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SUPERCONDUCTIVITY IN DOMAINS WITH CORNERS

V. BONNAILLIE-NOEL AND S. FOURNAIS

ABSTRACT. We study the two-dimensional Ginzburg-Landau functional in a
domain with corners for exterior magnetic field strengths near the critical field
where the transition from the superconducting to the normal state occurs. We
discuss and clarify the definition of this field and obtain a complete asymptotic
expansion for it in the large k regime. Furthermore, we discuss nucleation of
superconductivity at the boundary.
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1. INTRODUCTION

It is a well-known phenomenon that superconductors of Type II lose their su-
perconducting properties when submitted to sufficiently strong external fields. The
value of the external field where this transition takes place is usually called Hc,,
and is calculated as a function of a material-dependent parameter x. The calcu-
lation of this critical field, Hc¢,, for large values of x has been the focus of much
activity [BeSt], [LuPall, LuPa2, LuPa3], [PiFeSt], [HeMo2] and [HePa]. In the re-
cent works [FoHe3| [FoHed] the definition of He, in the case of samples of smooth
cross section was clarified and it was realized that the critical field is determined
completely by a linear eigenvalue problem. The linear spectral problem has been
studied in depth in the case of corners in [Bonll, [Bon2, [BonDa]. The objective of
the present paper is to use the spectral information from [BonDa] to carry through
an analysis similar to the one in [FoHe3] in the case of corners. Thereby we will
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2 V. BONNAILLIE-NOEL AND S. FOURNAIS

in particular obtain: 1) A complete asymptotics of He, for large values of x in
terms of linear spectral data, 2) Precise estimates on the location of nucleation of
superconductivity for magnetic field strengths just below the critical field.
The case of corners of angle 7/2 has been studied in [Jad, [Pan3]. Our results are
more precise—even for those angles—and we study more general domains.

We will work in the Ginzburg-Landau model. Let  C R? be a bounded simply
connected domain with Lipschitz boundary. The Ginzburg-Landau functional is
given by

2
10 A) = ol A = [ {Ipunavl = 2o + 10l } da
—|—f~@2H2/ lcurl A — 1|2 dz, (1.1)
R2

with ¢ € WH2(Q;C), A in the space Hf, 4, that we will define below, and where
pa = (—iV — A). Notice that the second integral in ([L.1)) is over the entire space,
R?, whereas the first integral is only over the domain €.

Formally the functional is gauge invariant. In order to fix the gauge, we will
impose that vector fields A have vanishing divergence. Therefore, a good choice
for the variational space for A is

Hbl“,div =F+ H,, (1.2)
where
Hi, ={A € H'(R* R?)|divA =0} .
Furthermore F is the vector potential giving constant magnetic field

F(iL’l,ZL'Q) = %(7%2,%1), (13)

and we use the notation H 1(R?) for the homogeneous Sobolev spaces, i.e. the
closure of C§°(R?) under the norm

f= A g = IV Fl 2
Any square integrable magnetic field B(z) can be represented by a vector field
AeH, .
Minimizers, (1, A) € WH2(Q) x Hy, 4, , of the functional £ have to satisfy the
Euler-Lagrange equations:

Pepa =K1 =)y i Q, (L4a)
curl’A = { — 2L (VY — Y VY) — [?A}lg(z) in R?, (1.4b)
(peua®) -v=0 on 0Q. (1.4¢)

It is standard to prove that for all x, H > 0, the functional £, p has a minimizer.
An important result by Giorgi and Phillips, [GiPh], states that for s fixed and H
sufficiently large (depending on k), the unique solution of (up to change of
gauge) is the pair (¢, A) = (0,F). Since ¢ is a measure of the superconducting
properties of the state of the material and A is the corresponding configuration
of the magnetic vector potential, the result of Giorgi and Phillips reflects the ex-
perimental fact that superconductivity is destroyed in a strong external magnetic
field.
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We define the lower critical field H c, a8 the value of H where this transition
takes place:

He, (k) =inf{H >0 : (0,F) is a minimizer of &, 5} . (1.5)

However, it is far from obvious from the functional that the transition takes place
at a unique value of H—there could be a series of transitions back and forth before
the material settles definitely for the normal state, (0, F). Therefore, we introduce
a corresponding upper critical field

He, (k) =inf{H >0 : (0,F) is the unique minimizer of &, g for all H' > H} .
(1.6)

Part of our first result, Theorem [T.4] below, is that the above definitions coincide
for large k.

Let us introduce some spectral problems. For B > 0 and a (sufficiently regular)
domain Q C R?, we can define a quadratic form

Qlu] = Qoplu] = /Q (=iV — BF)ul? da, (1.7)

with form domain {u € L?(Q) | (—iV — BF)u € L*(Q)}. The self-adjoint operator
associated to this closed quadratic form will be denoted by H(B) = Hq(B). No-
tice that since the form domain is maximal, the operator Hgq(B) will correspond
to Neumann boundary conditions. We will denote the n’th eigenvalue of H(DB)
(counted with multiplicity) by A, (B) = Ay o(B), in particular,

)\1(3) = )\17Q(B) ;= inf SpecHQ(B)

The case where 2 is an angular sector in the plane will provide important special
models for us. Define, for 0 < a < 2,

Ty = {z = r(cosf,sinf) € R?*|r € (0,00), 6] < av/2}.
Since this domain is scale invariant one easily proves that
Spec Hr,, (B) = B Spec Hr, (1).
Therefore, we set B = 1 and define
() =Air, (B=1). (1.8)

The special case of @« = m, i.e. the half plane, has been studied intensively. In
compliance with standard notation, we therefore also write

O = 1 (a =m).

It is known that the numerical value of ©q is ©¢ = 0.59.....

Remark 1.1.

It is believed—and numerical evidence exists (cf. [AIBd, BDMV] and Figure[1) to
support this claim—that o — pi(a) is a strictly increasing function on [0, 7] and
constant equal to Oy on [m,2x|. If this belief is proved, then the statement of our
Assumption[1.3 below can be made somewhat more elegantly.

We consider €2 a domain whose boundary is a curvilinear polygon in the sense
given by Grisvard, see Definition [1.2
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Estimates for the first eigenvalue according to the opening
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FIGURE 1. py(a) vs. e/ for o € [0, 1.257].

Definition 1.2 (cf. [Grl p.34-42]).
Let Q2 be a bounded open subset of R?. We say that the boundary T is a (smooth)
curvilinear polygon, if for every x € T' there exists a neighborhood V of x in R? and
a mapping ¥ from V in R? such that

(1) ¥ is injective,

(2) 9 together with v~ (defined on ¥ (V)) belongs to the class C*°,

(3) NV is either {y € Q] ¢a(y) < 0}, {y € Q| ¢1(y) < 0 and 2(y) < 0}, or

{y € Q|Y1(y) <0 or a(y) < 0}, where 3; denotes the components of 1.

From now on, we consider a bounded open subset  C R?, whose boundary is a
curvilinear polygon of class C°°. The boundary of such a domain will be a piecewise
smooth curve I'. We denote the (minimal family of) smooth curves which make
up the boundary by Tj for j =1,...,N. The curve TjJrl follows fj according to
a positive orientation, on each connected component of I We denote by s; the
vertex which is the end point of I';. We define a vector field v; on a neighborhood
of Q, which is the unit normal a.e. on r;.

We will work under the following assumption on the domain.

Assumption 1.3.

The domain 2 has curvilinear polygon boundary and denote the set of vertices by
Y. We suppose that N := |X| # 0. We denote by ag the angle at the vortez s
(measured towards the interior). We suppose that py(as) < ©g for alls € &, and
define Ay := mingeyx, p11(as). We also assume that as € (0,7) for alls € X.

Under this assumption we resolve the ambiguity of definition of H¢,(x) and
derive a complete asymptotics in terms of spectral data.

Theorem 1.4.
Suppose that Q is a bounded, simply-connected domain satisfying Assumption [1.5
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Then there exists kg > 0 such that if k > kg then the equation
M a(kH) = K2,

has a unique solution H = HIC“;(R) Furthermore, if kg is chosen sufficiently large,

then for k > kg, the critical fields defined in (1.5)), (1.6) coincide and satisfy
He, (k) = Hoy(k) = Heh (k). (1.9)

Finally, the critical field has a complete asymptotic expansion in powers of k™ ':
There ezists {n;}32, C R such that

K > .
He (k) = A—1<1+Z77jn ]), for K — o0, (1.10)
j=1

in the sense of asymptotic series.

Remark 1.5.

The result analogous to Theoremfor smooth domains (i.e. for > =) has been
established in [FoHed, [FoHed]. Notice however that the form of the asymptotics
depends on the existence of a vortex and is more complicated in the case of
smooth domains.

Once Theorem is established it makes sense, for large values of k, to talk of
the critical field that we will denote by He, (k) (= He, (k) = He, (k).

In the case of regular domains (without corners) one has the asymptotics (see
[LuPal], [PiFeSt], [HeMo2] and [HePal),

Hey(v) = 5=+ O(L),
0

where the leading correction depends on the maximal curvature of the boundary.
We observe that the corners—which can be seen as points where the curvature is
infinite—change the leading order term of He,(x). Thus there is a large parameter
regime of magnetic field strengths, k/0¢ < H < H¢,(k), where superconductivity
in the sample must be dominated by the corners. Our next two results make this
statement precise. First we prove Agmon type estimates, for the minimizers of the
non-linear Ginzburg-Landau functional, which describe how superconductivity can
nucleate successively in the corners, ordered according to their spectral parameter

().
Theorem 1.6.

Suppose that Q satisfies Assumption let 11 > 0 satisfy minges p(as) < p < Og
and define
¥ i={seX|m(as) < pu}.
There exist constants ko, M,C e > 0 such that if
H -1
K Z Ko, - Z 1% )
K
and (1, A) is a minimizer of €., then

. , 1
/ e VrHdist(z,3) <¢(x)2 + |anA1/)($)|2) da
o rH

<C ()] da.
{z:v/rkHdist(z,2) <M}
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Finally we discuss leading order energy asymptotics in the parameter regime
dominated by the corners, i.e. x/0g < H < Hg, (k). The result below, Theo-
rem [1.7] can be seen as a partial converse to Theorem in that all corners which
are spectrally permitted will contribute to the leading order of the ground state
energy.

One can imagine an interaction between corners with the same spectral param-
eter, i.e. with the same angle . This would be a tunnelling type effect and has
much lower order. We refrain from a detailed study of such an interaction, since
that would be far out of the scope of the present paper.

The ground state energy will be given to leading order by decoupled model
problems in angular sectors. It may be slightly surprising to notice that these
model problems remain non-linear.

Let o € (0,7) be such that pq(a) < Og. (Remember that it follows from [Bon2]
that p;(a) < ©g for a € (0, 5] and that numerical evidence suggests this to be the
case in the entire interval « € (0,7).)

Define, for y1, us > 0, the following functional Jg, ..

et . 1%
Tl = [ {9 = F)p = palof? + Zlwft} o, L)
Ta
with domain {¢p € L*(T'y) | (—iV — F)y € L?(T',)}. Define also the corresponding
ground state energy

ES i=1infJ7 Y]

1,2 H1sp2
The main result on the ground state energy of the Ginzburg-Landau functional in
the parameter regime dominated by the corners is the following.

Theorem 1.7.
K

Suppose oy T HME Ry as k — oo, where p < Oq. Let (1, A) = (¥, A), sy be a
minimizer of Eg p(x)-

Then
5&,H(R)[¢7A] - ZEﬁ,s/m (112)
seX
as K — 00.
Remark 1.8.

Proposition below states that Efs, = 0 unless pi(as) < p, so only corners
satisfying this spectral condition contribute to the ground state energy in agreement
with the localization estimate from Theorem [1.6.

2. SPECTRAL ANALYSIS OF THE LINEAR PROBLEM

2.1. Monotonicity of \;(B).
In this subsection we will prove that B +— \;(B) is increasing for large B. Thereby
we will have proved the first statement of Theorem [1.4] (see Propositions and
below). Furthermore, Lemma establishes the form of the asymptotics of
HER (k).

In [BonDa] the asymptotics of A (B) was effectively calculated to any order. Let
us recall their results.

Definition 2.1.
Let Q be a bounded curvilinear polygon. We denote by
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o A, the n-th eigenvalue of the model operator ®scxQ% where Q% is the
magnetic Neumann Laplacian (—iV — F)? on the infinite angular sector of
opening as. In particular, Ay = minges p1 (o),

o Kq the largest integer K such that Ag < Oy,

o 1M (h) the n-th smallest eigenvalue of the magnetic Neumann Laplacian
(—ihV — F)? on Q.

Theorem 2.2 ([BonDa] Theorem 7.1).
Letn < Kq. There exists hg > 0 and (m;);>1 such that for any N > 0 and h < hg,

N+1

2).

N
p™(h) = hn + 1Y mh?? + O(h

j=1

Furthermore, if Q is a bounded convex polygon (i.e. has straight edges), then for
any n < Kq, there exists r,, > 0 and for any € > 0, Cc > 0 such that

< .o (VB9

Recall the notation H(B), A, (B) introduced after ((1.7)). By a simple scaling, we
get

A(B) = B2u™(B™Y),  vn. (2.1)

Let us make more precise the behavior of A (B) as B is large. For this, we define
the left and right derivatives of A;(B):

(2.2)

Proposition 2.3.

The limits of X} | (B) and X} _(B) as B — +oc exist, are equal and we have
BEH-IOO A+ (B) = BE)IEOO M- (B) = Ai.

Therefore, B +— A\ (B) is strictly increasing for large B.

Proof.

This proof is similar to that of [FoHe3].

Let B > 0 and let n be the degeneracy of A1(B). There exist € > 0, 2n analytic

functions ¢; and Ej, j = 1,...,n defined from (B —&, B +¢) into H*(2) \ {0} and

R respectively, such that

H(B)¢;(8) = E;(B)¢;(8), E;(B) =M(B),

and such that {¢;(B)} are linearly independent. If € is small enough, there exist
j+ and j_ in {1,...,n} such that

for fe(B,B+e),  E(B)= min  B(),

je{1,..., n}
for 5 € (B —¢,B), E,_(8)= min E;(#§).
je{1,...,n}

By first order perturbation theory, the derivatives A} 4 (B) can be rewritten

1+(B) = —2R(¢;, (B),F - (—iV — BF)¢;_ (B)).
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We deduce, for € > 0,

N (B) = L(6,(B),(H(B +e) ~ H(B) — F)g;. (B))
> (B + 2 ~MB) elF| 7 (-

Using Theorem we deduce that
vVB+e¢—+VB N
5

((B) = A e OB Y2) — ][ Flf (0.

Thus,
liminf X, | (B) > Ay — &[|F||F o (-

B—oo
Since € is arbitrary, we have
liBnLioréle’Jr(B) > Ay
Taking € < 0, we obtain by a similar argument,
hBHigéf A,_(B) <A;.
The two last inequalities and the relation A7 | (B) < A _(B) achieve the proof. [

We are now able to prove the following proposition.

Proposition 2.4.
The equation in H

M (kH) = K2

has a unique solution H(k) for k large enough.

Proof.

According to Proposition[2.3] there exists By > 0 such that A is a strictly increasing
continuous function from [By, +00) onto [A1(By), +o0). By choosing By sufficiently
large, we may assume that A\ (B) < A1(By) for all B < By. Let kg = \/A1(Bo),
then, for any B > By, the equation

M (kH) = K2

has a unique solution H = A *(x%)/r with A[* the inverse function of \; defined
on [A1(Bp),+00). O

Lemma 2.5.
Let H = Hgg(n) be the solution to the equation

M (kH) = K2

given by Proposition|2.4, Then there exists a real valued sequence (1;);>1 such that
K oo
lin -7
HER (1) = m(H;’”"‘ ), (2.3)

(in the sense of asymptotic series) with Ay = minges 1 (as) introduced in Defini-

tion [21l.
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Proof.
By Theorem[2.2{and (2.1 there exists a sequence (my)x>1 such that, for any N € N,

N
M(B)=MB+BY mB 21 0B7F) as B— +o. (2.4)

k=1
We compute with the Ansatz for H(x) given by .

M(kH) ~ A1/<;H+/<;H2mk(/<;H)*k/2

E>1

~ ﬁ2(1+znj +ka 1 e 1+an 1 k/2
j=1 k>1

= Ii2+(7]1+ )KJ-I—( —lﬂ—i— )—|— ..

VA
= WY (ny )R,
j=1
where the coefficients m; only depend on the n for & < j. Thus, the form (2.3)
admits a solution in the sense of asymptotic series. It is an easy exercise to prove
that H? (k) is equivalent to this series. O
2.2. Agmon estimates near corners for the linear problem.

If € C§(Q) (i.e. with support away from 99) it is a simple calculation to prove
that

TR, 2

/ (=iV — A)o2 da > / curl g2 dz. (2.5)
Q Q
In particular, for A = BF,

Qq,5[¢] > Bll¢|. (2.6)

Using the technique of Agmon estimates ([Agl Hel]) one can combine the upper and
lower bounds and to obtain exponential localization near the boundary
for ground state eigenfunctions of H(B). For completeness we give the follow-
ing theorem (without proof—we will give the proof of similar non-linear estimates
below), though we will not need the result here.

Theorem 2.6.

Let g be the ground state eigenfunction of H(B). Then there exist constants
€,C, By > 0 such that

/ VB0 {1y ()2 + B pppn()?) dr < Cllés|2

for all B > By.

In order to prove exponential localization near the corners for minimizers of £, g
we will need the operator inequality (2.7)) below (compare to (2.6)).

Theorem 2.7.
Let § > 0. Then there exist constants My, By > 0 such that if B > By then H(B)
satisfies the operator inequality

H(B) = Us, (2.7)
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where Upg is the potential given by
(Hl(as) - 5)Ba diSt(an) < MO/\/Ev

Up(z) =< (09 — §)B, dist(z, %) > My/V/B, dist(z,09) < My/V/B,
(1-6)B, dist(z,09) > My/v/B.
Proof of Theorem [2.7.

Let x1 € C*(R) be non-increasing and satisfy x1(¢t) = 1 for t < 1, x1(¢t) = 0 for
t>2.
Define, for L, M, B > 0,

X537 (z) == x1(VBdist(z, £) /M),

i) = /(1 = x3) (VBdist(a, £) /M) x x1 (VBLdist(z,02)/(2M))

Xt () := \/(1 - X%)(\/ELdist(m,GQ)/(QM))~

The parameter L will be fixed. It is chosen sufficiently large that supp XE)\/([i consists
of N (the number of smooth boundary curves) disjoint components (lying along
each smooth boundary piece) when v/B/M is large.

Using the IMS-formula we can write for any ¢ € H'(Q),

i B
Qa.8l¢] = Qo,BIXG7¢] + Qo.BIX37 6] + Qoslird] — Cyplel®,  (28)

for some constant C' > 0 independent of M, B and ¢.

We will estimate each term of by using successively results for the first
eigenvalue of the Schréodinger operator in a domain with one corner, in a smooth
domain and in the entire plane.

int

Since Xy} ¢ has compact support in Q, we get (see (2.6))

Qo83 ¢l = Qre, 5IX3 0] = Blxjf oIl (2.9)

For the corner contribution and boundary contribution, we will use the estimates
in angular sectors and regular domains obtained in [Bon2, [HeMo2).
For any corner s € ¥, we define a domain € such that QN B(s,e) = Qs N B(s,¢)
for e small enough (¢ < dist(s, X\ {s})) and its boundary is C*° except in's. Let s_
and sy be the neighbor vertices of s (if they exist). We define two regular domains
Q7 and QF such that there exists ¢ > 0 with QN B(x,¢) = QF N B(x,¢) for any
re{yeTlss,, Us,y) <2/30(s,s4+)} where I's . denotes the piece of the boundary
of Q which joins the edges s and sy and ¢(s,sy) is the length of T's, . Figures
and [3] give examples of domains €25 and QF.

As soon as B/M? is large enough, the support of x55 is the union of N disjoint
domains localized near each corner s, s € 3. Consequently, for B > By, we can
rewrite 57 as

cor cor,s cor,s cor,s

XS = Xt with s € suppx,,; ©, suppx,s = N Suppx‘;@r’sl =0, Vs#£5.
s€X
Furthermore, we choose By large enough such that for any B > By,
suppxy; TN CQ, VseX.
Using the eigenvalue asymptotics from [Bon2, Prop. 11.4] and [BonDal, Th. 7.1],
we therefore conclude that

Qo537 0] = (1(as)B = CBY2)|Ixq7 g, (2.10)
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FIGURE 2. Definition of €

FIGURE 3. Definition of QF and Q

By a similar argument, we prove an analogous lower bound for the boundary con-
tribution. Indeed, if B is large enough, the support of X?\? is the union of NV disjoint
(c.f. the choice of L) domains localized near each piece of the smooth boundary
and we rewrite

[Xhf)? = Z([xlﬁ’s’_}Q + A1) with suppxhd T c QFNQ, Vsex.
sex
Let s € .. From the asymptotics of the ground state energy of Hgy (B) for smooth
domains Q' ([HeMo2, Thm. 11.1]) we get the following lower bound
Qa3 " 0] = Qo plx37 "]
> {©0B — 2M3B'?k5, (s) — Co(5) B Yxq gl (2.11)
where M3 is a universal constant, Co(QF) is a domain-dependent constant and

k% (s) denotes the maximal curvature of the boundary 9QF. We can bound fmax(s)
by

+
K = Imax K S
max sex .+ nlax( )7
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and similarly for Co(QZF). Then, there exists C' independent of M and s such that

Qa,s[Xzr 0] > (e B~ CBY?)xhr el (2.12)
Using again the IMS-formula and , we can bound
B
Qo3¢ > DY Qas bd5i¢]—cw||¢”2
s€X,+
> (0B — CB'?) |}l - H¢>||2- (2.13)

We clearly get the result of Theorem E 2.7| by combining (2.8 w1th . and
and choosing My, By sufficiently large.

Using the lower bound combined with the upper bound inherent in ,
one can get the following Agmon type estimate for the linear problem. Again we
only state the result for completeness and without proof, since we will not use
Theorem [2.8]in the remainder of the paper.

Theorem 2.8.
Let v¥p be the ground state eigenfunction of H(B). Then there exist constants
€,C, By > 0 such that

[P un @) + B paeva(e)} de < Cllval.

for all B > By.

3. BASIC ESTIMATES

We will need a number of standard results that we collect here for easy reference.
First of all we have the usual L*-bound for solutions to the Ginzburg-Landau

equations ((1.4]),
[¥]lec < 1. (3.1)
The proof in [DGP] does not depend on regularity of the boundary, in particular,
it is valid for domains with Lipschitz boundary.
The normalization of our functional & g is such that &, y[0,F] = 0. So any
minimizer (¢, A) will have non-positive energy. Therefore, the only negative term,

—k2|]1b||2, in the functional has to control each of the positive terms. This leads to
the following basic inequalities for minimizers,

[perat|l2 < K[|z, (3:2)
Hjcurl A — 1|z < [[¢]]2.
Furthermore, using (3.1),
903 < 19ll2- (3.4)

The following lemma states that in two dimensions it is actually irrelevant whether
we integrate the fields over Q or over R? in the definition of & .

Lemma 3.1.
Let Q be a bounded domain with Lipschitz boundary and let (1, A) be a (weak)
solution to (1.4]). Then curl (A — F) = 0 on the unbounded component of R?\ Q.
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Proof.
The second equation, ([1.4b)) reads in the exterior of 2, using that curl F =1,

(92curl (A — F), —0;curl (A — F)) = 0.

Thus we see that curl (A —F) is constant on each connected component of R?\Q and
since it has to be in L? it must therefore vanish on the unbounded component. [

Lemma 3.2.
There exists a constant Cy (depending only on ) such that if (¢, A) is a (weak)
solution of the Ginzburg-Landau equations (|1.4)), then

/ A - F|* < Co/ |curl A — 1|2 dz, (3.5)
) R?

||A — FH%/VLQ(Q) S C[) /2 |Cur1A — 1|2de' (36)
R

Proof.

Let b = curl (A — F). By Lemma suppb C Q. Define I'y(z) = 5 log(|z|) (the
fundamental solution of the Laplacian in two dimensions), and w = I'y * b. Then
w € H*(R?) and (see [GiTt])

Let A = (—=0yw,dyw) € H'(R?). Then
divA =0, curl A = b.

So we conclude that A = A — F, and therefore (3.5)) follows from (3.7)).
To establish (3.6) we use (3.5 together with the standard estimate

||DaHL2(R2) < O(Hdlv aHL2(R2) + ||cur1a||L2(R2)).

4. NON-LINEAR AGMON ESTIMATES

4.1. Rough bounds on |[|/|3.
In this chapter we prove that minimizers are localized near the boundary when
H > k. The precise meaning of that statement is given by Theorem below. In
particular, since ||[t)]|o < 1, the L2-norm satisfies ||1||2 = o(1). We thus give a very
precise and general upper bound to the field strength above which superconductivity
is essentially a boundary phenomenon. Notice that this is the field which is usually
called Hc, in the literature, although a precise mathematical definition is somewhat
difficult to give.

The proof of Theorem given below has been developed in cooperation with
R. Frank.

Theorem 4.1 (Weak decay estimate).
Let Q be a bounded domain with Lipschitz boundary. Then there exist C,C’ > 0,
such that if (¥, A)g m is a minimizer of g g with
k(H — k) >1/2, (4.1)
then
2 2 ¢
4]z <C (@) dz £ ———. (4.2)
{\/r(H=r) dist(z,00Q)<1} Kk(H — K)
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Proof.
The last inequality is an easy consequence of , since there exists a constant
C1 > 0 (depending only on Q) such that meas{z : dist(z,9Q) < A} < C1 A for all
A€ (0,2].

Let x € C*°(R) be a standard non-decreasing cut-off function,

x=1 on[l,o00), x=0 on (—00,1/2).

Notice for later use that this implies that ||x||cc > 2. Let further A > 0 (we will
choose A = 1/y/k(H — k) at the end of the proof) and define x, : 2 — R by

xa(x) = x(dist(z, 0Q) /).

Then x, is a Lipschitz function and supp x» C €. Combining the standard local-
ization formula and (1.4al), we find

/Q Iperra Cot)|? do — /Q VxR dr = RO, Herrath)

= 2 / ol de — K2 / Gl . (4.3)

Since x ¥ has compact support we have

/Q‘anA(X)\wHde > HH/Q(CUI‘IA)|X)\¢|2d$C
> rH|[xa¢[l5 — £ H|lcurl A = 1l2[[xa9l3. (4.4)
Using and , we get from and that
K(H = 5)[Ixall3
< wlelalhl - [ QI do + 1A [ V@) da

{dist(z,02)<A}

1 _
< W13 + X113 2/ Iw(m)IQdvaer/(x‘i X3 da.

{dist(z,002)<A}
Notice that since x < 1, the last integral is negative and we thus find by dividing
the integral ||1)[|2 in two

{s(H — r)=1/4} a3

1 _
<1 [a- Bk e xEA? [ v(a) de
{dist(z,00Q)<A}
< (II2A2 + 1/4) / () ? d.
{dist(2,09) <A}

Choose A = 1/+/k(H — k). By assumption x(H — k) — 1/4 > x(H — k) /2, and the
conditions on x, k(H — k) imply that [|x/[|2,A72 + 1/4 < 2||x/||Z,A~2. Thus,
ol < alIE [ V(@) do. (4.5
{dist(z,00Q) <A}
Consequently,
113 < (@Alx' 1% + 1)/ ()] da. (4.6)
{dist(z,02) <A}
This finishes the proof of (4.2)). O



SUPERCONDUCTIVITY IN DOMAINS WITH CORNERS 15

For stronger fields superconductivity is essentially localized to the corners.

Theorem 4.2 (Decay estimate on the boundary).
Suppose that Q satisfies Assumption . For p € (A1,0yq), define

o= {seXmlo) Sphand bi= inf (o) —ph @7)

(in the case X =¥’ we set b:= Oy — p).
There exist ko, C,C’', M > 0, such that if (¥, A). m is a minimizer of . g with

H

- 2 ,uilv K Z HO7 (48)

K
then

2 2 ¢’
lwig<c [ (o) 2w < <. (4.9)

{k dist(z,)<M} K

Proof.

To prove this result, we follow the same procedure as in the proof of Theorem [4.1
Let § = b/2, and let My = My(J) be the constant from Theorem Let x €
C*(R) be a standard non-decreasing cut-off function,

x=1 on/[l,o00), x=0 on (—o00,1/2),
and let A = 2My/vVkH. Define x, : @ — R, by
xa(z) = x(dist(z, X") /).

Then ) is a Lipschitz function and suppxx N Y’ = (). Combining the standard
localization formula and (|1.4a)), we find as previously

[ a0 ds = [ VP10 de = ROGY Haiar) < @bl (@10
As in ([4.4), we need a lower bound to [, [pxra(xa®)|? dz. Since supp xx NI # 0,

we cannot argue as in (4.4). Therefore, we will introduce the constant magnetic
field F for which we have such an estimate, namely Theorem We can write

/ Pazra )2 dz > (1 2) / Prtre () de
Q Q
75’1/Q(AH)2|F7A|2(X,\1/))\2d1:. (4.11)

Theorem 2.7 and the choice of A imply that
[ et as > (_int (oo - 8) st
Q sEX\X

b
= (n+3) sl (112)

We now have to give a lower bound to the second part of the right side of (4.11)).
We can estimate

/Q (RH)’|F — AP vl do < (xH)? | A — 2 [xad ] (4.13)
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By Sobolev inequalities, and (3.3), we deduce
(kH)?||F — A[lf < Ck*H?||F — Alffy12(0
< Ck*H?||curlA — 1”%2(11&2)
< Cr?(|y])3- (4.14)

Let us now estimate ||xxt[|3. According to (3.1)) and the property of the cut-off
function 0 < x, < 1, we can bound |y %| from above by 1 and deduce, using also

Theorem 4.1
bl = o) [ bowitds < | [ posizar < S (4.15)
Q Q VK

Inserting (4.12), (4.13), (4.14)) and (4.15]) in (4.11)), we obtain
b _
[ penatonP s> (=) (u+ ) sl - C= 2wl (410
We insert (4.16) in (4.10). Then

{(1 —¢) <u + 2) kH — K? — Ce_lﬁg/Q] / |v|? da
{dist(z,2)>A}

swfwﬂﬂw&x%/ W[ de, (4.17)
{dist(z,2")<A}

Assumption (4.8]) leads to the lower bound

b b
(1—2¢) (u + 2) kH — k2 — Ce 1632 > ZKH, (4.18)
as soon ¢ is small enough and « large enough.
Once ¢ is fixed and with A = 2My/vkH, we find
Ce 632 4 |IX || ™2 < ckH. (4.19)
Combining (4.17)), (4.18) and (4.19), we deduce
/ |2 dx < 0/ 4|2 de. (4.20)
{dist(z,2)>A} {dist(z,2") <A}

It follows easily that
W@gw+n/ 2 dz.

{dist(z,X") <A}
Inserting the choice A = 2M,/ VkH and the condition on H, this clearly
implies . (I
4.2. Exponential localization.
In order to obtain exponential decay in the interior of the domain, we need the fol-
lowing energy estimate, Lemma [4.3] for functions located away from the boundary.

Lemma 4.3.

Let Q C R? be a bounded domain with Lipschitz boundary. There exist constants
Co,Cy > 0 such that if c(H — k) > Cy and (3, A) is a minimizer of &, pr, then for
all ¢ € C§°(9) we have

I(=iV — kHA)$3 > wH (1 = Ci|[¢ll2) [4]3-
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In particular, using the estimate on ||[¢||2 from Theorem[{.1 we find
O/

m) ||¢H2

[(=iV — kHA)¢|3 > kH (1 -

Proof.
We estimate, for ¢ € C§°(Q2),
(=iV — kHA)|% > HH/ curl A|¢|* dx
Q

> wH 9|3 — rH||curl A — 1|12 6]3. (4.21)

By the Sobolev inequality, for ¢ € C§°(R?), and scaling we get, for all > 0 and
with a universal constant Cgsqp, the estimate

1613 < Cson ([ 7115 + 0~ 19113) (4.22)

We can estimate ||V|¢>|H§ by ||[(—iV — kHA)¢||3 by the diamagnetic inequality.

Choosing, n = CsoanHZurlA—lﬂz’ for some 1’ > 0, we thus find, using (3.3), (4.21))
and (4.22)),

I(=iV — kHA)o|3
> wH||¢l3 = 1'|(=iV — kHA)|3 — ()~ Cdop, (v H)? curl A = 1]13]16]13

_ R .
> rH||8|3(1 — () Co 1 lIWI3) = ol (=i — kHA)63: (4.23)
By assumption «/H < 1. We take ' = ||¢||2 and find
A+ 2ll2) (=Y = kHA)D[3 = kH(1 — CZop ¢ l12) 1113 (4.24)
By Theorem [£.1] we have
1—CEllY 2 2
—CLILE L e ,
1+ |WJ||2 = Sob||¢”2
if K(H — k) is sufficiently big. This finishes the proof of Lemma (]

By standard arguments Lemma [£.3] implies Agmon estimates in the interior.

Theorem 4.4 (Normal Agmon estimates).
Let Q be a bounded domain with Lipschitz boundary and let b > 0. There ezist
M, C, e, ko > 0, such that if (1, A) is a minimizer of € g with

H
—2>1+ b, K2 Ko,
K
then
1
/ e?e@t(z) (|w|2 + 7|(_Zv _ KHA)’(MZ) dr < C/ |'l/)|2dx (425)
o kH {t(x)< A=)

Here t(x) := dist(z, 09Q).

Proof.

The function ¢(x) = dist(x, ) defines a Lipschitz continuous function on . In
particular, Vt € L>=(Q). Let x € C*°(R) be a non-decreasing function satisfying

x=1 onll,00), x=0 on[-00,1/2).
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Define the (Lipschitz continuous) function y s on Q by xar(z) = X(t(I)M‘ “Hy  We

calculate, using (1.4a)) and the IMS-formula
K2 exp (eVEHE) xm [l > R exp (2eVRHE) X3, 57(1 = [¥*)v)

Z/Q‘I?KHA(ee‘/EtXMw)}Qda:—/Q’V(eemtXM)dex. (4.26)

Combining Theorem H with Lemma there exists § with § = o(1) at oo, such
that

€ K 2 ~ € K
/Q Iera (Y Fixar) [P de > wH (L + G e iy 2.

Since % > 1+ b, we therefore find, with some constant C' independent of k, H, €
and M

~ 1 € K
(1 +g(kH) — 1+b) e \/TItXMl/JH%

< CE| V2l  xarv 3

2
+C|‘Vt||oo/626mt(L)
Q

v N (t(x)\//%T'f

2 Yota)

For k sufficiently big we have, since H > (1 + b)x,

1

We choose ¢ sufficiently small that Ce?||Vt||2, < b/4 and finally obtain for some
new constant C’

~ e2€M
eV sl < ¢ [ 9@ da (128)
{VrHt(x)<M}
On the support of 1 — x s the exponential ecVrHL g bounded, so we see that
eVt < o ()2 da (4.29)
{VrHt(zx)<M}

which is part of the estimate (4.25]).
It remains to estimate the term with ’(—iV — kHA)Y| in (4.25)). This follows
from the same considerations upon inserting the bound (4.29). O

Lemma 4.5.
Suppose that Q) C R? satisfies Assumption . For € (A1,0y), define

= (senmle) S b and b= inf {n(on) = g (4.30)

(in the case ¥ =¥/, we set b:= Oy — ).
There exist My > 0 such that if (¢, A) is a minimizer of E. m, then for all ¢ €
C>°(Q) such that dist(supp ¢, %') > Mo/ kH, we have

. b
(09 ~ KH Ay > g (147 ) 1610 (431)

for kH sufficiently large.
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Proof.
Let 6 = b/2 and let My = My(d) be the constant from Theorem We estimate,
for ¢ € C>°(Q) such that dist(supp ¢, %) > My/vVrH,

I(=iV — kHA)¢||3 = ||(~iV — kHF)¢ + kH(F — A)¢|3
> (1—¢) / |(=iV — kHF)¢|? dx — e* / (kH)?|F — A)?|¢|?do.  (4.32)
Q Q
Using Theorem and the support properties of ¢, we have

/ |(—=iV — kHF)¢|? dz > ( inf gy (o) — 5) KH| 9|3
Q sEX\X

2
Using the Cauchy-Schwarz inequality, (4.14]) and Theorem [4.2] we can bound the

last term of (4.32).
/Q (RH)?|F — A2 |62 dx < (xH)?| A — |2 |62
< CR IR
~ 2
< Clllel[|;- (4.34)

We use the Sobolev inequality (4.22]) in (4.34) and estimate ||V|¢|’
diamagnetic inequality, by ||(—iV — kHA)®||3 to obtain

= (w5 wttlol (433)

2
27

using the

/Q(HH)QIF — AP [ du < Csop (n]|(—iV — kHA)S|3 + 17 |gll3).  (4.35)

Combining (4.32]), (4.33) and (4.35)), we deduce that

(1 + CS;”) I(—iV — kHA)@|[3 > {(1 —¢) (u+ Z) KH — (’;Snb} lo1l3- (4.36)

We choose n = 66;1013, then (4.36]) becomes

(1+ S Y how = wtiasol 2 it {1-9) (w3 ) —<fholg. a3

If we choose ¢ sufficiently small and independent of k, H (actually, since u+b/2 <1,
e = b/8 will do) then (4.31)) follows. O

By standard arguments Lemma [4.5| implies the Agmon estimates given in The-
orem

Proof of Theorem [1.6.
The function ¢'(x) := dist(x,X’) defines a Lipschitz continuous function on Q. In
particular, |Vt'| < 1. Let x € C*°(R) be a non-decreasing function satisfying

x=1 onll,00), x=0 on[-00,1/2).

Define the function xps on Q by xam(x) = X(% VrH)  Using Lemma there
exists § > 0, such that if M, kH are sufficiently large, then

EV K ! 2 EVRK !
/g;‘pliHA(e )" do > peH(1+ B) eV x 3.
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Using (4.26) and the assumption % > 1, there exists some constant C' inde-
pendent of x, H, e and M such that

BulleY x5 < C IV 2 e ™ xarll3 (4.38)
7 2
+ C||Vt/||c2>o / eZex/nHt'(m) X/ tl(x) xH w(x) dr
M? Q M '
We achieve the proof of Theorem with arguments similar to the ones of the
proof of Theorem [4:4] O

5. PROOF OF THEOREM [[4]
Combining Proposition and Lemma it only remains to prove (|1.9). We
will prove that for large x the following two statements are equivalent.
(1) There exists a minimizer (i, A) of &, g with |[¢]]2 # 0.
(2) The parameters x, H satisfy
K2 — X\ (kH) > 0. (5.1)
Suppose first that (5.1) is satisfied. Let w;(kH) be the normalized ground state
2
cigenfunction of H(xH) and let ¢ > 0. Then, for {2 < 25 —21(<H)

K2 ur (RH)[|]
2 2, K4 4
Eumltur(kH), F] = t*[\(kH) — k°] + ?t lui(kH)|)3 < 0. (5.2)

This shows that implies .
Notice that this first part did not need the assumption that x is large. However,
for large x we know that is satisfied iff H < HE? (k) (defined in Lemma .
Suppose that (¢, A) is a non-trivial minimizer of &, . We may assume that
H > (1+ b)k for some b > 0, because by Proposition is satisfied for
Kk > Ko, H < Hg‘;(/{), where ch“;l(fi) has the asymptotics given in Lemma
Furthermore, we may assume that H < Tk for some T > 0. This follows from
[GiPh]—we give the details for completeness:
Since ¢ #£ 0, we have

0 < M (sH)|[0|2 < / penE]? da
Q

< 2/ |perath]? dz + Z(KH)Q/ |A — F|*[y)|* d.
Q Q
We now use, (3.1) and Lemma to obtain

0 < M (sH)|[Y]3 < C{ /Q lperat|® dx + (kH)? /]R2 |curl A — 1|2da;}

< CR?|lv i3,

where the last inequality holds since &, g[i, A] < 0. Since A1 (B) increases linearly
in B we deduce that H = O(k).
From the discussion above, we know that we may assume
(14+bk < H<b 1k,
for some b > 0. By Theorem we therefore find, for some C' > 0,

1/2 [l
d)?gc/ dz P||? < o/ 2R 5.3
H ||2 { {dist(z,f)ﬂ)gi} } || ||4 \/E ( )
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Since (1, A) is a non-trivial minimizer, &, g[y, A] < 0. So we also have

0< Sl < RIwlE - [ |V - stAWd=a 6
The inequality therefore becomes,
)3 < C"VAKT32. (5.5)
By Cauchy-Schwarz we can estimate
0<A=r2y2- /Q |((=iV — kHF) + kH(F — A))¢|* dz
< &2 9)3 = (1= VAT (sH) 03

1 2 2 2
+m(nH) /Q|F—A| |2 da. (5.6)

So we find, by inserting (5.5)), (5.4) and using Cauchy-Schwarz,
Al(ﬂH)\/Enfs/z\/Z

13/4

S e — Ay 22 (5.7)
+ =k :
= (RHD P - Al

Since & m[¥, A] <0, we get using Lemma and a Sobolev imbedding,

(kH)?|F — A < C(kH)?|[curl A — 1]|72 g2y < CA.
Inserting this in (5.7)) yields,

0 <A< (k= M(H))|vlz+C"

0<A<(I€ —)\1(HH))||¢||2+C K1/1

which permits to conclude that (5.1]) is satisfied.
Thus (1) and (2) are equivalent for large x which implies (1.9). This finishes the
proof of Theorem O

6. ENERGY OF MINIMIZERS

6.1. Basic properties.
In the case where % — %, with A; = mingexy 1 (as) < p < Oy, superconductivity
is dominated by the corners. The asymptotics of the ground state energy in this
case is given by Theorem [1.7] which we will prove in the present section.

Recall the functionals J w1 ue With ground state energy EY - defined on angular
sectors 'y, by - We glve the following proposition Wlthout proof, since it is

completely analogous to the similar statements for &, .

Proposition 6.1.
The map (0,00) x Ry > (p1,p2) — EY, . is continuous.

1,12
Suppose that p1 < Oq. If u1 < p1(a), then El‘fl iz =0 and w = 0 is a minimizer.
If p1 > pa(a), there exists a non-trivial minimizer o of Jj3, o+ Furthermore,

there exist constants a,C > 0 such that

/“@mw%uW+u4vawwwmsc. (6.1)

@
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Finally, 1y satisfies the uniform bound,
||¢0Hoo S e
2

One easily verifies the following scaling property.

Proposition 6.2.
Let A > 0. Then the functional,

v [ 19 = AR - A+ A
r, 2
defined on {¢p € L*(Ty)|(—iV — A_2F)w € L2(Ta)} is minimized by tho(y) =

Yo(y/A), where g is the minimizer of Jg
In partzcular,

H1,p2”

: [
inf [ 1=V = AP - A+ B2A O o = B,

By continuity of £ we get the following consequence.

Ml K2

Proposition 6.3. Suppose that ﬁ — < ©g as k — 00, and that dy (k),d2(k) —
1 as k — oo. Then the ground state energy of the functional

2
v [T = RHEWE (i + dalo) 5 ol do

tends to E;j"ﬂ as kK — 00.

6.2. Coordinate changes.
Let s € 3. By the assumption that 912 is a curvilinear domain there exists rs > 0
and a local diffeomorphism @, of R? such that ®4(s) = 0, (D®)(s) € SO(2) and
B (B(s,75) N Q) =T, ND(B(s,75)).

Let u, A = (A1, As) € C§°(B(s,rs)) and define a(y) = u(®;1(y)). Let fur-
thermore, B(y) = B(®;'(y)), where B(z) = curl A. Then the quadratic form
transforms as

/ [(—iV — A)u(z)? dx
Q

= / ((=iV = A)ily), G(y)(—iV — A)(y)) | det DO (y)| dy.  (6.2)
Do,
Here G(y) = (D<I>S)(D<I>S)T|x=¢) ()’ and A = (Ay, Ay) satisfies Aidzy + Asdry =
Aydy, + Asdys, so
0y, Az — 9y, A1 = | det DO (y)| B(y)- (6.3)
6.3. Proof of Theorem

Upper bounds
We indicate here how to obtain the inequality

mf 5K H(s) [0 A ZE”S (6.4)

s€X

which is the ‘easy’ part of (1.12]).
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The inequality (6.4) follows from a calculation with an explicit trial state. The
test functions will be of the form A = F and

() =) Yu(Dslx),  with  e(y) = "yl (VieHy)x(|y)).
seEX

Here 1 € C>°(R?,R) is a gauge function, x is a standard cut-off function, y = 1
on a neighborhood of 0, supp x C B(0,7), with 7 = minsex{rs}, and " is the
minimizer of Jffsl. The proof of is a straight forward calculation similar to
the lower bound (given below) and will be omitted. Notice though that the decay

estimates for the minimizers " imply that 7" (VeHy)x(ly])— f‘l(\/ﬁy),
is exponentially small.
Lower bounds
Let (¢, A) be a minimizer of £ . Define x1,x2 € C*(R) to be a standard
partition of unity, x; is non-increasing, x +x3 =1, x1(t) = 1 for t <1, x1(¢t) =0
for t > 2.

For s € X, let

¢s(z) = x1 (k' dist(z, s))

with € > 0, and define ¢g = /1 — ) . #2. Notice that when & is sufficiently large
and s,s' € X, s # ¢, then ¢s¢ps = 0. Therefore, using the Agmon estimates, the
IMS-localization formula and the estimate |[1]|o < 1, we can write,

Exmth, Al > E o), Al + O(™). (6.5)

se€X

By the Sobolev imbedding W12(Q) — L4(Q), Lemmacombined with (3.3]), and
the Agmon estimate we get

(kH)?||A = F||7 < C(kH)?||A = Fl[fy12(0
< C/(HH)QHCUIIA — 1||§
< C"RAlplls < ¢ (6.6)

Thus we can estimate

19 = st A) o) do
>(1-kx"1?) /Q |(~iV — kHF)(650)|* dz — k1% (wH)?|| A — F 2| ¢ts]|3

> (1- k12 /Q |(—iV — kHF)(¢0))|* dar — Cr™1/2, (6.7)

where we used the inequality

llost]3 < \// 1Y) dx < \/C/ ldx < C'kx L
Q {dist(z,2)<Mr—1}

Now consider the change of coordinates @ from subsection [6.2] For sufficiently
large values of k we have supp ¢s C B(s,rs). Define

'st = (¢s9)) 0 <I)s_l-
Since | det D®¢(0)| = 1, we get by Taylor’s formula that
|| det DO — 1| < Ok,
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on supp 1/35.
Consider the transformed magnetic field as in (6.3]). We define
Bly) = |det DO (y)|B(y) = |det DO (y)| =1+ O(x~'7),  (6.8)

on supp ¥s. We look for A = (;11,1412) such that aylfb - 6y214~11 = B(y)
One choice of a solution is

A= (w2 [ B0k - 125

‘With this choice

[A — F| 1o (B0,0n-1+ey) < C'w7212

Thus
(t)? [ 1R~ FP 10 dy < Contte 0 [P dy <02 (09)
Therefore, for some n € C*°(£2,R) we find

19 = rtE) @) o

_ /F (~iV — kHA)(e"H14,), G(y) (—iV — kHA)(e"H,))| det DO 1| dy

as

> (1= x4 [ (-8 — cHA) ) dy
N

Qs

Gt [

Qs

St [ R - BPIGL dy)
Ty

>(1— 20(1”‘6)/ |(—iV — HHF)(emH%s)f dy + O(k~1739). (6.10)
Fﬂs
By (6.10) we find
En, i[5, Al

> (1-— lei_1+3€)/ {|(-=iV — ﬁHF)(@i”HW@Zs)}2

2
— e\ ik 7 ik 7
— (14 Cor™ 13 )?|€ |2 + ke H”ws\4}dy
+ Ok 3. (6.11)

We choose 0 < ¢ < 1/3 arbitrary. Using Proposition and combing (6.5) and
(6.11)) we find the lower bound inherent in (6.4)), i.e.

/{H(/{ ¢7 ZEO(S

s€X
This finishes the proof of Theorem [I.7] O
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