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Abstract

This paper presents the LAAS architecture for
autonomous mobile robots and some recent de-
velopments to improve the dependability of the
system. In particular, this paper focuses on the
role of the Execution Control level of this archi-
tecture. This level has a fault protection (safety
bag) role with respect to the commands issued
to the functional level which is connected to the
physical devices. These commands come either
from the decisional level, or from the functional
level itself. We introduce a new approach and a
new tool inspired from the model checking do-
main. We present a new language to specify the
model of acceptable and required states of the
system (valid contexts for requests to functional
module and resources usage). This language is
compiled in an OBDD (Ordered Binary Deci-
sion Diagram) like structure which is then used
online to check the specified constraints in real-
time. Such a model checking approach could be
extended to check off line more complex tempo-
ral properties of the system.

1 Introduction

There is an increasing need for advanced au-
tonomy in complex embedded real-time systems
such as robots, satellites [Powell and Thévenod-
Fosse, 2002], or UAVs. The growing complex-
ity of the decision capabilities of these systems
raises a major problem: how to prove that
the system is not going to engage in dangerous
states? How to guarantee that the robot will
not grab an object with its arm, while moving
in a crowded environment (which could suppos-
edly arm somebody)? How to make sure that

∗List of authors in alphabetical order.

a cleaning robot does not vacuum the cat? Or
that a robot walking assistant helping elderly
people does not speed up when a person is walk-
ing leaning on it?

There are mechanical designs and physical se-
curities to prevent some of theses to happen but
still, in advanced autonomous systems, most of
these actions result from explicit decisions from
the decisional level. So a partial response to
this problem is to use a planner which only syn-
thesizes valid and safe plans. Yet, high level
planners do not (cannot) have a complete model
representing the full extend of their actions.
Some of these actions are refined by the supervi-
sor/executive, therefore the particular sequence
of low level commands sent to the physical sys-
tem is not completely under the control of the
planner. Moreover, other plans, given as scripts
or procedures, are often used to perform some
task refinement. These scripts and procedures
are usually written in high level language pro-
viding concurrent actions executions. In most
cases, this concurrency results in unforeseen and
unplanned interactions.

A solution to guarantee the safety properties
is to integrate in the architecture a system that
formally controls the validity of the “low level”
commands sent to the physical system and pre-
vents it from entering an unsafe state. This con-
troller must check the system consistency dur-
ing execution without affecting the system basic
functionalities, such as reaction time.

The LAAS1 architecture, presented in sec-
tion 2, foresaw such a mechanism in its Execu-
tion Control Level. Section 3 presents the Ex-
ecution Control Level roles and requirements,
with a state of the art and related works. Sec-
tion 3.2 gives an informal description of the pro-

1LAAS Architecture for Autonomous System.



posed approach, the tool and the language we
use for the Execution Control Level. In sec-
tion 3.4, we present some experimental results
of the execution control system. Section 4 men-
tions other aspects of the LAAS architecture
and tools which participate to the overall de-
pendability of the system.

2 The LAAS Architecture

The LAAS architecture [Alami et al., 1998]
was originally designed for autonomous mobile
robots. This architecture remains fairly general
and is supported by a consistently integrated
set of tools and methodology, in order to prop-
erly design, easily integrate, test and validate
a complex autonomous system. As shown on
Figure 1, it has a number of levels, with differ-
ent temporal constraints and uses different data
representations. These levels are:
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Figure 1: The LAAS Architecture.

• The decision level: This higher level in-
cludes the deliberative capabilities such
as, but not limited to: producing task
plans, recognizing situations, faults detec-
tions, etc. It embeds at least a supervi-
sor/executive, which is connected to the
underlying level, to which it sends re-
quests that will ultimately initiate actions
and start treatments. It is responsible for
supervising plans or procedures execution
while being at the same time reactive to
events from the underlying level and com-
mands from the operator. Then accord-
ing to particular applications it may inte-

grate other more complex deliberation ca-
pabilities, which are called by the super-
visor/executive when necessary. The tem-
poral properties of the supervisor are such
that one guarantees the reaction time of the
supervisor (i.e. the time elapsed before it
sees an event), but not much can be said
for other decisional components.

• The functional level: Located at the lowest
level, it includes all the basic built-in robot
action and perception capabilities. These
processing functions and control loops (im-
age processing, motion control, . . . ) are en-
capsulated into controllable communicating
modules. Each module provides a num-
ber of services and treatments available
through requests sent to it. Upon com-
pletion or abnormal termination, reports
(with status) are sent back to the requester.
Note that modules are fully controlled from
the decisional level. Modules also maintain
so called “posters”; data produced by the
modules, such as the current position and
speed (from the locomotion module) or cur-
rent trajectory (from the motion planning
module) which can be seen by other mod-
ules and the levels above. The temporal
requirements of the modules depend on the
type of treatments they perform. Modules
running servo loop (which have to be ran
at precise rates and intervals without any
lag) will have a higher temporal require-
ment than a motion planner, or a localiza-
tion algorithm.

• The execution control level: Located in
between the two previously presented lev-
els, the Requests and Resources Checker
(R2C) checks the requests sent to the func-
tional modules (either internally or from
the higher level), as well as the resources
usage. It is synchronous with the underly-
ing functional modules, in the sense that it
sees all the requests sent to them, and all
the reports coming back from them. It acts
as a filter which allows or disallows requests
to pass, according to the current state of
the system (which is built online from the
past requests and past reports) and accord-
ing to a formal model (given by the user)
of allowed and forbidden states of the func-
tional system. The temporal requirements
of this level are hard real-time. This is the
level on which this paper focuses.



This architecture naturally relies on several
representations, programming paradigms and
processing approaches meeting the precise re-
quirements specified for each level. We devel-
oped proper tools to meet these specifications
and to implement each level of the architecture:
IxTeT a temporal planner [Ghallab and Laru-
elle, 1994], Propice a procedural system for tasks
refinement and supervision/executive [Ingrand
et al., 1996], and Gen

oM for the specification and
integration of modules at that level [Fleury et
al., 1994]. These various tools share the same
namespace (i.e. the name of the modules, re-
quests, arguments and posters).

This paper focuses on the Execution Control
Level and a newer approach (the Requests and
Resources Checker (R2C) and tool (EXoGEN)
used to implement it.

3 Execution Control Level
for a Dependable Auton-
omy

The main role of the Execution Control Level
and its main component the R2C is a fault pro-
tection role. It is the “safety bag” of the LAAS
architecture. Faults are inevitable, even more
with complex decisional system partially based
on informal methods and tools. Yet to be able
to use such advanced decisional tools and take
advantage of the high level of autonomy they
provide, one needs to design systems which pre-
vent the system from engaging into disastrous
situations. Thus the execution control level has
a “simple”, yet critical role in the architecture:
to check the system consistency and reject or
abort requests threatening the system safety.

• As an interface with all the modules of the
functional level, it ensures that all the re-
quests passed to the functional module re-
main consistent with respect to a model of
desirable or undesirable states of the sys-
tem. For example, it would be the R2C
role to make sure that a request to move the
robot is not issued while the arm is moving.

• It manages the resources of the system and
guarantees that any request leading to an
overconsumption or inconsistent use of re-
sources is properly handled.

• It acts synchronously with the functional

level to ensure a consistent view of the state
of functional modules.

• It acts in guaranteed real-time. No request
to the functional level should be delayed
more than one R2C cycle before being pro-
cessed.

This critical role requires the use of formal
tools to validate it.

3.1 Brief State of the Art in Exe-
cution Control

Many of the concerns raised in the previous sec-
tion are not new, and some robotics architec-
tures address them in one way or another.

Indeed, some of the requirements presented
above were clearly fulfilled by a previous version
of the LAAS execution control layer based on
KHEOPS [de Medeiros et al., 1996]. KHEOPS
is a tool for checking a set of propositional rules
in real-time. A KHEOPS program is thus a set
of production rules (condition(s) → action(s)),
from which a decision tree is built. The main ad-
vantage of such a representation is the guaranty
of a maximum evaluation time (corresponding
to the decision DAG depth). However, the
KHEOPS language is not adapted to resources
checking and appears to be quite cumbersome
to use.

Another interesting approach to prove var-
ious formal properties of robotics system is
the ORCCAD system [Espiau et al., 1995].
This development environment, based on the
Esterel [Boussinot and de Simone, 1991]
language provides some extensions to specify
robots “tasks” and “procedures”. However, this
approach does not address architecture with ad-
vanced decisional level such as planners.

In [Rutten, 2001], the author presents another
work related to synchronous language which has
some similarities with the work presented here.
The objective is also to develop an execution
control system with formal checking tools and a
user-friendly language. This system represents
requests at some abstraction levels (no direct
representation of arguments nor returned val-
ues). This development environment gives the
possibility to validate the resulting automata via
model-checking techniques (with Sigali, a Sig-
nal extension).

In [Goldman and Musliner, 2000], the au-
thors present the CIRCA SSP planner for hard



real-time controllers. This planner synthesizes
off-line controllers from a domain description
(preconditions, postconditions and deadlines of
tasks). It can then deduce the corresponding
timed automaton to control the system on-line,
with respect to these constraints. This automa-
ton can be formally validated with model check-
ing techniques.

In [Simmons et al., 2000] the authors present a
system which allows the translation from MPL
(Model-based Processing Language) and TDL
(Task Description Language) to SMV a sym-
bolic model checker language. Compared to
our approach, this system seems to be more de-
signed for the high level specification of the de-
cisional level, while our approach focuses on the
online checking of the outcomes of the decisional
level.

The new IDEA system [Muscettola et al.,
2002] developed at NASA Ames, following the
RAX-PS DS1 experiment, is also addressing ro-
bust execution control. But it is taking a strong
temporal constraints approach to check online
and in real-time that the actions planned are
consistent with its temporal constraints net-
work.

3.2 The Request and Resource
Checker.

The R2C is designed to support safe execution
control of the system. It has been designed
to address the requirements introduced in sec-
tion 3. In figure 2, we present its general orga-
nization.
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Figure 2: R2C general view.

The R2C includes :

An Input buffer : this buffer will capture all
the events coming from the system to treat

them during next R2C cycle. The events
may come from :

• The decisional level. These events are
generally requests of services for the
functional level.

• The functional level. These events
are generally reports of ending ser-
vices and resources modifications. But
we can also have requests of services
made from a module to another mod-
ule. Indeed the R2C has to be om-
niscient, it has to know precisely the
system state (i.e. all active and past
requests/reports).

A System State Database : this component
maintains the system state view according
to the events. This view describes:

• The active requests (with their argu-
ments).

• The past requests (with the arguments
and returned values of the last cor-
rectly executed instance of a request).

• The resource levels.

A Model Checker This component is the rea-
soning part of R2C. This is where the R2C
will decide which actions to do according
to the newly captured requests/reports and
the current system state. It is based on
model checking techniques and have real-
time guarantees.

An Effector This component will execute de-
duced actions in the system. These can be
sent to :

• The decisional level. The events sent
to this level are generally report mes-
sages (the result of an execution or the
reason of the rejection of a particular
service).

• The functional Level. These events
may be new demands of services or
requests to abort a particular service.
Of course we can also find here re-
ports to a requester from the func-
tional level.

For each execution cycle, the input buffer cap-
tures events from the decisional or the functional
level, it updates the system state database then,
according to these new events and the new state



of the system, the model checker decides the ac-
tions to perform to keep the system consistent
with its model. Its actions are sent to the effec-
tor and to the system state database to main-
tain a correct system view. The effector then
sends the appropriate events to the decisional
and functional levels.

3.3 Deducing Safe Actions

The most critical part of R2C is the model
checker. This component deduces in real-time
the safe actions to do according to incoming
events and to the current state. To implement
the model checker we have defined the EXoGEN

language [Ingrand and Py, 2002] to describe the
inconsistent states the user wants the system to
avoid.

The model checker is based on model-checking
techniques. It represents its deducing part via
an OBDD2 equivalent data structure named Or-
dered Constrained Rule Diagram (OCRD [In-
grand and Py, 2002]). Such a kind of data struc-
ture has multiple advantages :

• An OBDD is a Directed Acyclic Graph
(DAG) representing a logical formula. So
its traversal has a maximum execution time
corresponding to its depth.

• This data structure represents formula in
a canonical form so it is a compact form
avoiding redundancies.

• Another strong point for OBDDs is the fact
that this data structure is used for formal
model validation via model checking. So
we can check the validity of the generated
automata according to safety requirements
of the system.

3.4 Experimental Results

We implemented an R2C on our XR4000 No-
madics: Diligent (see Figure 3). In its current
configuration, Diligent has the architecture pre-
sented on Figure 4. There are currently only
few rules but the results are quite encouraging.

With an EXoGEN declaration containing 6 bi-
nary mutexes between requests, one ternary
mutex and one fail context for a particular re-
quest, we build the resulting OCRD in 67 sec-

2OBDD : Ordered Binary Decision Diagram.

onds3 including 40 seconds of diagram size op-
timization. Indeed when the OCRD – like the
OBDD – size is highly dependent on the predi-
cates order, we have included an optimization of
the resulting diagram based on the sifting algo-
rithm (see [Rudell, 1993]) adapted to the OCRD
data structure.

The resulting OCRD has a maximum depth
of 17 and the maximum node traversal number
before a controllable one is 13. Therefore, at
best, the resulting R2C will make 13 tests before
doing any action and the maximum delay of ex-
ecution of the R2C corresponds to the traversal
of 17 nodes (i.e. 17 tests/actions). After simpli-
fication (removing of the non reachable branches
and choice of one execution branch when two or
more are possibles to make it determinist) the
resulting OCRD contains 552 nodes.

On our Nomadics XR4000, the average traver-
sal time of the decision diagram in the R2C is
around 50 microseconds.

3.5 Toward a safe execution con-
trol development tool

The main objective of this work is to provide a
development tool for safe execution control. So
far, we have developed :

• A user-friendly language (EXoGEN) for de-
velopers to specify the constraints of the
system and the ways to avoid inconsistency,

• A compiler generating the deducing part of
the R2C according to the specification writ-
ten in EXoGEN.

• Other non-application specific components
of the R2C.

This is already sufficient to guarantee some
safety constraints on the system. Indeed the
resulting OCRD is logically equivalent to the
constraints expressed by the user using EXoGEN.

Nevertheless, model checking is a promising
choice for further formal automatic verifications
of the models. Therefore, future works on the
Execution Control Level will be aimed at ex-
tending the model given by the user and the
property one can check (on line or off line) such
as temporal logic properties (reachability of a
state from a particular state, check for possibly
deadlock states. . . ).

3The machine used for compilation is a Sunblade 100
with 512 Mb of memory.



Figure 3: Diligent
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4 Other Dependability As-
pects of the LAAS Archi-
tecture

If one considers the two other levels of the LAAS
architecture, one can identify a number of fea-
tures and properties which also provide an im-
proved dependability of the overall system.

4.1 The Functional Level

The dependability aspect of the Functional
Level mainly relies on the use of a software de-
velopment environment which enforces a unified
development methodology and interface: The
Generator of Modules GenoM [Fleury et al.,
1994].

GenoM is a tool to design and build real-
time distributed software systems. It allows
the developer to easily encapsulate operational
functions (algorithms broken down into ele-
mentary code chunks called “codels”) on in-
dependent communicating modules. The func-
tions can be dynamically started, interrupted or
(re)parameterized upon asynchronous requests
sent to the modules by any other element in the
system, including other modules, the execution
controller or the supervisor. A final reply that
qualifies how the request has been executed by
the module is sent back. A module operation

can be modeled by a finite state automaton.
Thus the modules generated using GenoM are

“standardized” servers. Programming a module
does not require knowing about the on-board
operating system, nor communication or other
real-time procedures (synchronization...). Mod-
ules are automatically produced by GenoM us-
ing a template. Such a systematic specifica-
tion guarantees coherence in the module design
(different modules are usually programmed by
different persons) and allows automating their
integration. Moreover, all the modules being
based on a template, only the codels and the
particular activity state automata need to be
specified and eventually proven to improve the
robustness and dependability, while the largest
part of the code is generic and only needs to be
tested and qualified “once for all”.

4.2 The Decisional Level

This subject of “decisional autonomy bring-
ing some improved dependability” in the sys-
tem is discussed at length in a companion pa-
per [Alami, 2002], nevertheless, we can sketch
here the main ideas it discusses.

The LAAS control architecture is plan-based:
this means that the planner/supervisor pair is
built on an explicit reasoning on the tasks and
on the robot capacities to achieve them in a
given context, and even in a given time.



The ability to plan and then to use various
ways to perform a task through context depen-
dent refinement, enhances the robot dependabil-
ity because it enlarges the spectrum of contexts
when and where the robot is able to perform its
task and/or to detect autonomously its incapac-
ity to perform it.

When the supervisor fails to recover from a
problematic situation, it can call the planner
with an updated description of the world and
it can request it to produce a new plan taking
into account the previous failure and the new
situation.

The robot supervisor is programmed in Prop-
ice (formerly PRS) [Ingrand et al., 1996]. It
provides an interface with all the robot modules
thus allowing to program robot control. All su-
pervisor activities (task refinement, control, dis-
play, dialog. . . ) are programmed using goal di-
rected and/or situation driven procedures.

The planner is programmed in IxTeT [Ghal-
lab and Laruelle, 1994] which is a partial order
planner using a temporal logic.

5 Conclusion

We have briefly presented the LAAS architec-
ture, its components and its integrated tools.
Then the presentation focuses on the Execu-
tion Control Level of this architecture and its
main component, the Requests and Resources
Checker (R2C). This layer of the LAAS archi-
tecture has a critical role with respect to safety
and faults protection. It must guarantee that
the functional modules which “act” on the real
physical system are properly controlled and do
not engage in “dangerous” situations with re-
spect to the “commands” they are executing.
As a result, this component of the LAAS archi-
tecture has a critical role, with respect to de-
pendability.

The R2C and its associated tool EXoGEN pro-
pose a language in which the user can specify,
in the Gen

oM namespace, the contexts in which
a particular request (with constraints on its ar-
guments) can be executed.

Our approach uses OCRD, a structure simi-
lar to OBDD. Moreover, it offers some real-time
properties such as the guaranty of the maximum
time taken to check new requests. Another in-
teresting property inherited from OBDD is the
reduction of input formula to a canonical form.
The generated DAG is relatively compact (de-

pending on predicates ordering method) and is
unique. The counterpart of this reduction prop-
erty is that the completeness checking of a dec-
laration (that all states are specified) is harder
than with a complete representation.

Other dependability aspects of the LAAS ar-
chitecture have also been discussed:

• The decisional aspects which provide a new
“framework” to program dependable and
robust plans [Alami, 2002].

• The use of software development tools such
as GenoM which provide a generic and high
level environment to write functional mod-
ules [Fleury et al., 1994].

Although the LAAS architecture already pro-
vides some interesting features with respect to
dependability, one of our goals is to further im-
prove it in this domain. These extensions may
rely on more formal temporal models of the
functional modules (by extending the finite au-
tomaton of the module activities), as well as a
tighter interaction between the temporal plan-
ner and the executive/supervisor.
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