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Topological invariants of piecewise hereditary algebras

Patrick Le Meur

February 26, 2009

Abstract

We investigate the Galois coverings of piecewise algebras and more particularly their behaviour under derived
equivalences. Under a technical assumption which is satisfied if the algebra is derived equivalent to a hereditary
algebra, we prove that there exists a universal Galois covering whose group of automorphisms is free and depends
only on the derived category of the algebra. As a corollary, we prove that the algebra is simply connected if and
only if its first Hochschild cohomology vanishes.

Introduction

Let k be an algebraically closed field and A a basic finite dimensional k-algebra (or, simply, an algebra). The
representation theory studies the category modA of finite dimensional (right) A-modules and also its bounded
derived category Db(modA). From this point of view, some classes of algebras play an important rôle: The
hereditary algebras, that is, path algebras kQ of finite quivers Q with no oriented cycle; the tilted algebras, that
is, of the form EndkQ(T ), where T is a tilting kQ-module; and, more generally, the piecewise hereditary algebras,
that is, the algebras A such that Db(modA) is triangle equivalent to Db(H) where H is a Hom-finite hereditary
abelian category with split idempotents (if H = mod kQ then A is called piecewise hereditary of type Q). These
algebras are particularly well understood (see [2, 14, 26, 27], for instance).

The piecewise hereditary algebras arise in many areas of representation theory. For example, the cluster
category CA of a piecewise hereditary algebra was introduced in [5, 7] as a tool to study conjectures related
to cluster algebras ([12]). Another example is the study of self-injective algebras, that is, algebras A such that

A ≃ DA as right A-modules. Indeed, to any algebra A is associated the repetitive category bA, which is a Galois
covering with group Z of the trivial extension A ⋉ DA (see [18]). Assume that some group G acts freely on bA

thus defining a Galois covering bA→ bA/G with group G. If bA/G is a finite dimensional algebra, that is, if it has
finitely many objects as a category, then it is self-injective and called of type Q if A is tilted of type Q. It is
proved in [28] that any self-injective algebra of polynomial growth and admitting a Galois covering by a strongly

simply connected category is of the form bA/G for some tilted algebra A and some infinite cyclic group G. The
class of self-injective algebras of type Q has been the object of many studies recently (see [30, 31, 32]).

In this text we investigate the Galois coverings of piecewise hereditary algebras. The Galois coverings of
algebras and, more generally, of k-categories, were introduced in [13, 24] for the classification of representation-
finite algebras. Consider A as a locally bounded k-category: If 1 = e1 + . . .+ en is a decomposition of the unity
into primitive orthogonal idempotents, then ob(A) = {e1, . . . , en} and the space of morphisms from ei to ej
is ejAei. Then a Galois covering of the k-category A is a k-linear functor F : C → A where C is a k-category
endowed with a free action of G, that is, G acts freely on ob(C), such that F ◦ g = F for every g ∈ G and
the induced functor C/G → A is an isomorphism ([13]). In such a situation, mod C and modA are related
by the so-called push-down functor Fλ : mod C → modA, that is, the extension-of-scalars functor. Often, Fλ
allows nice comparisons between mod C and modA. For example: The action of G on C naturally defines an
action (g,X) 7→ gX of G on C-modules. When this action is free on indecomposable C-modules, Fλ defines an
isomorphism of translation quivers between Γ(mod C)/G and a union of some components of the Auslander-Reiten
quiver Γ(modA) of A (see [11, 13]).

The comparisons allowed by the covering techniques raise naturally the following questions: Given an algebra
A, is it possible to describe all the Galois coverings of A (in particular, does A admit a universal Galois covering,
as happens in topology)? Is it possible to characterise the simple connectedness of A (that is, the fact that A
has no proper Galois covering by a connected and locally bounded k-category)? In view of the above discussion
on self-injective algebras, these questions are particularly relevant when A is piecewise hereditary of type Q. In
case A = kQ, the answers are well-known: The Galois coverings of kQ correspond to the ones of the underlying
graph of Q; and kQ is simply connected if and only if Q is a tree, which is also equivalent to the vanishing of
the first Hochschild cohomology group HH1(kQ) ([8]). Keeping in mind the general objective of representation
theory, one can wonder if the data of the Galois coverings of A and the simple connectedness of A depend only
on the bounded derived category Db(modA). Again, it is natural to treat this problem for piecewise hereditary
algebras. Up to now, there are no general solutions to the above problems. The question of the description
of the Galois coverings and the one of the characterisation of simple connectedness have found a satisfactory
answer in the case of standard representation-finite algebras (see [6, 13]). This is mainly due to the fact that
the Auslander-Reiten quiver is connected and completely describes the module category in this case. However,
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the infinite-representation case seems to be more complicated. As an example, there exist string algebras which
admit no universal Galois covering ([22]). In the present text, we study the above problems when A is piecewise
hereditary. As a main result, we prove the following theorem.

Theorem A. Let A be a connected algebra derived equivalent to a hereditary abelian category H whose

oriented graph
−→
KH of tilting objects is connected. Then A admits a universal Galois covering bC → A with

group a free group π1(A) uniquely determined by Db(modA). This means that bC is connected and locally
bounded and for any Galois covering C → A with group G where C is connected and locally bounded there
exists a commutative diagram:

bC

%%K
KK

KK
KK

��

C

��
A

∼ // A

where the bottom horizontal arrow is an isomorphism extending the identity map on ob(A). Moreover, bC → C
is Galois with group N such that there is an exact sequence of groups 1 → N → π1(A) → G→ 1.

Finally, if A is hereditary of type Q then π1(A) is the fundamental group π1(Q) of the underlying graph
of Q and, otherwise, the rank of π1(A) equals dimk HH1(A) (which is 0 or 1).

We refer the reader to the next section for the definition of
−→
KH. Recall ([17]) that the asumption on A is

satisfied if A is piecewise hereditary of type Q.
The above theorem implies that the Galois coverings of a piecewise hereditary algebra are determined by the

factor groups of π1(Q). Also it shows that the data of the Galois coverings is an invariant of the derived category.
Therefore so does the simple connectedness. Using the fact that the Hochschild cohomology is invariant under
derived equivalences (see [19]), we deduce the following corollary of our main result.

Corollary B. Let A be as in Theorem A. The following are equivalent:

(a) A is simply connected.

(b) HH1(A) = 0.

If A is piecewise hereditary of type Q, then (a) and (b) are also equivalent to:

(c) Q is a tree.

This corollary generalises some of the results of [1, 3] which studied the same characterisation for tilted
algebras of euclidean type and for tame tilted algebras. Also, it gives a new class of algebras for which the
following question of Skowroński ([29, Pb. 1]) has a positive answer: Is A simply connected if and only if

HH1(A) = 0? Originally, this question was asked for tame triangular algebras.
The methods we use to prove Theorem A allow us to prove the last main result of this text. It shows that

the Galois coverings have a nice behaviour for piecewise hereditary algebras.

Theorem C. Let A be piecewise hereditary of type Q and F : C → A be a Galois covering with group G
where C is connected and locally bounded. Then C is piecewise hereditary of type a quiver Q′ such that there
exists a Galois covering of quivers Q′ → Q with group G.

We now give some explanations on the proof of Theorem A. For unexplained notions, we refer the reader to
the next section. Assume that A is piecewise hereditary. It is known from [16, Thm. 2.6] that there exists an
algebra B such that A ≃ EndDb(modB)(X) for some tilting complex X ∈ Db(modB) and such that B has one
of the following forms:

1. B = kQ, with Q a finite quiver with no oriented cycle.

2. B is a squid algebra.

It is easy to check that Theorem A holds true for path algebras of quivers and for squid algebras. Therefore we
are reduced to proving that Theorem A holds true for A and only if it holds true for EndDb(modA)(T ) for any

tilting complex T ∈ Db(modA). Roughly speaking, we need a correspondence between the Galois coverings of
A and those of EndDb(modA)(T ). Therefore we use a construction introduced in [21] for tilting modules: Given
a Galois covering F : C → A with group G, the push-down functor Fλ : mod C → modA is exact and therefore
induces an exact functor Fλ : Db(mod C) → Db(modA). Also, the G-action on modules extends to a G-action
on Db(mod C) by triangle automorphisms. Now, let T ∈ Db(modA) be a tilting complex and T = T1 ⊕ . . .⊕ Tn
be an indecomposable decomposition. Assume that the following conditions hold true for every i ∈ {1, . . . , n}:

(H1) There exists an indecomposable C-module eTi such that Fλ eTi = Ti.

(H2) The stabiliser {g ∈ G | g eTi ≃ eTi} is the trivial group.

Under these assumptions, the complexes g eTi (for g ∈ G and i ∈ {1, . . . , n}) form a full subcategory of Db(mod C)

which we denote by EndDb(mod C)(eT ). Then Fλ : Db(mod C) → Db(modA) induces a Galois covering with group
G:

EndDb(mod C)(eT ) → EndDb(modA)(T )
g
eTi 7→ Ti

g
eTi

u
−→ h

eTj 7→ Ti
Fλ(u)
−−−−→ Tj .
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Hence (H1) and (H2) are technical conditions which allow one to associate a Galois covering of EndDb(modA)(T )
to a Galois covering of A. In particular, if A admits a universal Galois covering, then the associated Galois
covering of EndDb(modA)(T ) is a good candidate for being a universal Galois covering. This is indeed the case
provided that the following technical condition is satisfied:

(H3) If ψ : A
∼
−→ A is an automorphism such that ψ(x) = x for every x ∈ ob(A), then ψλTi ≃ Ti, for every i.

We therefore need to prove the assertions (H1), (H2) and (H3) for every Galois covering F : C → A and every
tilting complex T ∈ Db(modA).

The text is therefore organised as follows. In Section 1, we recall some useful definitions and fix some notations.
In Section 2, we define the exact functor Fλ : Db(mod C) → Db(modA) associated to a Galois covering F : C → A.
In Section 3, we introduce elementary transformations on tilting complexes using approximations. The main result
of the section asserts that for A piecewise hereditary of type Q and for any tilting complexes T, T ′, there exists
a sequence of elementary transformations relating T and T ′. We prove the assertions (H1), (H2) and (H3) in
Section 4 using the elementary transformations. We prove Theorem C as an application of these results. Then,
in Section 5, we establish a correspondence between the Galois coverings of A and those of EndDb(modA)(T ) for
every tilting complex T . Finally, we prove Theorem A and Corollary B in Section 6.

1 Definitions and notations
Modules over k-categories

We refer the reader to [4] for the definition of k-categories and locally bounded k-categories. All locally
bounded k-categories are assumed to be small and all functors between k-categories are assumed to be k-linear (our
module categories and derived categories will be skeletally small). Let C be a k-category. Following [4], a (right)
C-module is a k-linear functor M : Cop → MOD k where MOD k is the category of k-vector spaces. The category
of C-modules is denoted by MOD C. A module M ∈ MOD C is called finite dimensional if

P

x∈ob(C)

dimkM(x) < ∞.

The category of finite dimensional C-modules is denoted by mod C. Note that the indecomposable projective C-
module associated to x ∈ ob(C) is the representable functor C(−, x). The projective dimension of a C-module
X is denoted by pdC(X). If X ∈ mod C, then add(X) denotes the smallest full subcategory of mod C closed
under direct summands and direct sums. We refer the reader to [2] for notions on tilting theory. If A is an
algebra, an A-module T is called tilting if: (a) T is multiplicity-free; (b) pdA(T ) 6 1; (c) Ext1A(T, T ) = 0; (d)
for every indecomposable projective A-module P there is an exact sequence 0 → P → X → Y → 0 in modA
where X,Y ∈ add(T ). Let H be a hereditary abelian category. An object T ∈ H is called tilting (see [16]) if:
(a) T is multiplicity-free; (b) Ext1H(T, T ) = 0; (c) whenever HomH(T,X) = Ext1H(T,X) = 0 for X ∈ H, then
X = 0. The set of isomorphism classes of tilting objects in H has a partial order such that T 6 T ′ if and only if
FacT ⊆ FacT ′ where FacT is the class of epimorphic images of direct sums of copies of T . The Hasse diagram

of this poset is denoted by
−→
KH and called the oriented graph of tilting objects in H (see [17] for more details).

If A is an additive category, then indA denotes the full subcategory of all indecomposable objects of A.

Galois coverings of k-categories
Let F : E → B be a Galois covering with group G between k-categories (see the introduction). It is called

connected if both C and B are connected and locally bounded. Let A be a connected and locally bounded
k-category and x0 ∈ ob(A). A pointed Galois covering F : (C, x) → (A, x0) is a connected Galois covering
F : C → A endowed with x ∈ ob(C) such that F (x) = x0. A morphism of pointed Galois coverings F

u
−→ F ′

from F : (C, x) → (A,x0) to F ′ : (C′, x′) → (A,x0) is a functor u : C → C′ such that F ′ ◦ u = F and u(x) = x′.
Note that, given F and F ′, there is at most one such morphism (see [20, Lem. 3.1]). This defines the category
Gal(A, x0) of pointed Galois coverings. If F ∈ Gal(A, x0), then we let F→ be the full subcategory of Gal(A, x0)
with objects those F ′ such that there exists a morphism F → F ′.

Covering properties on module categories (see [4, 24])
Let F : E → B be a Galois covering with group G. The G-action on E defines a G-action on MOD E : If

M ∈ MOD E and g ∈ G, then gM := F ◦ g−1 ∈ MOD E . If X ∈ MOD E , the stabiliser of X is the subgroup
GX := {g ∈ G | gX ≃ X} of G. The Galois covering F defines two exact functors: The extension-of-scalars
functor Fλ : MOD E → MODB which is called the push-down functor and the restriction-of-scalars functor
F. : MODB → MOD E which is called the pull-up functor. They form an adjoint pair (Fλ, F.) and Fλ is G-
invariant, that is, Fλ ◦ g = Fλ for every g ∈ G. We refer the reader to [4] for details one Fλ and F.. For any
M,N ∈ mod E , the following maps induced by Fλ are bijective:

M

g∈G

HomE( gM,N) → HomB(FλM,FλN) and
M

g∈G

HomE(M, gN) → HomB(FλM,FλN) .

An indecomposable module X ∈ modB is called of the first kind with respect to F if and only if Fλ eX ≃ X
for some eX ∈ mod E (necessarily indecomposable). In such a case, one may choose eX such that Fλ eX = X.
More generally, X ∈ modB is called of the first kind with respect to F if and only if it is the direct sum of
indecomposable B-modules of the first kind with respect to F .
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2 Covering techniques on the bounded derived category

Let F : C → A be a Galois covering with group G and with C and A locally bounded categories of finite global
dimension. The G-action on mod C naturally defines a G-action on Db(mod C), still denoted by (g,M) 7→ gM , by
triangle automorphisms. We introduce an exact functor Fλ : Db(mod C) → Db(modA) induced by Fλ : mod C →
modA.

Proposition 2.1. There exists an exact functor Fλ : Db(mod C) → Db(modA) such that the following
diagram commutes:

mod C
�

�

//

Fλ

��

Db(mod C)

Fλ

��
modA

�

�

// Db(modA) .

The functor Fλ : Db(mod C) → Db(modA) has the covering property, that is, it is G-invariant and the two
following maps are linear bijections for every M,N ∈ Db(mod C):

M

g∈G

Db(mod C)( gM,N)
Fλ−−→ Db(modA)(FλM,FλN) ,

and
M

g∈G

Db(mod C)(M, gN)
Fλ−−→ Db(modA)(FλM,FλN) .

Proof: The existence and exactness of Fλ : Db(mod C) → Db(modA) follow from the exactness of Fλ : mod C →
modA. On the other hand, Fλ induces an additive functor Fλ : Kb(mod C) → Kb(modA) between bounded
homotopy categories of complexes. It easily checked that it has the covering property in the sense of the proposi-
tion. Since A and C have finite global dimension, we deduce that Fλ : Db(mod C) → Db(modA) has the covering
property. �

Remark 2.2. It follows from the preceding proposition that Fλ : Db(mod C) → Db(modA) is faithful.

We are mainly interested in indecomposable objects X ∈ Db(modA) which are of the form Fλ eX for some
eX ∈ Db(mod C). The following shows that the possible objects eX lie in the same G-orbit for a given X.

Lemma 2.3. Let X,Y ∈ Db(mod C) be such that FλX and FλY are indecomposable and isomorphic in
Db(modA). Then X ≃ gY for some g ∈ G.

Proof: Let u : FλX → FλY be an isomorphism in Db(modA). By 2.1, there exists (ug)g ∈
L

g∈G

Db(mod C)(X, gY )

such that u =
P

g∈G

Fλ(ug). Since FλX and FλY are indecomposable, there exists g0 ∈ G such that Fλ(ug0) : FλX →

FλY is an isomorphism. Since Fλ : Db(mod C) → Db(modA) is exact and faithful, ug0 : X → g0Y is an isomor-
phism in Db(mod C). �

3 Transforming tilting complexes into tilting modules

Let H be a hereditary abelian category over k with finite dimensional Hom-spaces, split idempotents and tilting
objects. Let n the rank of its Grothendieck group. For short, we set Hom := HomDb(H) and Exti(X,Y ) :=

HomDb(H)(X,Y [i]). We write T for the class of objects T ∈ Db(H) such that:

(a) T is multiplicity-free and has n indecomposable summands.

(b) Exti(T, T ) = 0 for every i > 1.

We identify an object in T with its isomorphism class. A complex T lies in T if and only if T [1] ∈ T . Also,
all tilting complexes in Db(H) and, therefore, all tilting objects in H, lie on T . Given T ∈ Db(H), we let 〈T 〉
be the smallest full subcategory of Db(H) containing T and stable under direct sums, direct summands and
shifts in either direction. The aim of this section is to define elementary transformations on objects in T which,
by repetition, allow one to relate any two objects in T . For this purpose, we introduce some notation. Given
T ∈ T , we have a unique decomposition T = Z0[i0] ⊕ Z1[i0 + 1] ⊕ . . . ⊕ Zl[i0 + l] where Z0, . . . , Zl ∈ H and
Z0, Zl 6= 0. Here, Zi needs not be indecomposable. We let r(T ) be the number of indecomposable summands
of Z1[i0 + 1] ⊕ . . . ⊕ Zl[i0 + l]. Note that: r(T ) ∈ {0, . . . , n − 1}; r(T ) = 0 if and only if T [−i0] is a tilting
object in H; and r(T ) = r(T [1]). We are interested in transformations which map an object T ∈ T to T ′ such
that r(T ′) < r(T ). Hence, by repeating the process, we may end up with a tilting object in H (up to a shift).

Transformations of the first kind
Our first elementary transformation is given by the following lemma.

Lemma 3.1. Let T ∈ T . There exists T ′ ∈ T such that T ′ ∈ 〈T 〉, r(T ′) 6 r(T ) and T ′ = Z′
0 ⊕Z

′
1[1]⊕ . . .⊕

Z′
l′ [l

′] where:
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(a) Z′
0, . . . , Z

′
l′ ∈ H and Z′

0, Z
′
l′ 6= 0.

(b) Hom(Z′
0, Z

′
1[1]) 6= 0 if l′ 6= 0.

Proof: Given T ′ ∈ 〈T 〉, we have the unique decomposition T ′ = Z′
0[i

′
0]⊕Z

′
1[i

′
0 +1]⊕ . . .⊕Z′

l [i
′
0 + l′] as explained

at the beginning of the section. We choose T ′ ∈ 〈T 〉∩T such that r(T ′) 6 r(T ) and such that the pair (l′, r(T ′))
is minimal for the lexicographical order. We may assume that i0 = 0. We prove that T ′ satisfies (a) and (b). If
l′ = 0, there is nothing to prove. So we assume that l′ > 0. Assume first that Z′

1 = 0. Then we let T ′′ be as
follows:

T ′′ := Z′
0 ⊕ Z′

2[1] ⊕ Z′
3[2] ⊕ . . .⊕ Z′

l′ [l
′ − 1] .

Then T ′′ ∈ 〈T ′〉 = 〈T 〉. Also, Exti(T ′′, T ′′) = 0 for every i > 1 because T ′ ∈ T and H is hereditary.
Finally, T ′′ is the direct sum of n pairwise non isomorphic indecomposable objects. Thus, T ′′ ∈ 〈T 〉 ∩ T and
(l′ − 1, r(T ′′)) < (l′, r(T ′)) which contradicts the minimality of (l′, r(T ′)). So Z′

1 6= 0. Now, assume that
Hom(Z′

0, Z
′
1[1]) = 0. We let T ′′ be the following object:

T ′′ := (Z′
0 ⊕ Z′

1) ⊕ Z′
2[2] ⊕ Z′

3[3] ⊕ . . .⊕ Z′
l′ [l

′] .

As above, we have T ′′ ∈ 〈T 〉 ∩ T and (l′, r(T ′′)) < (l′, r(T ′)) which contradicts the minimality of (l′, r(T ′)). So
Hom(Z′

0, Z
′
1[1]) 6= 0. �

With the notations of 3.1, we say that T and T ′ are related by a transformation of the first kind.

Transformations of the second kind
We now turn to the second elementary transformation. It is inspired by the characterisation of the quiver

of tilting objects in hereditary categories (see [17] and also [5] for the corresponding construction in cluster
categories). Let T, T ′ ∈ T be such that T = X⊕T with X indecomposable, T ′ = Y ⊕T with Y indecomposable
and there exists a triangle X

u
−→ M

v
−→ Y → X[1] such that u is a left minimal add(T )-approximation or v is a

right minimal add(T )-approximation. In such a situation, we say that T and T ′ are related by a transformation

of the second kind.

Remark 3.2. Following [17], if T → T ′ is an arrow in
−→
KH then T and T ′ are relatd by a transformation of

the second kind.

Note that, with the previous notations, both u and v are minimal add(T )-approximations, as shows the
following lemma.

Lemma 3.3. Let T ∈ T . Assume that T = X ⊕ T with X indecomposable.

(a) Let X
u
−→ M

v
−→ Y → X[1] be a triangle where u is a left minimal add(T )-approximation. Then v is a

right minimal add(T )-approximation.

(b) Let Y
u
−→ M

v
−→ X → Y [1] be a triangle where v is a right minimal add(T )-approximation. Then u is

a left minimal add(T )-approximation.

Proof: We only prove (a) because the proof of (b) is similar. Every morphism T → Y factorises through v
because Hom(T ,X[1]) = 0. So v is a right add(T )-approximation. Let α : M → M be a morphism such that
vα = v. So there exists λ : M → X such that uλ = α − IdM . Note that u is not a section because T is
multiplicity-free. So uλ is nilpotent and α = IdM + uλ is an isomorphism. Therefore v is right minimal. �

It is not true that any two objects T, T ′ ∈ T can be related by a sequence of transformations of second kind
(whereas this is the case, for example, for tilting objects in a cluster category, see [5]). However, we have the
following result from [17].

Proposition 3.4. Assume that at least one of the two following assertions is true:

(a) H = mod kQ where Q is a finite connected quiver without oriented cycles and of Dynkin type.

(b) H has no non-zero projective object and Db(H) is triangle equivalent to Db(mod kQ) with Q a connected
finite quiver without oriented cycles.

Then
−→
KH is connected. In partiular (see 3.2) for every tilting objects T, T ′ ∈ H. There exists a sequence

T = T0, . . . , Tl = T ′ of tilting objects in H such that Ti and Ti+1 are related by a transformation of the
second kind for every i.

We are going to prove that any T ∈ T can be related to some tilting object in H by a sequence of transfor-
mations of the first or of the second kind. Let T ∈ T . With the notations established at the beginning of the
section, assume that Hom(Z0, Z1[1]) 6= 0. Since the ordinary quiver of End(T ) has no oriented cycle, there exists
M ∈ add(Z1[i0 + 1]) indecomposable such that:

1. Hom(Z0[i0],M) 6= 0.

2. Hom(Z,M) = 0 for any indecomposable direct summand Z of
l
L

t=1

Zt[i0 + t] not isomorphic to M .

Let T be such that T = T ⊕M . Let B →M be a right minimal add(T )-approximation of M . Complete it into
a triangle in Db(H):

M∗ → B →M → M∗[1] . (∆)
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Lemma 3.5. With the above setting, let T ′ = T⊕M∗. Then T ′ ∈ T and T, T ′ are related by a transformation
of the second kind. Moreover, r(T ′) < r(T ).

Proof: We only need to prove that T ′ ∈ T . We may assume that i0 = 0. By hypothesis on M , we have
B ∈ add(Z0) ⊆ H. Since M ∈ H[1], the triangle ∆ does not split. We now list some properties on T ′. In most
cases, the proof is due to arguments taken from [5, § 6]. Although these arguments were originally given in the
setting of cluster categories (that is, triangulated categories which are Calabi–Yau of dimension 2), it is easily
verified that they still work in our situation (that is, the Calabi–Yau property is unnecessary):

1. Ext1(T ,M∗) = 0 (see [5, Lem. 6.3]).

2. Exti(T ,M∗) = 0 for every i > 2. Indeed, applying Hom(T ,−) to ∆ gives the exact sequence

0 = Exti−1(T ,M) → Exti(T ,M∗) → Exti(T ,B) = 0 .

3. Exti(M∗, T ) = 0 for every i > 1. Indeed, applying Hom(−, T ) to ∆ gives the exact sequence

0 = Exti(B, T ) → Exti(M∗, T ) → Exti+1(M,T ) = 0 .

4. The map M∗ → B is a left minimal add(T )-approximation (see [5, Lem. 6.4]).

5. M∗ is indecomposable and does not lie on add(T ) (see [5, Lems. 6.5, 6.6]). Therefore T ′ is the direct sum
of n pairwise indecomposable objects.

6. M∗ ∈ H. Indeed, M is indecomposable and there are two non-zero maps M [−1] → M∗ and M∗ → B
with M [−1], B ∈ H.

7. Ext1(M∗,M∗) = 0 (see [5, Lem. 6.7]).

8. Exti(M∗,M∗) = 0 for every i > 2 because M∗ is indecomposable and H is hereditary.

The facts 1.− 8. express that T ′ ∈ T ′. Moreover, r(T ′) < r(T ) because M∗ ∈ H and M ∈ H[1]. �

Lemma 3.6. Let T ∈ T . Let A be the smallest subclass of T containing T and stable under transformations
of the first or of the second kind. Then A contains a tilting object in H.

Proof: Let T ′ ∈ A be such that r(T ′) is minimal for this property. Assume that r(T ′) > 0. By 3.1 and 3.5,
there exists T ′′ ∈ A such that r(T ′′) < r(T ′). This contradicts the minimality of r(T ′). Hence r(T ′) = 0 and
there exists an integer i0 such that T ′[−i0] is a tilting object in H and lies in A. �

The following result is a direct consequence of 3.4 and 3.6.

Proposition 3.7. Assume that
−→
KH is connected. Let T ∈ T . Then T is the smallest subset of T containing

T and stable under transformations of the first or the second kind.

Remark 3.8. (a) A tilting object in H generates Db(H). By definition of the two kinds of transformations,
3.7 implies, under the same hypotheses, that any T ∈ T generates Db(H).

(b) Let A be an algebra derived equivalent to a hereditary algebra. Then 3.4 implies that the conclusion
of 3.7 holds true if one replaces H by modA.

4 Tilting complexes of the first kind

Throughout this section, we assume that A is an algebra derived equivalent to a hereditary abelian category

H such that
−→
KH is connected. We denote by n the rank of its Grothendieck group and Θ: Db(H) → Db(modA)

a triangle equivalence. We fix a Galois covering F : C → A with group G and with C locally bounded. We use 2.1
without reference. The aim of this section is to prove that the following facts hold true for any tilting complex
T ∈ Db(modA):

(H1) For every indecomposable direct summand X of T , there exists eX ∈ Db(mod C) such that Fλ eX ≃ X in
Db(modA).

(H2) eX 6≃ g
eX for every indecomposable direct summand X of T and g ∈ G\{1}.

(H3) If ψ : A
∼
−→ A is an automorphism such that ψ(x) = x for every x ∈ ob(A), then ψλX ≃ X in Db(modA)

for every indecomposable direct summand X of T .

Some results presented in this section have been proved in [21, § 3] in the case of tilting modules.
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Proof of assertion (H1)
In this paragraph, we prove the following.

Proposition 4.1. Let A be as above. Let T ∈ Db(modA) be a tilting complex. Then:

(a) For every indecomposable direct summand X of T there exists eX ∈ Db(mod C) (necessarily indecom-

posable) such that Fλ eX ≃ X.

Moreover, the class { eX ∈ Db(mod C) | Fλ eX is an indecomposable direct summand of T} satisfies the follow-
ing:

(b) It generates the triangulated category Db(mod C).

(c) It is stable under the action of G.

(d) Db(mod C)( eX, g eY [i]) = 0 for every eX, eY in this class, i 6= 0 and g ∈ G.

We need the two following dual lemmas.

Lemma 4.2. Let ∆ : X
u
−→M → Y → X[1] be triangle in Db(modA) such that:

(a) There exists eX ∈ Db(mod C) satisfying X = Fλ eX.

(b) M = M1 ⊕ . . .⊕Mt where M1, . . . ,Mt are indecomposables such that there exist indecomposable objects
fM1, . . . ,fMt satisfying FλfMi = Mi for every i.

(c) Db(modA)(Y,M [1]) = 0.

Then ∆ is isomorphic to a triangle in Db(modA):

X

h
Fλu

′
1 . . . Fλu

′
t

it

−−−−−−−−−−−−−−−−→M1 ⊕ . . .⊕Mt → Y → X[1]

where u′
i ∈ Db(mod C)( eX, gi

fMi) for some gi ∈ G for every i.

Lemma 4.3. Let ∆ : X →M
v
−→ Y → X[1] be triangle in Db(modA) such that:

(a) There exists eY ∈ Db(mod C) satisfying Y = Fλ eY .

(b) M = M1 ⊕ . . .⊕Mt where M1, . . . ,Mt are indecomposables such that there exist indecomposable objects
fM1, . . . ,fMt satisfying FλfMi = Mi for every i.

(c) Db(modA)(M,X[1]) = 0.

Then ∆ is isomorphic to a triangle in Db(modA):

X →M1 ⊕ . . .⊕Mt

h
Fλv

′
1 . . . Fλv

′
t

i

−−−−−−−−−−−−−−−→ Y → X[1]

where v′i ∈ Db(mod C)( gi
fMi, eY ) for some gi ∈ G for every i.

Proof of 4.2: We say that a morphism u ∈ Db(modA)(X,Mi) is homogeneous of degree g ∈ G if and only

if there exists u′ ∈ Db(mod C)( eX, gfMi) such that u = Fλ(u
′). Since Fλ : Db(mod C) → Db(modA) has the

covering property, any morphism X → Mi is (uniquely) the sum of d non zero homogeneous morphisms of

pairwise different degrees (with d > 0). Let u =
ˆ

u1 . . . ut
˜t

with ui : X → Mi for each i. We may assume
that u1 : X → M1 is not homogeneous. Thus u1 = h1 + . . . + hd, where d > 2 and h1, . . . , hd : X → M1

are non-zero homogeneous morphisms of pairwise different degrees. In order to prove the lemma, it suffices to

prove that ∆ is isomorphic to a triangle X
u′

−→ M → Y → X[1] with u′ =
ˆ

u′
1 u2 . . . ut

˜t
such that u′

1 is
equal to the sum of at most d− 1 non-zero homogeneous morphisms X →M1 of pairwise different degrees. For
simplicity we adopt the following notations:

1. M = M2 ⊕ · · · ⊕Mt (so M = M1 ⊕M).

2. u =
ˆ

u2 . . . ut
˜t

: X →M (so u =
ˆ

u1 u
˜t

: X →M1 ⊕M).

3. h = h2 + . . .+ hd : X →M1 (so u1 = h1 + h).

Applying the functor Db(modA)(−,M1) to ∆ gives the exact sequence:

Db(modA)(M1 ⊕M,M1)
Hom(u,M1)
−−−−−−−→ Db(modA)(X,M1) → Db(modA)(Y,M1[1]) = 0 .

So there exists [λ, µ] : M1 ⊕M →M1 such that h1 = [λ, µ]u. Hence:

h1 = λu1 + µu = λh1 + λh+ µu . (i)

We distinguish two cases according to whether λ ∈ EndDb(modA)(M1,M1) is invertible or nilpotent. If λ is

invertible, then the following is an isomorphism in Db(modA):

θ :=

»

λ µ
0 IdM

–

: M1 ⊕M →M1 ⊕M .

7



Using (i) we deduce an isomorphism of triangles:

X

h
u1 u

it

// M1 ⊕M //

θ

��

Y //

∼

��

X[1] ∆

X

h
h1 u

it

// M1 ⊕M // Y // X[1] ∆′ .

Since h1 : X → M1 is homogeneous, ∆′ satisfies the our requirements. If λ is nilpotent, let p > 0 be such that
λp = 0. Using (i) we get the following equalities:

h1 = λ2h1 + (λ2 + λ)h+ (λ+ IdM1)µu
...

...
...

h1 = λth1 + (λt + λt−1 + . . .+ λ)h+ (λt−1 + . . .+ λ+ IdM1)µu
...

...
...

h1 = λph1 + (λp + λp−1 + . . .+ λ)h+ (λp−1 + . . .+ λ+ IdM1)µu .

Since λp = 0 and u1 = h1 + h we infer that:

u1 = λ′h+ λ′µu ,

where λ′ is the invertible morphism IdM1 +λ+ . . .+λp−1 ∈ EndDb(modA)(M1,M1). So we have an isomorphism

in Db(modA):

θ :=

»

λ′ λ′µ
0 IdM

–

: M1 ⊕M →M1 ⊕M .

Consequently we have an isomorphism of triangles:

X

h
h u

it

// M1 ⊕M

θ

��

// Y //

∼

��

X[1] ∆′

X

h
u1 u

it

// M1 ⊕M // Y // X[1] ∆

where h = h2 + . . .+ hp is the sum of p− 1 non zero homogeneous morphisms of pairwise different degrees. So
∆′ satisfies our requirements. �

The proof of 4.3 is the dual of the one of 4.2 so we omit it. Now we can prove 4.1.
Proof of 4.1: If (a) holds true, then so does (c) because Fλ : Db(mod C) → Db(modA) is G-invariant. Recall
that Θ: Db(H) → Db(modA) is a triangle equivalence. As in Section 3, we write T (or T ′) for the set of
isomorphism classes of objects T ∈ Db(H) (or T ∈ Db(modA)) such that T is the direct sum of n pairwise non
isomorphic indecomposable objects and Db(H)(T, T [i]) = 0 (or Db(modA)(T, T [i]) = 0, respectively) for every
i > 1. Therefore:

(i) Θ defines a bijection Θ: T → T ′. Under this bijection, tilting complexes in Db(H) correspond to tilting
complexes in Db(modA).

We prove that (a) and (b) hold true for any T ∈ T ′ (and therefore for any tilting object in Db(modA)). For this
purpose, we use the results of Section 3. First of all, remark that:

(ii) The assertions (a) and (b) hold true for T = A. In this case, Fλ eX is an indecomposable summand of A if

and only if eX is an indecomposable projective C-module.

If eX ∈ Db(H), then Fλ( eX [1]) = (Fλ eX)[1]. Therefore:

(iii) Let T, T ′ ∈ T ′ be such that Θ−1(T ′) is obtained from Θ−1(T ) by a transformation of the first kind. Then
(a) and (b) hold true for T if and only if they do so for T ′.

Now assume that T, T ′ ∈ T ′ are such that Θ−1(T ′) is obtained from Θ−1(T ) by a transformation of the second
kind. We prove that (a) and (b) hold true for T if and only if they do so for T ′. In such a situation there exist
X,Y ∈ Db(modA) indecomposables and T ∈ Db(modA) such that T = X ⊕ T and T ′ = Y ⊕ T . Also, there
exists a triangle in Db(modA) of one the two following forms:

1. X →M → Y → X[1] where M ∈ add(T ).

2. Y →M → X → Y [1] where M ∈ add(T ).

Assume that (a) and (b) hold true for T and that there is a triangle X → M → Y → X[1] (the other cases are

dealt with using similar arguments). In order to prove that (a) and (b) hold true for T ′ we prove that Y ≃ Fλ eY for

some eY ∈ Db(mod C). Fix an indecomposable decomposition M = M1⊕. . .⊕Mt. By assumption on T , there exist

indecomposable objects eX,fM1, . . . ,fMt ∈ Db(mod C) such that Fλ eX ≃ X,FλfM1 ≃M1, . . . , FλfMt ≃Mt. Using
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these isomorphisms, we identify Fλ eX and FλfMi to X and Mi, respectively. By 4.2, there exist g1, . . . , gt ∈ G
and morphisms ui ∈ Db(mod C)( eX, gi

fMi) (for i ∈ {1, . . . , t}) such that the triangle X → M → Y → X[1] is
isomorphic to a triangle of the form:

X

h
Fλ(u1) . . . Fλ(ut)

it

−−−−−−−−−−−−−−−−−−→M → Y → X[1] .

Set u =
ˆ

u1 . . . ut
˜t

: eX → fM1 ⊕ . . .⊕ fMt. We complete u into a triangle eX
u
−→ fM1 ⊕ . . .⊕ fMt

v
−→ eX[1] in

Db(mod C). So we have a triangle X
Fλ(u)
−−−−→ M

Fλ(v)
−−−−→ Fλ eY → X[1] in Db(modA). Therefore Y ≃ Fλ eY . So

(a) holds for T ′ and the class { eZ | Fλ eZ is an indecomposable direct summand of T ′} coincides with the class

{ g eY | g ∈ G} ∪ { eZ | Fλ eZ is an indecomposable direct summand of T} (see 2.3). Because (b) holds true for T

and because of the triangle eX → fM1 ⊕ . . . ⊕ fMt → eY → eX[1], we deduce that (b) holds for T ′. So we have
proved the following:

(iv) Let T, T ′ ∈ T ′ be such that Θ−1(T ′) is obtained from Θ−1(T ) by a transformation of the second kind.
Then (a) and (b) hold true for T if and only if they do so for T ′.

By 3.7 and (i− iv), the assertions (a), (b) and (c) are satisfied for any T ∈ T . Finally, if T is a tilting complex,
then (d) follows from the fact that Db(modA)(T, T [i]) = 0 for every i 6= 0 and from 2.1. �

It is interesting to note that the transformations of the second kind in Db(modA) give rise to transformations
of the second kind in Db(mod C). Indeed, let T, T ′ be in T ′ where T ′ is as in the proof of 4.1. Assume
that T = M ⊕ T with M indecomposable, T = M∗ ⊕ T with M∗ indecomposable and there exists a triangle
∆ : M → B →M∗ →M [1] in Db(modA) where M → B (or B →M∗) is a left minimal add(T )-approximation
of M (or a right minimal add(T )-approximation of M∗, respectively). Then the following holds.

Lemma 4.4. Keep the above setting. Let B =
t
L

i=1

Bi be an indecomposable decomposition (maybe with

multiplicities). Then there exists a triangle e∆ : fM
u
−→

t
L

i=1

gi
eBi

v
−→ g0

fM∗ →M [1] in Db(mod C) whose image

under Fλ is isomorphic to ∆. Moreover, if X (or X ′) denotes the additive full subcategory of Db(mod C)

generated by the indecomposables X ∈ Db(mod C) not isomorphic to fM (or to fM∗) and such that FλX is an
indecomposable summand of T (or of T ′, respectively), then:

(a) u is a left minimal X -approximation.

(b) v is a right minimal X ′-approximation.

Proof: The existence of e∆ follows from the proof of 4.1. So Fλ(u) is a left minimal add(T )-approximation. This

and the exactness of Fλ imply that u is left minimal. Let f : fM → g
eY be a non-zero morphism where g

eY ∈ X
and Y ∈ add(T ). The linear map

L

h∈G

Db(mod C)(fM, hfM) → EndDb(modA)(M,M) induced by Fλ is bijective.

Also dimkEndDb(modA)(M,M) = 1 because M is an indecomposable and Db(modA)(M,M [i]) = 0 for every

i > 0. So g
eY 6≃ h

fM for every h 6= 1. Hence Y ∈ add(T ) and, therefore, Fλ(f) factorises through Fλ(u):

M
Fλ(u)

//

Fλ(f)

  A
AA

AA
AA

AA
A

t
L

i=1

Bi

f ′

��
Y .

There exists (f ′
h)h ∈

L

h∈G

Db(mod C)(
t
L

i=1

gi
eBi,

h
eY ) such that f ′ =

P

h∈G

Fλ(f
′
g) because of the covering property

of Fλ. So Fλ(f) =
P

h∈G

Fλ(f
′
hu) and, therefore, f = f ′

gu for the same reason. Thus u is a left minimal X -

approximation. Similarly, v is a right minimal X ′-approximation. �

Since tilting A-modules are particular cases of tilting complexes, we get the following result.

Corollary 4.5. Let A be an algebra derived equivalent to a hereditary abelian category H such that
−→
KH is

connected. Let F : C → A be a Galois covering with group G where C is locally bounded, T a tilting A-module
and X ∈ modA an indecomposable summand of T . Then there exists eX ∈ mod C such that Fλ eX ≃ X.

Proof: By 4.1, such an eX exists in Db(mod C). We prove that eX is isomorphic to a C-module. Let P ∈ mod C
be projective and i ∈ Z\{0}. Then FλP ∈ modA is projective and Db(modA)(FλP,X[i]) = 0 because X is an

A-module. On the other hand, the spaces Db(modA)(FλP,X[i]) and
L

g∈G

Db(mod C)( gP, eX[i]) are isomorphic.

So Db(mod C)(P, eX[i]) = 0 for every i 6= 0. Thus, eX ≃ H0( eX) ∈ mod C. �
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Proof of assertion (H2)

Proposition 4.6. Let A be as in 4.5, F : C → A a Galois covering with group G where C is locally bounded
and X ∈ indA a direct summand of a tilting complex in Db(modA). Assume that Fλ eX ≃ X for some
eX ∈ Db(mod C). Then g

eX 6≃ eX for every g ∈ G\{1}.

Proof: We have dimkEndDb(modA)(X,X) = 1 because X is indecomposable and Db(modA)(X,X[i]) = 0 for

every i 6= 0. On the other hand, the spaces
L

g∈G

Db(mod C)( g eX, eX) and EndDb(modA)(X,X) are isomorphic. So

Db(mod C)( g eX, eX) = 0 and, therefore, g eX 6≃ X if g 6= 1. �

Proof of assertion (H3)
If ψ : A → A is an automorphism (and therefore a Galois covering with trivial group), then ψλ : modA →

modA is an equivalence. It thus induces a triangle equivalence ψλ : Db(modA) → Db(modA).

Proposition 4.7. Let A be as in 4.5, ψ : A
∼
−→ A an automorphism such that ψ(x) = x for every x ∈ ob(A)

and T ∈ Db(modA) a tilting complex. Then ψλX ≃ X in Db(modA) for every indecomposable summand X
of T .

Proof: Since ψ(x) = x for every x ∈ ob(A), we have the following fact:

(i) The conclusion of the proposition holds true if X is an indecomposable projective A-module.

Recall that Θ: Db(H) → Db(modA) is a triangle equivalence. We keep the notations T and T ′ introduced in
the proof of 4.1. We prove the proposition for any T ∈ T ′. By construction of Θ, we have:

(ii) Θ induces a bijection Θ: T → T ′. Under this bijection, tilting complexes in Db(H) correspond to tilting
complexes in Db(modA).

Since ψλ : Db(modA) → Db(modA) is an equivalence, we also have:

(iii) Let T, T ′ ∈ T be such that T ′ is obtained from T by a transformation of the first kind. Then the proposition
holds true for T if and only if it does for T ′.

Now assume that T, T ′ ∈ T ′ are such that Θ−1(T ′) is obtained from Θ−1(T ) by a transformation of the second
kind. We prove that the proposition holds true for T if and only if it does for T ′. There exist X,Y ∈ Db(modA)
indecomposables and T ∈ Db(modA) such that T = X ⊕ T and T ′ = Y ⊕ T . Also, there exists a triangle in
Db(modA) of one the two following forms:

1. X → M → Y → X[1] where X → M is a left minimal add(T )-approximation and M → Y is a right
minimal add(T )-approximation.

2. Y → M → X → Y [1] where Y → M is a left minimal add(T )-approximation and M → X is a right
minimal add(T )-approximation.

Assume that the proposition holds for T and that there is a triangle X → M → Y → X[1] (the other cases
are dealt with using similar arguments). We only need to prove that ψλY ≃ Y . Apply ψλ to the triangle
X → M → Y → X[1]. Since ψλ is an equivalence and the proposition holds true for T , there exists a triangle
X → M → ψλY → X[1] in Db(modA) where X → M is a left minimal add(T )-approximation. Therefore
ψλY ≃ Y in Db(modA). So we proved that:

(iv) If T, T ′ ∈ T ′ are such that Θ−1(T ′) is obtained from Θ−1(T ) by a transformation of the second kind, then
the proposition holds true for T if and only if it does for T ′.

As in the proof of 4.1, the conclusion follows from (i), (ii), (iii), (iv) and 3.7. �

Application: proof of Theorem C
As an application of the preceding results of the section, we prove Theorem C. We need the following lemma.

If T = T1⊕ . . .⊕Tn ∈ modA is an indecomposable decomposition of a multiplicity-free module T , then EndA(T )
is naturally a k-category, equal to the full subcategory of modA with objects T1, . . . , Tn.

Lemma 4.8. Let A be a piecewise hereditary algebra of type Q. Let F : C → A be a connected Galois covering
with group G. Let T ∈ Db(modA) be a tilting complex, B = EndDb(modA)(T ) and T = T1

L

. . .
L

Tn an in-

decomposable decomposition. Let λi : Fλ eTi → Ti be an isomorphism where eTi ∈ Db(mod C) is indecomposable

for every i. This defines the bounded complex of (not necessarily finite dimensional) C-modules eT :=
L

i,g

g
eTi,

where the sum runs over g ∈ G and i ∈ {1, . . . , n}. Let C′ be the full subcategory of Db(mod C) with objects the

complexes g
eTi (for g ∈ G, i ∈ {1, . . . , n}). Then the triangle functor Fλ : Db(mod C) → Db(modA) induces a

connected Galois covering with group G:

F eT ,λ : C′ → B
g
eTi 7→ Ti

g
eTi

u
−→ h

eTj 7→ Ti
λj Fλ(u) λ−1

i−−−−−−−−−−→ Tj .
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The complex eT is naturally a bounded complex of C′−C-bimodules: As a functor from EndDb(mod C)( eT )×Cop,

it assigns the vector space g
eTi(x) to the pair of objects ( g eTi, x). The total derived functor:

−
L

⊗
C′

eT : Db(mod C′) → Db(mod C)

is a G-equivariant triangle equivalence. Finally, if T is a tilting A-module and all the objects eTi are C-modules
(see 4.5), then:

(a) Ext1C( g eTi,
h
eTj) = 0 for every i, j ∈ {1, . . . , n} and g, h ∈ G.

(b) pdC( g eTi) 6 1 for every i, g.

(c) If P ∈ mod C is an indecomposable projective C-module, then there exists an exact sequence 0 → P →

T (1) → T (2) → 0 in mod C where T (1), T (2) ∈ add({ g eTi | i ∈ {1, . . . , n}, g ∈ G}).

Proof: By 2.1, the functor F eT ,λ is a well-defined Galois covering. By 4.6, we know that that C′ is a locally

bounded k-category (see [21, 2.1], for more details on the construction of F eT,λ). We prove that C′ is connected.

By definition of eT , we have g
eT = eT for every g ∈ G. Hence the functor −

L

⊗
C′

eT is G-equivariant. On the other

hand, −
L

⊗
C′

eT is a triangle equivalence. Indeed, by 4.1, (d), and by classical arguments on derived equivalences

(see [14, III.2], for instance), this functor is full and faithful. Moreover its image contains the complexes g eTi (for
g ∈ G and i ∈ {1, . . . , n}). So 4.1, (b), implies that this functor is dense and, therefore, a triangle equivalence
Db(mod C′) → Db(mod C). In particular, C′ is connected.

Now we assume that T is a tilting A-module. Assertion (a) follows from 4.1, (d). Assertion (b) follows
from the fact that pdA(T ) 6 1 and Fλ : mod C → modA is exact. We prove assertion (c). Let P ∈ mod C be
indecomposable projective. Since FλP is projective, there exists an exact sequence 0 → FλP → X → Y → 0 in
modA with X,Y ∈ add(T ). By 4.2, the triangle FλP → X → Y → FλP [1] is isomorphic to the image under

Fλ of a triangle P → X ′ → Y ′ → P [1] where X ′, Y ′ ∈ add({ g eTi | g ∈ G , i ∈ {1, . . . , n}}). Since Fλ is exact,
the sequence 0 → P → X ′ → Y ′ → 0 is an exact sequence in mod C. �

Remark 4.9. Keep the hypotheses and notations of the preceding lemma. If G is finite and if T is a tilting
A-module, then the lemma expresses that

L

g,i

g
eTi is a tilting C-module.

Now we can prove Theorem C which was stated in the introduction.
Proof of Theorem C: By [14, Cor. 5.5], there exists a sequence of algebras:

A0 = kQ,A1 = EndA0(T (0)), . . . , Al = EndAl−1(T
(l−1)) = A

such that T (i) ∈ modAl−1 is tilting for every i. We prove the theorem by induction on l. If l = 0, then A = kQ.
For any connected Galois covering C → A with group G there exists a Galois covering of quivers Q′ → Q with
group G such that C ≃ kQ′ (see [20, Prop. 4.4]). Assume that l > 0 and the conclusion of the theorem
holds true for Al−1. Let C → A be a connected Galois covering with group G. Note that T (l−1) is a tilting
Aop-module. So the preceding lemma yields a connected Galois covering C′ → EndAop(T (l−1)) with group G
such that Db(mod Cop) and Db(mod C′) are triangle equivalent. On the other hand, Al−1 ≃ EndAop(T (l−1))op.
Therefore the induction hypothesis implies that Db(mod C′op) is triangle equivalent to Db(mod kQ′) where Q′ is
a quiver such that there exists a Galois covering of quivers Q′ → Q with group G. �

Remark 4.10. Let A be a finite dimensional algebra endowed with a (non necessarily free) G-action. Then:

(a) If the G-action on A is free, then the quotient algebra A/G is well-defined. The proof of Theorem C
shows that if A/G is tilted (or, more generally, piecewise hereditary), then so is A.

(b) It is proved in [10, Thm. 3] that if the order of G is invertible in k and if A is piecewise hereditary,
then so is the skew-group algebra A[G]. Recall that if G acts freely on A, then the algebras A[G] and
A/G are Morita equivalent (see [9, Thm.2.8]).

5 Correspondence between Galois coverings

We still assume that A is derived equivalent to a hereditary abelian category H such that
−→
KH is connected. Let

T ∈ Db(modA) be a tilting complex and B = EndDb(modA)(T ). In this section, we construct a correspondence
between the Galois coverings of A and those of B. This work has been done in [21] in the particular case where
T is a tilting A-module. In order to compare the Galois coverings of A and those of B, it is convenient to use
the notion of equivalent Galois covering. Given two Galois coverings F : C → A and F ′ : C′ → A, we say that F
and F ′ are equivalent if there exists a commutative diagram:

C
∼ //

F

��

C′

F ′

��
A ϕ

∼ // A
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where the horizontal arrows are isomorphisms and ϕ : A → A is an automorphism such that ϕ(x) = x for every
x ∈ ob(A).

Equivalence classes of Galois coverings of A associated to equivalence classes of Galois
coverings of B

In 4.8, we have associated a Galois covering F eT,λ of B to any Galois covering of A and to any data consisting

of isomorphisms (λi : Fλ eTi → Ti)i=1,...,n in Db(mod C). The following lemma shows that different choices for
these data give rise to equivalent Galois coverings.

Lemma 5.1. [21, § 2] Let F : C → A be a connected Galois covering with group G. Let T ∈ Db(modA) be
a tilting complex and T = T1 ⊕ . . .⊕ Tn be an indecomposable decomposition.

(a) Let (λi : Fλ eTi → Ti)i=1,...,n and (µi : Fλ bTi → Ti)i=1,...,n be isomorphisms in Db(modA) defining the Ga-

lois coverings F eT,λ : EndDb(mod C)(eT ) → EndDb(modA)(T ) and F bT,µ : EndDb(mod C)(bT ) → EndDb(modA)(T ),
respectively. Then F eT ,λ and F bT,µ are equivalent. We write [F ]T for the corresponding equivalence class
of Galois coverings of EndDb(modA)(T ).

(b) Let F ′ : C′ → A be a connected Galois covering with group G and equivalent to F . Then the equivalence
classes [F ]T and [F ′]T coincide.

Proof: In the case of tilting modules, (a) and (b) were proved in [21, Lem. 2.4] and [21, Lem. 2.5], respectively.
Using 2.3 and 4.7, it is easily checked that the same arguments apply to prove (a) and (b) in the present situation.�

In the sequel, we keep the notation [F ]T introduced in 5.1.

Galois coverings of A induced by Galois coverings of B

We now express any Galois covering of A as induced by a Galois covering of B as in 4.8. The tilting complex
T is naturally a complex of B −A-bimodules. Also, it defines a triangle equivalence:

−
L

⊗
B
X : Db(modB) → Db(modA) .

Fix a connected Galois covering F : C → A with group G, an indecomposable decomposition T = T1 ⊕
. . . ⊕ Tn and isomorphisms (µi : Fλ eTi

∼
−→ Ti)i=1,...,n. According to 4.8, these data define the Galois cover-

ing F eT ,µ : EndDb(mod C)( eT ) → B which we denote by F ′ : C′ → B for simplicity.

Lemma 5.2. The following diagram commutes up to an isomorphism of functors.

Db(mod C′)

F ′

λ

��

−
L

⊗
C′

eT
// Db(mod C)

Fλ

��
Db(modB)

−
L

⊗
B
T

// Db(modA) ,

Proof: Recall that Fλ : mod C → modA (or F ′
λ : mod C′ → modB) is equal to − ⊗

C

A (or to − ⊗
C′

B, respectively).

Since these two functors are exact and map projective modules to projective modules and the horizontal arrows
of the diagram are triangle equivalences (see 5.1), we deduce that:

1. The composition Db(mod C′)
F ′

λ−−→ Db(B)
−

L

⊗
B
T

−−−→ Db(modA) is isomorphic to −
L

⊗
C′

„

B ⊗
B
T

«

.

2. The composition Db(mod C′)

−
L

⊗
C′

eT

−−−→ Db(mod C)
Fλ−−→ Db(modA) is isomorphic to −

L

⊗
C′

„

eT ⊗
C

A

«

.

On the other hand, the isomorphisms µi : Fλ eTi
∼
−→ Ti (for i ∈ {1, . . . , n}) define an isomorphism B ⊗

B
T

∼
−→ eT ⊗

C

A of C′ − A-bimodules. This proves that the diagram commutes up to an isomorphism of functors. �

Since −
L

⊗
B
T is an equivalence, there exists an isomorphism ϕx : Xx

L

⊗
B
T → A(−, x) in Db(modA) with

Xx ∈ Db(modB) for every x ∈ ob(A). In particular,
L

x∈ob(A)

Xx is an indecomposable decomposition of a

tilting complex in Db(modB). Then by the preceding section, there exists an isomorphism νx : F ′
λ
eXx

∼
−→ Xx

in Db(modB) with eXx ∈ Db(mod C′) for every x ∈ ob(A). By 4.8, the datum (νx)x∈ob(A) defines a connected
Galois covering with group G:

F ′
eX,ν : EndDb(mod C′)( eX) → EndDb(modB)(X)

g
eXx 7→ Xx

g
eXx

u
−→ h

eXy 7→ Xx
νy F ′

λ(u) ν−1
x−−−−−−−−−→ Xy .
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On the other hand, the isomorphisms ϕx (for x ∈ ob(A)) define the following isomorphism of k-categories:

ρX,ϕ : EndDb(modB)(X) → A

Xx 7→ x

Xx
u
−→ Xy 7→

`

ϕy ◦ (u ⊗ T ) ◦ ϕ−1
x

´

(Idx) ∈ A(x, y) .

Thus, we have a connected Galois covering ρX,ϕ ◦ F ′
eX,ν : EndDb(mod C′)( eX) → A with group G which we denote

by F ′′. The following lemma relates F and F ′′.

Lemma 5.3. The Galois coverings F and F ′′ are equivalent.

Proof: We need to construct a commutative diagram:

EndDb(mod C′)( eX)
∼ //

F ′′

��

C

F

��
A

∼ // A

(D)

where the horizontal arrows are isomorphisms and the bottom horizontal isomorphism extends the identity map
on objects. For this purpose, we proceed in two steps.

Step 1: We express F as a functor between subcategories of Db(mod C) and Db(modA). Given x ∈ ob(C),
the A-module Fλ(C(−, x)) does depend only on F (x) (and not on x) because Fλ is G-invariant. Besides,
there is a canonical isomorphism ιx : Fλ(C(−, x))

∼
−→ A(−, F (x)) of A-modules induced by F : If y ∈ ob(A),

then (Fλ(C(−, x))) (y) =
L

Fy=F (y)

C(y′, x) and an element (uy′)y′ of this vector space is mapped by ιx to

P

y′
F (uy′) ∈ A(F (y), F (x)). Clearly, this isomorphism does depend only on F (x) (and not on x) whence the

notation ιx. Now, let PA and PC be the full subcategories of Db(modA) and Db(mod C) with object sets
{A(−, x) | x ∈ ob(A)} and {C(−, x) | x ∈ ob(C)}, respectively. Hence we have a commutative diagram:

C
∼ //

F

��

PC

��
A

∼ // PA

(D1)

where the unlabelled functors are as follows:

1. The functor C → PC is the following isomorphism:

C → PC

x ∈ ob(C) 7→ C(−, x)
u ∈ C(x, y) 7→ C(−, u) : C(−, x) → C(−, y) .

2. The functor A→ PA is the following isomorphism:

A → PA
x ∈ ob(A) 7→ A(−, x)

u ∈ A(x, y) 7→ A(−, u) : A(−, x) → A(−, y) .

3. The functor PC → PA is as follows:

PC → PA
C(−, x) 7→ A(−, F (x))

C(−, x)
u
−→ C(−, y) 7→ A(−, F (x))

ιy◦Fλ(u)◦ι−1
x−−−−−−−−−→ A(−, F (y)) .

(i)

In particular, PC → PA is a Galois covering with group G.
Step 2: We now relate F ′′ to the Galois covering PC → PA. We first construct an isomorphism EndDb(mod C′)( eX)

∼
−→

PC. Let Θ: F ′
λ(−)

L

⊗
B
T

∼
−→ Fλ(−

L

⊗
C′

eT ) be an isomorphism of functors (see 5.2). Let x ∈ ob(A). So we have a

composition of isomorphisms in Db(modA):

Fλ

„

eXx
L

⊗
C′

eT

«

Θ−1
fXx−−−→ F ′

λ
eXx

L

⊗
B
T

νx⊗T
−−−−→ Xx

L

⊗
B
T

ϕx−−→ A(−, x) .

Therefore, by 2.3, there exists an isomorphism ψx : eXx
L

⊗
C′

eT
∼
−→ C(−, L(x)) in Db(mod C) with L(x) ∈ F−1(x).

We deduce that the following is an isomorphism of k-categories because −
L

⊗
C′

eT is a G-equivariant functor (see

4.8):

EndDb(mod C′)( eX) → PC

g
eXx 7→ C(−, gL(x))

g
eXx

u
−→ h

eXy 7→ C(−, gL(x))
hψy◦(u⊗ eT )◦( gψx)−1

−−−−−−−−−−−−−−→ C(−, hL(y)) .

(ii)
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We now construct another isomorphism between A and PA. We have the following composition of isomorphisms
in Db(modA) which we denote by αx:

αx : A(−, x)
ϕ−1

x−−−→ Xx
L

⊗
B
T

(νx⊗T )−1

−−−−−−−→ F ′
λ
eXx

L

⊗
B
T

ΘfXx−−−→ Fλ

„

eXx
L

⊗
C′

eT

«

Fλ(ψx)
−−−−−→ Fλ(C(−, L(x))

ιx−→ A(−, x).

Note that αx : A(−, x)
∼
−→ A(−, x) is necessarily equal to the multiplication by a scalar in k∗ because A(−, x)

is an indecomposable projective A-module and A is piecewise hereditary. Therefore we have an isomorphism of
categories:

A → PA
x 7→ A(−, x)

u ∈ A(x, y) 7→ αy ◦A(−, u) ◦ α−1
x .

(iii)

Hence the horizontal arrows of the following diagram are isomorphisms:

EndDb(mod C′)( eX)

F ′′

��

(ii)
// PC

(i)

��
A

(iii)
// PA .

(D2)

We claim that this diagram commutes. The commutativity is clearly satisfied on objects. Let u : g
eXx → h

eXy
be a morphism in EndDb(mod C′)( eX). Denote by u1 : A(−, x) → A(−, y) the image of u under the composition
of (i) and (ii). Then:

u1 = ιy ◦ Fλ
“

hψy ◦ (u⊗ eT ) ◦ ( gψx)
−1
”

◦ ι−1
x

= ιy ◦ Fλ(ψy) ◦ Fλ
“

u⊗ eT
”

◦ (Fλ(ψx))
−1 ◦ ι−1

x because Fλ is G-invariant,

= ιy ◦ Fλ(ψy) ◦ Θ eXy
◦ (F ′

λ(u) ⊗ T ) ◦ Θ−1
eXx

◦ (Fλ(ψx))
−1 ◦ ι−1

x by definition of Θ,

= αy ◦ ϕy ◦ (νy ⊗ T ) ◦ (F ′
λ(u) ⊗ T ) ◦ (νx ⊗ T )−1 ◦ ϕ−1

x ◦ α−1
x by definition of αx and αy ,

= αy ◦ ϕy ◦
`

(νy ◦ F
′
λ(u) ◦ ν

−1
x ) ⊗ T

´

◦ ϕ−1
x ◦ α−1

x .

Now, let u2 ∈ A(x, y) be the image of u under F ′′, that is u2 =
`

ϕy ◦
`

(νy ◦ F
′
λ(u) ◦ ν

−1
x ) ⊗ T

´

◦ ϕ−1
x

´

(Idx).
Therefore A(−, u2) is equal to the morphism ϕy ◦

`

(νy ◦ F
′
λ(u) ◦ ν

−1
x ) ⊗ T

´

◦ ϕ−1
x : A(−, x) → A(−, y) of PA.

In particular, the image of u2 under (iii) coincides with u1. Therefore (D2) is commutative. Since (D1) also
commutes, we deduce that so does (D). Thus, F and F ′′ are equivalent. �

Correspondence between the Galois coverings of A and those of B

Proposition 5.4. Let A be an algebra derived equivalent to a hereditary abelian category H such that
−→
KH is

connected. Let T ∈ Db(modA) be a tilting complex, B = EndDb(modA)(T ) and G a group. With the notations
of 5.1, the map [F ] 7→ [F ]T is a well-defined bijection from the set of equivalence classes of connected Galois
coverings with group G of A to the set of equivalence classes of Galois coverings with group G of B.

Proof: Let GalA(G) be the set of equivalence classes of connected Galois coverings with group G of A. By 5.1,
there is a well-defined map:

γA : GalA(G) → GalB(G)
[F ] 7→ [F ]T .

We keep the notations Xx, ϕx (for x ∈ ob(A)) introduced after the proof of 5.2. Then we also have a well-defined
map:

γB : GalB(G) → GalEnd
Db(mod B)

(X)(G)

[F ] 7→ [F ]X

By 5.3, we know that γA is injective and γB is surjective. Therefore γA is bijective because A, T and B,X play
symmetric rôles. �

By 5.4, we have some information on the existence of a universal cover. Indeed, we have the following result.

Proposition 5.5. Let A be as in 5.4 and T ∈ Db(modA) a tilting complex. Assume that A admits a

universal cover eF : eC → A. Then EndDb(modA)(T ) admits a universal cover with group isomorphic to the one

of eF .

Proof: Fix an indecomposable decomposition T = T1 ⊕ . . . ⊕ Tn. Let B = EndDb(modA)(T ). So B is the full

subcategory of Db(modA) with objects T1, . . . , Tn. Let x0 ∈ ob(A) be a base-point for the category Gal(A, x0)

of pointed Galois coverings of A. We construct a (full and faithful) functor eF→ → Gal(B,T1). Recall that eF→

was defined in Section 1 and there is at most one morphism between two pointed Galois coverings. We need the
following data:
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1. For every i ∈ {1, . . . , n}, let eTi ∈ mod eC be such that eFλ eTi ≃ Ti. Therefore the k-categories B =

EndDb(modA)(T ) and EndDb(modA)(
n
L

i=1

Fλ eTi) are isomorphic. For simplicity, we assume that eFλ eTi = Ti for

every i.

2. If F ∈ eF→, there exists a unique morphism p : eF → F in Gal(A, x0). Since p is a Galois covering (see [20,

Prop. 3.4]), we set TFi = pλ eTi for every i.

Then:

(i) We have Ti = Fλ(T
F
i ) for every i ∈ {1, . . . , n} and F ∈ eF→. Indeed, there exists a unique morphism

p : eF → F , so that eFλ = Fλ ◦ pλ.

(ii) Let u : F → F ′ be a morphism in eF→. Let G be the group of F and G′ the group of F ′. Then u is a Galois

covering (see [20, Prop. 3.4]). Let p : eF → F and p′ : eF → F ′ be the unique morphisms in Gal(A,x0) from
eF to F and from eF to F ′, respectively. Then p′ = u ◦ p because of [20, Lem. 3.1] and because we are

dealing with pointed Galois coverings. Therefore uλ(T
F
i ) = σu(g)TF

′

i for every i ∈ {1, . . . , n} and every
g ∈ G. Here, σu : G → G′ is the unique (surjective) morphism of groups such that u ◦ g = σu(g) ◦ u for
every g ∈ G (see [20, Prop. 3.4]).

Now we can construct a functor eF→ → Gal(B,T1). Let F : (C, x) → (A,x0) be in eF→. Let G be the group
of F . By (i) and 4.8, we have a pointed Galois covering with group G induced by Fλ : Db(mod C) → Db(modA):

FT :

 

EndDb(mod C)(
L

g,i

gTFi ), TF1

!

→ (B,T1)

gTFi 7→ Ti
gTFi

f
−→ hTFj 7→ Ti

Fλ(f)
−−−−→ Tj .

So [FT ] = [F ]T . Thus, we have associated a pointed Galois covering with group G of B to any pointed Galois
covering with group G of A. We now associate a morphism of pointed Galois coverings of B to any morphism
of pointed Galois coverings of A. Let u : F → F ′ be a morphism in eF→ where F : (C, x) → (A,x0) and
F ′ : (C′, x′) → (A,x0) have groups G and G′, respectively. By (ii), we have a well-defined k-linear functor
induced by uλ : Db(mod C) → Db(mod C′):

uT :

 

EndDb(mod C)

 

L

g,i

gTFi

!

, TF1

!

→

 

EndDb(mod C′)

 

L

g′,i

g′TF
′

i

!

, TF
′

1

!

gTFi 7→ uλ(
gTFi ) = σu(g)TF

′

i

gTFi
f
−→ hTFj 7→ σu(g)TF

′

i

uλ(f)
−−−−→ σu(h)TF

′

j .

The equality uλ(
gTFi ) = σu(g)TF

′

i follows from the equality u ◦ g = σu(g) ◦ u. Also, uλ(T
F
1 ) = TF

′

1 . Since
F ′ ◦ u = F and FT , F

′
T and uT are defined as restrictions of Fλ, F

′
λ and uλ respectively, uT : FT → F ′

T is a
morphism in Gal(B,T1). Thus, to any morphism in eF→, we have associated a morphism in Gal(B,T1). We let
the reader check that the following is a functor:

Ψ: eF→ → Gal(B,T1)
F 7→ FT

F
u
−→ F ′ 7→ FT

uT−−→ F ′
T

Also, it is not difficult to prove that Ψ is full and faithful, although we shall not use this fact in the sequel. Remark
that the Galois covering FT lies in Ψ( eF )→ for every F ∈ eF→.

Now we can prove that Ψ( eF ) is a universal cover for B. Let F be a connected Galois covering of B. By

5.4, there exists a connected Galois covering F ′ of A such that [F ] = [F ′]T . Since eF is a universal cover of A,

the Galois covering F ′ of A is equivalent to some F ′′ ∈ eF→, that is [F ′] = [F ′′]. As noticed above, we have
[F ′′
T ] = [F ′′]T . Therefore [F ] = [F ′]T = [F ′′]T = [F ′′

T ], that is, F is equivalent to a Galois covering of B lying in

Ψ( eF )→. So Ψ( eF ) is a universal Galois covering of B. �

6 The main theorem and its corollary

In this section, we prove Theorem A and Corollary B. We assume that A is a connected algebra derived

equivalent to a hereditary abelian category H such that
−→
KH is connected.

Two particular cases: paths algebras and squid algebras
We first check that our main results hold for paths algebras and for squid algebras.

Lemma 6.1. Assume that A = kQ where Q is a finite connected quiver with no oriented cycle. Then
Theorem A and Corollary B hold true for A.
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Proof: Let eQ → Q be the universal Galois covering of quivers (see [23]). It follows from [20, Prop. 4.4] that

the induced Galois covering k eQ → kQ with group π1(Q) is a universal cover of A. Whence Theorem C. On the
other hand, HH1(kQ) = 0 if and only if Q is a tree (see [8]). Whence Corollary B. �

We now turn to the case of squid algebras. We refer the reader to [25] for more details on squid algebras. A
squid algebra over an algebraically closed field k is defined by the following data: An integer t > 2, a sequence
p = (p1, . . . , pt) of non negative integers and a sequence τ = (τ3, . . . , τt) of pairwise distinct non-zero elements
of k. With this data, the squid algebra S(t, p, τ ) is the k-algebra kQ/I where Q is the following quiver:

(1, 1) // . . . // (1, p1)

·
a1 //
a2

// ·

b1

>>}}}}}}}}} b2 //

bt

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/ (2, 1) // . . . // (2, p2)

...
...

(t, 1) // . . . // (t, pt)

and I is the ideal generated by the following relations:

b1a1 = b2a2 = 0, bia2 = τi bia1 for i = 3, . . . , t .

Using Happel’s long exact sequence ([15]), one can compute HH1(S(t, p, τ )):

dimk HH1(S(t, p, τ )) =

(

1 if t = 2

0 if t > 3.

Following [23], the bound quiver (Q, I) defines a Galois covering k eQ/eI → kQ/I with group isomorphic to Z if
t = 2 and with trivial group otherwise. One can easily check that this Galois covering is universal in the sense of
Theorem C. The above considerations give the following.

Lemma 6.2. Let A be a squid algebra. Then Theorem A and Corollary B hold true for A.

The general case
Using 5.5, 6.1 and 6.2 we can prove the two main results of this text.

Proof of Theorem A and Corollary B: Assume first that A is piecewise hereditary of type Q where Q is a
finite connected quiver with no oriented cycle. So there exists a tilting complex T ∈ Db(mod kQ) such that
A ≃ EndDb(mod kQ)(T ). By 5.5 and 6.1, the algebra A admits a universal Galois covering with group isomorphic
to the fundamental group of Q. In particular, A is simply connected if and only if Q is a tree. On the other
hand, Q is tree if and only if HH1(kQ) = 0 (by [8]) and HH1(kQ) ≃ HH1(A) (by [19]). Therefore A is simply
connected if and only if HH1(A) = 0, or, if and only if Q is a tree.

Assume now that A is not derived equivalent to Db(mod kQ) for any finite quiver Q. Then [16, Prop. 2.1,
Thm. 2.6] implies that there exists a squid algebra S = S(t, p, τ ) and a tilting complex T ∈ Db(modS) such
that A ≃ EndDb(mod S)(T ). By 5.5 and 6.2, the algebra A has a universal cover with group isomorphic to the
trivial group or to Z according to whether t > 3 or t = 2. In particular, A is simply connected if and only if t = 2,
that is, if and only if HH1(S) = 0 (see 6.2). Since HH1(S) ≃ HH1(A) (by [19]), we deduce that A is simply
connected if and only if HH1(A) = 0. �
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