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1 Introduction.

The aim of this paper is the study of the relationship between two objects, the
Green-Lazarsfeld set and the Bieri Neumann Strebel invariant, which appear
simultaneously in 1987 ([GL] , [BNS]). Let us recall some basic definitions.

Let Γ be a finitely generated group, and K be a field. A 1-character χ is an
homomorphism from Γ to K∗ ; in this article we will only consider 1-characters,
and call them characters. A character χ is called exceptional if H1(Γ, χ) 6= 0,
or more geometrically if χ can be realized as the linear part of a fixed point
free affine action of Γ on a K-line.

The set of exceptional characters, E1(Γ, K) is a subset of the abelian group
Hom(Γ, K∗), and our aim is to understand its geometry, in particular if Γ is the
fundamental group of a Kähler manifold.

Motivated by the pioneering work of M. Green and R. Lazarsfeld, algebraic
geometers studied the case where K = C is the field of complex numbers, and
Γ = π1(X) is the fundamental group of a projective or more generally a Kähler
manifold. In this case, the geometry of Hom(Γ, K∗)is well understood : it is
the union of a finite set, made up with torsion characters, and a finite set of
translates of subtori. This result has been conjectured by A. Beauville and
F. Catanese, ([Be ]) proved by C. Simpson [Si 2]) for projective manifolds, and
extended by F. Campana to the Kähler case (see [Ca] for a detailed introduc-
tion). The main tools used by C. Simpson were the flat hyper-Kähler structure
of Hom(Γ,C∗) and the Schneider-Lang theorem in transcendence theory. An-
other proof, model theoretic, has been proposed by R. Pink and D. Roessler
[PR].

The definition of a exceptional class in the sense of Bieri Neumann Strebel
is easier to explain in the case of an integral cohomology class (an element of
H1(Γ,Z)). Such a class is exceptional if it can be realized as the translation
class of a parabolic, non loxodromic action of Γ in some tree.
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The link between these two notions, explained in the next paragraph, can be
sketched as follows. Let χ be a Green-Lazarsfeld character of Γ. Suppose χ(Γ)
is not contained in the ring of algebraic integers of K. There exists a discrete
non archimedian valuation on K such that v ◦χ is a non trivial homomorphism
to Z. It appears that v ◦χ is an exceptional class in the sense of Bieri Neumann
Strebel. More precisely, on can find a parabolic action of Γ on the Bruhat Tits
tree of Kv, with translation length v ◦ χ.

Due to the work of C. Simpson [Si 3] , M. Gromov and R. Shoen [GS], ex-
ceptional cohomology classes on Kähler manifold are well understood (see also
[De] for a detailed study of the BNS invariant of a Kähler group). Let X be a
Kähler manifold, and ω an exceptional class ; there exists a holomorphic map F
from X to a hyperbolic Riemann orbifold Σsuch that ω belongs to F ∗H1(Σ,Z).
Recall that a complex 2-orbifold Σ is a Riemann surface S marked by a finite
set of marked points {(q1, m1) . . . , (qn, mn)}, where the m′

is are integers > 2.
A map F : X → Σ is called holomorphic if it is holomorphic in the usual sense,
and for every qi the multiplicity of the fiber F−1(qi) is divisible by mi. The
main result of this paper is a description of the (generalized) Green Lazarsfeld
set of π1(X) in terms of the finite list of its fibrations on hyperbolic 2-orbifolds.

Theorem Let Γ be the fundamental group of a Kähler manifold X, (Fi, Σi)16i6n

the family of fibration of X over hyperbolic 2-orbifolds. Let K be a field of char-
acteristic p (if p = 0, K = C), F̄p ⊂ K the algebraic closure of Fp in K.
Then E1(Γ, K) is the union of a finite set of torsion characters (contained in
E1(Γ, F̄p) if p > 0) and the union

⋃

16i6n F ∗

i E1(πorb
1 (Σi), K

∗).

Remarks a) Let Σ = (S; (qi, mi)16i6n) a hyperbolic 2-orbifold, and Γ =
πorb

1 (Σ) its fundamental group. Then, by a simple computation (see prop.22),
one checks that E1(πorb

1 (Σ), K∗) = Hom(πorb
1 (Σ, K∗)) = (K∗)2g × Φ, where Φ

is a finite abelian group, unless g = 1 and for all i, mi 6≡ 0(charK). If g = 1 and
for all i mi 6≡ 0(charK), E1(πorb

1 (Σ), K∗) is finite, made of torsion characters.
In every cases, the Green Lazarsfeld set is the union of a finite set of torsion

characters and a finite set of abelian groups which are translates of tori ; this is
our generalization of Simpson’s theorem.

b) The main tool used by Simpson to prove his theorem [Si 2]was the study
of algebraic triple tori ; if charK 6= 0 no such a structure is available. Our proof
furnishes a geometric (i.e. non arithmetic) alternative to Simpson’s proof in the
case of characteristic 0. In fact, in this case (carK = 0) our method proves that
E1(Γ, K) is made with a finite set of integral characters (in the sense of Bass
[Ba ]), and the union

⋃

16i6n F ∗

i Hom(πorb
1 (Σi), K

∗) ; the conclusion follows
from the study of the the absolute value |χ| of exceptional characters, which
was already done by A. Beauville[Be].

In a recent preprint, [CS] ,C. Simpson and K. Corlette study the variety of
characters of a Kähler group Γ, Homss(Γ, PSl(2,C)/ PSL(2,C) from a very sim-
ilar point of view ; they prove in particular that a Zariski dense representation
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of a Kähler group which is not integral in the sense of Bass factorizes through
a fibration over a hyperbolic 2-orbifold. Their proof is based on the same idea
as ours : if a representation ρ is not integral, there exists a valuation on the
field generated by ρ(Γ) such that the action of Γ on the Bruhat Tits building
is non elementary. The conclusion follows by applying the theory of Gromov
Shoen on harmonic maps with value in a tree. Using Simpson’s work on Higgs
bundles they prove further a rigid representation come from a complex variation
of Hodge structure.

In paragraph 2, we explain the relationship between the Green-Lazarsfeld
and Bieri-Neumann-Strebel invariants ; in paragraph 3 we study the Green-
Lazarsfeld set of a metabelian group : a finiteness result on this set is established.
These two paragraphs are purely group theoretic, and no Kähler structure is
mentioned. In the paragraph 4 we prove the main result.

Acknowledgments. I would like to thank R. Bieri for very helpful discus-
sions on the structure of metabelian groups, and for explaining me his paper
[BG] with J. Groves, and F. Campana for his interest and comments.

2 From an affine action on a line to a parabolic

action on a tree.

2.1 Affine action on the line : the Green-Lazarsfeld set

Let K be a field. The affine group of transformation of a K-line, Aff1(K), is
isomorphic to K∗

⋉ K. We identify this group with the set of upper triangular

(2, 2)matrices

(

∗ ∗
0 1

)

with values in K.

Let Γ be a finitely generated group. An affine action of Γ on the line is a

morphism ρ : Γ → Aff1(K). One can write ρ(g) =

(

χ(g) θ(g)
0 1

)

. The linear

part of ρ is an homomorphism χ : Γ → K∗. Its translation part θ : Γ → K
is a 1-cocycle of Γ with value in χ, i.e. a function which satisfies θ(gh) =
θ(g) + χ(g)θ(h). The representation ρ is conjugate to a diagonal representation
if and only if ρ(Γ) fixes a point µ ∈ K, or equivalently if and only if there exists
a µ ∈ K such that θ(g) = µ(−1 + χ(g)) is a coboundary.

Definition 1 A character χ ∈ Hom(Γ, K∗)is exceptional if it can be realized
as the linear part of a fixed point free affine action of Γ on the line, i.e if
H1(Γ, χ) 6= 0. The set of exceptional characters E1(Γ, K) is called the Green-
Lazarsfeld set of Γ.

2.2 Parabolic action on a tree : the Bieri Neumann Strebel

invariant.

Let T be a simplicial tree. We endow T with its natural simplicial metric,
and think of T as a complete geodesic space. Let us recall the definitions of
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the boundary of T , and of the Busemann cocyle associated to a point in this
boundary.

A ray in T is an isometric map r : [a, +∞ [→ T . Two rays r : [a, +∞ [→ T ,
s : [b, +∞ [→ T are equivalent (or asymptotic) if they coincide after a certain
time : there exists a′, b′ s.t. for all t > 0 r(a′ + t) = s(b′ + t). The boundary
of T , denoted ∂T, is the set of equivalence classes of rays. If α ∈ ∂T and
r : [a, +∞ [→ T represents α, for every point x, the function t → d(x, r(t)) − t
is eventually constant. Its limit br(x) is called the Busemann function of r. If s
is equivalent to r, the difference br − bs is a constant.

Definition 2 (Busemman cocyle) . Let Γ be a group acting on T , and α ∈ ∂T .
If Γ fixes α, one define an homomorphism, the Busemann cocyle, by the
formula :

ωα : Γ → Z
ωα(g) = br ◦ g − br

Definition 3 (Exceptional classes) The action of Γ is called parabolic if it fixes
some point at infinity. It is called exceptional if fixes a unique point at infinity,
and if the associated Busemann cocycle is not trivial. A class ω ∈ H1(Γ,Z) is
exceptional if it can be realized as the Busemann cocycle of an exceptional action
of Γ in some tree. The set of exceptional classes is denoted E1(Γ,Z).

Remark 1 A topological definition of a exceptional class can also be given, in
the case where Γ is finitely presented. Let Γ = π1(X),where X is a compact
manifold, and let ω be some class in H1(Γ,Z). One represents ω by a closed 1-
form w on X and consider a primitive F : X̃ → R of the lift of w to the universal
cover of X. Then ω is exceptional iff F > 0 has several components on which F
is unbounded (see [Bi] , [Le] , [Bro]).

Remark 2 The notion of an exceptional class, defined by Bieri Neumann Strebel
and studied by several authors, in particular [Bro] , [Le] ,is more general : it con-
cerns homomorphism with value in R and can be defined along the same lines,
using R-trees instead of combinatorial trees. Our point of view is that of Brown
; it is interesting to remark that [Bro] , [BNS]and [GL] are published in the same
issue of the same journal, but apparently nobody remarked that [Bro] and [GL]
studied the same object from a different point of view. This remark justify the
choice of our title.

2.3 Discrete valuations and Bruhat-Tits trees.

In this paragraph we fix a field K. Let v : K∗ → Z be a discrete non archimedian
valuation on K. Bruhat and Tits [BT]constructed a tree Tv with an action of
PGL(2, K). One should think of the action of PGL(2, K) of Tv as an analogue
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of the action of PGL(2,C) on the hyperbolic space of dimension 3 ; we recall
below some basic facts about this action (see [Se] for a detailed study).

Let Ov ⊂ K denote the valuation ring v > 0. The vertices of Tv are the
homothety classes of Ov−lattices, i.e. free Ov−modules of rank 2, in K2 . The
boundary of this tree is the projective line P 1(K̄v) over the v-completion of K.

By the general theory of lattices, if Λ, Λ′ are two lattices, one can find a
Ov-base of Λ such that, in this base, Λ′ is generated by (ta, 0) and (0, tb) for
some t with v(t) = 1 ; hence up to homothety by (1, 0) and (0, tn), for n = b−a.
Then the distance between Λ, and Λ′ is |n|, and the segment between Λ and Λ′

is the set of lattices generated by (1, 0) and(0, tk), k = 1, n. More generally if
l, l′ are two different lines in K2, considered as points in ∂Tv, the geodesic from
l to l′ is the set of product of lattices in l and l′.

The matrix gu =

(

1 u
0 1

)

fixes the lattice Λn generated by (1, 0) and

(0, tn) for n 6 v(u). The matrix gu =

(

tn u
0 1

)

transforms Λm to Λm+n if

m + n 6 v(u).

Acting on Tv the Borel sub-group

(

∗ ∗
0 1

)

is parabolic : it fixes an end of

Tv (namely the line generated by the first basis vector), but neither a point of
Tv nor a pair of points of ∂Tv.

The Busemann cocyle of this parabolic subgroup is b (

(

α β
0 1

))

= v(α).

The relation between the Green-Lazarsfeld set and the Bieri-Neumann-Strebel
invariant is now simple to explain.

Proposition 1 Let χ ∈ H1(Γ, K∗). Suppose that χ ∈ E1(Γ, K∗) and let θ ∈

H1(Γ, χ) 6= 0. Let ρ : Γ → Gl(2, K) be defined by ρ(g) =

(

χ(g) θ(g)
0 1

)

. If

v ◦ χ ∈ H1(Γ,Z) is not 0, ρ is an exceptional action on Tv.

Proof. By construction the action of Γ on Tv fixes a point at infinity. It
contains an hyperbolic element as v ◦ χ 6= 0, but the action cannot fix a line :
the other point in the boundary P 1( K̄v) would be fixed by the group Γ, and
ρ would be conjugate to diagonalizable action. The orbit of any point of Γ is
therefore a minimal tree which is not a line. �

3 Metabelian groups

If Γ is a group, let Γ′ = [Γ, Γ] its derived group. Recall that a group is metabelian
if Γ′ is abelian, or Γ2 = (Γ′)′ is trivial. If Γ is a f.g. group, Γ/Γ2 is metabelian.

3.1 The Green-Lazarsfeld set of a metabelian group.

If K is a field, the Green-Lazarsfeld set E1(Γ, K) of the group Γ only depends
on its metabelianized Γ/Γ2 as it only depends of the set of representation of Γ
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in the metabelian group Aff1(K) = K∗
⋉ K .

Let Γ be a metabelian group. We write 1 → [Γ, Γ] → Γ → Q → 1, where
Q = Γ/ [Γ, Γ] is the abelianized group, and [Γ, Γ] is abelian. As an abelian
group, M = [Γ, Γ] is not necessary f.g, however we can let Q acts on [Γ, Γ] by
conjugation, so that M can be promoted as a ZQ module. The following fact
is basic and well-known.

Lemma 1 The module M is finitely generated as a ZQ module.

If g1, . . . . . . gr are generators of Γ, the commutators hij = [gi, gj] gener-
ate [Γ, Γ] as a ZQ module : if [g, h] if h = ab we have [g, h] = [g, ab] =
gag−1a−1agbg−1b−1a−1 = [g, a]a [g, b]a−1 = [g, a]a∗ [g, b], and the result fol-
lows by induction. �

Theorem 1 Let Γ be a finitely generated group. Given a prime number p (p
might be 0), there exists a finite number of fields Kν of characteristic p and
of finite transcendence degree over Fp (if p = 0, set Fp = Q) and characters
ξν : Γ → K∗

ν such that :

1. H1(Γ, ξν) 6= 0, i.e. ξν ∈ E1(Γ, Kν)

2. If K is a field of characteristic p and χ ∈ E1(Γ, K) a Green-Lazarsfeld
character, then there exists an index ν s.t. kerχ ⊃ ker ξν .

Proof Let Fp be the field with p elements and Fp [Q] the group ring of Q
with Fp coefficients. Let Mp = [Γ, Γ] ⊗ Fp,J ⊂ Fp [Q] the annihilator of Mp,
and A = Fp [Q] /J . As Q is a finitely generated abelian group, isomorphic toZr × Φ, with Φ finite abelian, A is a noetherian ring. Thus A admits a finite
number of minimal prime ideals (pν)16ν6ν0

. Let ki be the field of fraction of
A/pi, and ξi be the natural character Γ → Q → A/pi → ki. Up to re-ordering
the list of these ideals, we may assume that for 1 6 i 6 ν1, H

1(Γ, ξi) 6= 0.
The theorem 8 is a consequence of the following :

Lemma 2 Let χ ∈ E1(Γ, K) be an exceptional character, χ 6= 1, and let p be
a minimal prime ideal contained in kerχ. Then, the character ξp belongs to
E1(Γ, k∗

p), i.e. H1(Γ, ξ) 6= 0.

LetMp = M ⊗ Ap, and M0 = M ⊗A K = Mp/pMp. Note that M0 is a
finitely generated kp vector space, on which Γ acts by homotheties : the action
of g is the homothety of ratio ξ(g). Let π : [Γ, Γ] → M0 the canonical map. We
shall prove that H1(Γ, M) 6= 0.

For some g0 ∈ Γ, ξ(g0) is not 1 (as an element of kp) : if not Γ = ker ξp so
χ = 1.

The map Γ → M0 defined by c(g) = π(g0gg−1
0 g−1) satisfies c(gh) = π(g0ghg−1

0 h−1g−1) =
π(g0gg−1

0 g−1)+π(gg0hg−1
0 h−1g−1) = c(g)+ξ(g)π(g0hg−1

0 h−1) = c(g)+ξ(g)c(h).
Therefore c is a 1-cocycle of Γ with value in M .

Let us prove, by contradiction, that the cohomology class of c is not 0.
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For every m ∈ M0, c(m) = (ξ(g0)m − m) = (ξ(g0) − 1)m. If c = 0, as
ξ(g0) 6= 1, then M0 = 0. But if M0 = 0, Mp/pMp = 0,i.e. pMp = Mp, and
Mp = 0 by the Nakayama lemma (p is the unique maximal ideal of Ap), i.e.
M = pM . But p ⊂ kerχ, so this would implies that M ⊗A K = 0 and
H1(Γ, χ) = 0.

If this cocyle is a coboundary we could find some m ∈ M0 s.t. c(g) =
(1 − ξ(g))m, but c(g0) = 0, and ξ(g0) 6= 1, so c would be 0.

In order to prove lemma 9, we see that, for every linear map l = M0 → K,
l ◦ c is a non trivial 1 − cocycle .

This proves theorem 8.
�

Remark 3 The previous proof is a combination of arguments by [BG] and
[Bre]. In their remarkable paper R. Bieri and J. Groves describe the BNS
invariant of a metabelian group in terms of the finite set of field kν and characters
ξν for a finite set of primes p (the primes p for which [Γ, Γ] has p-torsion). For
every such a field and every valuation on it, v ◦ ξν is exceptional. This provide
a map from the cone of valuations on kνto the BNS set. This set turns out to
be the union of the images of these cones. In [Bre] , Breuillard proves along the
same lines, that a metabelian not virtually nilpotent group admits a non trivial
affine action.

4 Fundamental groups of Kähler manifolds.

4.1 Fibering a Kähler manifold.

For the general study of orbifolds and their fundamental groups, we refer
to W. Thurston [Th] chap. 13. Complex 2-orbifolds are 2-orbifolds with singu-
larities modeled on the quotient of the unit disk by the action of Z/nZ. The
usefulness of this notion in our context of (fibering complex manifolds to Rie-
mann surfaces) has been pointed out by C. Simpson [Si 1] .

Definition 4 Complex 2-orbifold, and holomorphic maps. A complex 2-orbifold
Σ is a Riemann surface S marked by a finite set of marked points {(q1, m1) . . . , (qn, mn)},
where the m′

is are integers > 2.
Let X be a complex manifold, f : X → Σ a map. Let x ∈ X, q = f(x).

Let m ∈ N∗ be the multiplicity of q, so that there exists an holomorphic map
u : D(0, r) ⊂ C→ (Σ, q) which is a ramified cover of order m of a neighborhood
of q. Then,f is called holomorphic at x, if there exists a neighborhood U of q
and a lift f̃ : U → D, holomorphic at x such that f = u ◦ f̃ .

Definition 5 Fundamental group. Let Σ = (S; {(q1, m1) . . . , (qn, mn)})be a
2−orbifold. Let q ∈ S\ {(q1, m1) . . . , (qn, mn)}. The fundamental group -in the
sense of orbifolds- of Σ at the point p is the quotient πorb

1 (Σ, p) = π1(S\ {q1, . . . qn})/ ≪
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γmi

i ≫, where γi is the class of homotopy (well defined up to conjugacy) of a
small circle turning once around qi, and ≪ γmi

i ≫ is the normal subgroup gen-
erated by all the conjugates of γmi

i .

Example 1 (This is the main example, see [Th] chap. 13) Let Γ ⊂ PSL(2,R)
be a uniform (discrete co-compact) lattice. The quotient S = D/Γ of the unit
disk by the action of Γ is a Riemann surface. If p ∈ D, its stabilizer is a finite
hence cyclic subgroup of PSL(2,R). Modulo the action of Γ there are only a finite
set of points {q1, . . . .qn}with non trivial stabilizers of order mi. The quotient
orbifold is Σ = (S; {(q1, m1) . . . , (qn, mn)}). One proves that Γ = πorb

1 (Σ). An
orbifold is called hyperbolic if it is obtained in this way ; an orbifold is hyperbolic
if and only if its Euler characteristic χorb(Σ) = χ(S) − Σ16i6n(1 − 1

mi

) is non
positive.

The following definition is useful to understand the structure of Kähler
groups (see [ABCKT]).

Definition 6 A Kähler manifold X fibers if there exists a pair (Σ, F ) where
Σ = (S; {(q1, m1) . . . , (qn, mn)}) is a hyperbolic 2-orbifold, and F : X → Σ an
holomorphic map with connected fibers. Two such maps F : X → Σ, F ′ : X ′ →
Σ′ are equivalent if the fibers of F and F ′ are the same and images in Σ and
Σ′ of singular fibers have same order. In this case there exists an holomorphic
isomorphism from S to S′ which maps singular points of S to singular points of
S′ preserving the multiplicity.

Let π : X → S be an holomorphic map from a compact complex surface
to a curve. If q ∈ S is a singular value of π , the analytic set π−1(q) can
be decomposed in a finite union of irreducible sets, (Di). Away from a set of
complex dimension n − 2 in Di, hence of complex codimension 2 in X , the
map p can by written π(z1, . . . .zn) = zdi

1 , where di is the multiplicity of Di. The
multiplicity of the fiber π−1(q) is by definition m = pgcd(di). Let Σ be the
orbifold whose underlying space is S, singular points are singular values of π
with corresponding multiplicity.

Lemma 3 π : X → Σ is holomorphic.

By construction, locally in the neighborhood of a point of π−1(q), π(x) =
fd1

1 . . . .fdk

k + cte, with m| pgcddi �

The following finiteness theorem is well-known in the smooth case, and im-
plicit in the litterature at several places ; we give below a short proof based on
the hyperbolic geometry of hyperbolic orbifolds.

Theorem 2 Let X be a compact complex manifold. There exists, up to equiv-
alence, a finite set of pair (Σi, Fi) where Σiis a complex hyperbolic 2-orbifold,
Fi : X → Σi is holomorphic with connected fibers �.
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Let us give a proof of this (well known) fact based on the Kobayashi-
hyperbolicity of a hyperbolic 2 orbifold :there exist no holomorphic map fromC to an hyperbolic 2-orbifold as there exists no holomorphic map from C to the
unit disk. Thus, by the Bloch principle, as X is compact there exists a uniform
bound on the differential of an holomorphic map F : X → Σ. Therefore the
set of pairs (F, Σ) is compact (two such orbifold are ε-close if they are close for
the Gromov-Hausdorff topology, i.e. there exists a map between them which is
isometric up to an error of ε). But this compact space has only isolated points
: if F1 : X → Σ1 is given, and, and the (Gromov-Hausdorff) distance of F
to F1 is smaller than the diameter of Σ1 (for instance 6 1/2 diam(X) where
X is endowed the Kobayashi pseudo-metric) all the fibers of F1 are send by F
inside a disk (or an annulus in the case of the Margulis constant)therefore to
a constant by the maximum principle ; in other words F factorizes through F1

and induces an isomorphism between Σ and Σ1.�

Remark 4 This proof shows that the number of pairs (F, Σ) for a given com-
plex manifold X can be bounded by the Kobayashi diameter of X .

The following is well known (see [Si 1] [CKO]) .

Theorem 3 Let F : X → S by an holomorphic map with connected fibers
from the complex manifold X to a complex curve S. Let Σ be the orbifold whose
singular points are the singular values of p and multiplicity the multiplicity of
the corresponding fiber. Let Y = F−1(b) be the fiber of a non singular point of
S. Let π′

1(Y )the image in π1(X) of π1(Y ). One has the exact sequence
1 → π′

1(Y ) → π1(X) → πorb
1 (Σ) → 1

in particular the kernel of π∗ : π1(X) → πorb
1 (B) is finitely generated.�

4.2 Valuations.

The next result is a reformulation of a fibration theorem of Gromov-Shoen
[GS]and Simpson [Si 3]in terms of the exceptional set in the sense of Bieri Neu-
mann Strebel ; see also [De] for a more general study of the BNS invariant of a
Kähler group, where ω ∈ H1(Γ,R) rather than H1(Γ,Z)).

Theorem 4 Let ω ∈ H1(Γ,Z). Then ω is exceptional iff there exist a hyperbolic
orbifold Σ, an holomorphic map F : X → Σ such that ω ∈ F ∗H1(Σ,Z).

Let η be a closed holomorphic (1, 0) form whose real part is the harmonic
representative of ω. Let X̃ the universal cover of X , and F : X̃ → R a primitive
of Re η. From the definition (Remark 5) of E1 we know that F > 0 is not
connected ; [Si 3]applies. One can also apply the proof of corollary 9.2 of [GS]
to the foliation defined by the complex valued closed (1, 0) from whose real part
is the harmonic representative of ω .

To prove the converse (which will not be used), one remarks that for every
w ∈ H1(Σ,Z),its pull back to H1(Σ,Z) is exceptional, as πorb

1 (Σ) is hyperbolic,
and the kernel of πorb

1 (Σ) → Z cannot be finitely generated. �
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4.3 The Green-Lazarsfeld set of a Kähler group.

Let K be a field. Recall that a character χ : Γ → K∗ is called integral in the
sense of Bass [Ba ] if χ(Γ) ⊂ O, the ring of algebraic integers of K.

Proposition 2 Let X be a Kähler manifold, χ ∈ E1(Γ, K∗) be a character. If
χ is not integral, X fibers over a 2-orbifold Σ such that χ ∈ F ∗E1(πorb

1 (Σ), K∗).

Proof. Let v be some valuation such that ω = v ◦ χ 6= 0. Let Γ acts on
Tv. By prop.6 this action is exceptional. Applying Thm. 18 we get a pair F, Σ
such that ω ∈ F ∗H1(Σ,Z). From the exact sequence of Theorem 17, we see
that π′

1(Y ) is a finitely generated normal subgroup of Γ made up with elliptic
elements. As π′

1(Y ) is finitely generated , the subtree of Tv made up with fixed
points of π′

1(F ) is not empty. As π′

1(Y ) is normal, it is invariant by the action
of Γ. Therefore the boundary of this tree contains at least 3 distinct elements.
Thus acting on P 1(K) π′

1(Y )fixes three different points and is the identity :
π′

1(Y ) ⊂ ker ρ, and ρ descends to some character on πorb
1 (Σ). �

The following proposition is a reformulation of a result by Beauville [Be ] (Cor 3.6),
it will be used to study the cohomology class of v ◦ χ, for the archimedian val-
uation v(z) = ln |z| an χ : Γ → C∗ a character.

Proposition 3 Let X be a Kähler manifold, χ ∈ E1(Γ,C∗) be character. If
|χ| 6= 1, there exist an holomorphic map F : X → Σ from X to a 2-orbifold Σ
such that χ ∈ F ∗E1(πorb

1 (Σ), K∗).

Combining propositions 19 and 20, we get the description of the GL set of
a Kähler manifold in terms of its fibering over hyperbolic 2-orbifolds. It gen-
eralizes results by M. Green R. Lazarsfeld [GL], A. Beauville [Be], C. Simpson
[Si 2], F. Campana [Ca], R. Pink D. Roessler [PR], who studied the case where
the field K is the field of complex numbers.

Theorem 5 Let Γ be the fundamental group of a Kähler manifold X, (Fi, Σi)16i6n

the family of fibration of X over hyperbolic 2-orbifolds. Let K be a field of char-
acteristic p (if p = 0, K = C), F̄p ⊂ K the algebraic closure of Fp in K. Then
E1(Γ, K) is made with a finite set of torsion characters (contained in E1(Γ, F̄p)
if p > 0) and the union of F ∗

i Hom(πorb
1 (Σi), K

∗).

Proof We shall prove that a character χ which is not in the union
⋃

F ∗

i Hom(πorb
1 (Σi), K

∗)
must be a torsion character of bounded order. Let us fix such a character χ.

From theorem 8, we know that there exists a finite number of fields Kν

and characters ξν such that H1(Γ, ξν) 6= 0, and for every χ ∈ E1(Γ, K) there
exists an index ν for which ker ξν ⊂ kerχ. If ξν is not integral, there exists a
2-orbifold Σ and a holomorphic map F : X → Σ such that kerF∗ ⊃ ker ξv :
therefore kerF∗ ⊃ kerχ and χ ∈ F ∗E1(πorb

1 (Σ)).
Thus, as χ 6∈

⋃

F ∗

i Hom(πorb
1 (Σi), K

∗) χ is integral.
Let us first discuss the case of positive characteristic. If ξν is integral, then

ξν(Γ) is made with roots of unity of Kν . But Kν is of finite transcendence
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degree over Fp so admits only a finite number of roots of unity of degree dν (see
[Ba] for instance). Therefore, χ is a torsion character of order d dividing dν .

Suppose now that charK = 0, and ξν is integral. Thus Kν is a number
field, and ξν(Γ) is contained in the ring Oν of integers of ξν . If |ξν | 6= 1, or if
one of its conjugates σ(ξν ) has |σ(ξν)| 6= 1, as H1(Γ, ξν) 6= 0 we know (prop.
20) that there exists a 2-orbifold Σ and a holomorphic map F : X → Σ
such that kerF∗ ⊃ ker ξv ; the previous argument apply and proves that χ ∈
F ∗E1(πorb

1 (Σ)). Therefore, χ must be a root of unity, by a theorem of Kronecker,
of bounded degree d, as the degree of the n-th cyclotomic polynomial goes to
infinity with n, and as d divides the degree of Kν . The rest of the argument is
unchanged.

�

Thus, the theorem 21 reduces the computation of E1(Γ, K∗) to the case
where Γ is the fundamental group of a 2-orbifold.

Proposition 4 Let Γ = πorb
1 (Σ), for Σ = (S; (qi, mi)16i6n) a hyperbolic 2-

orbifold then,
E1(πorb

1 (Σ), K∗) = Hom(πorb
1 (Σ, K∗)) unless g = 1 and for all i, mi 6≡

0(charK).
If g = 1 and for all i mi 6≡ 0(charK), E1(πorb

1 (Σ), K∗) is finite,
made of torsion characters.

Let χ : πorb(Σ) → K∗ be a representation. If χ = 1, H1(πorb
1 (Σ), K∗) =

Hom(πorb
1 (Σ), K∗) 6= 0. If g > 1,consider a simple closed curves on S such that

c are homologous to 0, which separated S in two compact surface of positive
genus S1, S2, with common boundary c and such that all singular points are
in S2; if g = 1 consider a curve c, which bounds a disk D̄ on S containing
all singular points qi, and let S1 = S\ int(D) be the other component. One
consider a representation χ : πorb

1 (Σ) → K∗, and note that χ(c) = 1 as c is
homologous to 0. We think of χ as a local system on Σ and we will use a Mayer
Vietoris exact sequence.

First note that if χ|π(S1) and χ|πorb(Σ2) are not 1, then H1(πorb
1 (Σ), K∗) 6= 0

: let x0 ∈ K, there exists a unique 1-cocyle c such that c(g) = x0(1 − χ(g)) is
g ∈ π1(S1) , c(g) = 0 if g ∈ S2.

If χ|S1
= 1, as H1(S1,, ∂S1, K) = K2,one can find a 1-cocyle c whose restric-

tion on S2 or D is 0, and restriction on S1 is not trivial .
We are left to the case χ|S2

or χ|D = 1. If g(S2) > 0H1(πorb
1 (Σ2), C, K) ։

K2g and the previous argument apply.
The remaining case is g = 1, χ|πorb

1
(D) = 1, χ|π1(S1) 6= 1. Note that in this

case χ is a torsion character. Furthermore, H1(πorb
1 (Σ2), K) = {(z1, . . . , zn) ∈ K/mizi = 0}.

This space is 0 unless mi ≡ 0 (char K) for some i. On the other hand, if
ρ|π1(S1) 6= 0 the homomorphism H1(π1(Σ1), ρ) → K which sends θ to θ(c)
is an isomorphism. Using the exact sequence of Mayer Vietoris, we see that
H1(πorb

1 (Σ), χ) 6= 0 if g > 1 or g = 1 and for some i, mi divides the characteristic
of K. �
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