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Abstract: The work reported here presents an aigirethod to model dependability of
systems, taking into account degradations andréilnodes governed by exogenous
constraints. The component degradation dynamicsoissidered as a semi-Markov
process. Environmental behaviour introduces switghimodels conditioned by
exogenous constraints. Dynamic Bayesian Networl&NDare employed to formalise
such complex dynamic processes through a compgwmesentation. DBN allow
simulating these processes, taking into accounintsvelue to the environmental
behaviour. A hydraulic system is used to illustitate reliability estimations obtained by
the proposed modelling method

Keywords: Dynamic Bayesian Network, Markov SwitapiModel, Hidden Markov
Models, Reliability evaluation.

1. INTRODUCTION Diagram (RBD) and BN. Weberet al. (2001),
proposed a model based decision system allowing
One of the main challenges of the extended fault diagnosis using system functioning and
enterprise is to dynamically maintain and optimise dysfunctioning analyses based on Object Oriented
the quality of the services delivered by industrial Bayesian Network (OOBN). The solutions proposed
processes along their life cycle. The goal is tsigle in these papers are all based on static probadilist
decision-making aid systems to maintain these models.
processes in operation. Nevertheless, most of the
current automated systems do not provide the meansn Aven and Jensen, (1999), a system mada of
for intelligent interpretation of information cogin  components with positive random lifetimes is called
with large process disturbances. Moreover, decision a complex system if two or more components can fail
can be taken without a perfect perception of the at the same time with positive probability, and the
system state. This partial perception argues indfav ~ system, as well as the components, are allowed to
of using a probabilistic estimation of the systdates have an arbitrary (finite) number of states or Idire
As described in (Boutillieret al, 1999), tools issued the following: a multistate system or component).
from Artificial Intelligence can be used to provide The reliability estimation of such complex systems,
decision-making aid for manufacturing systems. taking into account the effects of failure
combinations, results in developing more and more
Moreover, works on system dependability and scenarios with respect to the system complexity.
Bayesian Networks (BN) have recently been Then, the classical modelling methods are close to
developed (Kang and Golay, 1999). Bobhao,al, their limits. Moreover, in order to improve the
(2001), explain how the Fault Tree (FT) can be decision-making during the diagnosis and the
achieved using BN. Torres-Toledano and Sucar maintenance strategies, the goal is to define a
(2003) present the relation between Reliabilityd&lo  dynamic model of the process behaviour. This model



allows computing state probability distributions

(prognosis) by taking into account the component Assuming that the system evolves between states,

age, the last executed maintenance operationshand t where the occurrence of an event marks the transiti

evolution of the environment of the process. from a state ) to the next statek¢l), then the
process produces the sequeng®),Ty,..Tg 4, 1Y)

Methods relying on Markov Chains (MC) models hat can be modelled as a discrete MC if:

lead to a combinatorial explosion of the number of

states to specify the system. This modelling method _ _

is then unsuitable for complex systems and T (Sn) = P(X« _Sm|n0’n1"”nk‘1)

alternative methods have been proposed. Mestkat = p(Xy = Sy|mep) 2)

al., (2002) present the relation between MC and

Dynamic Fault Trees (DFT). Another method, based

on the DFT, is presented by Bouissou and Bon

152003).' These authors introduced a modelling probability matrixPyc. If the transition probabilities

ormalism that combines concepts from fault trees _ i

and MC in the formalism of Boolean logic Driven Pi = P(Xk =sj|X,1=s) are time independent

Markov Processes. Besides, we have shown thatthen the MC is said to be homogeneous.

probabilistic models such as the Dynamic Bayesian

Networks (DBN) allow decreasing effect of Py P Py

combinatorial explosion in reliability estimatiory ) oMz HM

more synthetic description of the system (Weber and —| P2

Jouffe 2003). Phic (XX 3

The Markov property makes it possible to specify th
statistical relationships among states as a tiansit

The aim of this paper is to use DBN as an equivalen Pmi P - Pum

model to the MC (Padhraic, 1997). The problems . T .
considered here are those whose dynamics can bgh? sequen.ce of the probability distribution is
modelled as stochastic processes, and, where thgstlmated by:
decision maker’s actions influence the system
behaviour. The current system state and the appliedT = To(Pyc)" (4)
action jointly determine the probability distriborti
over the next states.
2.2. Models of system reliability
The paper is divided into five sections. Section 2
presents the problem statement concerning the MCThe reliability of systems or component is cladbjca
model and the fast growing of its state cardinality modelled with MC. This method leads to a graphical
with respect to the modelled system complexity. representation (Ansell and Phillips (1994) pp. 124)
Section 3 introduces the BN theory and defines the Nevertheless the complexity of the model depends on
DBN wused in the following. The proposed the assumptions made to approximate the stochastic
methodology is an original formalisation of the process. Unfortunately, the modelling complexity
system reliability modelling. A simulation with a increases dramatically as we want to be closeédo th
hydraulic system is developed in section 4. Finally real behaviour of the system reliability. Indeeg t
section 5 presents conclusions and perspectives. state space describing the system is made of the
Cartesian product of the component states.

2. PROBLEM STATEMENT Hypothesis of a Markov process
Let's consider the reliability of a component. # i
In order to take the uncertainty into account, the modelled by a discrete random variabké with

process behaviour is represented as a randonktates §, f}, in which (0) indicates an operational
variable that takes its values from a finite s&fiace  gtate andff indicates a failure state.

corresponding to the possible process states. A MC
allows modelling the dynamics of sequences taken by

these states (Boutillieet al, 1999). n

2.1. The Markov Chain notations ) .
Fig. 1. Markov Chain.

Let X be a discrete random variable that models a o )
process with a finite number of mutually exclusive 1© Model the reliability, the matrikyc between the

stateds;,...s,}. The vector n, then, denotes a States §.fis defined as follow:
probability distribution over these states:

T[:[T[(Sl) e TUSy) T[(SM)], T(Sy) =0 PMC:|:1;))\ Z\:| -



where A represents the constant failure rate and the
density function of the failure tinfét) is:

1 dR(t _
10 =-Taen (g
R(t) MTTF dt
where MTTF represents the Mean Time To Failure.

NCERACE

The solution of this process is well known and &ead
to the reliability R(t) of a component with
exponential distribution of failure time:

R(t) = exp{— }A(r)dr} —e™ 7)
0

From the MC, the component reliability is given by:

R(K) = p(X, = or 1) =1 (0)

— 8
R(K) = p(X = F[my)= T (1) ©
The simulation of this behaviour is defined by the
recurrence deduced from eq. (4). This equation is
justified by systems composed from multistate
components. The complexity of the expression
describing the system reliabilityRs,{t) quickly
increases with respect to the number of systerasstat
Then eq. (4) estimates the probability distribution
over the system states. Assuming th'am{o...l}

represents the functioning states of the system,
system reliability is defined as:

RK)= Y (s)

! ©)

i0

Hypothesis of a semi-Markov process

When one wants to take into account degradati@n, th
failure rate has to vary over time. This hypothésis
indeed more realistic because component aging
implies more and more maintenance actions. To
model this behaviour, a generalisation of the Marko
Process called Semi-Markov Process (SMP) is
introduced (Gertsbakh (2000) pp. 117). The claksica
way is to model the probability density function of
the failure time distribution with a continue
distribution as Gamma, Weibull or Normal
(Gaussian) distributions. The matrix defined in(g).
becomes time dependant.

The MC is then not homogeneous anymore. In order
to model SMP, an approximation can be made using
Hidden Markov Model (HMM). HMM simulates the
behaviour of the probability distribution over the
system states. The method consists in increasmg th

1-A(k) A(K)

0 1 (10)

PMC(xk|xk—1) :[

number of system states to model the dynamics oronly by approximate methods,

of degradation. This modelling results in failueger
as a function of the tima(k). The HMM can be
defined from constant parametessof a generalized
Erlang equivalent model (Cox 1962) (Fig. 2).

AK)

OO,

The equivalent HMM:

Fig. 2. Hidden Markov Model.

Therefore generalized Erlang density function
approximates failure time of SMP. To estimate the
reliability of the system the following equation is
computed from (4):

R(t) = Y1 (s)

! (11)
Hypothesis of a semi-Markov process with exogenous
constraint

The system environment (exogenous events) impacts
on the probability density function of the failurme
distribution. Let's consider several system
functioning modes. The component degradation
follows then several behaviors. To take into actoun
these exogenous events, one has to use several
models to represent each situation according to an
environmental context, and models become more and
more complex when the system is composednby
components with several failure modes.

Markov Switching Models (MSM) are introduced to
model this kind of stochastic process with exogsnou
events. These models are also viewed as conditional
HMM where the transition distributions are
conditional to an exogenous variable. The MSM
models the non-stationary that are due to abrupt
changes in the functioning modes of the system
(Bengio 1999). Furthermore, the model is
represented by Input-Output HMM (IOHMM) if the
distribution over the states of the exogenous tiia

is known. The difference between standard HMM
and MSM or IOHMM is that HMM represents the
distribution of p(Xy) whereas the MSM or IOHMM
represent the conditional distributipiXJQ",) given

the input sequenc®'y = o, ..., G Where gq
represents the exogenous constraint with states

{s1.5,.5u}.

The computation ofig, with MSM can be carried out
i.e. simulation.

degradations. Then a component is modelled by alndeed, it is unfeasible to obtain the analytiautioh

discrete random variable X,  with states

{so,sdl,sdz,..sf} wheres; models the hidden states

of this kind of hybrid differential system. In caeé
IOHMM, it is the distribution over the states ofeth
exogenous variable which condition the solutione Th



exact resolution of this model is then also unfglasi P(n»|n<)=
using classical MC and recurrence equation. I

The MC, HMM, MSM or IOHMM are methods well
suited to model the reliability of a complex o o
entity/system of low dimension. However, within pin; =Sl"ni =S,(}|) p(n,- =g ‘ni =SM)
the framework of general complex systems, the
combinatorial explosion of states makes these
methods unmanageable. In the following, a method
based on DBN is presented. It provides a synthetic
representation for modelling complex systems.

For the root nodes,e. the nodes without parent, the
CPT contains just a row describing tlae priori
probability of each state.

Various algorithms can be used to do exact or
approximate inference, i.e. for the computation of
marginal probabilities. The most classical exact
inference algorithm relies on the use of a junction
ree (more explications can be found in (Jensen,
996, pp. 76)). Inference in BN allows taking into

account any state variable observation (an event) f

the updating of the probabilities of each variable.
Without observations, the computation is base@on

priori probabilities. As observations are made, the
knowledge is incorporated in the network and the
probabilities over the process states are updated.

3. BAYESIAN NETWORK MODELLING

BN are probabilistimetworks based on graph theory.
Each node represents a variable and arcs indicat
direct probabilistic relations between the conngcte
nodes. DBN allow taking time into account by
defining different nodes to model the same variable
with respect to different time slices.

3.1. The Bayesian Network notations

BN are directed acyclic graphs (Jensen, 1996)
defined as a pairg=((N, A),?), where N is a set

of nodes; A’ is a set of arcs® represents the set of
conditional probability distributions that quantiflye
probabilistic dependencies.

3.2. Dynamic Bayesian Network

A DBN includes a temporal dimension. This new
dimension is managed by time-indexed random
variables. X; is represented at time sty a node

A discrete random variableX is represented by a NixHN with a finite number of states

node nON with a finite number of mutually {SP S’\r}l} X' denotes the probability

H . . n n N
exclusive  states: &, {S-LS'V‘} The  vector distribution over these states at time stefseveral
X" :[p1 pM] denotes a probability distribution time stages are represented by several sets osnode

over Sn like eq. (1)’ where Prm is the margina| NO""Nk' Nk includes all the random variables
relative to the time slic&k (Hung, et al, 1999;

. L n .
probability of n being in stats,,. In Fig. 3, the nodes Boutillier, et al, 1999, pp. 38-45).

n andn; are linked by an ar¢n;,n;) 0 A then
n, is considered as a parentwf. The parent set of a An arc linking two variables belonging to different
time slices represents a temporal probabilistic
dependence between these variables. Then DBN
pa(nj) :{ni} in Fig. 3). allow to model random variables and their impacts
on the future distribution of other variables. Défg
these impacts asansition-probabilitiesbetween the
states of the variable at time stepnd time step+1,
these transition-probabilities lead to define CPT
] ] relative to inter-time slices, equivalent to CPT
Fig. 3. A basic BN. defined in the previous section (eq. (12)). Witfs th
_ ) ) model, the futurelkt1) is conditionally independent
In this work, the set? is represented with of the past given the preserd),(which means that
Conditional Probability Tables (CPT). Then, each o cpT P(ni,k+1| pa(n ,1)) respects the Markov

node has an associated CPT. For instance, in Fig. 3 ) ) . )
n properties (Kjaerulff, 1995). Moreover, this CPT is
equivalent to the MC model of the variablk;

n andn; are defined over the statées, :{s{1i s,\,',}
and S, :{sfj s["} Then, the CPT oh; is defined ~ described in the sectiodl if pa(n x,)=nx and

node n; contains all the parents oh; (e.g,

by the conditional probabilitieqa(nj|pa(nj)) over  Snk TOnjw’ P(ni,k+1|ni'k) =Puc - Starting from an

observed situation at time sté&g0, the probability

each state ofn; and of its parents. This CPT is _
fdistribution x¢ over X; states is computed by

represented as a matrix. For instance, the CPT o
noden; of Fig. 3 is: inference. To computex.,;, several solutions are

proposed in the literature. One of them consists in



developingT time slices (Fig. 4), obtaining then a observations for its corresponding node in the
network which size grows proportionally td previous time slice.

(Kjaerulff, 1995). This solution is unsuitable for

reliability analysis because the process have to be = e------mmommooiomoeoooo

analysed over a large time horizon. This leadsnto a
explosion of the number of nodes. Nevertheless, thi \P(nu:l Mo Ny
modelling is exactly equivalent to the model __:

described in the above section (Bengio, 1999). /
Fig. 5. A 2-TBN modelling IOHMM with temporal
@ @ @ noden;, and exogenous observationg y; -

Fig. 4. A un-rollup DBN modelling IOHMM. 4. APPLICATION

P |

Another solution, which keeps a compact network e proposed method

form, is based on iterative inferences. This soluis example of reliability analysis. This example albow

used in the following. Indeed, it is possible to comparing the method based on DBN with the one
compute the probability distribution of any variebl pised on MC.

X; at time stepk+1l based on the probabilities

corresponding to time stefk. The probability V1 {)‘WC
distributions at time steg+2... are computed using Mro P2 A(t)
successive inferences (Welch and Thelen 2000). [X]
Then a network calle®-TBN (Boyen and Koller P (j
1998) (Fig. 5) with only two time slices is defined Oxidization due to the fluid A or B
The first slice contains the nodes corresponding to
the current time stefk), the second one those of the Fig. 6. Hydraulic system.
following time step K+1). A node is called temporal
node when it has a direct link with its temporaingd ~ Fig. 6 describes the system. A valve V1 and a pump
at time stepK+1), asn; in Fig. 5. P2 are used to distribute a fluid. The valve has tw
’ failure modes: remains closed (fRC) or remains
opened (fRO). The valve failure rates are the

is applied to a classical

Observations, introduced as hard evidence or i 4. _a
probability distributions, are only realised in the following: Ajgc =110 A0 =15010" and the
current time slicek. Then an introduction of the failure rate of the pump is time dependent. This
context as exogenous random variable is made by thelependence follows the Weibull distribution:

means of a nod@(; ,, which governs the behaviour REF™?

’ ] ] A,(t) =——=—,B'=15n'=1000
of X; thank to the CPT defined in eq. (13). When all r]'B
the temporal nodes are independent, we can séll us Parameters of the Weibull distribution are
an exact inference algorithm. Otherwise, we have toindependent of the nature of the fluid. But thevedd
use approximate inference methods, as for exampleparameters are modified by the nature of the fluid.
particle filtering (Doucetet al, 2000, Koller and The PH induces oxidation of the valve V1. The

parameteriA,;zo and Azc are modified with factor

L.erne'r 2001). When gxact inference_ can be used, the¢ =1 for the flud A and ¢=4 the fluid B.
time increment is carried out by setting the coragdut
marginal probabilities of the node at time skefi as

The CPT is defined aB(; .4 |N; k. Nj k)

p(”j :31nj|”i =s',n; :Slnj) P(nj :SEj|ni =s',n; :Slnjj

nj N nj nj . n nj
“i,kv j,k)

P e (13)

n=s'|n=stn =sj| - n =s'|n=st,n =s)/
Pl Nj =S N =Sy,Nj =Sy Pl Nj =S |N =Sy,Nj =Sy

A MSM has to be defined to model the impacts of the
fluid type (A or B) on the V1 failure rate.



A HMM representation of the pump increases the
number of states. The approximation is made through
the HMM-P2 model:

Pavm -p2 =

9.9710* 2.6110° 0 1.5200™*
0 9.9710% 2.6110° 7.99010™*
0 0 9.9710% 2.61010°
0 0 0 1

The combination of component states leads to defing
the MC model of this system over 11 states of the
system.

A model of this process is easily realised by mexns
the DBN depicted in Fig. 7. VK[ have three states:
Available (0), failure Remains Open (fRO) or fadur
Remains Closed (fRC) and the RRlave four states
(0,...02) represent the three degradation stategfand
the failure state. The CPT used to estimate the
dynamic behaviour of the components reliability are
depicted in Fig. 8. The state probabilities of
components at current time step can be easily
extracted from the nodes \)( or P2K). The
reliability of the system is computed from the lagi
combination: System is unavailable if V1=fRC or
p2=f.

The propagation through the DBN model allows
taking into account the dependency between the
failure modes and the impact of the environment
(fluid A or B) for the computation of the system

reliability R(K).

Inferences are realised thanks to tRayesial ab
software that uses an iterative procedure for DBN
(http://www.bayesia.com). BayesiaLab is used to
simulate the DBN modelling R)Y of the system over
1000 time steps, as depicted in Fig. 9. The fluid
changes from A to B at time step 300.

4 Bayesial ab - E:\RechercheirticlesiResBay\WebertV1P 2. xhl
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Fig. 7. DBN model of the hydraulic system.

EX Node Edition

Node selection ! M
Mode bype View mode
Label s Probabilistic Equation
Walues P2{k) vidk) Value
o o o
F [:] fRC F
fRO o
a =
ol FRC F
fRO o
a I
o2 fRC F
fRO o
o F
f fRC F
Genetate names Genetate modalities RO F
Accept Cancel
.
EXHode Edition 3
Mode selection : | P2(K) %
Mode type Wigw mode
. Determinist Equation
Yalues Pafk-1) f
o

ol . [

02

f

o o1

99.7201 0.260]
0.000] 99,660
0.000] 0.000]
0.000) 0.000]

o2
0.000)
0.260)

95.740
0.000)

1

0.020
0.080
0.260
00,000

Complete

Normalize

Randormize

Accept

4
Mode selection :

vtk

Mode type

a»

Cancel

Determinist

A
v

Wigw mode

Equation

Walues

i

RE

ikt
o

o
99,750

0.100

fRC

FRC

0.000]

100,000

fRO

RO

0.000]

0.000)

99,000

0.400

o
FRC

0.000]

100,000

RO

0.000)

0,000

Complete

ormalize:

Randomize

Fig. 8. CPT to model SysteR)( P2k) and V1K).

1,00

0,90 -

0,80

0,70

0,60

0,50

0,40

0,30

0,20

0,10

0,00

200 400 600 800 1000

Fig. 9. System reliability estimation.

5. CONCLUSION AND FURTHER WORK

The proposed method, based on the DBN theory,
easily allows designing DBN structures for the
modeling of temporal evolution of complex systems.
The  correspondence between this DBN
representation and MC is presented and applied to
the system reliability estimation.

The proposed method seems to be a good solution to
model the reliability of complex systems. Indedu t
number of states needed to model a complex system
with MC increases exponentially (a state for each



combination of elementary states). As the DBNs operational availability focused diagnosis of
representation is based on the modelling of process complex nuclear power systentSxpert Systems
entities, the obtained model is more compact and  with Applications17, pp. 21-32.

readable than MC. Furthermore, the dependencyKjaerulff U. (1995). dHugin: a computational system
between several failure modes of a component and for dynamic time-sliced Bayesian networks.
common modes are easily modelled by DBN. This Internationnal journal of forecastindl1, pp. 89-
paper shows that DBN represent a very powerful tool ~ 111.

for decision-making aid in maintenance. Koller D. and U. Lerner (2001) Sampling in Factored
Dynamic Systems. Sequential Monte Carlo

In future work, in order to improve this modelling Methods in PracticeA. Doucet, J.F.G. de Freitas,

technique, we have to define how the learning and N. Gordon, Eds., Springer-Verlag, pp 445-

algorithms of BN can contribute to model the 464.

dynamics of the system reliability and how the Meshkat L., J.B. Dugan, F.D. Andrews (2002).

parameters behaviour can be then modelled. Dependability analysis of systems with on-

demand and active failure modes, using dynamic
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