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Abstract: The work reported here presents an original method to model dependability of 
systems, taking into account degradations and failure modes governed by exogenous 
constraints. The component degradation dynamics is considered as a semi-Markov 
process. Environmental behaviour introduces switching models conditioned by 
exogenous constraints. Dynamic Bayesian Networks (DBN) are employed to formalise 
such complex dynamic processes through a compact representation. DBN allow 
simulating these processes, taking into account events due to the environmental 
behaviour. A hydraulic system is used to illustrate the reliability estimations obtained by 
the proposed modelling method 
 
Keywords: Dynamic Bayesian Network, Markov Switching Model, Hidden Markov 
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1. INTRODUCTION 
 
One of the main challenges of the extended 
enterprise is to dynamically maintain and optimise 
the quality of the services delivered by industrial 
processes along their life cycle. The goal is to design 
decision-making aid systems to maintain these 
processes in operation. Nevertheless, most of the 
current automated systems do not provide the means 
for intelligent interpretation of information coping 
with large process disturbances. Moreover, decisions 
can be taken without a perfect perception of the 
system state. This partial perception argues in favour 
of using a probabilistic estimation of the system state. 
As described in (Boutillier, et al., 1999), tools issued 
from Artificial Intelligence can be used to provide 
decision-making aid for manufacturing systems. 
 
Moreover, works on system dependability and 
Bayesian Networks (BN) have recently been 
developed (Kang and Golay, 1999). Bobbio, et al., 
(2001), explain how the Fault Tree (FT) can be 
achieved using BN. Torres-Toledano and Sucar 
(2003) present the relation between Reliability Block 

Diagram (RBD) and BN. Weber, et al. (2001), 
proposed a model based decision system allowing 
fault diagnosis using system functioning and 
dysfunctioning analyses based on Object Oriented 
Bayesian Network (OOBN). The solutions proposed 
in these papers are all based on static probabilistic 
models.  
 
In Aven and Jensen, (1999), a system made of n 
components with positive random lifetimes is called 
a complex system if two or more components can fail 
at the same time with positive probability, and the 
system, as well as the components, are allowed to 
have an arbitrary (finite) number of states or level (in 
the following: a multistate system or component). 
The reliability estimation of such complex systems, 
taking into account the effects of failure 
combinations, results in developing more and more 
scenarios with respect to the system complexity. 
Then, the classical modelling methods are close to 
their limits. Moreover, in order to improve the 
decision-making during the diagnosis and the 
maintenance strategies, the goal is to define a 
dynamic model of the process behaviour. This model 



allows computing state probability distributions 
(prognosis) by taking into account the component 
age, the last executed maintenance operations and the 
evolution of the environment of the process. 
 
Methods relying on Markov Chains (MC) models 
lead to a combinatorial explosion of the number of 
states to specify the system. This modelling method 
is then unsuitable for complex systems and 
alternative methods have been proposed. Meshkat et 
al., (2002) present the relation between MC and 
Dynamic Fault Trees (DFT). Another method, based 
on the DFT, is presented by Bouissou and Bon 
(2003). These authors introduced a modelling 
formalism that combines concepts from fault trees 
and MC in the formalism of Boolean logic Driven 
Markov Processes. Besides, we have shown that 
probabilistic models such as the Dynamic Bayesian 
Networks (DBN) allow decreasing effect of 
combinatorial explosion in reliability estimation by a 
more synthetic description of the system (Weber and 
Jouffe 2003). 
 
The aim of this paper is to use DBN as an equivalent 
model to the MC (Padhraic, 1997). The problems 
considered here are those whose dynamics can be 
modelled as stochastic processes, and, where the 
decision maker’s actions influence the system 
behaviour. The current system state and the applied 
action jointly determine the probability distribution 
over the next states. 
 
The paper is divided into five sections. Section 2 
presents the problem statement concerning the MC 
model and the fast growing of its state cardinality 
with respect to the modelled system complexity. 
Section 3 introduces the BN theory and defines the 
DBN used in the following. The proposed 
methodology is an original formalisation of the 
system reliability modelling. A simulation with a 
hydraulic system is developed in section 4. Finally, 
section 5 presents conclusions and perspectives. 
 
 

2. PROBLEM STATEMENT 
 
In order to take the uncertainty into account, the 
process behaviour is represented as a random 
variable that takes its values from a finite state space 
corresponding to the possible process states. A MC 
allows modelling the dynamics of sequences taken by 
these states (Boutillier, et al., 1999).  
 
 
2.1. The Markov Chain notations 
 
Let X  be a discrete random variable that models a 
process with a finite number of mutually exclusive 
states{ }Mss ,...,1 . The vector π , then, denotes a 

probability distribution over these states: 
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Assuming that the system evolves between states, 
where the occurrence of an event marks the transition 
from a state (k) to the next state (k+1), then the 
process produces the sequence ),,...,( 110 kk ππππ −  

that can be modelled as a discrete MC if:  
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The Markov property makes it possible to specify the 
statistical relationships among states as a transition 
probability matrix PMC. If the transition probabilities 

)( 1 ikjkij sXsXpp === −  are time independent 

then the MC is said to be homogeneous.  
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The sequence of the probability distribution is 
estimated by: 
 

k
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2.2. Models of system reliability  
 
The reliability of systems or component is classically 
modelled with MC. This method leads to a graphical 
representation (Ansell and Phillips (1994) pp. 124). 
Nevertheless the complexity of the model depends on 
the assumptions made to approximate the stochastic 
process. Unfortunately, the modelling complexity 
increases dramatically as we want to be close to the 
real behaviour of the system reliability. Indeed, the 
state space describing the system is made of the 
Cartesian product of the component states.  
 
Hypothesis of a Markov process 
Let’s consider the reliability of a component. It is 
modelled by a discrete random variable X  with 
states {o, f}, in which (o) indicates an operational 
state and (f) indicates a failure state.  
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Fig. 1. Markov Chain. 
 
To model the reliability, the matrix PMC between the 
states {o, f} is defined as follow: 
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where λ  represents the constant failure rate and the 
density function of the failure time f(t) is: 
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where MTTF represents the Mean Time To Failure. 
 
The solution of this process is well known and leads 
to the reliability R(t) of a component with 
exponential distribution of failure time: 
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From the MC, the component reliability is given by: 
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The simulation of this behaviour is defined by the 
recurrence deduced from eq. (4). This equation is 
justified by systems composed from n multistate 
components. The complexity of the expression 
describing the system reliability Rsys(t) quickly 
increases with respect to the number of system states. 
Then eq. (4) estimates the probability distribution 
over the system states. Assuming that { }li ...0∈  

represents the functioning states of the system, 
system reliability is defined as: 
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Hypothesis of a semi-Markov process 
When one wants to take into account degradation, the 
failure rate has to vary over time. This hypothesis is 
indeed more realistic because component aging 
implies more and more maintenance actions. To 
model this behaviour, a generalisation of the Markov 
Process called Semi-Markov Process (SMP) is 
introduced (Gertsbakh (2000) pp. 117). The classical 
way is to model the probability density function of 
the failure time distribution with a continue 
distribution as Gamma, Weibull or Normal 
(Gaussian) distributions. The matrix defined in eq.(5) 
becomes time dependant.  
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The MC is then not homogeneous anymore. In order 
to model SMP, an approximation can be made using 
Hidden Markov Model (HMM). HMM simulates the 
behaviour of the probability distribution over the 
system states. The method consists in increasing the 
number of system states to model the dynamics or 
degradations. Then a component is modelled by a 
discrete random variable kX  with states 

{ }fddo ssss ,...,, 21  where sdi models the hidden states 

of degradation. This modelling results in failure rate 
as a function of the time λ(k). The HMM can be 
defined from constant parameters λij of a generalized 
Erlang equivalent model (Cox 1962) (Fig. 2).  
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Fig. 2. Hidden Markov Model. 
 
Therefore generalized Erlang density function 
approximates failure time of SMP. To estimate the 
reliability of the system the following equation is 
computed from (4): 
 

( )∑
≠

π=
fs

ik
i

stR )(   (11) 

 
Hypothesis of a semi-Markov process with exogenous 
constraint 
The system environment (exogenous events) impacts 
on the probability density function of the failure time 
distribution. Let’s consider several system 
functioning modes. The component degradation 
follows then several behaviors. To take into account 
these exogenous events, one has to use several 
models to represent each situation according to an 
environmental context, and models become more and 
more complex when the system is composed by n 
components with several failure modes. 
 
Markov Switching Models (MSM) are introduced to 
model this kind of stochastic process with exogenous 
events. These models are also viewed as conditional 
HMM where the transition distributions are 
conditional to an exogenous variable. The MSM 
models the non-stationary that are due to abrupt 
changes in the functioning modes of the system 
(Bengio 1999). Furthermore, the model is 
represented by Input-Output HMM (IOHMM) if the 
distribution over the states of the exogenous variable 
is known. The difference between standard HMM 
and MSM or IOHMM is that HMM represents the 
distribution of p(Xk) whereas the MSM or IOHMM 
represent the conditional distribution p(Xk|Q

T
k) given 

the input sequence QT
k = q0, q1,…, qk. where qk 

represents the exogenous constraint with states 
{ }Msss ,..., 21 . 

 
The computation of kπ  with MSM can be carried out 

only by approximate methods, i.e. simulation. 
Indeed, it is unfeasible to obtain the analytic solution 
of this kind of hybrid differential system. In case of 
IOHMM, it is the distribution over the states of the 
exogenous variable which condition the solution. The 



exact resolution of this model is then also unfeasible 
using classical MC and recurrence equation. 
 
The MC, HMM, MSM or IOHMM are methods well 
suited to model the reliability of a complex 
entity/system of low dimension. However, within 
the framework of general complex systems, the 
combinatorial explosion of states makes these 
methods unmanageable. In the following, a method 
based on DBN is presented. It provides a synthetic 
representation for modelling complex systems. 
 
 

3. BAYESIAN NETWORK MODELLING 
 
BN are probabilistic networks based on graph theory. 
Each node represents a variable and arcs indicate 
direct probabilistic relations between the connected 
nodes. DBN allow taking time into account by 
defining different nodes to model the same variable 
with respect to different time slices. 
 
 
3.1. The Bayesian Network notations 
 
BN are directed acyclic graphs (Jensen, 1996) 
defined as a pair: G=((N, A),P), where “N” is a set 
of nodes; “A” is a set of arcs; P represents the set of 
conditional probability distributions that quantify the 
probabilistic dependencies. 
 
A discrete random variable X  is represented by a 
node Nn∈  with a finite number of mutually 

exclusive states: { }n
M

n
n ss ,...: 1S . The vector 

[ ]M
n ppx ...1=  denotes a probability distribution 

over nS  like eq. (1), where mp  is the marginal 

probability of n  being in staten
ms . In Fig. 3, the nodes 

in  and jn  are linked by an arc Ann ji ∈),(  then 

in  is considered as a parent of jn . The parent set of a 

node jn  contains all the parents of jn  (e.g., 

{ }ij nnpa =)(  in Fig. 3). 
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Fig. 3. A basic BN. 
 
In this work, the set P is represented with 
Conditional Probability Tables (CPT). Then, each 
node has an associated CPT. For instance, in Fig. 3, 

in  and jn  are defined over the states { }ii
i

n
M

n
n ss ,...: 1S  

and { }jj

j

n
L

n
n ss ,...: 1S . Then, the CPT of jn  is defined 

by the conditional probabilities ))(( jj npanp  over 

each state of jn  and of its parents. This CPT is 

represented as a matrix. For instance, the CPT of 
node jn  of Fig. 3 is: 
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For the root nodes, i.e. the nodes without parent, the 
CPT contains just a row describing the a priori 
probability of each state. 
 
Various algorithms can be used to do exact or 
approximate inference, i.e. for the computation of 
marginal probabilities. The most classical exact 
inference algorithm relies on the use of a junction 
tree (more explications can be found in (Jensen, 
1996, pp. 76)). Inference in BN allows taking into 
account any state variable observation (an event) for 
the updating of the probabilities of each variable. 
Without observations, the computation is based on a 
priori  probabilities. As observations are made, the 
knowledge is incorporated in the network and the 
probabilities over the process states are updated. 
 
 
3.2. Dynamic Bayesian Network 
 
A DBN includes a temporal dimension. This new 
dimension is managed by time-indexed random 
variables. iX  is represented at time step k by a node 

Nn ki ∈),(  with a finite number of states 

{ }ii
i

n
M

n
n ss ,...: 1S . in

kx  denotes the probability 

distribution over these states at time step k. Several 
time stages are represented by several sets of nodes 

0N ,… kN . kN  includes all the random variables 

relative to the time slice k (Hung, et al., 1999; 
Boutillier, et al., 1999, pp. 38-45). 
 
An arc linking two variables belonging to different 
time slices represents a temporal probabilistic 
dependence between these variables. Then DBN 
allow to model random variables and their impacts 
on the future distribution of other variables. Defining 
these impacts as transition-probabilities between the 
states of the variable at time step k and time step k+1, 
these transition-probabilities lead to define CPT 
relative to inter-time slices, equivalent to CPT 
defined in the previous section (eq. (12)). With this 
model, the future (k+1) is conditionally independent 
of the past given the present (k), which means that 
the CPT ))(( 1,1, ++ kiki npanP  respects the Markov 

properties (Kjaerulff, 1995). Moreover, this CPT is 
equivalent to the MC model of the variable iX  

described in the section 2.1 if kiki nnpa ,1, )( =+  and 

1,, +
=

kiki nn SS : MCkiki nn PP =+ )( ,1, . Starting from an 

observed situation at time step k=0, the probability 

distribution in
kx  over iX  states is computed by 

inference. To compute in
Tkx + , several solutions are 

proposed in the literature. One of them consists in 



developing T time slices (Fig. 4), obtaining then a 
network which size grows proportionally to T 
(Kjaerulff, 1995). This solution is unsuitable for 
reliability analysis because the process have to be 
analysed over a large time horizon. This leads to an 
explosion of the number of nodes. Nevertheless, this 
modelling is exactly equivalent to the model 
described in the above section (Bengio, 1999).  
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Fig. 4. A un-rollup DBN modelling IOHMM. 
 
Another solution, which keeps a compact network 
form, is based on iterative inferences. This solution is 
used in the following. Indeed, it is possible to 
compute the probability distribution of any variable 

iX  at time step k+1 based on the probabilities 

corresponding to time step k. The probability 
distributions at time step k+2… are computed using 
successive inferences (Welch and Thelen 2000). 
Then a network called 2-TBN (Boyen and Koller 
1998) (Fig. 5) with only two time slices is defined. 
The first slice contains the nodes corresponding to 
the current time step (k), the second one those of the 
following time step (k+1). A node is called temporal 
node when it has a direct link with its temporal clone 
at time step (k+1), as ),( kin  in Fig. 5. 

 
Observations, introduced as hard evidence or 
probability distributions, are only realised in the 
current time slice k. Then an introduction of the 
context as exogenous random variable is made by the 
means of a node ),( kjn  which governs the behaviour 

of iX  thank to the CPT defined in eq. (13). When all 

the temporal nodes are independent, we can still use 
an exact inference algorithm. Otherwise, we have to 
use approximate inference methods, as for example 
particle filtering (Doucet et al., 2000, Koller and  
 
Lerner 2001). When exact inference can be used, the 
time increment is carried out by setting the computed 
marginal probabilities of the node at time step k+1 as 

observations for its corresponding node in the 
previous time slice. 
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Fig. 5. A 2-TBN modelling IOHMM with temporal 

node ),( kin  and exogenous observations ),( kjn . 

 
 

4. APPLICATION 
 
The proposed method is applied to a classical 
example of reliability analysis. This example allows 
comparing the method based on DBN with the one 
based on MC. 
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Fig. 6. Hydraulic system. 
 
Fig. 6 describes the system. A valve V1 and a pump 
P2 are used to distribute a fluid. The valve has two 
failure modes: remains closed (fRC) or remains 
opened (fRO). The valve failure rates are the 

following: 4
1

4
1 105.1;101 −− ⋅=λ⋅=λ RORC  and the 

failure rate of the pump is time dependent. This 
dependence follows the Weibull distribution:  

1000',5.1',
'

'
)(

'

1'

2 =η=β
η
⋅β=λ β

−βt
t  

Parameters of the Weibull distribution are 
independent of the nature of the fluid. But the valve’s 
parameters are modified by the nature of the fluid. 
The PH induces oxidation of the valve V1. The 
parameter RO1λ  and RC1λ  are modified with factor 

1=φ  for the fluid A and 4=φ  the fluid B.

The CPT is defined as ),( ,,1, kjkiki nnn +P : 
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A MSM has to be defined to model the impacts of the 
fluid type (A or B) on the V1 failure rate. 

 



A HMM representation of the pump increases the 
number of states. The approximation is made through 
the HMM-P2 model: 
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The combination of component states leads to define 
the MC model of this system over 11 states of the 
system.  
 
A model of this process is easily realised by means of 
the DBN depicted in Fig. 7. V1(k) have three states: 
Available (o), failure Remains Open (fRO) or failure 
Remains Closed (fRC) and the P2(k) have four states 
(o,…o2) represent the three degradation states and (f) 
the failure state. The CPT used to estimate the 
dynamic behaviour of the components reliability are 
depicted in Fig. 8. The state probabilities of 
components at current time step can be easily 
extracted from the nodes V1(k) or P2(k). The 
reliability of the system is computed from the logical 
combination: System is unavailable if V1=fRC or 
P2= f. 
 
The propagation through the DBN model allows 
taking into account the dependency between the 
failure modes and the impact of the environment 
(fluid A or B) for the computation of the system 
reliability R(k).  
 
Inferences are realised thanks to the BayesiaLab 
software that uses an iterative procedure for DBN 
(http://www.bayesia.com). BayesiaLab is used to 
simulate the DBN modelling R(k) of the system over 
1000 time steps, as depicted in Fig. 9. The fluid 
changes from A to B at time step 300. 
 

 
 
Fig. 7. DBN model of the hydraulic system. 
 

 

 

 
 
Fig. 8. CPT to model System(k), P2(k) and V1(k). 
 

 
 
Fig. 9. System reliability estimation. 
 
 

5. CONCLUSION AND FURTHER WORK 
 
The proposed method, based on the DBN theory, 
easily allows designing DBN structures for the 
modeling of temporal evolution of complex systems. 
The correspondence between this DBN 
representation and MC is presented and applied to 
the system reliability estimation.  
The proposed method seems to be a good solution to 
model the reliability of complex systems. Indeed, the 
number of states needed to model a complex system 
with MC increases exponentially (a state for each 
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combination of elementary states). As the DBNs 
representation is based on the modelling of process 
entities, the obtained model is more compact and 
readable than MC. Furthermore, the dependency 
between several failure modes of a component and 
common modes are easily modelled by DBN. This 
paper shows that DBN represent a very powerful tool 
for decision-making aid in maintenance. 
 
In future work, in order to improve this modelling 
technique, we have to define how the learning 
algorithms of BN can contribute to model the 
dynamics of the system reliability and how the 
parameters behaviour can be then modelled. 
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