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Introduction

Although David Rosen [Ros] introduced as early as 1954 an infinite family of continued fractions which generalize the nearest-integer continued fraction, it is only very recently that the metrical properties of these so-called Rosen fractions haven been investigated; see e.g. [Schm], [N2], [GH] and [BKS]. In this paper we will introduce α-Rosen fractions, and study their metrical properties for special choices of α. These choices resemble Nakada's α-expansions, in fact for q = 3 these are Nakada's α-expansions; see also [N1]. To be more precise, let q ∈ Z, q ≥ 3, and λ = λ q = 2 cos π q . Then we define for α ∈ [ 1 2 , 1 λ ] the map T α : [λ(α -1), λα] → [λ(α -1), λα) by

(1)

T α (x) := 1 x -λ 1 xλ + 1 -α , x = 0,
and T α (0) := 0. Here, ⌊ξ⌋ denotes the floor (or entier ) of ξ, i.e., the greatest integer smaller than or equal to ξ. In order to have positive digits, we demand that α ≤ 1/λ. Setting d(x) = 1 xλ + 1α (with d(0) = ∞), ε(x) = sgn(x), and more generally (2)

ε n (x) = ε n = ε T n-1 α (x) and d n (x) = d n = d T n-1 α (x)
for n ≥ 1, one obtains for x ∈ I q,α := [λ(α -1), αλ] an expression of the form

x = ε 1 d 1 λ + ε 2 d 2 λ + • • • + ε n d n λ + T n α (x)
, where ε i ∈ {±1, 0} and

d i ∈ N ∪ {∞}. Setting (3) R n S n = ε 1 d 1 λ + ε 2 d 2 λ + • • • + ε n d n λ =: [ ε 1 : d 1 , ε 2 : d 2 , . . . , ε n : d n ],
we will show in Section 2.3 that

lim n→∞ R n S n = x,
and for convenience we will write

(4) x = ε 1 d 1 λ + ε 2 d 2 λ + • • • =: [ ε 1 : d 1 , ε 2 : d 2 , . . . ].
We call R n /S n the nth α-Rosen convergent of x, and (4) the α-Rosen fraction of x.

The case α = 1/2 yields the Rosen fractions, while the case α = 1/λ is the Rosen fraction equivalent of the classical regular continued fraction expansion (RCF). In case q = 3 (and 1/2 ≤ α ≤ 1/λ), the above defined α-Rosen fractions are in fact Nakada's αexpansions (and the case α = 1/λ = 1 is the RCF). Already from [BKS] it is clear that in order to construct the underlying ergodic system for any α-Rosen fraction and the planar natural extension for the associated interval map T α , it is fundamental to understand the orbit under T α of the two endpoints λ(α -1) and λα of X = X α := [λ(α -1), λα]. Although the situation is in general more complicated than the 'classical case' from [BKS], the natural extension together with the invariant measure can be given, and it is shown that this dynamical system is weakly Bernoulli.

Using the natural extension, metrical properties of the α-Rosen fractions will be given in Section 4.

Natural extensions

In this section we find the "smallest" domain Ω α ⊂ R 2 on which the map (5)

T α (x, y) = T α (x), 1 d(x)λ + ε(x)y , (x, y) ∈ Ω α ,
is bijective a.e.. We will deal with the general case, resembling Nakada's α-expansions, i.e., 1/2 ≤ α ≤ 1/λ and λ = λ q = 2 cos π/q for some fixed q ∈ Z, q ≥ 4 (the case q = 3 is in fact the case of Nakada's α-expansions; see also [N1]). As in [BKS], we need to discern between odd and even q's, but some properties are shared by both cases, and these are collected here first.

For x ∈ [λ(α -1), λα], setting

A i = 0 ε i 1 d i λ , and 
M n = A 1 • • • A n = K n R n L n R n , it immediately follows from M n = M n-1 A n that K n = R n-1 , L n = S n-1 , and (6) 
R -1 := 1, R 0 := 0, R n = d n λR n-1 + ε n R n-2 , for n = 1, 2, . . . , S -1 := 0, S 0 := 1, S n = d n λS n-1 + ε n S n-2 , for n = 1, 2, . . . , if d n < ∞. For a matrix A = a b c d , with det(A) = 0, we define the corresponding Möbius (or fractional linear) transformation by

A(x) = ax + b cx + d .
Consequently, considering M n as a Möbius transformation, we find that

M n (0) = R n S n , and 
M n (0) = A 1 • • • A n (0) = • • • = [ ε 1 : d 1 , ε 2 : d 2 , . . . , ε n : d n ].
It follows that the numerators and denominators of the α-Rosen convergents of x from (3) satisfy the usual recurrence relations (6); see also [BKS], p. 1279. Furthermore, since

x = M n-1 0 ε n 1 d n λ + T n α (x) (0),
we have that

(7) x = R n + T n α (x)R n-1 S n + T n α (x)S n-1 and T n α (x) = R n -S n x S n-1 x -R n-1
.

Let ℓ 0 = (α -1)λ be the left-endpoint of the interval on which the continued fraction map T α was defined in (1), r 0 = αλ its right-endpoint and let

∆(ε : d) = { x ∈ [(α -1)λ, αλ] | ε 1 (x) = ε, d 1 (x) = d },
be the cylinders of order 1 of numbers with same first digits given by (4). If we set

δ d = 1 (α + d)λ
for all d ≥ 1, then the cylinders are given by the following table

∆(-1 : 1) ∆(-1 : d), d ≥ 2 ∆(0 : ∞) ∆(+1 : d), d ≥ 2 ∆(+1 : 1) [ℓ 0 , δ 1 ) [-δ d-1 , -δ d ) {0} (δ d , δ d-1 ] (δ 1 , r 0 ]
where we have used that r 0 > δ 1 since λ ≥ √ 2 for q ≥ 4. Note that we have by definition that

T α (x) = ε/x -λd, for all x ∈ ∆(ε, d), x = 0. Setting ℓ n = T n α (ℓ 0 ), r n = T n α (r 0 ), n ≥ 0, we have that r 1 = 1 αλ -λ = - αλ 2 -1 αλ < 0.
In case α = 1/2, we write φ n instead of ℓ n , for n ≥ 0. In [BKS], it was shown that

-λ/2 =    [ (-1 : 1) p-1 ], if q = 2p [ (-1 : 1) h , -1 : 2, (-1 : 1) h ] , if q = 2h + 3, from which it immediately follows that (8) φ 0 = - λ 2 < φ 1 < • • • < φ p-2 = - 1 λ < φ p-1 = 0, if q = 2p,
and that for q = 2h + 3,

φ 0 = - λ 2 < φ 1 < • • • < φ h-2 < φ h-1 < - 2 3λ < φ h < - 2 5λ , φ 0 < φ h+1 < φ 1 , φ h+1 = 1 -λ, and 
φ h+1 < φ h+2 < • • • < φ 2h = - 1 λ < - 2 3λ < φ 2h+1 = 0;
see also Figure 1.

-λ/2 λ/2 -δ 1 -δ 2 • • • • • • δ 2 δ 1 -λ/2 λ/2 -δ 1 -δ 2 • • • • • • δ 2 δ 1 Figure 1.
The map T 1/2 and the orbit of -λ/2 (dashed broken line) for q = 8 (left) and q = 7 (right).

Thus we see that the behavior of the orbit of -λ/2 is very different in the even case compared to the odd case; see also Figure 2, where the relevant terms of (φ n ) n≥0 , (ℓ n ) n≥0 , and (r n ) n≥0 are displayed for even q.

Direct verification yields the following lemma.

Lemma 2.1. For q ≥ 4, 1/2 ≤ α ≤ 1/λ, we have that

φ 0 = - λ 2 ≤ ℓ 0 ≤ r 1 < φ 1 = - λ 2 -2 λ ,
with φ 0 = ℓ 0 if and only if α = 1/2, and ℓ 0 = r 1 if and only if α = 1/λ.

In [BKS], the sequence (φ n ) n≥0 plays a crucial role in the construction of the natural extension of the Rosen fractions. Due to the fact that the orbits of both -λ/2 and λ/2 would become constant 0 after a finite number of steps (depending on q), the natural extension of the Rosen fraction could be easily constructed. In this paper, the (ℓ n ) n≥0 and (r n ) n≥0 play a role comparable to that of the sequence (φ n ) n≥0 (even though the φ n 's are frequently used as well).

Let x ∈ [λ(α -1), αλ] be such, that (ε n (x) : d n (x)) = (-1 : 1) for n = 1, 2, . . . , m. Then it follows from (6) that the α-Rosen convergents of x satisfy

R -1 = 1, R 0 = 0, R n = λR n-1 -R n-2 , for n = 1, 2, . . . , m , S -1 = 0, S 0 = 1, S n = λS n-1 -S n-2 , for n = 1, 2, . . . , m .
As in [BKS], we define the auxiliary sequence (B n ) n≥0 by ( 9)

B 0 = 0, B 1 = 1, B n = λB n-1 -B n-2 , for n = 2, 3, . . . .

This yields for

n = 1, . . . , m that R n = -B n , S n = B n+1 , and T n α (x) = -Bn+B n+1 x B n-1 +Bnx by (7). It follows that (10) ℓ n = - B n + B n+1 (α -1)λ B n-1 + B n (α -1)λ = - B n+1 αλ -B n+2 B n αλ -B n+1 if ℓ 0 = [(-1 : 1) n , . . . ].
For x = [+1 : 1, (-1 : 1) n-1 , . . . ] = -[(-1 : 1) n , . . . ] , we obtain similarly

R n = B n , S n = B n+1 , thus T n α (x) = Bn-B n+1 x Bnx-B n-1 and
(11)

r n = - B n+1 αλ -B n B n αλ -B n-1 if r 0 = [+1 : 1, (-1 : 1) n-1 , . . . ] .
It is easy to see that B n = sin nπ q / sin π q , hence (B n ) n≥0 is a periodic sequence with period length 2q.

2.1. Even indices. Let q = 2p, p ∈ N, p ≥ 2. Essential in the construction of the natural extension is the following theorem.

Theorem 2.2. Let q = 2p, p ∈ N, p ≥ 2, and let the sequences (ℓ n ) n≥0 and (r n ) n≥0 be defined as before. If 1/2 < α < 1/λ, then we have that

(12) ℓ 0 < r 1 < ℓ 1 < • • • < r p-2 < ℓ p-2 < -δ 1 < r p-1 < 0 < ℓ p-1 < r 0 , d p (r 0 ) = d p (ℓ 0 ) + 1 and ℓ p = r p . If α = 1/2, then we have that (13) ℓ 0 < r 1 = ℓ 1 < • • • < r p-2 = ℓ p-2 < -δ 1 < r p-1 = ℓ p-1 = 0 < r 0 .
If α = 1/λ, then we have that

(14) ℓ 0 = r 1 < ℓ 1 = r 2 < • • • < ℓ p-2 = r p-1 = -δ 1 < 0 < r 0 .
Proof. If α = 1/2, then ℓ 0 = φ 0 and r 0 = -φ 0 , hence ( 13) is an immediate consequence of (8).

In general, in view of Lemma 2.1 and the fact that φ 0 = [(-1 : 1) p-1 ], we have the following situation: T α ([ℓ 0 , φ 1 )) = [ℓ 1 , φ 2 ) and T α ([φ j-1 , φ j )) = [φ j , φ j+1 ) for j = 2, 3, . . . , p -2, cf. Figure 2. This yields that ℓ 0 = [(-1 : 1) p-2 , . . . ].

φ 0 ℓ 0 r 1 φ 1 ℓ 1 r 2 φ 2 • • • φ p-3 ℓ p-3 r p-2 φ p-2 -δ 1 0 r 0 Figure 2.
The relevant terms of (φ n ) n≥0 , (ℓ n ) n≥0 , and (r n ) n≥0 for even q.

Since sin (p-1)π 2p = sin (p+1)π 2p , we obtain

B p-1 = B p+1 , B p-1 = λ 2 B p , B p-2 = λ 2 2 -1 B p .
By (10), we have therefore that

ℓ p-2 = - B p-1 αλ -B p B p-2 αλ -B p-1 = - 2 -αλ 2 λ(1 -αλ 2 + 2α) ≤ - 1 (α + 1)λ = -δ 1 ,
with ℓ p-2 = -δ 1 if and only if α = 1/λ. For α = 1/λ, we clearly have that r 0 = 1, thus r 1 = 1λ = ℓ 0 and ( 14) is proved.

If 1/2 < α < 1/λ, then we have that ℓ p-2 < -δ 1 , hence ℓ 0 = [(-1 : 1) p-1 , . . . , (1 : d p ), . . . ], with d p ≥ 1, and again due to (10) we obtain

ℓ p-1 = - B p αλ -B p-1 B p-1 αλ -B p = (2α -1)λ 2 -αλ 2 > 0.
Similarly, we have that r 0 = [+1 : 1, (-1 : 1) p-2 , . . . ] and, by (11),

r p-1 = - B p αλ -B p-1 B p-1 αλ -B p-2 = - (2α -1)λ 2 -(1 -α)λ 2 ∈ (-δ 1 , 0), thus (12) is proved. Since 1 r p-1 - 1 ℓ p-1 = λ, it follows from the definition of T α that ℓ p = r p and d 1 (r p-1 ) = d 1 (ℓ p-1 ) + 1. With d p (x) = d 1 (T p-1 α (x)
), the theorem is proved.

Remark. The structure of the ℓ n 's and r n 's allows us to determine all possible sequences of "digits". For example, the longest consecutive sequence of digits (-1 : 1) contains p -1 terms if α < 1/λ since ℓ p-2 < -δ 1 and ℓ p-1 ≥ -δ 1 . In case α = 1/λ, we only have (-1 : 1) p-2 . In particular in case q = 4, α = 1/λ, the cylinder ∆(-1 : 1) is empty.

On the other hand, (+1 : 1) is always followed by (-1 : 1) p-2 since r p-2 < -δ 1 , with ∆(+1 : 1) = {r 0 } in case α = 1/λ. Now we construct the domain Ω α upon which T α is bijective.

Theorem 2.3. Let q = 2p with p ≥ 2. Then the system of relations

             (R 1 ) : H 1 = 1/(λ + H 2p-1 ) (R 2 ) : H 2 = 1/λ (R n ) : H n = 1/(λ -H n-2 ) for n = 3, 4, . . . , 2p -1 (R 2p ) : H 2p-2 = λ/2 (R 2p+1 ) : H 2p-3 + H 2p-1 = λ
admits the (unique) solution

H 2n = -φ p-n = B n B n+1 = sin nπ 2p sin (n+1)π 2p for n = 1, 2, . . . , p -1, H 2n-1 = B p-n -B p+1-n B p-1-n -B p-n = cos nπ 2p -cos (n-1)π 2p cos (n+1)π 2p -cos nπ 2p for n = 1, 2, . . . , p, in particular H 2p-1 = 1. Let 1/2 < α < 1/λ and Ω α = 2p-1 n=1 J n × [0, H n ] with J 2n-1 = [ℓ n-1 , r n ), J 2n = [r n , ℓ n ) for n = 1, 2, . . . , p -1, and J 2p-1 = [ℓ p-1 , r 0 ).
Then the map T α : Ω α → Ω α given by ( 5) is bijective off of a set of Lebesgue measure zero.

Proof. It is easily seen that the solution of this system of relations is unique and valid, and that T α is injective. We thus concern ourselves with the surjectivity of T α ; see also Figure 3.

By (12), we have J n-2 ⊂ ∆(-1 : 1) for n = 3, 4, . . . , 2p -2, thus

T α (J n-2 × [0, H n-2 ]) = J n × 1 λ , 1 λ -H n-2 = J n × [H 2 , H n ] ,
where we have used (R 2 ) and (R n ). Furthermore, (R 2p-1 ) gives

T α ([ℓ p-2 , -δ 1 ) × [0, H 2p-3 ]) = [ℓ p-1 , r 0 ) × 1 λ , 1 λ -H 2p-3 = J 2p-1 × [H 2 , H 2p-1 ] . For n = 2, 3, . . . , d 1 (r p-1 ) -1 = d p (r 0 ) -1, we have that T α ([-δ n-1 , -δ n ) × [0, H 2p-3 ]) = [ℓ 0 , r 0 ) × 1 nλ , 1 nλ -H 2p-3
.

The remaining part of the rectangle

J 2p-3 × [0, H 2p-3 ] is mapped to T α ([-δ dp(r 0 )-1 , r p-1 ) × [0, H 2p-3 ]) = [ℓ 0 , r p ) × 1 d p (r 0 )λ , 1 d p (r 0 )λ -H 2p-3 . Now consider the image of J 2p-1 × [0, H 2p-1 ]. If d p (ℓ 0 ) ≥ 2, then it is split into T α ((ℓ p-1 , δ dp(ℓ 0 )-1 ] × [0, H 2p-1 ] = [ℓ 0 , r p ) × 1 d p (ℓ 0 )λ + H 2p-1 , 1 d p (ℓ 0 )λ , T α ((-δ n , -δ n-1 ] × [0, H 2p-1 ]) = [ℓ 0 , r 0 ) × 1 nλ + H 2p-1 , 1 nλ for n = 2, 3, . . . , d p (ℓ 0 ) -1, T α ((δ 1 , r 0 ) × [0, H 2p-1 ]) = (r 1 , r 0 ) × 1 λ + H 2p-1 , 1 λ = (r 1 , r 0 ) × [H 1 , H 2 ],
where we have used (R 1 ). Since

H 2p-3 + H 2p-1 = λ and d p (r 0 ) = d p (ℓ 0 ) + 1, the different parts of T α ([-δ 1 , r p-1 ) × [0, H 2p-3 ]) and T α ((ℓ p-1 , δ 1 ] × [0, H 2p-1 ]
) "layer one under the other" and "fill up like a jig-saw puzzle"

[ℓ 0 , r p ) × 1 d p (r 0 )λ , 1 d p (ℓ 0 )λ ∪ [ℓ 0 , r 0 ) × 1 d p (r 0 )λ , H 1 .
In case d p (ℓ 0 ) = 1, we simply have

T α ([-δ 1 , r p-1 ) × [0, H 2p-3 ]) = [ℓ 0 , r p ) × [1/(2λ), H 1 ] , T α ((ℓ p-1 , r 0 ) × [0, H 2p-1 ] = (r 1 , r p ) × [H 1 , H 2 ] .
Finally, the image of the central rectangle

J 2p-2 × [0, H 2p-2 ] is split into T α ([r p-1 , -δ dp(r 0 ) ) × [0, H 2p-2 ]) = [r p , r 0 ) × 1 d p (r 0 )λ , 1 d p (r 0 )λ -H 2p-2 , T α ([-δ n-1 , -δ n ) × [0, H 2p-2 ]) = [ℓ 0 , r 0 ) × 1 nλ , 1 nλ -H 2p-2
for n > d p (r 0 ),

T α ((δ n , δ n-1 ] × [0, H 2p-2 ]) = [ℓ 0 , r 0 ) × 1 nλ + H 2p-2 , 1 nλ for n > d p (ℓ 0 ), T α ((δ dp(ℓ 0 ) , ℓ p-1 ] × [0, H 2p-2 ]) = [r p , r 0 ) × 1 d p (ℓ 0 )λ + H 2p-2 , 1 d p (ℓ 0 )λ . Since H 2p-2 = λ/2 and d p (r 0 ) = d p (ℓ 0 ) + 1, the union of these images is [ℓ 0 , r 0 ) × 0, 1 d p (r 0 )λ ∪ [r p , r 0 ) × 1 d p (r 0 )λ , 1 d p (ℓ 0 )λ .
Therefore T α (Ω α ) and Ω α differ only by a set of Lebesgue measure zero.

Remark. If α = 1/2, then the intervals J 2n are empty and r p-1 = ℓ p-1 = 0. The proof of Theorem 2.3 remains valid, with d 1 (r p-1 ) = d 1 (ℓ p-1 ) = ∞; see also [BKS]. Since ℓ n = φ n for n = 0, 1, . . . , p -1, we have

Ω 1/2 = p-1 n=1 - B n B n+1 , - B n-1 B n × 0, B n -B n+1 B n-1 -B n ∪ 0, λ 2 × [0, 1] . 0 H 1 H 2 H 3 H 4 H 5 ℓ 0 r 1 ℓ 1 δ 1 δ 2 r 2 δ 3 δ 2 ℓ 2 δ 1 r 0 r 1 ℓ 1 r 2 H 3 H 5 0 ℓ 2 ℓ 3 = r 3 ℓ 0 r 0 1/3λ 1/2λ H 1 H 2 H 4 Figure 3.
The natural extension domain Ω α (left) and its image under T α (right) of the α-Rosen continued fraction (δ n = -δ n ); here q = 6, α = 0.53,

d p (ℓ 0 ) = 2, d p (r 0 ) = 3.
For α = 1/λ, we just have the intervals J 2n , n = 1, 2, . . . , p -2 and add

J 2p-2 = [r p-1 , r 0 )(= [-δ 1 , 1)). Furthermore, we have that r n = Bn-B n+1
Bn-B n-1 for n = 1, 2, . . . , p -1 and

r 0 = Bp-B p+1
Bp-B p-1 = 1. This provides the following theorem.

Theorem 2.4. Let q = 2p with p ≥ 2 and

Ω 1/λ = p-1 n=1 B n -B n+1 B n -B n-1 , B n+1 -B n+2 B n+1 -B n × 0, B n B n+1 .
Then T 1/λ : Ω 1/λ → Ω 1/λ is bijective off of a set of Lebesgue measure zero.

Proof. By ( 14), we have that

ℓ 0 = r 1 < ℓ 1 = r 2 < . . . < ℓ p-2 = r p-1 = -δ 1 , thus T 1/λ B n -B n+1 B n -B n-1 , B n+1 -B n+2 B n+1 -B n × 0, B n B n+1 = B n+1 -B n+2 B n+1 -B n , B n+2 -B n+3 B n+2 -B n+1 × 1 λ , B n+1 B n+2 for n = 1, 2, . . . , p -2.
The different parts of [-r p-1 , r 0 ) are mapped to

T 1/λ [-δ n-1 , -δ n ) × 0, λ 2 = [1 -λ, 1) × 1 nλ , 2 (2n -1)λ for n = 2, 3, . . . T 1/λ (δ n , δ n-1 ] × 0, λ 2 = [1 -λ, 1) × 2 (2n + 1)λ , 1 nλ for n = 2, 3, . . . T 1/λ (δ 1 , 1) × 0, λ 2 = [1 -λ, 1) × 2 3λ , 1 λ
and the union of these images is [1λ, 1) × (0, 1/λ].

Remark. Note that there is a simple relation between Ω 1/2 and Ω 1/λ , which will be useful in Section 3; reflect Ω 1/2 in the line y = x in case x ≥ 0, and reflect Ω 1/2 in the line y = -x in case x ≤ 0, to find Ω 1/λ ; see also Figure 4.

1 φ 1 -2 3λ λ-1 0 2 3λ -λ 2 λ 2 H 1 H 1 1 -H 1 = -1 1+λ λ 2 0 1 1+λ 1-λ -φ 1 Figure 4. Ω 1/2 (left)
and Ω 1/λ (right); here q = 6.

As in [BKS], a Jacobian calculation shows that T α preserves the probability measure ν α with density C q,α (1 + xy) 2 , where C q,α is a normalizing constant. For the calculation of this constant, we need the following lemma.

Lemma 2.5. If m 1 -m 2 = m 3 -m 4 , then we have that B n+m 1 B -n+m 2 -B n+m 3 B -n+m 4 = B m 1 -m 3 B m 2 +m 3 for all n ∈ Z.
Proof. With ζ = exp(πi/q), we have that

B n+m 1 B -n+m 2 -B n+m 3 B -n+m 4 = (ζ n+m 1 -ζ -n-m 1 )(ζ -n+m 2 -ζ n-m 2 ) -(ζ n+m 3 -ζ -n-m 3 )(ζ -n+m 4 -ζ n-m 4 ) (ζ -ζ -1 ) 2 = ζ m 1 +m 2 -ζ -m 1 -m 2 -ζ m 3 +m 4 -ζ -m 3 -m 4 (ζ -ζ -1 ) 2 = B m 1 -m 3 B m 2 +m 3 . Proposition 2.6. For 1/2 ≤ α ≤ 1/λ, the normalizing constant is C q,α = 1/ log 1 + cos π q sin π q .
Proof. Similarly to [BKS], integration of the density over Ω α gives

C q,α = 1/ log 1 + r 0 1 + ℓ p-1 p-1 n=1 1 + r n H 2n-1 1 + ℓ n-1 H 2n-1 1 + ℓ n H 2n 1 + r n H 2n
for 1/2 < α < 1/λ, by Theorem 2.3. Using (10), ( 11) and Lemma 2.5, we find

1 + r n H 2n-1 1 + ℓ n-1 H 2n-1 = B n -B n-1 αλ B n αλ -B n-1 , 1 + ℓ n H 2n 1 + r n H 2n = B n αλ -B n-1 B n+1 -B n αλ
for n = 1, 2, . . . , p -1, and

1 + r 0 1 + ℓ p-1 = B p -B p-1 αλ B p -B p-1 .
Putting everything together, we obtain

C q,α = 1/ log 1 B p -B p-1 = 1/ log sin π q 1 -cos π q = 1/ log 1 + cos π q sin π q .
For α = 1/2, we have the same constant by the remark following Theorem 2.3 and by [BKS]. Finally, the remark following Theorem 2.4 shows that C q,1/λ is the same constant as well.

Let µ α be the projection of ν α on the first coordinate, let B be the restriction of the twodimensional σ-algebra on Ω α , and B be the Lebesgue σ-algebra on I q,α = [λ(α -1), αλ]. In [Roh], Rohlin introduced and studied the concept of natural extension of a dynamical system. In our setting, a natural extension of (I q,α , B, µ α , T α ) is an invertible dynamical system (X α , B Xα , ρ α , S α ), which contains (I q,α , B, µ α , T α ) as a factor, such that the Borel σ-algebra B Xα of X α is the smallest S α -invariant σ-algebra that contains π -1 (B Xα ), where π is the factor map. A natural extension is unique up to isomorphism.

We have the following theorem.

Theorem 2.7. Let q ≥ 4, q = 2p, and let 1 2 ≤ α ≤ 1 λ . Then the dynamical system (Ω α , B, ν α , T α ) is the natural extension of the dynamical system (I q,α , B, µ α , T α ).

Proof. In case α = 1/2 and α = 1/λ the proof is a straightforward application of Theorem 21.2.2 from [Schw]; see also Examples 21.3.1 (the case of the RCF) and 21.3.2 (the NICF) in [Schw]. However, for 1/2 < α < 1/λ, some extra work is needed.

To be more precise, let us recall some terminology from [Schw]. Let B be a set, and T : B → B be a map. The pair (B, T ) is called a fibred system if the following three conditions are satisfied: Theorem 2.8. Consider the following dynamical system ( B, T ), with B = {(x, y); x ∈ B, y ∈ D(x)}, and where T : B → B is defined by

T (x, y) = T (x), V # (k(x))(y) .
If T is measurable, then ( B, T ) equipped with the obvious product σ-algebra is an invertible dynamical system with invariant density K. This dynamical system ( B, T ) is the natural extension of (B, T ).

In our setting we have by construction that B = Ω α . So to apply Schweiger's Theorem, we need to find a backward algorithm (B # , T # ), such that

(15) V # (k(x))(y) = 1 d(x)λ + ε(x) y .
From our construction of Ω α , and in particular from the proof of Theorem 2.3, we see that a natural choice of B # seems 1 to be the interval [0, 1], with partition elements

∆ # (-1 : 1) = [H 2 , H 2p-1 ] = 1 λ , 1 , ∆ # (1 : 1) = [H 1 , H 2 ] = 1 λ + 1 , 1 λ ,
and for d ≥ 2, d = d p (ℓ 0 ), d p (r 0 ), ∆ # (-1 : d) = 1 dλ , 1 dλ -H 2p-2 , ∆ # (1 : d) = 1 dλ + H 2p-1 , 1 dλ .
On these intervals ∆ # (ε : d) we define the map T # as

T # (x) = ε x -εdλ;
An easy calculation shows that V # (k(x)) satisfies (15).

For d = d p (ℓ 0 ) = d p (r 0 ) -1, the rectangle [ℓ 0 , r 0 ) × [ 1 (d+1)λ , 1
dλ ] is partitioned as in Figure 5 (see also Theorem 2.2, the proof of Theorem 2.3, and Figure 3, for the case q = 6, α = 0.53).

1 (d+1)λ 1 dλ 1 dλ+1 1 dλ+H 2p-2 ℓ 0 r 0 ℓp = rp T ([ℓ p-1 , δ d-1 ] × [0, H 2p-1 ]) T ([-δ d , r p-1 ] × [0, H 2p-3 ]) T ([δ d , ℓ p-1 ] × [0, H 2p-2 ]) T ([r p-1 , -δ d+1 ] × [0, H 2p-2 ])
Figure 5. "Blow-up" of the relevant part of Ω α for even q, 1/2 < α < 1/λ.

1 In a moment we will see that this choice needs a small modification in case α = 1/2, 1/λ.

Note that this case does not occur in case α = 1/2 or α = 1/λ; see also Examples 21.3 in [Schw]. Recall, that H 2p-1 = 1, H 2p-2 = λ/2, and H 2p-3 = λ -1; see Theorem 2.3.

We are left to define T # on the interval 1 (d+1)λ , 1 dλ . Clearly, on the interval

1 (d+1)λ , 1 dλ+1
we should define T # by

T # (x) = -1 x + (d + 1)λ,
while on

1 dλ+H 2p-2 , 1 dλ = 1 dλ+λ/2 , 1
dλ , the map T # should be given by

T # (x) = 1 x -dλ.
This leaves us how to define T # on 1 dλ+1 ,

1 dλ+H 2p-2 .
The problem here is, that y's in this interval have"two names"; see also Figure 5.

In order to overcome this problem, consider the following isomorphic copy (Ω * α , ν * α , T * ) of (Ω α , ν α , T ); let

Ω * α = Ω α \ (ℓ p , r 0 ] × 1 dλ + 1 , 1 dλ + λ/2 ∪ [ℓ p , r 0 ] × -1 dλ + λ/2 , -1 dλ + 1 , let T * : Ω * α → Ω * α be defined by T * (x, y) = s T (s -1 (x, y)) , (x, y) ∈ Ω * α ,
where

s(x, y) =    (x, y) if (x, y) ∈ Ω α \ (ℓ p , r 0 ] × 1 dλ+1 , 1 dλ+λ/2 (x, -y) if (x, y) ∈ (ℓ p , r 0 ] × 1 dλ+1 , 1 dλ+λ/2 , and set ν * α (A) = ν α (s -1 (A)), for every Lebesgue set A ⊂ Ω * α . Setting B # = [0, 1] ∪ (ℓ p , r 0 ] × -1 dλ + λ/2 , -1 dλ + 1
,

and defining T # on 1 dλ+1 , 1 dλ+λ/2 by T # (x) = 1 x -dλ,
and

T # on -1 dλ+λ/2 , -1 dλ+1 by T # (x) =    1 x + (d + 1)λ if 1 x + (d + 1)λ ∈ 1 dλ+1 , 1 dλ+λ/2 -1 x -(d + 1)λ if 1 x + (d + 1)λ ∈ 1 dλ+1 , 1 dλ+λ/2 ,
we find that (B # , T # ) is the dual fibred system with respect to (I q,λ , T α ). We already saw that the density K of the invariant measure is given by C q,α (1 + xy) 2 , with normalizing constant C q,α = 1/ log 1 + cos π q sin π q ; see Proposition 2.6. Thus it follows from Schweiger's theorem that (Ω α , B, ν α , T α ) is the natural extension of (I q,α , B, µ α , T α ).

2.2. Odd indices. Let q = 2h + 3, h ∈ N. The ℓ n 's and r n 's are ordered in the following way.

Theorem 2.9. Let q = 2h + 3, h ∈ N, let the sequences (ℓ n ) n≥0 and (r n ) n≥0 be defined as above, and let ρ = λ-2+ √ λ 2 -4λ+8 2

. Then we have the following cases:

α = 1/2 : ℓ 0 < r h+1 = ℓ h+1 < r 1 = ℓ 1 < • • • < r 2h-1 = ℓ 2h-1 < r h-1 = ℓ h-1 < r 2h = ℓ 2h < -δ 1 < r h = ℓ h < -δ 2 < r 2h+1 = ℓ 2h+1 = 0 < r 0 1/2 < α < ρ/λ : ℓ 0 < r h+1 < ℓ h+1 < r 1 < • • • < ℓ h-2 < r 2h-1 < ℓ 2h-1 < r h-1 < ℓ h-1 < r 2h < ℓ 2h < -δ 1 < r h < ℓ h < -δ 2 < r 2h+1 < 0 < ℓ 2h+1 < r 0 Furthermore, we have ℓ 2h+2 = r 2h+2 and d 2h+2 (r 0 ) = d 2h+2 (ℓ 0 ) + 1. α = ρ/λ : ℓ 0 = r h+1 < ℓ h+1 = r 1 < • • • < ℓ h-1 < r h = -δ 1 < ℓ h < -δ 2 < 0 < r 0 ρ/λ < α < 1/λ : ℓ 0 < r 1 < • • • < ℓ h-1 < r h < -δ 1 < ℓ h < 0 < r h+1 < r 0 Furthermore, we have ℓ h+1 = r h+2 and d h+1 (ℓ 0 ) = d h+2 (r 0 ) + 1. α = 1/λ : ℓ 0 = r 1 < • • • < ℓ h-1 = r h < -δ 1 < ℓ h = r h+1 = 0 < r 0
Proof. In [BKS], Section 3.2 (see also the introduction of this section), it was shown that

φ 0 = - λ 2 < φ 1 < • • • < φ h-2 < φ h-1 < - 2 3λ < φ h < - 2 5λ , φ 0 < φ h+1 < φ 1 , and 
φ h+1 < φ h+2 < • • • < φ 2h = - 1 λ < - 2 3λ < φ 2h+1 = 0.
In view of this and Lemma 2.1, we therefore have that φ h-1 ≤ ℓ h-1 ≤ r h < φ h . An important question is to know, where -δ 1 is located. Since 3/2 ≤ 1 + α, we have φ h-1 < -δ 1 . For q = 2h + 3, we have sin (h+1)π q = sin (h+2)π q , thus

B h+1 = B h+2 , B h = (λ -1)B h+1 , B h-1 = (λ 2 -λ -1)B h+1 .
Hence we obtain, by (10),

ℓ h-1 = - αλB h -B h+1 αλB h-1 -B h = - 1 -αλ(λ -1) λ -1 -αλ(λ 2 -λ -1) < -δ 1 .
The position of r h with respect to -δ 1 leads us to distinguish between the possible cases.

We have that

r h = - B h+1 αλ -B h B h αλ -B h-1 = - 1 -(1 -α)λ 1 -(1 -α)λ(λ -1) < -δ 1 if and only if α 2 λ 2 + αλ(2 -λ) -1 > 0, i.e., αλ > λ-2+ √ λ 2 -4λ+8 2 = ρ. Note that 1 2 < λ -2 + √ λ 2 -4λ + 8 2λ < 1 λ for 0 < λ < 2.
Assume first that α > ρ/λ. Then we have that r h < -δ 1 , from which it immediately follows that

r h+1 = B h+1 -B h+2 αλ B h+1 αλ -B h = 1 -αλ 1 -(1 -α)λ ≥ 0, ℓ h = B h+1 αλ -B h+2 B h+1 -B h αλ = - 1 -αλ 1 -αλ(λ -1) ≤ 0. If α < 1/λ, then |1/ℓ h | -|1/r h+1 | = λ, hence ℓ h+1 = r h+2 and d 1 (r h+1 ) = d 1 (ℓ h ) + 1. In case α = 1/λ, then r h+1 = ℓ h = 0.
Hence the last two cases are proved. It remains to consider 1/2 < α ≤ ρ/λ. Now we have that -δ 1 ≤ r h (< φ h ), with -δ 1 = r h if and only if α = ρ/λ. Consequently, we immediately find that

r 0 = [ +1 : 1, (-1 : 1) h-1 , -1 : 2, (-1 : 1) h , . . . ] .
To see that ℓ h < -δ 2 , note that this is equivalent to

α 2 λ 2 -αλ 2 + 2αλ -1 < 2(λ -1)(1 -αλ),
which holds because of the assumption α 2 λ 2 + αλ(2λ) -1 ≤ 0. This assumption also implies that ℓ h+1 ≤ r 1 , where again equality holds if and only if α = ρ/λ. This proves the case α = ρ/λ.

For α < ρ/λ, we have

ℓ 0 = [(-1 : 1) h , -1 : 2, (-1 : 1) h , . . . ] ,
hence the convergents of

ℓ 0 satisfy -R h-1 = B h-1 = (λ 2 -λ -1)B h+1 , -R h = (λ -1)B h+1 and 
R h+1 = 2λR h -R h-1 = -(λ 2 -λ + 1)B h+1 .
The recurrence R h+n+1 = λR h+n -R h+n-1 for n = 1, 2, . . . , h, yields

-R h+n = (B n+2 -B n+1 + 2B n )B h+1 for n = 0, 1, . . . , h + 1.
For the S n 's, we have similarly that

S h-1 = (λ -1)B h+1 , S h = B h+1 , thus S h+1 = 2λS h -S h-1 = (λ + 1)B h+1 and 
S h+n = (B n+1 + B n )B h+1
for n = 0, 1, . . . , h + 1. By (7), we obtain, for n = 0, 1, . . . , h + 1, ( 16)

ℓ h+n = - (B n+1 + B n )(α -1)λ + B n+2 -B n+1 + 2B n (B n + B n-1 )(α -1)λ + B n+1 -B n + 2B n-1 .
For the convergents of r 0 , only the sign of the R n is different and we get ( 17)

r h+n = - (B n+1 + B n )αλ -(B n+2 -B n+1 + 2B n ) (B n + B n-1 )αλ -(B n+1 -B n + 2B n-1
) .

This yields that

r 2h+1 = - (2α -1)λ αλ 2 -2λ + 2 (< 0), ℓ 2h+1 = (2α -1)λ (1 -α)λ 2 -2λ + 2 (> 0), hence |1/r 2h+1 | -|1/ℓ 2h+1 | = λ, d 1 (r 2h+1 ) = d 1 (ℓ 2h+1 ) + 1
, and the theorem is proved.

For the construction of the natural extension, we have to distinguish between the different cases of the previous theorem. Consider first α > ρ/λ. Theorem 2.10. Let q = 2h + 3 with h ≥ 1. Then the system of relations

             (R 1 ) : H 1 = 1/(λ + H 2h+2 ) (R 2 ) : H 2 = 1/λ (R n ) : H n = 1/(λ -H n-2 ) for n = 3, 4, . . . , 2h + 2 (R 2h+3 ) : H 2h+1 = λ/2 (R 2h+4 ) : H 2h + H 2h+2 = λ
admits the (unique) solution

H 2n = -φ 2h+1-n = B n B n+1 = sin nπ q sin (n+1)π q for n = 1, 2, . . . , h + 1, H 2n-1 = B n-1 + B n B n + B n+1 = sin (n-1)π q + sin nπ q sin nπ q + sin (n+1)π q for n = 1, 2, . . . , h + 1, in particular H 2h+2 = 1. Let ρ/λ < α ≤ 1/λ and Ω α = 2h+2 n=1 J n × [0, H n ] with J 2n-1 = [ℓ n-1 , r n ), J 2n = [r n , ℓ n ) for n = 1, 2, . . . , h, J 2h+1 = [ℓ h , r h+1 ) and J 2h+2 = [r h+1 , r 0 ). Then the map T α : Ω α → Ω α
given by ( 5) is bijective off of a set of Lebesgue measure zero.

Remark. The case q = 3, ρ/λ ≤ α ≤ 1/λ, which is the case of Nakada's α-expansions for ( √ 5 -1)/2 ≤ α ≤ 1, has been dealt with in [N1]; see also [NIT], [TI], and [K1, K2].

The proof of Theorem 2.10 is very similar to that of Theorem 2.3 and therefore omitted, see also Figure 6. In case α = 1/λ, the intervals J 2n-1 are empty.

Once more, a Jacobian calculation shows that T α preserves the probability measure ν α with density

C q,α (1 + xy) 2 , H 3 0 H 1 H 2 H 4 ℓ 0 r 1 δ 1 δ 2 ℓ 1 δ 3 δ 2 r 2 δ 1 r 0 r 1 H 4 0 r 2 ℓ 0 ℓ 1 ℓ 2 =r 3 r 0 1/3λ 1/2λ H 1 H 2 H 3 Figure 6
. The natural extension domain Ω α (left) and its image under T α (right) of the α-Rosen continued fraction (δ n = -δ n ); here q = 5, α = 0.56,

d h+1 (ℓ 0 ) = 3, d h+2 (r 0 ) = 2.
where C q,α is a normalizing constant given by the following proposition.

Proposition 2.11. If q = 2h + 3 and ρ/λ < α ≤ 1/λ, then the normalizing constant is

C q,α = 1/ log 1 + αλ √ 2 -λ = 1/ log 1 + 2α cos π q 2 sin π 2q .
Proof. Integration gives

C q,α = 1/ log 1 + r 0 1 + r h+1 h+1 n=1 1 + r n H 2n-1 1 + ℓ n-1 H 2n-1 h n=1 1 + ℓ n H 2n 1 + r n H 2n .
Using ( 10) and ( 11), we find

1 + r n H 2n-1 1 + ℓ n-1 H 2n-1 = B n -B n-1 αλ B n αλ -B n-1 , 1 + ℓ n H 2n 1 + r n H 2n = B n αλ -B n-1 B n+1 -B n αλ , and 1 + r 0 1 + r h+1 = (1 + αλ)(B h+1 αλ -B h ) B h+1 -B h = (1 + αλ)(B h+1 αλ -B h )B h+1 ,
where we have used

(2 -λ)B 2 h+1 = 2(1 -cos π q ) sin 2 (h+1)π q sin 2 π q = 4 sin 2 π 2q cos 2 π 2q 4 sin 2 π 2q cos 2 π 2q = 1.
Putting everything together, we obtain

C q,α = 1/ log((1 + αλ)B h+1 ) = 1/ log 1 + αλ √ 2 -λ = 1/ log 1 + αλ 2 sin π 2q .
Remark. Note that for q = 3 this result confirms Nakada's result from [N1] for α between ( √ 5 -1)/2 and 1; in this case, the normalizing constant is indeed 1/ log(1 + α).

Now consider α < ρ/λ.
Theorem 2.12. Let q = 2h + 3 with h ≥ 1. Then the system of relations

                       (R 1 ) : H 1 = 1/(2λ -H 4h-1 ) (R 2 ) : H 2 = 1/(2λ -H 4h ) (R 3 ) : H 3 = 1/(λ + H 4h+3 ) (R 4 ) : H 4 = 1/λ (R n ) : H n = 1/(λ -H n-4 ) for n = 5, 6, . . . , 4h + 3 (R 4h+4 ) : H 4h+2 = λ/2 (R 4h+5 ) : H 4h+1 + H 4h+3 = λ
admits the (unique) solution

H 4n = B n B n+1 , H 4n-2 = B n-1 + B n B n + B n+1 , H 4h+3-4n = B n+1 ρ -B n B n ρ -B n-1 , H 4h+1-4n = B n+1 ρ -B n+2 B n ρ -B n+1 , in particular H 4h+3 = ρ. Let 1/2 ≤ α < ρ/λ, and Ω α = 4h+3 n=1 J n × [0, H n ] with J 4n-3 = [ℓ n-1 , r h+n ), J 4n-2 = [r h+n , ℓ h+n ), J 4n-1 = [ℓ h+n , r n ), J 4n = [r n , ℓ n ) for n = 1, 2, . . . , h, J 4h+1 = [ℓ h , r 2h+1 ), J 4h+2 = [r 2h+1 , ℓ 2h+1 ) and J 4h+3 = [ℓ 2h+1 , r 0 ).
Then the map T α : Ω α → Ω α given by ( 5) is bijective off of a set of Lebesgue measure zero.

Proof. The proof of the bijectivity runs along the same lines as the proof of Theorem 2.3 and is therefore omitted, see also Figure 7.

The H 4n 's are determined by (R 4 ), (R 8 ), . . . , (R 4h ). The H 4n-2 's are determined by (R 2 ), (R 6 ), . . . , (R 4h+2 ) and (R 4h+4 ). By (R 3 ), (R 7 ), . . . , (R 4h+3 ), we obtain

H 4h+3-4n = B n+1 H 4h+3 -Bn BnH 4h+3 -B n-1 and 1 λ + H 4h+3 = H 3 = B h+1 H 4h+3 -B h B h H 4h+3 -B h-1 = H 4h+3 -(λ -1) (λ -1)H 4h+3 -(λ 2 -λ -1) , thus H 2 4h+3 + (2 -λ)H 4h+3 -1 = 0, i.e. H 4h+3 = ρ.
Finally, the H 4h+1-4n 's are determined by (R 1 ), (R 5 ), . . . , (R 4h+5 ). For α = 1/2, the intervals J 4n and J 4n-2 are empty.

Again, T α preserves the probability measure ν α with density C q,α /(1 + xy) 2 , where C q,α is a normalizing constant given by the following proposition.

Proposition 2.13. If q = 2h+3 and 1/2 ≤ α < ρ/λ, then the normalizing constant is

C q,α = 1/ log 1 + ρ √ 2 -λ = 1/ log 1 + ρ 2 sin π 2q .
Proof. Integration yields that C q,α is equal to

1/ log 1 + r 0 ρ 1 + ℓ 2h+1 ρ h+1 j=1 1 + r h+j H 4j-3 1 + ℓ j-1 H 4j-3 1 + ℓ h+j H 4j-2 1 + r h+j H 4j-2 h j=1 1 + r j H 4j-1 1 + ℓ h+j H 4j-1 1 + ℓ j H 4j 1 + r j H 4j . H 6 0 H 2 H 4 ρ H 1 H 3 H 5 ℓ 0 r 2 ℓ 2 δ 1 r 1 ℓ 1 δ 2 δ 3 r 3δ 4 δ 3 ℓ 3 δ 2 δ 1 r 0 r 2 ℓ 2 r 3 ℓ 3 ρ 0 ℓ 0 r 1 ℓ 1 ℓ 4 = r 4 r 0 1/4λ 1/3λ 1/2λ H 1 H 2 H 3 H 4 H 5 H 6 Figure 7
. The natural extension domain Ω α (left) and its image under

T α (right) of the α-Rosen continued fraction (δ n = -δ n ); here q = 5, α = 0.5038, d 2h+2 (ℓ 0 ) = 2, d 2h+2 (r 0 ) = 3.
Using ( 10), ( 11), ( 16), ( 17) and Lemma 2.5, we find

1 + r h+j H 4j-3 1 + ℓ j-1 H 4j-3 = (λ(1 -2α)ρ + αλ 2 -λ 2 + 2λ -2)(B j -B j-1 αλ) ((αλ -1)ρ -αλ + λ -1)((B j + B j-1 )αλ -B j+1 + B j -2B j-1 ) 1 + ℓ h+j H 4j-2 1 + r h+j H 4j-2 = (B j + B j-1 )αλ -B j+1 + B j -2B j-1 2B j -B j-1 + B j-2 -(B j + B j-1 )αλ 1 + r j H 4j-1 1 + ℓ h+j H 4j-1 = ((αλ -1)ρ -αλ + λ -1)(2B j -B j-1 + B j-2 -(B j + B j-1 )αλ) (λ(1 -2α)ρ + αλ 2 -λ 2 + 2λ -1)(B j αλ -B j-1 ) 1 + ℓ j H 4j 1 + r j H 4j = B j αλ -B j-1 B j+1 -B j αλ and 1 + r 0 ρ 1 + ℓ 2h+1 ρ = (1 + αλρ)((2B h+1 -B h + B h-1 -(B h+1 + B h )αλ) ((2α -1)λρ -αλ 2 + λ 2 + 2λ -2)B h+1 .
Putting everything together, we obtain that

C q,α = 1/ log (1 + αλρ) √ 2 -λ 1 + αλ -λ + (1 -αλ)ρ = 1/ log 1 + ρ √ 2 -λ .
This confirms again Nakada's result for q = 3, i.e., C 3,α = 1/ log

√ 5+1 2 for 1 2 ≤ α < √ 5-1
2 . The case α = ρ/λ is slightly different from both other cases (similarly to α = 1/λ for even q). Theorem 2.14. Let q = 2h + 3 with h ≥ 1, α = ρ/λ and

Ω ρ = h j=1 [ℓ j-1 , r j ) × 0, B j-1 + B j B j + B j+1 ∪ [r j , ℓ j ) × 0, B j B j+1 ∪ [ℓ h , ρ) × 0, λ 2 .
Then T ρ : Ω ρ → Ω ρ is bijective off of a set of Lebesgue measure zero.

The normalizing constant in this case is C q,ρ/λ = 1/ log 1+ρ √ 2-λ as above. As in the even case, we set µ α the projection of ν α on the first coordinate, B be the restriction of the twodimensional σ-algebra on Ω α , and B be the Lebesgue σ-algebra on I q,α = [λ(α-1), αλ]. We have the following theorem, whose proof is similar to the proof of Theorem refthm:naturalextension-even-case in the even case.

Theorem 2.15. Let q ≥ 3, q = 2h + 1, and let 1 2 ≤ α ≤ 1 λ . Then the dynamical system (Ω α , B, ν α , T α ) is the natural extension of the dynamical system (I q,α , B, µ α , T α ).

ρ φ 2 H 5 0 2 3λ -λ 2 -2 3λ φ 1 λ 2 H 1 H 3 λ/2 0 1 λ+ρ ρ-λ -1 λ+ρ ℓ 1 ρ H 2 1/λ 1 1 -1 λ+1 1/λ 0 1 λ+1 λ-1 Figure 8
. Ω 1/2 (left), Ω ρ/λ (middle) and Ω 1/λ (right); here q = 5. 2.3. Convergence of the continued fractions. Now we can prove easily that the α-Rosen continued fractions converge. If T n α (x) = 0 for some n ≥ 0, then this is clear. Therefore assume that T n α (x) = 0 for all n ≥ 0. Setting (t n , v n ) = T n α (x, 0), it follows directly from the definition (5) of T α that v n = [ 1 : d n , ε n : d n-1 , . . . , ε 2 : d 1 ]. Furthermore, an immediate consequence of ( 6) is that S n-1 /S n = [ 1 : d n , ε n : d n-1 , . . . , ε 2 : d 1 ], i.e., v n = S n-1 /S n .

Theorems 2.3, 2.10 and 2.12 (see also Figures 3,6 and 7) show that v n ≤ 1, i.e., S n ≥ S n-1 , and that S n = S n-1 if and only if q = 2h + 3, n = h + 1, d 1 = 1, (ε i : d i ) = (-1 : 1) for i = 2, 3, . . . , h + 1, which is possible only if α > ρ/λ. Furthermore we have that v n-1 v n ≤ 1/c for some constant c > 1, i.e., S n ≥ cS n-2 . It follows from ( 7) that (18) x -

R n S n = T n α (x)(R n-1 S n -R n S n-1 ) S n (S n + T n α (x)S n-1 ) = |t n | S 2 n (1 + t n v n ) ≤ αλ (1 + αλ -λ)S 2 n ,
hence the α-Rosen convergents R n /S n converge to x as n → ∞.

Mixing properties of α-Rosen fractions

In case q is even, and α = 1/λ, we saw in the previous section that there is a simple relation between Ω 1/2 and Ω 1/λ ; see also Figure 4. Define in this case the map M : Ω

1/λ → Ω 1/2 by M(x, y) =    (-y, -x) if (x, y) ∈ Ω 1/λ , x < 0, (y, x) if (x, y) ∈ Ω 1/λ , x ≥ 0.
Clearly, M : Ω 1/λ → Ω 1/2 is bijective and bi-measurable transformation, and ν 1/λ (M -1 (A)) = ν 1/2 (A), for every Borel set A ⊂ Ω 1/2 . By comparing the partitions of T 1/λ (on Ω 1/λ ) and that of T -1 1/2 (on Ω 1/2 ), we find that

T 1/λ (x, y) = M -1 T -1 1/2 (M(x, y)) , (x, y) ∈ Ω 1/λ , x = 0.
This implies that the dynamical systems (Ω 1/2 , B, ν 1/2 , T -1 1/2 ) and (Ω 1/λ , B, ν 1/λ , T 1/λ ) are isomorphic. In [BKS] it was shown that the dynamical system system (Ω 1/2 , B, ν 1/2 , T 1/2 ) is weakly Bernoulli with respect to the natural partition, hence (Ω 1/2 , B, ν 1/2 , T 1/2 ) and (Ω 1/2 , B, ν 1/2 , T -1 1/2 ) are isomorphic. As a consequence we find that the dynamical systems (Ω 1/2 , B, ν 1/2 , T 1/2 ) and (Ω 1/λ , B, ν 1/λ , T 1/λ ) are isomorphic.

In this section, we will show that this result also holds for all q and all α strictly between 1/2 and 1/λ, using a result by M. Rychlik [Ry]. For completeness, we state explicitly the hypothesis needed for Rychlik's result (the reader is referred to [Ry] for more details).

Let X be a totally ordered order-complete set. Open intervals constitute a base of a complete topology in X, making X into a topological space. If X is separable, then X is homeomorphic with a closed subset of an interval. Let B be the Borel σ-algebra on X, and m a fixed regular, Borel probability measure on X (in our case m will be the normalized Lebesgue measure restricted to X). Let U ⊂ X be an open dense subset of X, such that m(U) = 1. Let S = X \ U, clearly m(S) = 0.

Let T : U → X be a continuous map, and β a countable family of closed intervals with disjoint interiors, such that U ⊂ β. Furthermore, suppose that for any B ∈ β one has that B ∩ S consists only of endpoints of B, and that T restricted to B ∩ U admits an extension to a homeomorphism of B with some interval in X. Suppose that T ′ (x) = 0 for x ∈ U, and let g(x) = 1/|T ′ (x)| for x ∈ U, g| S = 0. Let P : L 1 (X, m) → L 1 (X, m) be the Perron-Frobenius operator of T ,

P f (x) = y∈T -1 x g(y)f (y).
In [Ry], it was proved (among many other things) that, if g ∞ < 1 and Var g < ∞, then there exist functions ϕ 1 , ϕ 2 , . . . , ϕ s of bounded variation, such that

(i) P ϕ i = ϕ i ; (ii) ϕ i dm = 1; (iii) There exists a measurable partition C 1 , C 2 , . . . , C s of X with T -1 C i = C i for i = 1, 2, . . . , s; (iv) The dynamical system (C i , T i , ν i ), where T i = T | C i and ν i (B) = B ϕ i dm are
exact, and ν i is the unique invariant measure for T i , absolutely continuous with respect to m| C i .

Rychlik also showed that if s = 1, i.e., if 1 is the only eigenvalue of P on the unit circle and if there exists only one ϕ ∈ L 1 (X, M) with P ϕ = ϕ and m(ϕ) = 1, (ϕ ≥ 0), then the natural extension of (X, T, ν) is isomorphic to a Bernoulli shift. Returning to our map T α , defined on X = I q,α = [λ(α -1), αλ], and using the same notation as above, we let m be normalized Lebesgue measure on X, S = {λ(α -1)} ∪ ± 1 λ(α + d)

; d = 1, 2, . . . and U = X \ S. Note that T α : U → X is continuous, and that the restriction of T α to each open interval is homeomorphic to an interval (in fact to X itself, except for the first and last interval).

We have that g

(x) = 1/|T ′ α (x)| = x 2 on U, hence g ∞ < 1 (since α = 1/λ)
, and Var g < ∞. It is easy, but tedious (cf. [DK] for a proof of the regular case), to see that T is ergodic, hence s = 1, and we can apply Rychlik's result to obtain the following theorem.

Theorem 3.1. The natural extension (Ω α , ν α , T α ) of (X α , µ α , T α ) is weakly Bernoulli. Hence, the natural extension is isomorphic to any Bernoulli shift with the same entropy.

Metrical properties of 'regular' Rosen fractions

An important reason to introduce and study the natural extension of the ergodic system underlying any continued fraction expansion, is that such a natural extension facilitates the study of the continued fraction expansion at hand; see e.g. [DK] and [IK], Chapter 4. The following theorem is a consequence of this; see [BJW], [DK], or [IK], Chapter 4.

Theorem 4.1. Let q ≥ 3, and let 1/2 ≤ α ≤ 1/λ. For almost all G q -irrational numbers x, the two-dimensional sequence T α (x, 0) = ( T n α (x), S n-1 /S n ), n ≥ 1, is distributed over Ω α according to the density function g α , given by g α (t, v) = C q,α (1 + tv) 2 for (t, v) ∈ Ω α , and g α (t, v) = 0 otherwise. Here C q,α is the normalizing constant of the T α -invariant measure ν α .

Due to Proposition 4.1, it is possible to study the distribution of various sequences related to the α-Rosen expansion of almost every x ∈ X α . Classical examples of these are the frequency of digits, or the analogs of various classical results by Lévy and Khintchine. However, these results can already be obtained from the projection (X α , B α , µ α , T α ) of (Ω α , Bα , ν α , T α ) -which is also ergodic -and the Ergodic Theorem. For the distribution of the so-called approximation coefficients, the natural extension (Ω α , Bα , ν α , T α ) is necessary. These approximation coefficients Θ n = Θ n (x), are defined by (19) Θ n = Θ n (x) := S 2 n x -

R n S n , n ≥ 0,
where R n /S n is the nth α-Rosen convergent, which is obtained by truncating the α-Rosen expansion. With (t n , v n ) = T n α (x, 0), it follows from (18), that (20) Θ n = ε n+1 t n 1 + t n v n , for n ≥ 1.

Similarly, since t n = ε n /t n-1d n λ and v n = S n-1 /S n , it follows from ( 6) that

(21) Θ n-1 = v n 1 + t n v n , for n ≥ 1.
In view of ( 20) and ( 21), we define the map

F (t, v) = v 1 + tv , t 1 + tv =: (ξ, η), for tv = -1.
It is now easy calculation, see e.g. [BKS], p. 1293, that due to Proposition 4.1 one has for almost all x ∈ X α that the sequence (Θ n-1 (x), ε n+1 Θ n (x)) n≥0 is distributed on F (Ω α ) according to the density function C q,α / √ 1 -4ξη. Setting

Γ + α = F ({(t, v) ∈ Ω α | t ≥ 0}) and Γ - α = F ({(t, v) ∈ Ω α | t ≤ 0}),
we have found the following theorem. By this last statement we mean that, for almost all x and for all a, b ≥ 0, the limit Several corollaries can be drawn from Theorem 4.2, see e.g. [K1], where (for q = 3) for almost all x the distributions of the sequences (Θ n ) n≥1 , (Θ n-1 + Θ n ) n≥1 , (Θ n-1 -Θ n ) n≥1 were determined.

Here we only mention the following result for even values of q, a result which was previously obtained in [BKS] for both even and odd values of q, and α = 1/2. c 2 = c 2 (α) is a line with slope -λ 3 /(4λ 2 ). Since c 2 (1/2) = λ/2 > 1/2 > λ/(λ + 2), and c 2 (1/λ) = λ/(λ + 2) = c 1 (1/2) < c 1 (1/λ) = 1/2, we find for 1/2 < α < 1/λ that L α = min λ λ + 2 , λ(2αλ 2 ) 4λ 2 .

In case α = 1/λ, the point (1, λ/2) yields c = λ/(λ + 2). Since the curve c = v 1+tv is monotonically increasing on [ℓ 0 , r 0 ], and from the fact that for t = 0 we have that v = c = λ/(λ + 2) < 1/λ, where 1/λ is the "smallest height" of Ω α , we find that

L 1/λ = λ λ + 2 .
This proves the theorem.

Remark. We only deal with the even case in Proposition 4.3; a result for the odd case is obtained similarly, but has a more involved expression.

  (a) There is a finite or countable set I (called the digit set); (b) There is a map k : B → I. Then the setsB(i) = k -1 (i) form a partition of B; (c) The restriction of B to any B(i) is an injective map; see [Schw], Definition 1.1.1. Clearly, in our setting B = I q,α = [λ(α -1), αλ], T = T α , I = {ε : d; ε ∈ {±1, 0}, d ∈ N ∪ {∞}}, and B(ε : d) = ∆(ε : d).The pair (B # , T # ) is called a dual fibred system (or backward algorithm) with respect to (B, T ) if the following condition holds: (k 1 , k 2 , . . . , k n ) is an admissible block of digits for T if and only if (k n , . . . , k 2 , k 1 ) is admissible for T # ; see Definition 21.1.1 in[Schw]. Furthermore,D(x) := {y ∈ B # ; y ∈ B # (k 1 , k 2 , . . . , k N ) ifand only if T -N (x) ∩ B(k N , . . . , k 2 , k 1 ) = ∅ for all N ≥ 1}; see Definition 21.1.7 from [Schw]. The local inverse of the map T : B(k) → B is denoted by V (k). F. Schweiger obtained the following theorem; see [Schw], Theorem 21.2.1.

Theorem 4. 2 .

 2 Let q ≥ 3, 1/2 ≤ α ≤ 1/λ, and define the functions d + α and d - for (ξ, η) ∈ Γ ± α , and d ± α (ξ, η) = 0 otherwise. Then the sequence (Θ n-1 (x), Θ n (x)) n≥1 lies in the interior of Γ = Γ + α ∪ Γ - α for all G q -irrational numbers x, and for almost all x this sequence is distributed according to the density function d α , whered α (ξ, η) = d + α (ξ, η) + d - α (ξ, η) .

  1 ≤ j ≤ N, Θ j-1 (x) < a, Θ j (x)
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Proposition 4.3. Let q ≥ 4 be an even integer, 1/2 ≤ α ≤ 1/λ, and let

Then for almost all G q -irrational numbers x and all c ≥ 1/L α , we have that

Proof. In view of the expression of Θ n-1 (x) in (20), we consider curves given by

where c > 0 is a constant, and t ∈ [ℓ 0 , r 0 ]. Note that these curves are monotonically increasing on [ℓ 0 , r 0 ], and that the curve given by v = c 1 1-c 1 t lies "above" the curve given by v = c 2 1-c 2 t , if and only if c 1 > c 2 . Now let L α be defined as the positive largest c for which the curve c = v 1+tv lies in Ω α for t ∈ [ℓ 0 , r 0 ], i.e.,

It follows from Theorem 4.1 that for all z ≤ L α , and for almost all G q -irrationals x one has that lim

where C q,α is the normalizing constant of the invariant measure (which has density g α ).

So we are left to show that L α = min λ λ+2 , λ(2-αλ 2 ) 4-λ 2 . In the even case we can discern three cases: α = 1/2, 1/2 < α < 1/λ, and α = 1/λ. Note that the first case has been dealt with in [BKS]; in case α = 1/2 one has that

and the curve c 1 = v 1+tv is monotonically increasing on [ℓ 0 , r 0 ], we immediately find that this curve is in Ω α for t ∈ [ℓ 0 , 0], yielding that L α ≤ αλ αλ+1 . From Theorem 2.2 we see that ℓ p-2 < 0 < ℓ p-1 . Setting

it follows from Theorem 2.3 (see also Figure 3 for q = 6) that L α = min{c 1 , c 2 }, since c 1 < c 3 . For q (and therefore λ) fixed, and for α ∈ [1/2, 1/λ], one easily shows that c 1 = c 1 (α) is a monotonically increasing function of α, with c 1 (1/2) = λ λ+2 , and c 1 (1/λ) = 1/2, while