

P[
Sn

n
≥ x] ≤ exp ( − nΓ∗(x)).

and so in particular the upper bound ≤ of (2.6).
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2) Lower bound. Since P[Sn

n ≥ x] ≥ P[Sn

n ∈ [x, x+ ε)], for all ε > 0, it suffices to show that

lim
ε→0

lim inf
n→∞

1

n
ln P

[Sn

n
∈ [x, x+ ε)

]

≥ −Γ∗(x). (2.7)

Suppose that µ is supported on a bounded support so that Γ is finite everywhere. Suppose

first that there exists a solution θ = θ(x) > 0 to the saddle-point equation : Γ′(θ) = x, i.e.

attaining the supremum in Γ∗(x) = θ(x)x− Γ(θ(x)). The key step is now to introduce the

new probability distribution µθ as in (2.1) and Pθ the corresponding probability measure

on (Ω,F) with likelihood ratio :

dPθ

dP
=

n
∏

i=1

dµθ

dµ
(Xi) = exp

(

θSn − nΓ(θ)
)

.

Then, we have by (2.3) and for all ε > 0 :

P

[Sn

n
∈ [x, x+ ε)

]

= Eθ

[

exp
(

− θSn + nΓ(θ)
)

1Sn
n

∈[x,x+ε)

]

= e−n(θx−Γ(θ))Eθ

[

exp
(

− nθ(
Sn

n
− x)

)

1Sn
n

∈[x,x+ε)

]

≥ e−n(θx−Γ(θ))e−n|θ|εPθ

[Sn

n
∈ [x, x+ ε)

]

,

and so

1

n
ln P

[Sn

n
∈ [x, x+ ε)

]

≥ −[θx− Γ(θ)] − |θ|ε+
1

n
ln Pθ

[Sn

n
∈ [x, x+ ε)

]

. (2.8)

Now, since Γ′(θ) = x, we have Eθ[X1] = x, and by the law of large numbers and CLT :

limn Pθ

[

Sn

n ∈ [x, x + ε)
]

= 1/2 (> 0). We also have Γ∗(x) = θx − Γ(θ). Therefore, by

sending n to infinity and then ε to zero in (2.8), we get (2.7).

Now, if the supremum in Γ∗(x) is not attained, we can find a sequence (θk)k ր ∞, such

that θkx− Γ(θk) → Γ∗(x). Since E[eθk(X1−x)1X1<x] → 0, we then get

E[eθk(X1−x)1X1≥x] → e−Γ∗(x),

as k goes to infinity. This is possible only if P[X1 > x] = 0 and P[X1 = x] = e−Γ∗(x). By

the i.i.d. assumption on the Xi, this implies P[Sn/n ≥ x] ≥ (P[X1 ≥ x])n = e−nΓ∗(x), which

proves (2.7).

Suppose now that µ is of unbounded support, and fix M large enough s.t. µ([−M,M ])

> 0. By the preceding proof, the lower bound (2.7) holds with the law of Sn/n conditional

on {|Xi| ≤ M, i = 1, . . . , n}, and with a c.g.f. equal to the c.g.f. of the conditional law of

X1 given |X1| ≤ M :

lim
ε→0

lim inf
n→∞

1

n
ln P

[Sn

n
∈ [x, x+ ε)

∣

∣

∣
|Xi| ≤M, i = 1, . . . , n

]

≥ −Γ̃∗
M(x) := − sup

θ∈R

[θx− Γ̃M (θ)], (2.9)

8



with Γ̃M (θ) = ln E[eθX1 ||X1| ≤M ] = ΓM (θ)− lnµ([−M,M ]), ΓM (θ) = ln E[eθX11|X1|≤M ].

Now, by writing from Bayes formula that P

[

Sn

n ∈ [x, x + ε)
]

= P

[

Sn

n ∈ [x, x + ε)
∣

∣

∣
|Xi| ≤

M, i = 1, . . . , n
]

. (µ([−M,M ]))n, we get with (2.9)

lim
ε→0

lim inf
n→∞

1

n
ln P

[Sn

n
∈ [x, x+ ε)

]

≥ lim
ε→0

lim inf
n→∞

1

n
ln P

[Sn

n
∈ [x, x+ ε)

∣

∣

∣
|Xi| ≤M, i = 1, . . . , n

]

+ lnµ([−M,M ])

≥ −Γ∗
M(x) := − sup

θ∈R

[θx− ΓM (θ)].

The required result is obtained by sendingM to infinity. Notice also finally that infy≥x Γ∗(y)
= Γ∗(x) since Γ∗ is nondecreasing on [EX1,∞). 2

Examples

1) Bernoulli distribution : for X1 ∼ B(p), we have Γ∗(x) = x ln (x
p ) + (1− x) ln (1−x

1−p ) for x

∈ [0, 1] and ∞ otherwise.

2) Poisson distribution : for X1 ∼ P(λ), we have Γ∗(x) = x ln (x
λ) + λ−x for x ≥ 0 and ∞

otherwise.

3) Normal distribution : for X1 ∼ N (0, σ2), we have Γ∗(x) = x2

2σ2 , x ∈ R.

2) Exponential distribution : for X1 ∼ E(λ), we have Γ∗(x) = λx − 1 − ln(λx) for x > 0

and Γ∗(x) = ∞ otherwise.

Remark 2.1 Cramer’s theorem possesses a multivariate counterpart dealing with the large

deviations of the empirical means of i.i.d. random vectors in Rd.

Remark 2.2 (Relation with importance sampling)

Fix n and let us consider the estimation of pn = P[Sn/n ≥ x]. A standard estimator for

pn is the average with N independent copies of X = 1Sn/n≥x. However, as shown in the

introduction, for large n, pn is small, and the relative error of this estimator is large. By

using an exponential change of measure Pθ with likelihood ratio

dPθ

dP
= exp (θSn − nΓ(θ)),

so that

pn = Eθ

[

exp ( − θSn + nΓ(θ))1Sn
n

≥x

]

,

we have an importance sampling (IS) (unbiased) estimator of pn, by taking the average of

independent replications of

exp ( − θSn + nΓ(θ))1Sn
n

≥x.

The parameter θ is chosen in order to minimize the variance of this estimator, or equivalently

its second moment :

M2
n(θ, x) = Eθ

[

exp ( − 2θSn + 2nΓ(θ))1Sn
n

≥x

]

≤ exp ( − 2n(θx− Γ(θ))) (2.10)

9



By noting from Cauchy-Schwarz’s inequality thatM2
n(θ, x) ≥ p2

n = P[Sn/n ≥ x] ≃ Ce−2nΓ∗(x)

as n goes to infinity, from Cramer’s theorem, we see that the fastest possible exponential

rate of decay of M2
n(θ, x) is twice the rate of the probability itself, i.e. 2Γ∗(x). Hence,

from (2.10), and with the choice of θ = θx s.t. Γ∗(x) = θxx− Γ(θx), we get an asymptotic

optimal IS estimator in the sense that :

lim
n→∞

1

n
lnM2

n(θx, x) = 2 lim
n→∞

1

n
ln pn.

This parameter θx is such that Eθx
[Sn/n] = x so that the event {Sn/n ≥ x} is no more

rare under Pθx
, and is precisely the parameter used in the derivation of the large deviations

result in Cramer’s theorem.

2.3 Some general principles in large deviations

In this section, we give some general principles in large deviations theory. We refer to the

classical references [13] or [15] for a detailed treatment on the subject.

We first give the formal definition of a large deviation principle (LDP). Consider a

sequence {Zε}ε on (Ω,F ,P) valued in some topological space X . The LDP characterizes

the limiting behaviour as ε → 0 of the family of probability measures {P[Zε ∈ dx]}ε on X
in terms of a rate function. A rate function I is a lower semicontinuous function mapping

I : X → [0,∞]. It is a good rate function if the level sets {x ∈ X : I(x) ≤M} are compact

for all M < ∞.

The sequence {Zε}ε satisfies a LDP on X with rate function I (and speed ε) if :

(i) Upper bound : for any closed subset F of X

lim sup
ε→0

ε ln P[Zε ∈ F ] ≤ − inf
x∈F

I(x).

(ii) Lower bound : for any open subset G of X

lim inf
ε→0

ε ln P[Zε ∈ G] ≥ − inf
x∈G

I(x).

If F is a subset of X s.t. infx∈F o I(x) = infx∈F̄ I(x) := IF , then

lim
ε→0

ε ln P[Zε ∈ F ] = −IF ,

which formally means that P[Zε ∈ F ] ≃ Ce−IF /ε for some constant C. The classical

Cramer’s theorem considered the case of the empirical mean Zε = Sn/n of i.i.d. ran-

dom variables in Rd, with ε = 1/n. Further main results in large deviations theory are

the Gärtner-Ellis theorem, which is a version of Cramer’s theorem where independence is

weakened to the existence of

Γ(θ) := lim
ε→0

ε ln E[e
θ.Zε

ε ], θ ∈ Rd.

LDP is then stated for the sequence {Zε}ε with a rate function equal to the Fenchel-

Legendre transform of Γ :

Γ∗(x) = sup
θ∈Rd

[θ.x− Γ(θ)], x ∈ Rd.
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Other results in large deviations theory include Sanov’s theorem, which gives rare events

asymptotics for empirical distributions. In many problems, the interest is in rare events

that depend on random process, and the corresponding asymptotics probabilities, usually

called sample path large deviations, were developed by Freidlin-Wentzell and Donsker-

Varadhan. For instance, the problem of diffusion exit from a domain is an important

application of Freidlin-Wentzell theory, and occurs naturally in finance, see Section 4.1.

We briefly summarize these results. Let ε > 0 a (small) positive parameter and consider

the stochastic differential equation in Rd on some interval [0, T ],

dXε
s = bε(s,X

ε
s )ds +

√
εσ(s,Xε

s )dWs, (2.11)

and suppose that there exists a Lipschitz function b on [0, T ] × Rd s.t.

lim
ε→0

bε = b,

uniformly on compact sets. Given an open set Γ of [0, T ] × Rd, we consider the exit time

from Γ,

τ ε
t,x

= inf {s ≥ t : Xε,t,x
s /∈ Γ},

and the corresponding exit probability

vε(t, x) = P[τ ε
t,x

≤ T ], (t, x) ∈ [0, T ] × Rd.

Here Xε,t,x denotes the solution to (2.11) starting from x at time t. It is well-known that

the process Xε,t,x converge to X0,t,x the solution to the ordinary differential equation

dX0
s = b(s,X0

s )ds, X0
t = x.

In order to ensure that vε goes to zero, we assume that for all t ∈ [0, T ],

(H) x ∈ Γ =⇒ X0,t,x
s ∈ Γ, ∀s ∈ [t, T ].

Indeed, under (H), the system (2.11) tends, when ε is small, to stay inside Γ, so that the

event {τ ε
t,x

≤ T} is rare. The large deviations asymptotics of vε(t, x), when ε goes to zero,

was initiated by Varadhan and Freidlin-Wentzell by probabilistic arguments. An alternative

approach, introduced by Fleming, connects this theory with optimal control and Bellman

equation, and is developed within the theory of viscosity solutions, see e.g. [9]. We sketch

here this approach. It is well-known that the function vε satisfies the linear PDE

∂vε

∂t
+ bε(t, x).Dxvε +

ε

2
tr(σσ′(t, x)D2

xvε) = 0, (t, x) ∈ [0, T ) × Γ (2.12)

together with the boundary conditions

vε(t, x) = 1, (t, x) ∈ [0, T ) × ∂Γ (2.13)

vε(T, x) = 0, x ∈ Γ. (2.14)
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Here ∂Γ is the boundary of Γ. We now make the logarithm transformation

Vε = −ε ln vε.

Then, after some straightforward derivation, (2.12) becomes the nonlinear PDE

− ∂Vε

∂t
− bε(t, x).DxVε −

ε

2
tr(σσ′(t, x)D2

xVε)

+
1

2
(DxVε)

′σσ′(t, x)DxVε = 0, (t, x) ∈ [0, T ) × Γ, (2.15)

and the boundary data (2.13)-(2.14) become

Vε(t, x) = 0, (t, x) ∈ [0, T ) × ∂Γ (2.16)

Vε(T, x) = ∞, x ∈ Γ. (2.17)

At the limit ε = 0, the PDE (2.15) becomes a first-order PDE

− ∂V0

∂t
− b(t, x).DxV0 +

1

2
(DxV0)

′σσ′(t, x)DxV0 = 0, (t, x) ∈ [0, T ) × Γ, (2.18)

with the boundary data (2.16)-(2.17). By PDE-viscosity solutions methods and comparison

results, we can prove (see e.g. [9] or [19]) that Vε converges uniformly on compact subsets of

[0, T )×Γ, as ε goes to zero, to V0 the unique viscosity solution to (2.18) with the boundary

data (2.16)-(2.17). Moreover, V0 has a representation in terms of control problem. Consider

the Hamiltonian function

H(t, x, p) = −b(t, x).p +
1

2
p′σσ′(t, x)p, (t, x, p) ∈ [0, T ] × Γ × Rd,

which is quadratic and in particular convex in p. Then, using the Legendre transform, we

may rewrite

H(t, x, p) = sup
q∈Rd

[ − q.p−H∗(t, x, q)],

where

H∗(t, x, q) = sup
p∈Rd

[ − p.q −H(t, x, p)]

=
1

2
(q − b(t, x))′(σσ′(t, x))−1(q − b(t, x)), (t, x, q) ∈ [0, T ] × Γ × Rd.

Hence, the PDE (2.18) is rewritten as

∂V0

∂t
+ inf

q∈Rd
[q.DxV0 +H∗(t, x, q)] = 0, (t, x) ∈ [0, T ) × Γ,

which, together with the boundary data (2.16)-(2.17), is associated to the value function

for the following calculus of variations problem : for an absolutely continuous function x(.)
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on [0, T ) and valued in Rd, i.e. x ∈ H1
loc([0, T ],Rd), we denote ẋ(u) = qu its time derivative,

and τ(x) the exit time of x(.) from Γ. Then,

V0(t, x) = inf
x(.)∈A(t,x)

∫ T

t
H∗(u, x(u), ẋ(u))du, (t, x) ∈ [0, T ) × Γ,

= inf
x(.)∈A(t,x)

∫ T

t

1

2
(ẋ(u) − b(u, x(u)))′(σσ′(u, x(u)))−1(ẋ(u) − b(u, x(u)))du

where

A(t, x) = {x(.) ∈ H1
loc([0, T ],Rd) : x(t) = x and τ(x) ≤ T}.

The large deviations result is then stated as

lim
ε→0

ε ln vε(t, x) = −V0(t, x), (2.19)

and the above limit holds uniformly on compact subsets of [0, T ) × Γ. A more precise

result may be obtained, which allows to remove the above log estimate. This type of result

is developed in [17], and is called sharp large deviations estimate. It states asymptotic

expansion (in ε) of the exit probability for points (t, x) belonging to a set N of [0, T ′] × Γ

for some T ′ < T , open in the relative topology, and s.t. V0 ∈ C∞(N). Then, under the

condition that

bε = b+ εb1 + 0(ε2),

one has

vε(t, x) = exp ( − V0(t, x)

ε
− w(t, x))(1 +O(ε)),

uniformly on compact sets of N , where w is solution to the PDE problem

−∂W
∂t

− (b− σσ′DxV0).Dxw =
1

2
tr(σσ′D2

xV0) + b1.DxV0 in N

w(t, x) = 0 on
(

[0, T ) × ∂Γ
)

∪ N̄ .

The function w may be represented as

w(t, x) =

∫ ρ

t

(1

2
tr(σσ′D2

xV0) + b1.DxV0

)

(s, ξ(s))ds,

where ξ is the solution to

ξ̇(s) = (b− σσ′DxV0)(s, ξ(s)), ξ(t) = x,

and ρ is the exit time (after t) of (s, ξ(s)) from N .

We shall develop more in detail in the next sections some applications of the Gärtner-

Ellis and Freidlin-Wentzell theories in finance.

We end this paragraph by stating the important Varadhan’s integral formula, which in-

volves the asymptotics behavior of certain expectations. It extends the well-known method
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of Laplace for studying the asymptotics of certain integrals on R : given a continuous

function ϕ from [0, 1] into R, Laplace’s method states that

lim
n→∞

1

n
ln

∫ 1

0
enϕ(x)dx = max

x∈[0,1]
ϕ(x).

Varadhan result’s is formulated as follows :

Theorem 2.2 (Varadhan) Suppose that {Zε}ε satisfies a LDP on X with good rate function

I, and let ϕ : X → R be any continuous function s.t. the following moment condition holds

for some γ > 1 :

lim sup
ε→0

ε ln E[eγϕ(Zε)/ε] < ∞.

Then,

lim
ε→0

ε ln E[eϕ(Zε)/ε] = sup
x∈X

[ϕ(x) − I(x)]. (2.20)

Proof. (a) For simplicity, we show the inequality ≤ in (2.20) when ϕ is bounded on X .

Hence, there exists M ∈ (0,∞) s.t. −M ≤ ϕ(x) ≤ M for all x ∈ X . For N positive integer,

and j ∈ {1, . . . , N}, we consider the closed subsets of X

FN,j = {x ∈ X : −M +
2(j − 1)M

N
≤ ϕ(x) ≤ −M +

2jM

N
},

so that ∪N
j=1FN,j = X . We then have from the large deviations upper bound on (Zε),

lim sup
ε→0

ε ln E[eϕ(Zε)/ε] = lim sup
ε→0

ε ln

∫

X
eϕ(Zε)/εP[Zε ∈ dx]

≤ lim sup
ε→0

ε ln (

N
∑

j=1

∫

FN,j

eϕ(Zε)/εP[Zε ∈ dx])

≤ lim sup
ε→0

ε ln (

N
∑

j=1

e(−M+2jM/N)/εP[Zε ∈ FN,j ])

≤ lim sup
ε→0

ε ln ( max
j=1,...,N

e(−M+2jM/N)/εP[Zε ∈ FN,j ])

≤ max
j=1,...,N

(

−M +
2jM

N
+ lim sup

ε→0
ε ln P[Zε ∈ FN,j ]

)

≤ max
j=1,...,N

(

−M +
2jM

N
+ sup

x∈FN,j

[−I(x)]
)

≤ max
j=1,...,N

(

−M +
2jM

N
+ sup

x∈FN,j

[ϕ(x) − I(x)] − inf
x∈FN,j

ϕ(x)
)

≤ sup
x∈FN,j

[ϕ(x) − I(x)] +
2M

N
.

By sending N to infinity, we get the inequality ≤ in (2.20).
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(b) To prove the reverse inequality, we fix an arbitrary point x0 ∈ X , an arbitrary δ > 0,

and we consider the open set G = {x ∈ X : ϕ(x) > ϕ(x0) − δ}. Then, we have from the

large deviations lower bound on (Zε),

lim inf
ε→0

ε ln E[eϕ(Zε)/ε] ≥ lim inf
ε→0

ε ln E[eϕ(Zε)/ε1Zε∈G]

≥ ϕ(x0) − δ + lim inf
ε→0

ε ln P[Zε ∈ G]

≥ ϕ(x0) − δ − inf
x∈G

I(x)

≥ ϕ(x0) − I(x0) − δ.

Since x0 ∈ X and δ > 0 are arbitrary, we get the required result. 2

Remark 2.3 The relation (2.20) has the following interpretation. By writing formally the

LDP for (Zε) with rate function I as P[Zε ∈ dx] ≃ e−I(x)/εdx, we can write

E[eϕ(Zε)/ε] =

∫

eϕ(x)/εP[Zε ∈ dx] ≃
∫

e(ϕ(x)−I(x))/εdx

≃ C exp
(supx∈X (ϕ(x) − I(x))

ε

)

.

As in Laplace’s method, Varadhan’s formula states that to exponential order, the main

contribution to the integral is due to the largest value of the exponent.

3 Ruin probabilities in risk theory

3.1 The classical ruin problem

3.1.1 The insurance model

We consider an insurance company earning premiums at a constant rate p per unit of time,

and paying claims that arrive at the jumps of a Poisson process with intensity λ. We

denote by Nt the number of claims arriving in [0, t], by Tn, n ≥ 1, the arrival times of the

claim, and by ξ1 = T1, ξn = Tn − Tn−1, n ≥ 2, the interarrival times, which are then i.i.d.

exponentially distributed with finite mean Eξ1 = 1/λ. The size of the n-th claim is denoted

Yn, and we assume that the claim sizes Yn, n ∈ N∗, are (positive) i.i.d., and independent

of the Poisson process. Starting from an initial reserve x > 0, the risk reserve process Xt

= Xx
t , t ≥ 0, of the insurance company is then given by :

Xx
t = x+ pt−

Nt
∑

i=1

Yi. (3.1)

The probability of ruin with infinite horizon is

ψ(x) = P[τx <∞],

where τx = inf{t ≥ 0 : Xx
t < 0} is the time of ruin. We are interested in the estimation of

the ruin probability, in particular for large values of the initial reserve.
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3.1.2 The Cramer-Lundberg estimate

The Cramer-Lundberg approximation concerns the estimation of the ruin probability ψ(x),

and is one of the most celebrated result of risk theory. There are several approaches for

deriving such a result. We follow in this paragraph a method based on large deviations

arguments and change of probability measures.

First, we easily see, by the strong law of large numbers, that

1

t

Nt
∑

i=1

Yi → ρ a.s., t→ ∞,

where ρ = λE[Y1] > 0 is interpreted as the average amount of claim per unit of time. The

safety loading η plays a key role in ruin probability. It is defined as the relative amount by

which the premium rate exceeds ρ :

η =
p− ρ

ρ
⇐⇒ p = (1 + η)ρ.

Hence Xx
t /t → p− ρ = ρη when t goes to infinity. Therefore, if η < 0, Xx

t → −∞, and we

clearly have ψ(x) = 1 for all x. For η = 0, we can also show that lim supXx
t = −∞ so that

ψ(x) = 1. In the sequel, we make the net profit assumption :

η =
p− λE[Y1]

λE[Y1]
> 0, (3.2)

which ensures that the probability of ruin is less than 1.

Since ruin may occur only at the arrival of a claim, i.e. when X jumps downwards, it

suffices to consider the discrete-time process embedded at the jumps of the Poisson process.

We then define the discrete-time process Xx
Tn

, n ≥ 1, so that

ψ(x) = P[σx <∞],

where σx = inf{n ≥ 1 : Xx
Tn
< 0} = inf{n ≥ 1 : Sn > x}, and Sn = x −Xx

Tn
is the net

payout up to the n-th claim and given by the random walk :

Sn = Z1 + . . .+ Zn, Zi = Yi − pξi, i ∈ N∗.

The r.v. Zi are i.i.d. and satisfy under the net profit condition, E[Z1] < 0. We denote by

ΓZ the c.g.f. of the Zi, and we see that by independence of Yi and ξi :

ΓZ(θ) = ΓY (θ) + Γξ(−pθ)

= ΓY (θ) + ln
( λ

λ+ pθ

)

, θ > −λ
p
,

where ΓY (resp. Γξ) is the c.g.f. of the Yi (resp. ξi). For any θ in the domain of ΓZ , we

consider the exponential change of measure with parameter θ, and since σx is a stopping

time in the filtration of (Z1, . . . , Zn), we apply formula (2.4) to write the ruin probability

as an Eθ expectation :

ψ(x) = P[σx <∞] = E[1σx<∞]

= Eθ

[

1σx<∞ exp ( − θSσx + σxΓZ(θ))
]

. (3.3)
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We now assume Y has a light-tailed distribution, i.e. : there exists θ̄ ∈ (0,∞] s.t. Γy(θ) <

∞ for θ < θ̄, and ΓY (θ) → ∞ as θ ր θ̄. In this case, the c.g.f. ΓZ of the Zi is finite on

(−λ/p, θ̄), it is differentiable in 0 with Γ′
Z(0) = E[Z1] < 0 under the net profit condition

(3.2). Moreover, since E[Y1] > 0 and Y1 is independent of ξ1, we see that P[Z1 > 0] > 0,

which implies that ΓZ(θ) goes to infinity as θ goes to θ̄. By convexity of ΓZ and recalling

that ΓZ(0) = 0, we deduce the existence of an unique θ
L
> 0 s.t. ΓZ(θ

L
) = 0. This unique

positive θ
L

is the solution to the so-called Cramer-Lundberg equation :

ΓY (θ
L
) + ln

( λ

λ+ pθ
L

)

= 0,

which is also written equivalently in :

γ
Y
(θ

L
) =

pθ
L

λ
, (3.4)

where γ
Y

= exp(ΓY (θ))−1 =
∫

eθyFY (dy)−1 is the shifted (γY (0) = 0) moment generating

function of Yi, and FY is the distribution function of the claim sizes Yi. θ
L

is called

adjustment coefficient (or sometimes Lundberg exponent). Notice also that by convexity of

ΓZ , we have Γ′
Z(θ

L
) > 0. Hence, under Pθ

L
, the random walk has positive drift Eθ

L
[Zn] =

Γ′
Z(θ

L
) > 0, and this implies Pθ

L
[σx <∞] = 1. For this choice of θ = θ

L
, (3.3) becomes

ψ(x) = Eθ
L

[

e−θ
L

Sσx

]

= e−θ
L

xEθ
L

[

e−θ
L

(Sσx−x)
]

. (3.5)

By noting that the overshoot Sσx − x is nonnegative, we obtain the Lundberg’s inequality

on the ruin probability :

ψ(x) ≤ e−θ
L

x, ∀x > 0. (3.6)

Moreover, by renewal’s theory, the overshoot Rx = Sσx − x has a limit R∞ (in the sense of

weak convergence with respect to Pθ
L
), when x goes to infinity, and therefore Eθ

L
[e−θ

L
Rx

]

converges to some positive constant C. We then get the classical approximation for large

values of the initial reserve :

ψ(x) ≃ Ce−θ
L

x,

as x → ∞, which implies a large deviation type estimation

lim
x→∞

1

x
lnψ(x) = −θ

L
. (3.7)

Further details and extensions can be found in [3] or [16]. They concern more general

processes (e.g. Levy proceses) for the risk reserve, heavy-tailed distribution for the claim

size ... In the next paragraph, we study an extension of the classical ruin problem, developed

by [23] and [31], where the insurer has the additional opportunity to invest in a stock market.

Application : Importance sampling for the ruin probability estimation

From the perspective of estimation of the ruin probability ψ(x), and by choosing the Lund-

berg exponent θL, we have an unbiased estimator with the associated importance sampling

estimator based on Monte-Carlo simulations of

ψ(x) = EθL
[e−θLSσx ].
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Since, obviously, Sσx > x, the second order moment of this estimator satisfies

M2(θL, x) = EθL
[e−2θLSσx ] ≤ e−2θLx.

On the other hand, by Cauchy-Schwarz’s inequality, the second moment of any unbiased

estimator must be as large as the square of the ruin probability, and we have seen that this

probability is O(e−θLx). Therefore, the IS estimator based on θL is asymptotically optimal

as x → ∞ :

lim
x→∞

1

x
lnM2(θL, x) = 2 lim

x→∞
1

x
lnψ(x) (= 2θL).

Remark 3.1 For any x > 0, θ > 0, consider the process

Mt(x, θ) = exp(−θXx
t ), t ≥ 0.

where Xx
t is the risk reserve process defined in (3.1). A standard calculation shows that

for all t ≥ 0,

E[Mt(0, θ)] = e(λγ
Y

(θ)−pθ)t.

Moreover, since Xx
t has stationary independent increments, and by denoting F = (Ft)t≥0

the filtration generated by the risk reserve X, we have for all 0 ≤ t ≤ T

E[MT (x, θ)|Ft] = E[e−θXx
T |Ft]

= Mt(x, θ)E[e−θ(Xx
T −Xx

t )|Ft]

= Mt(x, θ)E[MT−t(0, θ)]

= Mt(x, θ) e
(λγ

Y
(θ)−pθ)(T−t). (3.8)

Hence, for the choice of θ = θ
L

: the adjustment coefficient, the process Mt(x, θL
), t ≥ 0, is

a (P,F)-martingale. The use of this martingale property in the derivation of ruin estimate

was initiated by Gerber [24]. We show in the next paragraph how to extend this idea for a

ruin problem with investment in a stock market.

3.2 Ruin probabilities and optimal investment

3.2.1 The insurance-finance model

In the setting of the classical model described in the previous paragraph, we consider the

additional feature that the insurance company is also allowed to invest in some stock market,

modeled by a geometric brownian motion :

dSt = bStdt+ σStdWt,

where b, σ are constants, σ > 0, and W is a standard brownian motion, independent of the

risk reserve X as defined in (3.1). We denote by F = (Ft)t≥0 the filtration generated by X

and S. The insurer may invest at any time t an amount of money αt in the stock, and the

rest in the bond (which in the present model yields no interest). The set A of admissible

18



investment strategies is defined as the set of F-adapted processes α = (αt) s.t.
∫ t
0 α

2
sds <

∞ a.s. Given an initial capital x ≥ 0, and an admissible investment control α, the insurer’s

wealth process can then be written as

V x,α
t = Xx

t +

∫ t

0

αu

Su
dSu

= x+ pt−
Nt
∑

i=1

Yi +

∫ t

0
αu(bdu+ σdWu), t ≥ 0.

We define the infinite time ruin probability

ψ(x, α) = P[τx,α <∞],

where τx,α = inf{t ≥ 0 : V x,α
t < 0} is the time of ruin, depending on the initial wealth x

and the investment strategy α. We are interested in the minimal ruin probability of the

insurer

ψ∗(x) = inf
α∈A

ψ(x, α).

3.2.2 Asymptotic ruin probability estimate

The main result is an asymptotic large deviation estimation for the minimal ruin probability

when the initial reserve goes to infinity :

Theorem 3.1 We have

lim
x→∞

1

x
lnψ∗(x) = −θ∗, (3.9)

where θ∗ > 0 is he unique positive solution to the equation

γ
Y
(θ) = p

θ

λ
+

b2

2σ2λ
. (3.10)

Here γ
Y
(θ) = E[eθY1 ] − 1 is the shifted moment generating function of the claim size.

Moreover, the constant strategy α∗ = b
σ2θ∗

is asymptotically optimal in the sense that

lim
x→∞

1

x
lnψ(x, α∗) = −θ∗.

Finally, if b 6= 0, θ∗ > θ
L

the Lundberg exponent.

Remark 3.2 The estimate (3.9) is analogue to the classical Lundberg estimate (3.7) with-

out investment. The exponent is larger than the Lundberg one, and thus one gets a sharper

bound on the minimal ruin probability. Moreover, the trading strategy yielding the opti-

mal asymptotic exponential decay consists in holding a fixed (explicit) amount in the risky

asset. This surprising result, in apparent contradiction with the common believe that ‘rich’

companies should invest more than ‘poor’ ones, is explained by the fact that minimization

of ruin probability is an extremely conservative criterion.
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We follow the martingale approach of Gerber for stating this theorem. We emphasize

the main steps of the proof. Let us introduce, for fixed x, θ ∈ R+, and α ∈ A, the process

Mt(x, θ, α) = exp(−θV x,α
t ), t ≥ 0.

Then, a straightforward calculation shows that for any constant process α = a, and t ≥ 0,

E[Mt(0, θ, a)] = E[e−θ(pt−∑Nt
i=1

Yi+abt+aσWt)]

= e−θ(p+ab)tE[eθ
∑Nt

i=1
Yi ]E[e−θaσWt ]

= e−θ(p+ab)teγY
(θ)λte

θ2a2σ2

2
t

= ef(θ,a)t,

where

f(θ, a) = λγ
Y
(θ) − pθ − abθ +

1

2
a2θ2σ2.

We recall that under the assumption of light-tailed distribution on the claim size Yi, the

shifted moment generating function γ
Y

is finite and convex on (−∞, θ̄) for some θ̄ ∈ (0,∞],

and γ
Y
→ ∞ as θ goes to θ̄. Moreover, recalling that E[Y1] ≥ 0, then γ

Y
is increasing on

[0, θ̄) since γ′
Y
(θ) = E[Y1e

θY1 ] > E[Y1] for 0 < θ < θ̄. Now, we see that for all θ > 0,

f̄(θ) := inf
a∈R

f(θ, a) = λγ
Y
(θ) − pθ − b2

2σ2
,

with an infimum attained for â(θ) = b/(θσ2). From the properties of γ
Y
, we clearly have

the existence and uniqueness of θ∗ solution to f̄(θ∗) = 0, i.e. (3.10). Since the r.h.s. of

(3.10) is just the r.h.s. of (3.4), but shifted by the positive constant b2/2σ2λ (if b 6= 0), it

is also obvious that θ∗ > θ
L
. By choosing α∗ = â(θ∗) = b2/(θ∗σ2), we then have

f̄(θ∗) = f(θ∗, α∗) = 0.

A straightforward calculation also shows that for all a ∈ R,

f(θ∗, a) =
1

2
(θ∗)2σ2(a− α∗)2 ≥ 0. (3.11)

Hence, since V x,α∗

t has independent stationary increments, we obtain similarly as in (3.8),

for all 0 ≤ t ≤ T ,

E[MT (x, θ∗, α∗)|Ft] = Mt(x, θ
∗, α∗)E[MT−t(0, θ

∗, α∗)]

= Mt(x, θ, a),

which shows that the process M(x, θ∗, α∗) is a (P,F)-martingale. Therefore, from the

optional sampling theorem at the (bounded) stopping time τx,α∗ ∧ T , we have

e−θ∗x = M0(x, θ
∗, α∗) = E[Mτx,α∗∧T (x, θ∗, α∗)]

= E[Mτx,α∗ (x, θ∗, α∗)1τx,α∗≤T ] + E[MT (x, θ∗, α∗)1τx,α∗>T ]

≥ E[Mτx,α∗ (x, θ∗, α∗)1τx,α∗≤T ],
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since the process M is nonnegative. By the monotone convergence theorem, we then get

by sending T to infinity into the previous inequality

e−θ∗x ≥ E[Mτx,α∗ (x, θ∗, α∗)1τx,α∗<∞] = E[Mτx,α∗ (x, θ∗, α∗)|τx,α∗ <∞]P[τx,α∗ <∞],

from Bayes formula. Thus, we get

ψ(x, α∗) = P[τx,α∗ <∞] ≤ e−θ∗x

E[Mτx,α∗ (x, θ∗, α∗)|τx,α∗ <∞]
.

Now, by definition of the time of ruin, V x,α∗

τx,α∗ is nonpositive and so Mτx,α∗ (x, θ∗, α∗) ≥ 1 a.s.

on {τx,α∗ <∞}. We deduce that

ψ∗(x) ≤ ψ(x, α∗) ≤ e−θ∗x. (3.12)

In order to state a lower bound on the minimal ruin probability, we proceed as follows.

We apply Itô’s formula to the process M(x, θ∗, α) for arbitrary α ∈ A :

dMt(x, θ
∗, α)

Mt−(x, θ∗, α)
= ( − θ∗(p+ bαt) +

1

2
(θ∗)2σ2α2

t )dt − θ∗σdWt + (eθ
∗YNt − 1)dNt.

Observing that γ
Y
(θ) = E[eθYNt − 1], we rewrite as

dMt(x, θ
∗, α)

Mt−(x, θ∗, α)
= ( − θ∗(p+ bαt) +

1

2
(θ∗)2σ2α2

t + λγ
Y
(θ∗))dt − θ∗σdWt

+(eθ
∗YNt − 1)dNt − λE[eθ

∗YNt − 1]dt

= f(θ∗, αt)dt− θ∗σdWt + dÑt,

where Ñt =
∫ t
0 (eθ

∗YNu − 1)dNu −
∫ t
0 λE[eθ

∗YNu − 1]du. By using the martingale property of

Nt − λt, we can check that Ñ is a martingale. Since f(θ∗, αt) ≥ 0 a.s. for all t (see (3.11)),

we deduce that M(x, θ∗, α) is a (local) submartingale. To go to a true submartingale, we

need some additional assumption on the distribution of the claim size. Actually, we can

prove that under the following uniform exponential tail distribution

sup
z≥0

E[e−θ∗(z−Y1)|Y1 > z] = sup
z≥0

∫∞
z e−θ∗(z−y)dFY (y)

∫∞
z dFY

< ∞, (3.13)

the process M(x, θ∗, α) is an uniformly integrable submartingale. Therefore, from the

optional sampling theorem at the (bounded) stopping time τx,α ∧ T , we have

e−θ∗x = M0(x, θ
∗, α) ≤ E[Mτx,α∧T (x, θ∗, α)]

= E[Mτx,α(x, θ∗, α)1τx,α≤T ] + E[MT (x, θ∗, α)1τx,α>T ]. (3.14)

We now claim that MT (x, θ∗, α) converges a.s. on {τx,α = ∞} to zero as T goes to infinity.

First, we know from Doob’s submartingale convergence theorem that limT→∞MT (x, θ∗, α)

exists a.s., hence also limT→∞ VT (x, α). Since the expectation of a jump size E[Y1] is

positive, there exists y > 0 s.t. P[Y1 > y] > 0. By independence of the jump sizes in the

compound Poisson process of the risk reserve, it is then an easy exercice to see that with
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probability 1, a jump of size greater than y occurs infinitely often on [0,∞). On the other

hand, the stochastic integral due to the invesment strategy α in the stock price, is a.s.

continuous, and so cannot compensate the jumps of the compound Poisson process, greater

than y, which will occur infinitely often a.s. It follows that on {τx,α = ∞} (where ruin does

not occur), V x,α
T cannot converge to a finite value with positive probability. Therefore on

{τx,α = ∞}, we have limT→∞ VT (x, α) = ∞ and thus, since θ∗ > 0, limT→∞MT (x, θ∗, α) =

0 a.s. As T → ∞, we have then from the dominated convergence theorem (MT (x, θ∗, α) ≤
1 on {τx,α > T}) for the second term in (3.14), and by the monotone convergence theorem

for the first term,

e−θ∗x ≤ E[Mτx,α(x, θ∗, α)1τx,α<∞] = E[Mτx,α(x, θ∗, α)|τx,α <∞]P[τx,α <∞],

and so

ψ(x, α) = P[τx,α <∞] ≥ e−θ∗x

E[Mτx,α(x, θ∗, α)|τx,α <∞]
. (3.15)

We finally prove that E[Mτx,α(x, θ∗, α)|τx,α <∞] is bounded by a constant independent of

α ∈ A. Fix some arbitrary α ∈ A and set for shorthand notation τ = τx,α the time of ruin

of the wealth process V x,α. First observe that ruin {τ < ∞} occurs either through the

brownian motion, i.e. on {τ <∞, V x,α
τ− = 0}, and in this case V x,α

τ = 0 and so Mτ (x, θ
∗, α)

= 1, or through a jump, i.e. on {τ < ∞, V x,α
τ− > 0}, and in this case V x,α

τ < 0 and so

Mτ (x, θ∗, α) > 1. Hence,

E[Mτ (x, θ
∗, α)|τ <∞] ≤ E[Mτ (x, θ∗, α)|τ <∞, V x,α

τ− > 0]

= E[e−θ∗(V x,α

τ−
−YNτ )|τ <∞, V x,α

τ− > 0]. (3.16)

Let Hx,α(dt, dz) denote the joint distribution of τ and V x,α
τ− conditional on the event {τ <

∞, V x,α
τ− > 0} that ruin occurs through a jump. Given τ = t and V x,α

τ− = z > 0, a claim

YNτ occurs at time t and has distribution dF
Y
(y)/

∫∞
z dF

Y
for y > z. Hence

E[e−θ∗(V x,α

τ−
−YNτ )|τ <∞, V x,α

τ− > 0] =

∫ ∞

0

∫ ∞

0
Hx,α(dt, dz)

∫ ∞

z
e−θ∗(z−y) dFY

(y)
∫∞
z dF

Y

≤ sup
z≥0

∫ ∞

z
e−θ∗(z−y) dFY

(y)
∫∞
z dF

Y

< ∞, (3.17)

by assumption (3.13). By setting

C =
1

supz≥0

∫∞
z e−θ∗(z−y) dF

Y
(y)

∫∞

z
dF

Y

= inf
z≥0

∫∞
z dF

Y
∫∞
z e−θ∗(z−y)dF

Y
(y)

∈ (0, 1],

we then have from (3.15)-(3.16)-(3.17), for all x ≥ 0,

ψ(x, α) ≥ Ce−θ∗x, ∀α ∈ A.

Together with the upper bound (3.12), this completes the proof of Theorem 3.1.
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4 Large deviations and rare event simulation in option pri-

cing

4.1 Importance sampling and large deviations approximations

In this paragraph, we show how to use large deviations approximation via importance

sampling for Monte-carlo computation of expectations arising in option pricing. In the

context of continuous-time models, we are interested in the computation of

Ig = E

[

g(St, 0 ≤ t ≤ T )
]

,

where S is the underlying asset price, and g is the payoff of the option, eventually path-

dependent, i.e. depending on the path process St, 0 ≤ t ≤ T . The Monte-Carlo approxima-

tion technique consists in simulating N independent sample paths (Si
t)0≤t≤T , i = 1, . . . , N ,

in the distribution of (St)0≤t≤T , and approximating the required expectation by the sample

mean estimator :

IN
g =

1

N

N
∑

i=1

g(Si).

The consistency of this estimator is ensured by the law of large numbers, while the error

approximation is given by the variance of this estimator from the central limit theorem :

the lower is the variance of g(S), the better is the approximation for a given number N of

simulations. As already mentioned in the introduction, the basic principle of importance

sampling is to reduce variance by changing probability measure from which paths are gen-

erated. Here, the idea is to change the distribution of the price process to be simulated

in order to take into account the specificities of the payoff function g. We focus in this

section in the importance sampling technique within the context of diffusion models, and

then show how to obtain an optimal change of measure by a large deviation approximation

of the required expectation.

4.1.1 Importance sampling for diffusions via Girsanov’s theorem

We briefly describe the importance sampling variance reduction technique for diffusions.

Let X be a d-dimensional diffusion process governed by

dXs = b(Xs)ds+ Σ(Xs)dWs, (4.1)

where (Wt)t≥0 is a n-dimensional brownian motion on a filtered probability space (Ω,F ,F =

(Ft)t≥0,P), and the Borel functions b, Σ satisfy the usual Lipschitz condition ensuring the

existence of a strong solution to the s.d.e. (4.1). We denote by Xt,x
s the solution to (4.1)

starting fom x at time t, and we define the function :

v(t, x) = E

[

g(Xt,x
s , t ≤ s ≤ T )

]

, (t, x) ∈ [0, T ] × Rd.

Let φ = (φt)0≤t≤T be an Rd-valued adapted process such that the process

Mt = exp
(

−
∫ t

0
φ′udWu − 1

2

∫ t

0
|φu|2du

)

, 0 ≤ t ≤ T,
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is a martingale, i.e. E[MT ] = 1. This is ensured for instance under the Novikov criterion :

E[ exp ( 1
2

∫ T
0 |φu|2du)] < ∞. In this case, one can define a probability measure Q equivalent

to P on (Ω,FT ) by :

dQ

dP
= MT .

Moreover, by Girsanov’s theorem, the process Ŵt = Wt +
∫ t
0 φudu, 0 ≤ t ≤ T , is a brownian

motion under Q, and the dynamics of X under Q is given by

dXs = (b(Xs) − Σ(Xs)φs)ds+ Σ(Xs)dŴs. (4.2)

From Bayes formula, the expectation of interest can be written as

v(t, x) = EQ
[

g(Xt,x
s , t ≤ s ≤ T )LT

]

, (4.3)

where L is the Q-martingale

Lt =
1

Mt
= exp

(

∫ t

0
φ′udŴu − 1

2

∫ t

0
|φu|2du

)

, 0 ≤ t ≤ T. (4.4)

The expression (4.3) suggests, for any choice of φ, an alternative Monte-Carlo estimator for

v(t, x) with

IN
g,φ(t, x) =

1

N

N
∑

i=1

g(Xi,t,x)Li
T ,

by simulating N independent sample paths (Xi,t,x) and Li
T of (Xt,x) and LT under Q given

by (4.2)-(4.4). Hence, the change of probability measure through the choice of φ leads to a

modification of the drift process in the simulation of X. The variance reduction technique

consists in determining a process φ, which induces a smaller variance for the corresponding

estimator Ig,φ than the initial one Ig,0. The two next paragraphs present two approaches

leading to the construction of such processes φ. In the first approach developed in [22], the

process φ is stochastic, and requires an approximation of the expectation of interest. In the

second approach due to [25], the process φ is deterministic and derived through a simple

optimization problem. Both approaches rely on asymptotic results from the theory of large

deviations.

4.1.2 Option pricing approximation with a Freidlin-Wentzell large deviation

principle

We are looking for a stochastic process φ, which allows to reduce (possibly to zero!) the

variance of the corresponding estimator. The heuristics for achieving this goal is based

on the following argument. Suppose for the moment that the payoff g depends only on

the terminal value XT . Then, by applying Itô’s formula to the Q-martingale v(s,Xt,x
s )Ls

between s = t and s = T , we obtain :

g(Xt,x
T )LT = v(t, x)Lt +

∫ T

t
Ls(Dxv(s,X

t,x
s )′Σ(Xt,x

s ) + v(x,Xt,x
s )φ′s)dŴs.
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Hence, the variance of IN
g,φ(t, x) is given by

V arQ(IN
g,φ(t, x)) =

1

N
EQ
[

∫ T

t
L2

s|Dxv(s,X
t,x
s )′Σ(Xt,x

s ) + v(x,Xt,x
s )φ′s|2ds

]

.

The choice of the process φ is motivated by the following remark. If the function v were

known, then one could vanish the variance by choosing

φs = φ∗s = − 1

v(s,Xt,x
s )

Σ′(Xt,x
s )Dxv(s,X

t,x
s ), t ≤ s ≤ T. (4.5)

Of course, the function v is unknown (this is precisely what we want to compute), but this

suggests to use a process φ from the above formula with an approximation of the function

v. We may then reasonably hope to reduce the variance, and also to use such a method

for more general payoff functions, possibly path-dependent. We shall use a large deviations

approximation for the function v.

The basic idea for the use of large deviations approximation to the expectation function

v is the following. Suppose the option of interest, characterized by its payoff function g,

has a low probability of exercice, e.g. it is deeply out the money. Then, a large proportion

of simulated paths end up out of the exercice domain, giving no contribution to the Monte-

carlo estimator but increasing the variance. In order to reduce the variance, it is interesting

to change of drift in the simulation of price process to make the domain exercice more

likely. This is achieved with a large deviations approximation of the process of interest

in the asymptotics of small diffusion term : such a result is known in the literature as

Freidlin-Wentzell sample path large deviations principle. Equivalently, by time-scaling,

this amounts to large deviation approximation of the process in small time, studied by

Varadhan.

To illustrate our purpose, let us consider the case of an up-in bond, i.e. an option that

pays one unit of numéraire iff the underlying asset reached a given up-barrier K. Within a

stochastic volatility model X = (S, Y ) as in (4.1) and given by :

dSt = σ(Yt)StdW
1
t (4.6)

dYt = η(Yt)dt + γ(Yt)dW
2
t , d < W1,W2 >t = ρdt, (4.7)

its price is then given by

v(t, x) = E[1maxt≤u≤T St,x
u ≥K ] = P[τt,x ≤ T ], t ∈ [0, T ], x = (s, y) ∈ (0,∞) × R,

where

τt,x = inf {u ≥ t : Xt,x
u /∈ Γ}, Γ = (0,K) × R.

The event {maxt≤u≤T S
t,x
u ≥ K} = {τt,x ≤ T} is rare when x = (s, y) ∈ Γ, i.e. s < K

(out the money option) and the time to maturity T − t is small. The large deviations

asymptotics for the exit probability v(t, x) in small time to maturity T − t is provided by

the Freidlin-Wentzell and Varadhan theories. Indeed, we see from the time-homogeneity of
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the coefficients of the diffusion and by time-scaling that we may write v(t, x) = w
T−t

(0, x),

where for ε > 0, wε is the function defined on [0, 1] × (0,∞) × R by

wε(t, x) = P[τ ε
t,x

≤ 1],

and Xε,t,x is the solution to

dXε
s = εb(Xε

s )ds +
√
εΣ(Xε

s )dWs, Xε
t = x.

and τ ε
t,x

= inf {s ≥ t : Xε,t,x
s /∈ Γ}. From the large deviations result (2.19) stated in

paragraph 2.3, we have :

lim
tրT

−(T − t) ln v(t, x) = V0(0, x),

where

V0(t, x) = inf
x(.)∈A(t,x)

∫ 1

t

1

2
ẋ(u)′M(x(u))ẋ(u)du, (t, x) ∈ [0, 1) × Γ,

Σ(x) =

(

σ(x) 0

0 γ(x)

)

is the diffusion matrix of X = (S, Y ), M(x) = (ΣΣ′(x))−1, and

A(t, x) = {x(.) ∈ H1
loc([0, 1], (0,∞) × R) : x(t) = x and τ(x) ≤ 1}.

Here, for an absolutely continuous function x(.) on [0, 1) and valued in (0,∞) × R, we

denote ẋ(u) its time derivative, and τ(x) the exit time of x(.) from Γ.

We also have another interpretation of the positive function V0 in terms of Riema-

nian distance on Rd associated to the metric M(x) = (ΣΣ′(x))−1. By denoting L0(x) =
√

2V0(0, x), one can prove (see [34]) that L0 is the unique viscosity solution to the eikonal

equation

(DxL0)
′ΣΣ′(x)DxL0 = 1, x ∈ Γ

L0(x) = 0, x ∈ ∂Γ

and that it may be represented as

L0(x) = inf
z∈∂Γ

L0(x, z), x ∈ Γ, (4.8)

where

L0(x, z) = inf
x(.)∈A(x,z)

∫ 1

0

√

ẋ(u)′M(x(u))ẋ(u)du,

and A(x, z) = {x(.) ∈ H1
loc([0, 1], (0,∞) × R) : x(0) = x and x(1) = z}. Hence, the

function L0 can be computed either by the numerical resolution of the eikonal equation or

by using the representation (4.8). L0(x) is interpreted as the minimal length (according to

the metric M) of the path x(.) allowing to reach the boundary ∂Γ from x. From the above

large deviations result, which is written as

ln v(t, x) ≃ − L2
0(x)

2(T − t)
, as T − t→ 0,
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and the expression (4.5) for the optimal theoretical φ∗, we use a change of probability

measure with

φ(t, x) =
L0(x)

T − t
Σ′(x)DxL0(x).

Such a process φ may also appear interesting to use in a more general framework than

up-in bond : one can use it for computing any option whose exercice domain looks similar

to the up and in bond. We also expect that the variance reduction is more significant as

the exercice probability is low, i.e. for deep out the money options. In the particular case

of the Black-Scholes model, i.e. σ(x) σs, we have

L0(x) =
1

σ
| ln (

s

K
)|,

and so

φ(t, x) =
1

σ(T − t)
ln(

s

K
), s < K.

4.1.3 Change of drift via Varadhan-Laplace principle

We describe here a method due to [25], which, in contrast with the above approach, does not

require the knowledge of the option price. This method restricts to deterministic changes

of drift over discrete time steps. Hence, the diffusion model X for state variables (stock

price, volatility) is simulated (eventually using an Euler scheme if needed) on a discrete

time grid 0 = t0 < t1 < . . . < tm = T : the increment of the brownian motion from ti−1 to

ti is simulated as
√
ti − ti−1Zi, where Z1, . . . , Zm are i.i.d. n-dimensional standard normal

random vectors. We denote by Z the concatenation of the Zi into a single vector of lengh l

= mn. Each outcome of Z determines a path of state variables. Let G(Z) denote the payoff

derived from Z, and our aim is to compute the (path-dependent) option price E[G(Z)]. For

example, in the case of the Black-Scholes model for the stock price S, we have

Sti = Sti−1
exp

(

− σ2

2
(ti − ti−1) + σ

√

ti − ti−1Zi

)

,

and the payoff of the Asian option is

G(Z) = G(Z1, . . . , Zm) =
( 1

m

m
∑

i=1

Sti −K
)

+

We apply importance sampling by changing the mean of Z from 0 to some vector µ =

(µ1, . . . , µm). We denote Pµ and Eµ the probability and expectation when Z ∼ N (µ, Im).

Notice that with the notations of paragraph 4.1.1, this corresponds to a piecewise constant

process φ s.t. φt = −µi/
√
ti − ti−1 on [ti−1, ti). By Girsanov’s theorem or here more simply

from the likelihood ratio for normal random vectors, the corresponding unbiased estimator

is then obtained by taking the average of independent replications of

ϑµ = G(Z)e−µ′Z+ 1

2
µ′µ,
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where Z is sampled from N (µ, Im). We call ϑµ a µ-IS estimator. In order to minimize over

µ the variance of this estimator, it suffices to minimize its second moment, which is given

by :

M2(µ) = Eµ

[

G(Z)2e−2µ′Z+µ′µ
]

= E

[

G(Z)2e−µ′Z+ 1

2
µ′µ
]

We are then looking for an optimal µ solution to

inf
µ
M2(µ) := inf

µ
E

[

G(Z)2e−µ′Z+ 1

2
µ′µ
]

. (4.9)

This minimization problem is, in general, a well-posed problem. Indeed, it is shown in [2]

that if P[G(Z) > 0] > 0, and E[G(Z)2+δ] <∞ for some δ > 0, then M2(.) is a strictly convex

function, and thus µ∗ solution to (4.9) exists and is unique. This µ∗ can be computed by

solving (numerically) ∇M2(µ) = 0. This is the method adopted in [2] with a Robbins-

Monro stochastic algorithm. We present here an approximate resolution of (4.9) by means

of large deviations approximation. For this, assume that G takes only nonnegative values,

so that it is written as G(z) = exp(F (z)), with the convention that F (z) = −∞ if G(z) =

0, and let us consider the more general estimation problem where Z is replaced by Zε =√
εZ and we simultaneously scale the payoff by raising it to the power of 1/ε :

vε = E[e
1

ε
F (Zε)]

The quantity of interest E[G(Z)] = E[eF (Z)] is vε for ε = 1. We embed the problem of

estimating v1 in the more general problem of estimating vε and analyze the second moment

of corresponding IS estimators as ε is small, by means of Varadhan-Laplace principle. For

any µ, we consider µε-IS estimator of vε with µε = µ/
√
ε :

ϑε
µ = e

1

ε
F (

√
εZ)e−µ′

εZ+ 1

2
µ′

εµε = e
1

ε
(F (Zε)−µ′Zε+ 1

2
µ′µ)

where Z is sampled from N (µε, Im) = N (µ/
√
ε, Im). Its second moment is

M2
ε (µ) = Eµε

[

e
1

ε
(2F (Zε)−2µ′Zε+µ′µ)

]

= E

[

e
1

ε
(2F (Zε)−µ′Zε+ 1

2
µ′µ)

]

Now, from Cramer’s theorem, (Zε)ε satisfies a LDP with rate function I(z) = 1
2z

′z. Hence,

under the condition that F (z) ≤ c1 + c2z
′z for some c2 < 1/4, one can apply Varadhan’s

integral principle (see Theorem 2.2) to the function z → 2F (z) − µ′z + 1
2µ

′µ, and get

lim
ε→0

ε lnM2
ε (µ) = sup

z
[2F (z) − µ′z +

1

2
µ′µ− 1

2
z′z]. (4.10)

This suggests to search for a µ solution to the problem :

inf
µ

sup
z

[2F (z) − µ′z +
1

2
µ′µ− 1

2
z′z]. (4.11)

This min-max problem may be reduced to a simpler one. Indeed, assuming that the con-

ditions of the min/max theorem hold, then the inf and sup can be permuted, and we

find

inf
µ

sup
z

[2F (z) − µ′z +
1

2
µ′µ− 1

2
z′z] = sup

z

[

inf
µ

( − µ′z +
1

2
µ′µ) + 2F (z) − 1

2
z′z
]

= 2 sup
z

[F (z) − 1

2
z′z]. (4.12)
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Actually, under suitable convexity conditions on F and its domain, one can show (see [25])

that (4.12) holds. Furthermore, if ẑ is solution to

sup
z

(F (z) − 1

2
z′z), (4.13)

then a solution µ̂ solution to (4.11) should be identified with the conjugate of ẑ, via

infµ ( − µ′ẑ + 1
2µ

′µ) that is µ̂ = ẑ. The solution to problem (4.13) has also the following

interpretation. From heuristic arguments of importance sampling (see the introduction),

an optimal effective importance sampling density should assign high probability to regions

on which the product of the integrand payoff and the original density is large. For our

problem, this product is proportional to

eF (z)− 1

2
z′z,

since exp(−z′z/2) is proportional to the standard normal density. This suggests to choose

µ = µ̂ solution to (4.13). Another heuristics indication for the choice of (4.13) is based on

the following argument. Assume that F is C1 on its domain, and the maximum µ̂ in (4.13)

is attained in the interior of the domain, so that it solves the fixed point equation :

∇F (µ̂) = µ̂. (4.14)

By using a first-order Taylor approximation of F around the mean µ̂ of Z under Pµ̂, we

may approximate the estimator as

ϑµ̂ = eF (Z)−µ̂′Z+ 1

2
µ̂′µ̂ ≃ eF (µ̂)+∇F (µ̂)′(Z−µ̂)−µ̂′Z+ 1

2
µ̂′µ̂ (4.15)

Hence, for the choice of µ̂ satisfying (4.14), the expression of the r.h.s. of (4.15) collapses

to a constant with no dependence on Z. Thus, applying importance sampling with such a

µ̂ would produce a zero-variance estimator if (4.15) holds exactly, e.g. if F is linear, and it

should produce a low-variance estimator if (4.15) holds only approximately.

The choice of µ = µ̂ solution to (4.13) leads also to an asymptotically optimal IS-

estimator in the following sense. First, notice that for any µ, we have by Cauchy-Schwarz’s

inequality : M2
ε (µ) ≥ (vε)

2, and so

lim
ε→0

ε lnM2
ε (µ) ≥ 2 lim

ε→0
ε ln vε = 2 lim

ε→0
ε ln E[e

1

ε
F (Zε)]

From Varadhan’s integral principle applied to the function z → F (z), we thus deduce for

any µ,

lim
ε→0

ε lnM2
ε (µ) ≥ 2 sup

z
[F (z) − 1

2
z′z] = 2[F (µ̂) − 1

2
µ̂′µ̂].

Hence, 2[F (µ̂)− 1
2 µ̂

′µ̂] is the best-possible exponential decay rate for a µε-IS estimator ϑε
µ.

Now, by choosing µ = µ̂, and from (4.10), (4.12), we have

lim
ε→0

ε lnM2
ε (µ̂) = 2[F (µ̂) − 1

2
µ̂′µ̂],

which shows that the µ̂ε-IS estimator ϑε
µ̂ is asymptotically optimal.
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Remark 4.1 From the first-order approximation of F in (4.15), we see that in order to

obtain further variance reduction, it is natural to address the quadratic component of F .

This can be achieved by a method of stratified sampling as developed in [25].

Recently, the above approach of [25] was extended in [29] to a continuous-time setting,

where the optimal deterministic drift in the Black-Scholes model is characterized as the

solution to a classical one-dimensional variational problem.

4.2 Computation of barrier crossing probabilities and sharp large devia-

tions

In this paragraph, we present a simulation procedure for computing the probability that a

diffusion process crosses pre-specified barriers in a given time interval [0, T ]. Let (Xt)t∈[0,T ]

be a diffusion process in Rd,

dXt = b(Xt)dt+ σ(Xt)dWt

and τ is the exit time of X from some domain Γ of Rd, eventually depending on time :

τ = inf{t ∈ [0, T ] : Xt /∈ Γ(t)},

with the usual convention that inf ∅ = ∞. Such a quantity appears typically in finance in

the computation of barrier options, for example with a knock-out option :

C0 = E[e−rT g(XT )1τ>T ], (4.16)

with Γ(t) = (−∞, U(t)) in the case of single barrier options, and Γ(t) = (L(t), U(t)), for

double barrier options. Here, L, U are real functions : [0,∞) → (0,∞) s.t. L < U .

The direct naive approach would consist first of simulating the process X on [0, T ]

through a discrete Euler scheme of step size ε = T/n = ti+1 − ti, i = 0, . . . , n :

X̄ε
ti+1 = X̄ε

ti + b(X̄ε
ti)ε+ σ(X̄ε

ti)(Wti+1
−Wti),

and the exit time τ is approximated by the first time the discretized process reaches the

barrier :

τ̄ ε = inf {ti : X̄ε
ti /∈ Γ(ti)}.

Then, the barrier option price C0 in (4.16) is approximated by Monte-Carlo simulations of

the quantity

C̄ε
0 = E[e−rT g(X̄ε

T )1τ̄ε>T ].

In this procedure, one considers that the price diffusion is killed if there exists a value X̄ε
ti ,

which is out of the domain Γ(ti). Hence, such an approach is suboptimal since it does

not control the diffusion path between two successive dates ti and ti+1 : the diffusion path

could have crossed the barriers and come back to the domain without being detected. In

this case, one over-estimates the exit time probability of {τ > T}. This suboptimality is
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confirmed by the property that the error between C0 and C̄ε
0 is of order

√
ε, as shown in

[28], instead of the usual order ε obtained for standard vanilla options.

In order to improve the above procedure, we need to determine the probability that

the process X crosses the barrier between discrete simulation times. We then consider the

continuous Euler scheme

X̄ε
t = X̄ε

ti + b(X̄ε
ti)(t− ti) + σ(X̄ε

ti)(Wt −Wti), ti ≤ t ≤ ti+1,

which evolves as a Brownian with drift between two time discretizations ti, ti+1 = ti + ε.

Given a simulation path of (X̄ε
ti)i, and values X̄ε

ti = xi, X̄
ε
ti+1

= xi+1, we denote

pε
i (xi, xi+1) = P

[

∃t ∈ [ti, ti+1] : X̄ε
t /∈ Γ(ti)|(X̄ε

ti , X̄
ε
ti+1

) = (xi, xi+1)
]

,

the exit probability of the Euler scheme conditionally on the simulated path values. The cor-

rection Monte-Carlo procedure works then as follows : with probability pε
i = pε

i (X̄
ε
ti , X̄

ε
ti+1

),

we stop the simulation by considering that the diffusion is killed, and we set τ ε = ti; with

probability 1−pε
i , we carry on the simulation. The approximation of (4.16) is thus computed

by Monte-Carlo simulations of

Cε
0 = E[e−rT (X̄ε

T −K)+1τε>T ].

We then recover a rate of convergence of order ε for Cε
0 − C0, see [28].

The effective implementation of this corrected procedure requires the calculation of pε
i .

Notice that on the interval [ti, ti+1], the diffusion X̄ε conditionned to X̄ε
ti = xi, X̄

ε
ti+1

=

xi+1, is a brownian bridge : it coincides in distribution with the process

B̃i,ε
t = xi +

t

ε
(xi+1 − xi) + σ(xi)(Wt −

t

ε
Wε), 0 ≤ t ≤ ε,

and so by time change t → t/ε, with the process

Y i,ε
t := B̃i,ε

εt = xi + t(xi+1 − xi) +
√
εσ(xi)(Wt − tW1), 0 ≤ t ≤ 1.

It is known that the process Y i,ε is solution to the s.d.e.

dY i,ε
t = −Y

i,ε
t − xi+1

1 − t
dt+

√
εσ(xi)dWt, 0 ≤ t < 1,

Y i,ε
0 = xi.

The probability pε
i can then be expressed as

pε
i (xi, xi+1) = P[τ i,ε ≤ 1], where τ i,ε = inf {t ≥ 0 : Y i,ε

t /∈ Γ(ti + εt)}. (4.17)

In the case of a half-space, i.e. single constant barrier, one has an explicit expression for

the exit probability of a Brownian bridge. For example, if Γ(t) = (−∞, U), we have

pε
i (xi, xi+1) = exp

(

− I
U
(xi, xi+1)

ε

)

, with I
U
(xi, xi+1) =

2

σ2(xi)
(U − xi)(U − xi+1).
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In the general case, we do not have analytical expressions for pε
i , and one has to rely on

simulation techniques or asymptotic approximations. We shall here consider asymptotic

techniques based on large deviations and Freidlin-Wentzell theory. Let us illustrate this

point in the case of two time-dependent barriers, i.e. Γ(t) = (L(t), U(t)) for smooth barriers

functions L < U . Problem (4.17) does not exactly fit into the Freidlin-Wentzell framework

considered in paragraph 2.3, but was adapted for Brownian bridges with time-dependent

barriers in [7]. We then have the large deviation estimate for pε
i :

lim
ε→0

ε ln pε
i (xi, xi+1) = −I

L,U
(xi, xi+1),

where I
L,U

(xi, xi+1) is the infimum of the functional

y(.) −→ 1

2σ(xi)2

∫ 1

0
|ẏ(t) +

y(t) − xi+1

1 − t
|2dt,

over all absolutely continuous paths y(.) on [0, 1] s.t. y(0) = xi, and there exists some t ∈
[0, 1] for which y(t) ≤ L(ti) or y(t) ≥ U(ti). This infimum is a classical problem of calculus

of variations, which is explicitly solved and gives for any xi, xi+1 ∈ (L(ti), U(ti)) (otherwise

I
L,U

(xi, xi+1) = 0) :

I
L,U

(xi, xi+1) =

{

2
σ2(xi)

(U(ti) − xi)(U(ti) − xi+1) if xi + xi+1 > L(ti) + U(ti)
2

σ2(xi)
(xi − L(ti))(xi+1 − L(ti)) if xi + xi+1 < L(ti) + U(ti).

In order to remove the log estimate on pε
i , we need a sharper large deviation estimate, and

this is analyzed by the results of [17] recalled in paragraph 2.3. More precisely, we have

pε
i (xi, xi+1) = exp

(

− I
L,U

(xi, xi+1)

ε
− w

L,U
(xi, xi+1)

)

(1 +O(ε)),

where w
L,U

(xi, xi+1) is explicited in [7] as

w
L,U

(xi, xi+1) =

{

2
σ2(xi)

(U(ti) − xi)U
′(ti) if xi + xi+1 > L(ti) + U(ti)

2
σ2(xi)

(xi − L(ti))L
′(ti) if xi + xi+1 < L(ti) + U(ti).

Some recent extensions of this large deviations approach to the computation of exit prob-

abilities for multivariate Brownian bridge are studied in [32], which also gives applications

for the estimation of default probabilities in credit risk models, and the pricing of credit

default swaps.

5 Large deviations in risk management

5.1 Large portfolio losses in credit risk

5.1.1 Portfolio credit risk in a single factor normal copula model

A basic problem in measuring portfolio credit risk is determining the distribution of losses

from default over a fixed horizon. Credit portfolios are often large, including exposure to

thousands of obligors, and the default probabilities of high-quality credits are extremely
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small. These features in credit risk context lead to consider rare but significant large loss

events, and emphasis is put on the small probabilities of large losses, as these are relevant

for calculation of value at risk and related risk measures.

We use the following notation :

n = number of obligors to which portfolio is exposed,

Yk = default indicator (= 1 if default, 0 otherwise) for k-th obligor,

pk = marginal probability that k-th obligor defaults, i.e. pk = P[Yk = 1],

ck = loss resulting from default of the k-th obligor,

Ln = c1Y1 + . . .+ cnYn = total loss from defaults.

We are interested in estimating tail probabilities P[Ln > ℓn] in the limiting regime at

increasingly high loss thresholds ℓn, and rarity of large losses resulting from a large number

n of obligors and multiple defaults.

For simplicity, we consider a homogeneous portfolio where all pk are equal to p, and

all ck are equal constant to 1. An essential feature for credit risk management is the

mechanism used to model the dependence across sources of credit risk. The dependence

among obligors is modelled by the dependence among the default indicators Yk. This

dependence is introduced through a normal copula model as follows : each default indicator

is represented as

Yk = 1{Xk>xk}, k = 1, . . . , n,

where (X1, . . . ,Xn) is a multivariate normal vector. Without loss of generality, we take each

Xk to have a standard normal distribution, and we choose xk to match the marginal default

probability pk, i.e. xk = Φ−1(1− pk) = −Φ−1(pk), with Φ cumulative normal distribution.

We also denote ϕ = Φ′ the density of the normal distribution. The correlations along the

Xk, which determine the dependence among the Yk, are specified through a single factor

model of the form :

Xk = ρZ +
√

1 − ρ2εk, k = 1, . . . , n. (5.1)

where Z has the standard normal distribution N (0, 1), εk are independent N (0, 1) distribu-

tion, and Z is independent of εk, k = 1, . . . , n. Z is called systematic risk factor (industry,

regional risk factors for example ...), and εk is an idiosyncratic risk associated with the k-th

obligor. The constant ρ in [0, 1) is a factor loading on the single factor Z, and assumed

here to be identical for all obligors. We shall distinguish the case of independent obligors

(ρ = 0), and dependent obligors (ρ > 0). More general multivariate factor models with

inhomogeneous obligors are studied in [26].

5.1.2 Independent obligors

In this case, ρ = 0, the default indicators Yk are i.i.d. with Bernoulli distribution of

parameter p, and Ln is a binomial distribution of parameters n and p. By the law of large

numbers, Ln/n converges to p. Hence, in order that the loss event {Ln ≥ ln} becomes rare

(without being trivially impossible), we let ln/n approach q ∈ (p, 1). It is then appropriate

33



to specify ln = nq with p < q < 1. From Cramer’s theorem and the expressions of the

c.g.f. of the Bernoulli distribution and its Fenchel-Legendre transform, we obtain the large

deviation result for the loss probability :

lim
n→

1

n
ln P[Ln ≥ nq] = −q ln (

q

p
) − (1 − q) ln (

1 − q

1 − p
) < 0.

Remark 5.1 By denoting Γ(θ) = ln(1−p+peθ) the c.g.f. of Yk, we have an IS (unbiased)

estimator of P[Ln ≥ nq] by taking the average of independent replications of

exp(−θLn + nΓ(θ))1Ln≥nq

where Ln is sampled with a default probability p(θ) = Pθ[Yk = 1] = peθ/(1 − p + peθ).

Moreover, see Remark 2.2, this estimator is asymptotically optimal, as n goes to infinity,

for the choice of parameter θq ≥ 0 attaining the argmax in θq − Γ(θ).

5.1.3 Dependent obligors

We consider the case where ρ > 0. Then, conditionally on the factor Z, the default indicators

Yk are i.i.d. with Bernoulli distribution of parameter :

p(Z) = P[Yk = 1|Z] = P[ρZ +
√

1 − ρ2εk > −Φ−1(p)|Z]

= Φ
(ρZ + Φ−1(p)

√

1 − ρ2

)

. (5.2)

Hence, by the law of large numbers, Ln/n converges in law to the random variable p(Z)

valued in (0, 1). In order that {Ln ≥ ln} becomes a rare event (without being impossible)

as n increases, we therefore let ln/n approach 1 from below. We then set

ln = nqn, with qn < 1, qn ր 1 as n→ ∞. (5.3)

Actually, we assume that the rate of increase of qn to 1 is of order n−a with a < 1 :

1 − qn = O(n−a), with 0 < a < 1. (5.4)

We then state the large deviations result for the large loss threshold regime.

Theorem 5.1 In the single-factor homogeneous portfolio credit risk model (5.1), and with

large threshold ln as in (5.3)-(5.4), we have

lim
n→∞

1

lnn
ln P[Ln ≥ nqn] = −a1 − ρ2

ρ2
.

Observe that in the above theorem, we normalize by lnn, indicating that the probability

decays like n−γ , with γ = a(1 − ρ2)/ρ2. We find that the decay rate is determined by the

effect of the dependence structure in the Gaussian copula model. When ρ is small (weak

dependence between sources of credit risk), large losses occur very rarely, which is formalized

by a high decay rate. In the opposite case, this decay rate is small when ρ tends to one,

which means that large losses are most likely to result from systematic risk factors.
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Proof. 1) We first prove the lower bound :

lim inf
n→∞

1

lnn
ln P[Ln ≥ nqn] ≥ −a1 − ρ2

ρ2
. (5.5)

From Bayes formula, we have

P[Ln ≥ nqn] ≥ P[Ln ≥ nqn, p(Z) = qn]

= P[Ln ≥ nqn|p(Z) ≥ qn] P[p(Z) ≥ qn]. (5.6)

For any n ≥ 1, we define zn ∈ R the solution to

p(zn) = qn, n ≥ 1.

Since p(.) is an increasing one to one function, we have {p(Z) ≥ qn} = {Z ≥ zn}. Moreover,

observing that Ln is an increasing function of Z, we get

P[Ln ≥ nqn|p(Z) ≥ qn] = P[Ln ≥ nqn|Z ≥ zn]

≥ P[Ln ≥ nqn|Z = zn] = P[Ln ≥ nqn|p(Z) = qn],

so that from (5.6)

P[Ln ≥ nqn] ≥ P[Ln ≥ nqn|p(Z) = qn]P[Z ≥ zn]. (5.7)

Now given p(Z) = qn, Ln is binomially distributed with parameters n and qn, and thus

P[Ln ≥ nqn|p(Z) = qn] ≥ 1 − Φ(0) =
1

2
(> 0). (5.8)

We focus on the tail probability P[Z ≥ zn] as n goes to infinity. First, observe that since

qn goes to 1, we have zn going to infinity as n tends to infinity. Furthermore, from the

expression (5.2) of p(z), the rate of decrease (5.4), and using the property that 1−Φ(x) ≃
ϕ(x)/x as x → ∞, we have

O(n−a) = 1 − qn = 1 − p(zn) = 1 − Φ
(ρzn + Φ−1(p)

√

1 − ρ2

)

≃
√

1 − ρ2

ρzn + Φ−1(p)
exp

(

− 1

2
(
ρzn + Φ−1(p)
√

1 − ρ2
)2
)

,

as n → ∞, so that by taking logarithm :

a lnn− 1

2

ρ2z2
n

1 − ρ2
− ln zn = O(1).

This implies

lim
n→∞

z2
n

lnn
= 2a

1 − ρ2

ρ2
. (5.9)

By writing

P[Z ≥ zn] = P[zn ≤ Z ≤ zn + 1]

≥ 1√
2π

exp
(

− 1

2
(zn + 1)2

)

,
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we deduce with (5.9)

lim inf
n→∞

1

lnn
ln P[Z ≥ zn] ≥ a

1 − ρ2

ρ2
.

Combining with (5.7) and (5.8), we get the required lower bound (5.5).

2) We now focus on the upper bound

lim sup
n→∞

1

lnn
ln P[Ln ≥ nqn] ≤ −a1 − ρ2

ρ2
. (5.10)

We introduce the conditional c.g.f. of Yk :

Γ(θ, z) = ln E[eθYk |Z = z] (5.11)

= ln(1 − p(z) + p(z)eθ). (5.12)

Then, for any θ ≥ 0, we get by Chebichev’s inequality,

P[Ln ≥ nqn|Z] ≤ E[eθ(Ln−nqn)|Z] = e−n(θqn−Γ(θ,Z)),

so that

P[Ln ≥ nqn|Z] ≤ e−nΓ∗(qn,Z), (5.13)

where

Γ∗(q, z) = sup
θ≥0

[θq − Γ(θ, z)] =

{

0, if q ≤ p(z)

q ln ( q
p(z)) + (1 − q) ln ( 1−q

1−p(z)), if p(z) < q ≤ 1.

By taking expectation on both sides on (5.13), we get

P[Ln ≥ nqn] ≤ E[eFn(Z)], (5.14)

where we set Fn(z) = −nΓ∗(qn, z). Since ρ > 0, the function p(z) is increasing in z, so

Γ(θ, z) is an increasing function of z for all θ ≥ 0. Hence, Fn(z) is an increasing function of

z, which is nonpositive and attains its maximum value 0, for all z s.t. qn = p(zn) ≤ p(z),

i.e. z ≥ zn. Moreover, by differentiation, we can check that Fn is a concave function of z.

We now introduce a change of measure. The idea is to shift the factor mean to reduce the

variance of the term eFn(Z) in the r.h.s. of (5.14). We consider the change of measure Pµ

that puts the distribution of Z to N (µ, 1). Its likelihood ratio is given by

dPµ

dP
= exp (µZ − 1

2
µ2),

so that

E[eFn(Z)] = Eµ[eFn(Z)−µZ+ 1

2
µ2

],

where Eµ denotes the expectation under Pµ. By concavity of Fn, we have Fn(Z) ≤ Fn(µ)+

F ′
n(µ)(Z − µ), so that

E[eFn(Z)] ≤ Eµ[eFn(µ)+(F ′
n(µ)−µ)Z−µF ′

n(µ)+ 1

2
µ2

]. (5.15)
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We now choose µ = µn solution to

F ′
n(µn) = µn, (5.16)

so that the term in the expectation in the r.h.s. of (5.15) does not depend on Z, and is

therefore a constant term (with zero-variance). Such a µn exists, since, by strict concavity

of the function z → Fn(z) − 1
2z

2, equation (5.16) is the first-order equation associated to

the optimization problem :

µn = arg max
µ∈R

[Fn(µ) − 1

2
µ2].

With this choice of factor mean µn, and by inequalities (5.14), (5.15), we get

P[Ln ≥ nqn] ≤ eFn(µn)− 1

2
µ2

n . (5.17)

We now prove that µn/zn converges to 1 as n goes to infinity. Actually, we show that for

all ε > 0, there is n0 large enough so that for all n ≥ n0, zn(1 − ε) < µn < zn. Since

F ′
n(µn) − µn = 0, and the function F ′

n(z) − z is decreasing by concavity Fn(z) − z2/2, it

suffices to show that

F ′
n(zn(1 − ε)) − zn(1 − ε) > 0 and F ′

n(zn) − zn < 0. (5.18)

We have

F ′
n(z) = n

(p(zn)

p(z)
− 1 − p(zn)

1 − p(z)

)

ϕ
(ρz + Φ−1(p)
√

1 − ρ2

) ρ
√

1 − ρ2
.

The second inequality in (5.18) holds since F ′
n(zn) = 0 and zn > 0 for qn > p, hence for

n large enough. Actually, zn goes to infinity as n goes to infinity from (5.9). For the first

inequality in (5.18), we use the property that 1 − Φ(x) ≃ ϕ(x)/x as x → ∞, so that

lim
n→∞

p(zn)

p(zn(1 − ε))
= 1, and lim

n→∞
1 − p(zn)

1 − p(zn(1 − ε))
= 0.

From (5.9), we have

ϕ
(ρzn(1 − ε) + Φ−1(p)

√

1 − ρ2

)

= 0(n−a(1−ε)2),

and therefore

F ′
n(zn(1 − ε)) = 0(n1−a(1−ε)2).

Moreover, from (5.9) and as a < 1, we have

zn(1 − ε) = 0(
√

lnn) = o(n1−a(1−ε)2)

We deduce that for n large enough F ′
n(zn(1 − ε)) − zn(1 − ε) > 0 and so (5.18).
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Finally, recalling that Fn is nonpositive, and from (5.17), we obtain :

lim sup
n→∞

1

lnn
ln P[Ln ≥ nqn] ≤ −1

2
lim
n→

µ2
n

lnn
= −1

2
lim
n→

z2
n

lnn
= −a1 − ρ2

ρ2
. (5.19)

2

Application : asymptotic optimality of two-step importance sampling estimator

Consider the estimation problem of P[Ln ≥ nq]. We apply a two-step importance sampling

(IS) by using IS conditional on the common factors Z and IS to the distribution of the

factors Z. Observe that conditioning on Z reduces to the problem of the independent case

studied in the previous paragraph, with default probability p(Z) as defined in (5.2), and

c.g.f. Γ(., Z) in (5.11). Choose θqn(Z) ≥ 0 attaining the argmax in θqn − Γ(θ, Z), and

return the estimator

exp(−θqn(Z)Ln + nΓ(θqn(Z), Z))1Ln≥nqn ,

where Ln is sampled with a default probability p(θq(Z), Z) = p(Z)eθqn (Z)/(1 − p(Z) +

p(Z)eθqn (Z)). This provides an unbiased conditional estimator of P[Ln ≥ nqn|Z] and an

asymptotically optimal conditional variance. We further apply IS to the factor Z ∼ N (0, 1)

under P, by shifting the factor mean to µ, and then considering the estimator

exp(−µZ +
1

2
µ2) exp(−θqn(Z)Ln + nΓ(θqn(Z), Z))1Ln≥nqn , (5.20)

where Z is sampled from N (µ, 1). To summarize, the two-step IS estimator is generated as

follows :

• Sample Z from N (µ, 1)

• Compute θqn(Z) and p(θqn(Z), Z)

• Return the estimator (5.20) where Ln is sampled with default probability p(θqn(Z), Z).

By construction, this provides an unbiaised estimator of P[Ln ≥ nqn], and the key point

is to specify the choice of µ in order to reduce the global variance or equivalently the

second momentM2
n(µ, qn) of this estimator. First, recall from Cauchy-Schwarz’s inequality :

M2
n(µ, qn) ≥ (P[Ln ≥ nq])2, so that the fastest possible rate of decay of M2

n(µ, qn) is twice

the probability itself :

lim inf
n→∞

1

lnn
lnM2

n(qn, µ) ≥ 2 lim
n→∞

1

lnn
ln P[Ln ≥ nqn]. (5.21)

To achieve this twice rate, we proceed as follows. Denoting by Ē the expectation under the

IS distribution, we have

M2
n(µ, qn) = Ē

[

exp(−2µZ + µ2) exp(−2θqn(Z)Ln + 2nΓ(θqn(Z), Z))1Ln≥nqn

]

≤ Ē

[

exp(−2µZ + µ2) exp(−2nθqn(Z)qn + 2nΓ(θqn(Z), Z))
]

= Ē

[

exp(−2µZ + µ2 + 2Fn(Z))
]

,
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by definition of θqn(Z) and Fn(z) = −n supθ≥0[θqn −Γ(θ, z)] introduced in the proof of the

upper bound in Theorem 5.1. As in (5.15), (5.17), by choosing µ = µn solution to F ′
n(µn)

= µn, we then get

M2
n(µn, qn) ≤ exp(2Fn(µn) − µ2

n) ≤ exp(−µ2
n),

since Fn is nonpositive. From (5.19), this yields

lim sup
n→∞

1

lnn
lnM2

n(µn, qn) ≤ −2a
1 − ρ2

ρ2
= 2 lim

n→∞
1

lnn
ln P[Ln ≥ nqn],

which proves together with (5.21) that

lim
n→∞

1

lnn
lnM2

n(µn, qn) = −2a
1 − ρ2

ρ2
= 2 lim

n→∞
1

lnn
ln P[Ln ≥ nqn],

and thus the estimator (5.20) for the choice µ = µn is asymptotically optimal. The choice

of µ = zn also leads to an asymptotically optimal estimator.

Remark 5.2 We also prove by similar methods large deviation results for the loss distri-

bution in the limiting regime where individual loss probabilities decrease toward zero, see

[26] for the details. This setting is relevant to portfolios of highly-rated obligors, for which

one-year default probabilities are extremely small. This is also relevant to measuring risk

over short time horizons. In this limiting regime, we set

ln = nq, with 0 < q < 1, p = pn = O(e−na), with a > 0.

Then,

lim
n→∞

1

n
ln P[Ln ≥ nq] = − a

ρ2
,

and we may construct similarly as in the case of large losses, a two-step IS asymptotically

optimal estimator.

5.2 A large deviations approach to optimal long term investment

5.2.1 An asymptotic outperforming benchmark criterion

A popular approach for institutional managers is concerned about the performance of their

portfolio relative to the achievement of a given benchmark. This means that investors are

interested in maximizing the probability that their wealth exceed a predetermined index.

Equivalently, this may be also formulated as the problem of minimizing the probability

that the wealth of the investor falls below a specified value. This target problem was

studied by several authors for a goal achievement in finite time horizon, see e.g. [11] or

[20]. Recently, and in a static framework, Stutzer [40] considered an asymptotic version

of this outperformance criterion when time horizon goes to infinity, which leads to a large

deviations portfolio criterion. To illustrate the purpose, let us consider the following toy

example. Suppose that an investor trades a number α of shares in stock of price S, and
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keep it until time T . Her wealth at time T is then Xα
T = αST . For simplicity, we take a

Bachelier model for the stock price : St = µt+ σWt, where W is a brownian motion. We

now look at the behavior of the average wealth when time horizon T goes to infinity. By

the law of large numbers, for any α ∈ R, the average wealth converges a.s. to :

X̄α
T :=

Xα
T

T
= αµ+ ασ

WT

T
−→ αµ,

when T goes to infinity. When considering positive stock price, as in the Black-Scholes

model, the relevant ergodic mean is the average of the growth rate, i.e. the logarithm of

the wealth. Fix some benchmark level x ∈ R. Then, from Cramer’s theorem, the probability

of outperforming x decays exponentially fast as :

P[X̄α
T ≥ x] ≃ e−I(x,α)T ,

in the sense that limT→∞
1
T ln P[X̄α

T ≥ x] = −I(x, α), where

I(x, α) = sup
θ∈R

[θx− Γ(θ, α)]

Γ(θ, α) =
1

T
ln E[eθXα

T ].

Thus, the lower is the decay rate I(x, α), the more chance there is of realizing a portfolio

performance above x. The asymptotic version of the outperforming benchmark criterion is

then formulated as :

sup
α∈R

lim
T→∞

1

T
ln P[X̄α

T ≥ x] = − inf
α∈R

I(x, α). (5.22)

In this simple example, the quantities involved are all explicit :

Γ(θ, α) = θαµ+
(θασ)2

2

I(x, α) =















1
2

(

αµ−x
ασ

)2
, α 6= 0

0, α = 0, x = 0

∞, α = 0, x 6= 0.

The solution to (5.22) is then given by α∗ = x/µ, which means that the associated expected

wealth E[X̄α∗

T ] is equal to the target x.

We now develop an asymptotic dynamic version of the outperformance management

criterion. Such a problem corresponds to an ergodic objective of beating a given benchmark,

and may be of particular interest for institutional managers with long term horizon, like

mutual funds. On the other hand, stationary long term horizon problems are expected to

be more tractable than finite horizon problems, and should provide some good insight for

management problems with long, but finite, time horizon.

We formulate the problem in a rather abstract setting. Let Z = (X,Y ) be a process

valued in R × Rd, controlled by α, a control process valued in some subset A of Rq. We

denote by A the set of control processes. As usual, to alleviate notations, we omitted the
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dependence of Z = (X,Y ) in α ∈ A. We shall then study the large deviations control

problem :

v(x) = sup
α∈A

lim sup
T→∞

1

T
ln P[X̄T ≥ x], x ∈ R, (5.23)

where X̄T = XT /T . The variable X should typically be viewed in finance as the (logarithm)

of the wealth process, Y are factors on market (stock, volatility ...), and α represents the

trading portfolio.

5.2.2 Duality to the large deviations control problem

The large deviations control problem (5.23) is a non standard stochastic control problem,

where the objective is usually formulated as an expectation of some functional to optimize.

In particular, in a Markovian continuous-time setting, we do not know if there is a dy-

namic programming principle and a corresponding Hamilton-Jacobi-Bellman equation for

our problem. We shall actually adopt a duality approach based on the relation relating

rate function of a LDP and cumulant generating function. The formal derivation is the

following. Given α ∈ A, if there is a LDP for X̄T = XT /T , its rate function I(., α) should

be related by the Fenchel-Legendre transform :

I(x, α) = sup
θ

[θx− Γ(θ, α)],

to the c.g.f.

Γ(θ, α) = lim sup
T→∞

1

T
ln E[eθXT ]. (5.24)

In this case, we would get

v(x) = sup
α∈A

lim sup
T→∞

1

T
ln P[X̄T ≥ x] = − inf

α∈A
I(x, α)

= − inf
α∈A

sup
θ

[θx− Γ(θ, α)],

and so, provided that one could intervert infinum and supremum in the above relation

(actually, the minmax theorem does not apply since A is not necessarily compact and α →
θx− Γ(θ, α) is not convex) :

v(x) = − sup
θ

[θx− Γ(θ)], (5.25)

where

Γ(θ) = sup
α∈A

Γ(θ, α) = sup
α∈A

lim sup
T→∞

1

T
ln E[eθXT ]. (5.26)

Problem (5.26) is the dual problem via (5.25) to the original problem (5.23). We shall

see in the next section that (5.26) can be reformulated as a risk-sensitive ergodic control

problem, which is more tractable than (5.23) and is studied by dynamic programming

methods leading in some cases to explicit calculations.
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First, we show rigorously the duality relation between the large deviations control prob-

lem and the risk-sensitive control problem and how the optimal controls to the former one

are related to the latter one. This result may be viewed as an extension of the Gärtner-Ellis

theorem with control components.

Theorem 5.2 Suppose that there exists θ̄ ∈ (0,∞] such that for all θ ∈ [0, θ̄), there exists

a solution α̂(θ) ∈ A to the dual problem Γ(θ), with a limit in (5.24), i.e.

Γ(θ) = lim
T→∞

1

T
ln E

[

exp
(

θX
α̂(θ)
T

)]

. (5.27)

Suppose also that Γ(θ) is continuously differentiable on [0, θ̄). Then for all x < Γ′(θ̄) :=

limλրθ̄ Γ′(θ), we get

v(x) = − sup
θ∈[0,θ̄)

[θx− Γ(θ)] . (5.28)

Moreover, the sequence of controls

α∗,n
t =

{

α̂t

(

θ
(

x+ 1
n

))

, Γ′(0) < x < Γ′(θ̄)

α̂t

(

θ
(

Γ′(0) + 1
n

))

, x ≤ Γ′(0),

with θ(x) ∈ (0, θ̄) s.t. Γ′(θ(x)) = x ∈ (Γ′(0),Γ′(θ̄)), is nearly optimal in the sense that

lim
n→∞

lim sup
T→∞

1

T
ln P

[

X̄α∗,n

T ≥ x
]

= v(x).

Proof.

Step 1. Let us consider the Fenchel-Legendre transform of the convex function Γ on [0, θ̄) :

Γ∗(x) = sup
θ∈[0,θ̄)

[θx− Γ(θ)], x ∈ R. (5.29)

Since Γ is C1 on [0, θ̄), it is well-known (see e.g. Lemma 2.3.9 in Dembo and Zeitouni 1998)

that the function Γ∗ is convex, nondecreasing and satisfies :

Γ∗(x) =

{

θ(x)x− Γ(θ(x)), if Γ′(0) < x < Γ′(θ̄)
0, if x ≤ Γ′(0),

(5.30)

θ(x)x− Γ∗(x) > θ(x)x′ − Γ∗(x′), ∀Γ′(0) < x < Γ′(θ̄), ∀x′ 6= x, (5.31)

where θ(x) ∈ (0, θ̄) is s.t. Γ′(θ(x)) = x ∈ (Γ′(0),Γ′(θ̄)). Moreover, Γ∗ is continuous on

(−∞,Γ′(θ̄)).

Step 2 : Upper bound. For all x ∈ R, α ∈ A, an application of Chebycheff’s inequality

yields :

P[X̄T ≥ x] ≤ exp(−θxT )E[exp(θXT )], ∀ θ ∈ [0, θ̄),
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and so

lim sup
T→∞

1

T
ln P[X̄T ≥ x] ≤ −θx+ lim sup

T→∞

1

T
ln E[exp(θXT )], ∀ θ ∈ [0, θ̄).

By definitions of Γ and Γ∗, we deduce :

sup
α∈A

lim sup
T→∞

1

T
ln P[X̄α

T ≥ x] ≤ −Γ∗(x). (5.32)

Step 3 : Lower bound. Given x < Γ′(θ̄), let us define the probability measure Qn
T on (Ω,FT )

via :

dQn
T

dP
= exp

[

θ(xn)Xα∗,n

T − ΓT (θ(xn), α∗,n)
]

, (5.33)

where xn = x+ 1/n if x > Γ′(0), xn = Γ′(0) + 1/n otherwise, α∗,n = α̂(θ(xn)), and

ΓT (θ, α) = ln E[exp(θXα
T )], θ ∈ [0, θ̄), α ∈ A.

Here n is large enough so that x+ 1/n < Γ′(θ̄). We now take ε > 0 small enough so that

x ≤ xn − ε and xn + ε < Γ′(θ̄). We then have :

1

T
ln P[X̄α∗,n

T ≥ x] ≥ 1

T
ln P

[

xn − ε < X̄α∗,n

T < xn + ε
]

=
1

T
ln

(
∫

dP

dQn
T

1{xn−ε<X̄α∗,n

T
<xn+ε}dQ

n
T

)

≥ −θ(xn) (xn + ε) +
1

T
ΓT (θ(xn), α∗,n)

+
1

T
ln Qn

T

[

xn − ε < X̄α∗,n

T < xn + ε
]

,

where we use (5.33) in the last inequality. By definition of the dual problem, this yields :

lim inf
T→∞

1

T
ln P[X̄α∗,n

T ≥ x] ≥ −θ(xn) (xn + ε) + Γ(θ(xn))

+ lim inf
T→∞

1

T
ln Qn

T

[

xn − ε < X̄α∗,n

T < xn + ε
]

≥ −Γ∗(xn) − θ(xn)ε

+ lim inf
T→∞

1

T
ln Qn

T

[

xn − ε < X̄α∗,n

T < xn + ε
]

, (5.34)

where the second inequality follows by the definition of Γ∗ (and actually holds with equality

due to (5.30)). We now show that :

lim inf
T→∞

1

T
lnQn

T

[

xn − ε < X̄α∗,n

T < xn + ε
]

= 0. (5.35)

Denote by Γ̃n
T the c.g.f. under Qn

T of Xα∗,n

T . For all ζ ∈ R, we have by (5.33) :

Γ̃n
T (ζ) := lnEQn

T [exp(ζXα∗,n

T )]

= ΓT (θ(xn) + ζ, α∗,n) − ΓT (θ(xn), α∗,n).
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Therefore, by definition of the dual problem and (5.27), we have for all ζ ∈ [−θ(xn), θ̄ −
θ(xn)) :

lim sup
T→∞

1

T
Γ̃n

T (ζ) ≤ Γ(θ(xn) + ζ) − Γ(θ(xn)). (5.36)

As in part 1) of this proof, by Chebycheff’s inequality, we have for all ζ ∈ [0, θ̄ − θ(xn)) :

lim sup
T→∞

1

T
ln Qn

T

[

X̄α∗,n

T ≥ xn + ε
]

≤ −ζ(xn + ε) + lim sup
T→∞

1

T
Γ̃n

T (ζ)

≤ −ζ (xn + ε) + Γ(ζ + θ(xn)) − Γ(θ(xn)),

where the second inequality follows from (5.36). We deduce

lim sup
T→∞

1

T
ln Qn

T

[

X̄α∗,n

T ≥ xn + ε
]

≤ − sup{ζ (xn + ε) − Γ(ζ) : ζ ∈ [θ(xn), θ̄)}

−Γ(θ(xn)) + θ(xn) (xn + ε)

≤ −Γ∗ (xn + ε) − Γ(θ(xn)) + θ(xn) (xn + ε) ,

= −Γ∗ (xn + ε) + Γ∗(xn) + εθ(xn), (5.37)

where the second inequality and the last equality follow from (5.30). Similarly, we have for

all ζ ∈ [−θ(xn), 0] :

lim sup
T→∞

1

T
ln Qn

T

[

X̄α∗,n

T ≤ xn − ε
]

≤ −ζ (xn − ε) + lim sup
T→∞

1

T
Γ̃n

T (ζ)

≤ −ζ (xn − ε) + Γ(θ(xn) + ζ) − Γ(θ(xn)),

and so :

lim sup
T→∞

1

T
ln Qn

T

[

X̄α∗,n

T ≤ xn − ε
]

≤ − sup{ζ (xn − ε) − Γ(ζ) : ζ ∈ [0, θ(xn)]}

−Γ(θ(xn)) + θ(xn) (xn − ε)

≤ −Γ∗ (xn − ε) + Γ∗(θ(xn)) − εθ(xn). (5.38)

By (5.37)-(5.38), we then get :

lim sup
T→∞

1

T
ln Qn

T

[{

X̄α∗,n

T ≤ xn − ε
}

∪
{

X̄α∗,n

T ≥ xn + ε
}]

≤ max

{

lim sup
T→∞

1

T
ln Qn

T

[

X̄α∗,n

T ≥ xn + ε
]

; lim sup
T→∞

1

T
ln Qn

T

[

X̄α∗,n

T ≤ xn − ε
]

}

≤ max {−Γ∗ (xn + ε) + Γ∗(xn) + εθ(xn);−Γ∗ (xn − ε) + Γ∗(θ(xn)) − εθ(xn)}
< 0,

where the strict inequality follows from (5.31). This implies that Qn
T [{X̄α∗,n

T ≤ xn − ε} ∪
{X̄α∗,n

T ≥ xn + ε}] → 0 and hence Qn
T [xn − ε < X̄α∗,n

T < xn + ε] → 1 as T goes to infinity.

In particular (5.35) is satisfied, and by sending ε to zero in (5.34), we get :

lim inf
T→∞

1

T
ln P[X̄α∗,n

T ≥ x] ≥ −Γ∗(xn).
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By continuity of Γ∗ on (−∞,Γ′(θ̄)), we obtain by sending n to infinity and recalling that

Γ∗(x) = 0 = Γ∗(Γ′(0)) for x ≤ Γ′(0) :

lim inf
n→∞

lim inf
T→∞

1

T
ln P[X̄α∗,n

T ≥ x] ≥ −Γ∗(x).

This last inequality combined with (5.32) ends the proof. 2

Remark 5.3 Notice that in Theorem 5.2, the duality relation (5.28) holds for x < Γ′(θ̄).

When Γ′(θ̄) = ∞, we say that fonction Γ is steep, so that (5.28) holds for all x ∈ R. We

illustrate in the next section different cases where Γ is steep or not.

Remark 5.4 In financial applications, Xt is the logarithm of an investor’s wealth V α
t at

time t, αt is the proportion of wealth invested in q risky assets S and Y is some economic

factor influencing the dynamics of S and the savings account S0. Hence, in a diffusion

model, we have

dXt =

[

r(Yt) + α′
t(µ(Yt) − r(Yt)eq) −

1

2
|α′

tϑ(Yt)|2
]

dt + α′
tϑ(Yt)dWt,

where µ(y) (resp. ϑ(y)) is the rate of return (resp. volatility) of the risky assets, r(y) is

the interest rate, and eq is the unit vector in Rq.

Notice that the value function of the dual problem can be written as :

Γ(θ) = lim
T→∞

1

T
lnE

[

Uθ

(

V
α̂(θ)
T

)]

,

where Uθ(c) = cθ is a power utility function with Constant Relative Risk Aversion (CRRA)

1 − θ > 0 provided that θ < 1. Then, Theorem 5.2 means that for any target level x, the

optimal overperformance probability of growth rate is (approximately) directly related, for

large T , to the expected CRRA utility of wealth, by :

P [X̄α∗

T ≥ x] ≈ E
[

Uθ(x)

(

V α∗

T

)]

e−θ(x)xT , (5.39)

with the convention that θ(x) = 0 for x ≤ Γ′(0). Hence, 1 − θ(x) can be interpreted as a

constant degree of relative risk aversion for an investor who has an overperformance target

level x. Moreover, by strict convexity of function Γ∗ in (5.29), it is clear that θ(x) is strictly

increasing for x > Γ′(0). So an investor with a higher target level x has a lower degree

of relative risk aversion 1 − θ(x). In summary, Theorem 5.2 (or relation (5.39)) inversely

relates the target level of growth rate to the degree of relative risk aversion in expected

utility theory.

5.2.3 Explicit calculations to the dual risk-sensitive control problem

We now show that the dual control problem (5.26) may be transformed via a change of

probability measure into a risk-sensitive control problem. We consider the framework of a

general diffusion model for Z = (X,Y ) :

dXt = b(Xt, Yt, αt)dt+ σ(Xt, Yt, αt)dWt in R (5.40)

dYt = η(Xt, Yt, αt)dt + σ(Xt, Yt, αt)dWt in Rd, (5.41)
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where W is a m-dimensional brownian motion on a filtered probability space (Ω,F ,F =

(Ft)t≥0,P), and α = (αt)t≥0, the control process, is F-adapted and valued in some subset

A of Rq. We denote A the set of control processes. The coefficients b, η, σ and γ are

measurable functions of their arguments, and given α ∈ A and an initial condition, we

assume the existence and uniqueness of a strong solution to (5.40)-(5.41), which we also

write by setting Z = (X,Y ) :

dZt = B(Zt, αt)dt + Σ(Zt, αt)dWt. (5.42)

From the dynamics of X in (5.40), we may rewrite the Laplace transform of XT as :

E [exp (θXT )] = eθX0E

[

exp

(

θ

∫ T

0
b(Zt, αt)dt + θ

∫ T

0
σ(Zt, αt)dWt

)]

= eθX0E

[

ξα
T (θ) exp

(
∫ T

0
ℓ(θ, Zt, αt)dt

)]

, (5.43)

where

ℓ(θ, z, a) = θb(z, a) +
θ2

2
|σ(z, a)|2,

and ξα
t (θ) is the Doléans-Dade exponential local martingale

ξα
t (θ) = E

(

θ

∫

σ(Zu, αu)dWu

)

t

:= exp

(

θ

∫ t

0
σ(Zu, αu)dWu − θ2

2

∫ t

0
|σ(Zu, αu)|2du

)

, t ≥ 0. (5.44)

If ξα(θ) is a “true” martingale, it defines a probability measure Q under which, by Girsanov’s

theorem, the dynamics of Z is given by :

dZt = G(θ, Zt, αt)dt + Σ(Zt, αt)dW
Q
t ,

where WQ is a Q-Brownian motion and

G(θ, z, a) =

(

b(z, a) + θ|σ(z, a)|2
η(z, a) + θγσ′(z, a)

)

.

Hence, the dual problem may be written as a stochastic control problem with exponential

integral cost criterion :

Γ(θ) = sup
α∈A

lim sup
T→∞

1

T
ln EQ

[

exp

(
∫ T

0
ℓ(θ, Zt, αt)dt

)]

, θ ≥ 0. (5.45)

For fixed θ, this is an ergodic risk-sensitive control problem which has been studied by

several authors, see e.g. [18], [10] or [39] in a discrete-time setting. It admits a dynamic

programming equation :

Λ(θ) = sup
a∈A

[

1

2
tr
(

ΣΣ′(z, a)D2φθ

)

+G(θ, z, a).∇φθ

+
1

2

∣

∣Σ′(z, a)∇φθ

∣

∣

2
+ ℓ(θ, z, a)

]

, z ∈ Rd+1. (5.46)
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The unknown is the pair (Λ(θ), φθ) ∈ R×C2(Rd+1), and Λ(θ) is a candidate for Γ(θ). The

above P.D.E. is formally derived by considering the finite horizon problem

uθ(T, z) = sup
α∈A

EQ

[

exp

(
∫ T

0
ℓ(θ, Zt, αt)dt

)]

,

by writing the Bellman equation for this classical control problem and by making the

logarithm transformation

lnuθ(T, z) ≃ Λ(θ)T + φθ(z),

for large T .

One can prove rigorously that a pair solution (Λ(θ), φθ) to the PDE (5.46) provides

a solution Λ(θ) = Γ(θ) to the dual problem (5.26), with an optimal control given by the

argument max in (5.46). This is called a verification theorem in stochastic control theory.

Actually, there may have multiple solutions φθ to (5.46) (even up to a constant), and we

need some ergodicity condition to select the good one that satisfies the verification theorem.

We refer to [37] for the details, and we illustrate our purpose with an example with explicit

calculations.

We consider a one-factor model where the bond price S0 and the stock price S evolve

according to :

dS0
t

S0
t

= (a0 + b0Yt)dt,
dSt

St
= (a+ bYt)dt + σdWt,

with a factor Y as an Ornstein-Uhlenbeck ergodic process:

dYt = −kYtdt+ dBt,

where a0, b0, a, b are constants, k, σ are positive constants, and W , B are two brownian mo-

tions, supposed non correlated for simplicity. This includes Black-Scholes, Platen-Rebolledo

or Vasicek models. The (self-financed) wealth process Vt with a proportion αt invested in

stock, follows the dynamics : dVt = αtVt
dSt

St
+ (1 − αt)Vt

dS0
t

S0
t

, and so the logarithm of the

wealth process Xt = lnVt is governed by a linear-quadratic model :

dXt = (β0Y
2
t + β1α

2
t + β2Ytαt + β3Yt + β4αt + β5)dt + (δ0Yt + δ1αt + δ2)dWt,(5.47)

where in our context, β0 = 0, β1 = −σ2/2, β2 = b− b0, β3 = b0, β4 = a− a0, β5 = a0, δ0 =

0, δ1 = σ and δ2 = 0. Without loss of generality, we may assume that σ = 1 and so β1 =

−1/2 (embedded into α) and β5 = 0 (embedded into x). The P.D.E. (5.46) simplifies into

the search of a pair (Λ(θ), φθ) with φθ depending only on y and solution to :

Λ(θ) =
1

2
φ′′θ − kyφ′θ +

1

2
|φ′θ|2 + θ

(

β0 + θ
δ20
2

)

y2 + θ(β3 + θδ0δ2)y + θ2 δ
2
2

2

+
1

2

θ

1 − θδ21
[(β2 + θδ0δ1)y + β4 + θδ1δ2]

2 . (5.48)

Moreover, the maximum in a ∈ R of (5.46) is attained for

α̂(θ, y) =
(β2 + θδ0δ1)y + β4 + θδ1δ2

1 − θδ21
. (5.49)
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The above calculations are valid only for 0 ≤ θ < 1/δ21 . We are looking for a quadratic

solution to the ordinary differential equation (5.48) :

φθ(y) =
1

2
A(θ)y2 +B(θ)y.

By substituting into (5.48), and cancelling terms in y2, y and constant terms, we obtain

• a polynomial second degree equation for A(θ)

• a linear equation for B(θ), given A(θ)

• Λ(θ) is then expressed explicitly in function of A(θ) and B(θ) from (5.48).

The existence of a solution to the second degree equation for A(θ), through the nonnegativ-

ity of the discriminant, allows to determine the bound θ̄ and so the interval [0, θ̄) on which

Λ is well-defined and finite. Moreover, we find two possible roots to the polynomial second

degree equation for A(θ), but only one satisfies the ergodicity condition. From Theorem

5.2, we deduce that

v(x) = − sup
θ∈[0,θ̄)

[θx− Λ(θ)], ∀x < Λ′(θ̄), (5.50)

with a sequence of nearly optimal controls given by :

α∗,n
t =

{

α̂
(

θ
(

x+ 1
n

)

, Yt

)

, Λ′(0) < x < Λ′(θ̄)
α̂
(

θ
(

Λ′(0) + 1
n

)

, Yt

)

, x ≤ Λ′(0),

with θ(x) ∈ (0, θ̄) s.t. Λ′(θ(x)) = x. In the one-factor model described above, the function Λ

is steep, i.e. Λ′(θ̄) = ∞, and so (5.50) holds for all x ∈ R. For example, in the Black-Scholes

model, i.e. b0 = b = 0, we obtain

Γ(θ) = Λ(θ) =
1

2

θ

1 − θ

(a− a0

σ2

)2
, for θ < θ̄ = 1,

v(x) = − sup
θ∈[0,1)

[θx− Γ(θ)] =

{

−(
√
x−

√
x̄)2, if x ≥ x̄ := Γ′(0) = 1

2(a−a0

σ2 )2

0, if x < x̄,

θ(x) = 1 −
√

x̄/x if x ≥ x̄, and 0 otherwise, and

α∗
t =

{ √
2x, if x ≥ x̄

a−a0

σ2 , if x < x̄.

We observe that for an index value x small enough, actually x < x̄, the optimal investment

for our large deviations criterion is equal to the optimal investment of the Merton’s problem

for an investor with relative risk aversion one. When the value index is larger than x̄, the

optimal investment is increasing with x, with a degree of relative risk aversion 1 − θ(x)

decreasing in x.

In the more general linear-quadratic model (5.47), Λ may be steep or not depending on

the parameters βi and δi. We refer to [37] for the details. Some variants and extensions of

this large deviations control problem are studied in [30], and [1].

48



6 Conclusion

In these notes, we developed some applications and emphasized methods of large deviations

in finance and insurance. These applications are multiple, and our presentation is by no

means exhaustive. There are numerous works dealing with large deviations techniques in

the context of insurance, see e.g. [14], [4], or more recently [33] and [35]. We also cite

the paper [6], which develops asymptotic formula for calculating implied volatility of index

options. Large deviation principle for backward stochastic differential equations is used by

[5] in a setting motivated by credit risk management. Other papers using large deviations in

portfolio management are [38] and [8]. Some aspects of large deviations applied to problems

in macroeconomics are studied in [41].

From a general viewpoint, questions related to extremal events are embedded into the

extreme value theory, and we refer to the classical book [16] for a development of this

subject, especially regarding applications in finance and insurance.
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