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algebras

Patrick Le Meur ∗†

15th February 2007

Abstract

Let A a basic connected and finite dimensional piecewise hereditary k-algebra of type Q. We prove
that A admits a universal Galois covering with group π1(Q). As a corollary, we deduce that A is simply
connected if and only if Q is a tree, if and only if HH1(A) = 0. As an application, we prove that if C → A
is a Galois covering with group G then C is piecewise hereditary of type a Galois covering with group G
of Q.

Introduction

Let A be a basic connected finite dimensional algebra over an algebraically closed field k. In the study of
the category mod(A) of (right) A-modules, a Galois covering F : C → A allows one to reduce part of this
study to the one of mod(C), where C is a locally bounded k-category easier to handle than A is. This idea
is due to [7] and to [23] (see also [11]) and a special case appears when C is simply connected. Following
[1], we shall say that A is simply connected if and only if for any presentation kQ/I ≃ A with quiver
and admissible relations (see [5]), the fundamental group π1(Q, I) (see [22]) is trivial (without assuming
that A is triangular or not). Equivalently (see [24] and [21]), A is simply connected if and only if there
is no proper connected Galois covering C → A (where connected means that C is a connected locally
bounded k-category). The simple connectedness of an algebra has been studied a lot (see for example
[6], [3], [1]) and more particularly, there are many studies on the invariance of simple connectedness
under tilting. Indeed, for a (basic) tilting A-module T (of projective dimension 1), [2] proved that if A is
simply connected and of finite representation type, then EndA(T ) is simply connected; [1] proved that if
A = kQ with Q a finite euclidean quiver, then A is simply connected if and only if EndA(T ) is; the same
equivalence was proved in [4] under the assumption that EndA(T ) is tame; finally, the author proved in
[20] that if A = kQ with Q a finite quiver without oriented cycle and if EndA(T ) is simply connected,
then A is simply connected (i.e. Q is a tree).

In this text, we shall consider a more general problem than the invariance of simple connectedness
under tilting namely, the invariance of the Galois coverings of A under derived equivalence in the case A
is piecewise hereditary of type Q. Recall that A is called piecewise hereditary if there exists an abelian
hereditary category H such that Db(A) and Db(H) are equivalent. If moreover H = mod(kQ) with Q a
locally finite quiver without oriented cycle, then A is called of type Q. This problem has been studied
in [20] (for A not necessarily piecewise hereditary) where the following result was proved: if T is a basic
tilting A-module (of arbitrary finite projective dimension) such that T and A lie in the same connected

component of the Hasse diagram
−→
KA of basic tilting A-modules (see [15]), then A admits a connected

Galois covering with group G if and only if the same holds for EndA(T ), for any group G. When A is of

finite representation type,
−→
KA is connected. However, this is not the case in general. On the other hand,

one can define ([9]) the cluster category CA of A. This Krull-Schmidt category is triangulated ([18]) when
A is piecewise hereditary of type Q. In such a case, the basic tilting objects of CA (which comprise the
basic tilting A-modules of projective dimension 1) are the vertices of the tilting graph of CA which is

not oriented yet defined similarly to
−→
KA and which is always connected. Hence, one can expect that the

cited above correspondence of [20] holds for any tilting module of projective dimension 1 in the case A is
piecewise hereditary of type Q. In this text we prove the following main result.
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Theorem 1. Assume that A is piecewise hereditary of type Q. Then A admits a universal Galois covering
with group π1(Q) (in the sense of [21]).

The above theorem shows that for piecewise hereditary algebras, the data of the connected Galois
coverings is an invariant of the derived category. The universal factorisation property that we use here to
define the universal cover is weaker than the usual one (see Section 1). However, recall that a universal
cover exists for A in the following cases: A is of finite representation type ([10], the universal property
is the usual one in this case), A has no double bypass and k has characteristic zero ([21]), and A is
monomial, triangular and without multiple arrows ([19]). Hence, Theorem 1 gives a new class of algebras
for which a universal cover exists. From the cited above characterisation of simple connectedness in terms
of Galois coverings, we deduce the following corollary on the invariance of simple connectedness under
derived equivalence. This corollary generalises the cited above results of [1], [4] and [20]. In particular it
solves the conjecture of [4] which asserts that a tilted algebra is simply connected if and only if its type
is a tree:

Corollary 2. Assume that A is piecewise hereditary of type Q. The following are equivalent:

(a) A is simply connected,

(b) Q is a tree,

(c) HH1(A) = 0.

Notice also that Theorem 1 answers positively the problem of A. Skowronski ([25]) for piecewise
hereditary algebras of Q and which asks whether a tame algebra A is simply connected if and only if its
Hochschild cohomology group HH1(A) vanishes.

The techniques used to prove Theorem 1 allow us to prove the third main result of this text.

Theorem 3. Assume that A is piecewise hereditary of type Q. Let F : C → A be a connected Galois
covering with group G. Then C is piecewise hereditary of type Q′ such that there exists a Galois covering
of quivers Q′ → Q with group G.

Let us give some explanations to motivate the techniques used to prove Theorem 1. This proof is
based on ideas from [20]. The cited above comparison of loc. cit was obtained using hypotheses on
tilting A-modules. These hypotheses are satisfied for T = A, are preserved along a connected component

of
−→
KA, and are expressed using the push-down functor Fλ : mod(C) → mod(A) associated to a Galois

covering F : C → A. Here, we shall replace mod(C) and mod(A) by the cluster categories CC and CA

and
−→
KA (which not always connected) by the (connected) tilting graph of CA. Hence, we need a functor

Fλ : CC → CA to play the role of Fλ : mod(C) → mod(A). Unfortunately, the push-down functor is exact
whereas CC is not triangulated a priori (even though CA is). For this reason, we shall first work on
the triangulated hull MC and MA of CC and of CA respectively (see [18]) rather than on the cluster
categories themselves. In particular, we ought to construct a triangle functor Fλ : MC → MA. Let
us briefly recall the construction of MC (see [18] for more details). Denote by AC the dg category of
bounded complexes of finite dimensional projective C-modules and by Σ: AC → AC the shift functor on
complexes. If gldimA <∞, H0(AC) ≃ Db(A) and if θC : AC → AC is a dg functor commuting with Σ and
such that H0(θC) : H0(AC) → H0(AC) defines a Serre functor of Db(A), then one defines the dg category
BC := AC/(θC ◦ Σ−2). Then CC ≃ H0(BC) and H0(BC) is naturally a full subcategory of the derived
category D(BC) thanks to the Yoneda embedding H0(BC) →֒ D(BC). The triangulated hull MC of CC is
by definition the triangulated closure of H0(BC) in D(BC). Hence, in order to construct a triangle functor
Fλ : MC → MA induced by F : C → A, we ought to construct functors induced by F on AC and on BC.

The text is organised as follows. In Section 1 we recall some useful definitions. From Section 2 to Sec-
tion 5, we describe constructions associated to a Galois covering F : C → A and whose objective is to get
the triangle functor Fλ : MC → MA. In Section 2, we construct a triangle functor Fλ : Db(C) → Db(A)
and a dg functor Fλ : AC → AA. In Section 3, we construct dg functors θC : AC → AC and θA : AA → AA

defining Serre dualities on Db(C) and Db(A) and which are compatible with Fλ : AC → AA (more pre-
cisely: Fλ ◦ θC and θA ◦Fλ are isomorphic dg functors). In Section 4, we use the construction of Section 2
to construct an additive functor Fλ : CC → CA and we use the construction of Section 3 to construct a
dg functor Fλ : BC → BA. This allows us to construct the triangle functor Fλ : MC → MA. In Section 5
we prove a useful criterion for an object in MC to lie in CC. In Section 6 we prove some useful properties
on tilting A-modules with respect to Galois coverings of A when A is piecewise hereditary. These results
are expressed in terms of the module category mod(A) but use the results of all the preceding sections
by considering a tilting A-module as a tilting object of CA. Finally, in Section 6, we prove Theorem 1,
Corollary 2 and Theorem 3. As an application of Theorem 3 we establish a bijection between the set of
tilting objects of CA and the set of G-invariant tilting objects of CA′ when A′ → A is a Galois covering
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with finite group G such that A is piecewise hereditary of type some quiver Q.

I would like to express my gratitude to Bernhard Keller for his helpful explanations on his construction
of the triangulated hull in [18].

1 Basic definitions

Notations on k-categories. For a reminder on k-categories and on their properties (connected, locally
bounded), we refer the reader to [7]. All functors between k-categories are assumed to be k-linear. If C
is a k-category, ob(C) will denote the set of objects and yCx will denote the space of morphisms from x
to y. If A is a basic finite dimensional k-algebra, we consider A as a locally bounded k-category whose
set of objects is a complete set {e1, . . . , en} of primitive pairwise orthogonal idempotents and such that

ejAei = ejAei for any i, j.

Modules over k-categories (see [7]). If C is a k-category, a left (resp. a right) C-module is a k-
linear functor M : C →MOD(k) (resp. M : Cop → MOD(k)) where MOD(k) is the category of k-vector
spaces. Unless otherwise specified, we shall always consider C-modules as right C-modules. A morphism of
C-modules M → N is a k-linear natural transformation of functors. We denote by MOD(C) the category
of C-modules and by mod(C) the full subcategory of finite dimensional C-modules (M ∈ MOD(C) is
called locally finite dimensional if dimkM(x) < ∞ for any x ∈ ob(C) and it is called finite dimensional
if

∑
x∈ob(C)

dimkM(x) < ∞). A module is called basic if it is the direct sum of pairwise non isomorphic

indecomposable modules. If C′ is another k-category, a C − C′-bimodule is a left C × C′op-module. For
example, C is naturally a C − C-bimodule for the mapping (x, y) 7→ yCx for any (x, y) ∈ ob(C) × ob(Cop).
Notice that C is a locally finite dimensional C − C-bimodule if C is locally bounded. The usual duality
X 7→ Hom(X,k) is denoted by D : MOD(C) →MOD(Cop).

If C is locally bounded, proj(C) will denote the full subcategory of mod(C) of projective C-modules.
Recall that { xC? | x ∈ ob(C)} is a skeleton of the category of indecomposable projective C-modules.
Finally, D(MOD(C)) (resp. Db(C)) will denote the derived category of complexes of C-modules (resp. of
bounded complexes of finite dimensional C-modules. The shift functor will be denoted by Σ.

Galois coverings of k-categories. Let G be a group. A free G-category is a k-category E endowed
with a group morphism G→ Aut(E) such that G acts freely on Ob(E). In this case, there exists a (unique)
quotient E → E/G of E by G in the category of k-categories. A Galois covering of B with group G is by
definition a functor F : E → B endowed with a group morphism G→ Aut(F ) = {g ∈ Aut(E) | F ◦ g = F}

such that E is a free G-category, and such that the functor E/G
F
−→ B induced by F is an isomorphism.

Notice that if B and E are locally bounded and if gldim B <∞, then gldim E <∞. If E is connected, the
morphism G→ Aut(F ) is an isomorphism, so that F is a connected Galois covering with group Aut(F ).

Throughout this text, we shall write Gal(B) for the category whose objects are the connected Galois
coverings of B, such that a morphism u : F → F ′ from F : E → B to F ′ : E ′ → B is a morphism u : E → E ′

of k-categories such that F ′ ◦ u = F and with the composition defined in the obvious way.
If F : E → B and F ′ : E ′ → B are Galois coverings, F and F ′ are called equivalent (F ∼ F ′) if and

only if there exists a commutative diagram of k-categories:

E
∼

//

F

��

E ′

F ′

��

B
∼

// B

where the horizontal arrows are isomorphisms of k-categories and where the bottom horizontal arrow
extends the identity map on objects.

If B is a connected k-category, a universal cover of B (see [21]) is a connected Galois covering

F̃ : B̃ → B such that for any connected Galois covering F : E → B, there exists a commutative diagram
of k-categories:

B̃ //

F̃

��

E

F

��

B
∼

// B
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where the bottom horizontal arrow is an isomorphism extending the identity map on objects. Notice that
this is equivalent to say that any F ∈ Gal(B) is equivalent to some F ′ such that there exists a morphism

F̃ → F ′ in Gal(B).
Recall ([21]) that if F, F ′ ∈ Gal(B) and if u, u′ are morphisms F → F ′, then there exists a unique

g ∈ Aut(F ′) such that g ◦ u = u′. Recall also (loc. cit.) that to any morphism u : F → F ′ is associated a
unique (surjective) group morphism λu : Aut(F ) → Aut(F ′) such that:

(∀g ∈ Aut(F )) λu(g) ◦ u = u ◦ g

Covering properties on module categories. (see [7] and [23]). Let F : E → B be a Galois
covering with group G. The G-action on E gives rise to a G-action on MOD(E): if M ∈ MOD(E)
and g ∈ G, then gM := F ◦ g−1 ∈ MOD(E). Moreover, F defines two exact functors Fλ : MOD(E) →
MOD(B) (the push-down functor) and F. : MOD(B) → MOD(E) (the pull-up functor) as follows. For
any M ∈ MOD(B), F.M = M ◦ F . If M ∈ MOD(E), then (FλM) (x) =

⊕
x′∈F−1(x)M(x′), for any

x ∈ Ob(B). If u ∈ yEx, then the restriction of (FλM) (F (u)) to M(g.x) (g.x ∈ F−1(F (x)) = G.x) is
equal to M(g.u) : M(g.x) →M(g.y). The functors F. and Fλ are exact, they preserve projective modules,
Fλ(mod(C)) ⊆ mod(A), D ◦Fλ|mod(E) ≃ Fλ ◦D|mod(E) and Fλ is G-invariant (Fλ ◦ g = Fλ for any g ∈ G).
Moreover, F.FλM ≃

⊕
g∈G

gM for any M ∈ MOD(E). Finally, for any M,N ∈ MOD(E), the following

mappings induced by Fλ are bijective:

⊕

g∈G

HomE( gM,N) → HomB(FλM,FλN) and
⊕

g∈G

HomE(M, gN) → HomB(FλM,FλN) (⋆)

For more details and properties on F. and Fλ, we refer the reader to [7]. If X ∈ mod(E), the stabiliser
of X is the subgroup GX := {g ∈ G | gX ≃ X} of G. An indecomposable module X ∈ mod(B) is called

of the first kind w.r.t. F if and only if FλX̃ ≃ X for some X̃ ∈ mod(E) (necessarily indecomposable).

In such a case, one may choose X̃ such that FλX̃ = X. More generally, X ∈ mod(B) is called of the
first kind w.r.t. F if and only if it is the direct sum of indecomposable B-modules of the first kind w.r.t. F .

Covering properties on additive categories. Let E and B be additive categories. Let the group
G act on E and let θ : E → B be a G-invariant additive functor. We shall say that θ has the covering
property if for any M,N ∈ E , the mappings of (⋆) are bijective (after replacing Fλ by θ).

The cluster category (see [9] and [18]). If C is a locally bounded k-category, a Serre functor is
a triangle equivalence νC : Db(C) → Db(C) such that for any X, Y ∈ Db(C), there is an isomorphism
DHomDb(C)(X,Y ) ≃ HomDb(C)(Y, νC(X)) functorial in X and Y . If νC is a Serre functor, the cluster

category CC is the additive category Db(C)/(νCΣ−2) whose objects are those of Db(C), such that:

HomCC
=
⊕

n∈Z

Hom((νCΣ−2)nX,Y )

for any X,Y ∈ Db(C) and whose composition of morphisms is induced by the one in Db(C). Then CC

is Krull-Schmidt and an object is indecomposable in Db(C) if and only if it is in CC ([9, Prop. 1.2]).
Moreover, if C is piecewise hereditary, then ([18]) it is triangulated.

Triangulated hull for the cluster category. Let C be a locally bounded k-category. For a reminder
on dg categories, we refer the reader to [16]. Following loc. cit., we shall use the following notations for
a dg category A

1. H0(A) is the additive category whose objects are those of A and such that H0(A)(X,Y ) =
H0(A(X,Y )) for any objects X, Y . The construction H0 is functorial,

2. DifA is the dg category of dg A-modules. In particular, if X ∈ A, then X∧ will denote the dg A-
module such that X∧(Y ) = A(Y,X) and X∧(f)(g) = (−1)ndg◦f if f ∈ An(Y,Z) and g ∈ Ad(Z,X).
This way, we get the Yoneda (fully faithful) embedding A →֒ DifA, X 7→ X∧.

3. HA is the additive category H0(DifA). In particular, X 7→ X∧ defines the Yoneda embedding
H0A →֒ HA.

4. DA is the derived category of A, i.e. the triangulated category obtained from HA by formally
inverting the quasi-isomorphisms.
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Let AC be the dg category whose objects are the bounded complexes of finite dimensional projective
C-modules, whose space of morphisms of degree d from X to Y is

∏
n∈Z

HomC(Xn, Y n+d) and such that

the differential of f = (fn)n∈Z ∈ Ad
C(X,Y ) is (dn+d

Y ◦ fn − (−1)dfn+1 ◦ dnX)n∈Z. The shift functor Σ on
complexes naturally defines a dg functor Σ: AC → AC and the natural functor H0(AC) → Db(C) is an
equivalence of additive categories if gldimC <∞.

Let θC : AC → AC be a dg functor commuting with the shift and assume that gldim C <∞. We shall
say that θC induces a Serre functor if H0(θ) : H0(AA) → H0(AA) induces a Serre functor Db(C) → Db(C)
using the natural equivalence H0(AA) ≃ Db(C). In general, θC defines the dg category BC whose objects
are those of AC, such that

Bd(X,Y ) := colimp

⊕

n>0

Ad((θCΣ−2)nX, (θCΣ−2)pY )

for any X,Y ∈ AC and any d ∈ Z (the transition maps are induced by νCΣ−2). The differential is induced
by the one in AC and so is the composition. Assume that θC induces a Serre functor, then, the equivalence
H0(A)

∼
−→ Db(C) defines an equivalence of additive categories H0(BC)

∼
−→ CC. The triangulated closure

of H0(BC) in D(BC) is called the triangulated hull of CC and denoted by MC. It was shown in
[18] that if C is piecewise hereditary, then H0(BC) = MC (whence the triangulated structure on CC). To
summarise these constructions, we draw a commutative diagram:

H0(AC) //

∼

��

H0(BC)

∼

��

// MC

mod(C) // Db(C) // CC

Unless otherwise specified, any unlabelled functor (Db(C) → CC, H0(AC) ≃ Db(C), AC → BC ,
H0(BC) ≃ CC, H0(BC) →֒ D(BC)) will always denote the natural additive functor introduced in this
section.

G-actions on derived and cluster categories. Assume that C is a free G-category. Then the
G-action on mod(C) naturally defines a G-action on Db(C), on AC and on H0(AC). Assume that
νC : Db(C) → Db(C) is a G-equivariant Serre functor (i.e. a Serre functor such that νC ◦ g = g ◦ νC
for any g ∈ G). Then, the G-action on Db(C) naturally defines a G-action on CC. If θC : AC → AC is a
G-equivariant dg functor inducing a Serre functor on Db(C), then the G-action on AC naturally defines a
G-action on BC, on H0(BC), on D(BC) and on MC.

Tilting modules. Let A be a basic finite dimensional k-algebra. A tilting A-module (of projective
dimension at most one) is a module T ∈ mod(A) verifying the following conditions (see [8], and [14]):

(T1) T has projective dimension at most one,

(T2) Ext1A(T, T ) = 0 (i.e. T is selforthogonal),

(T3) there is an exact sequence in mod(A): 0 → A→ T1 → T2 → 0 with T1, T2 ∈ add(T ).

Recall that if S is a set of objects in an additive category, then add(S) is the smallest full suncategory
containing S, stable under (finite) direct sums and under direct summands. For simplicity, all tilting
modules will be assumed to be basic. Also, recall ([8]) that if T is tilting A-module, then, T is naturally
a tilting EndA(T )op-module and that A and EndEndA(T )op (T )op are isomorphic k-categories.

Tilting objects in the cluster category. Let C be a locally bounded k-category. The shift functor
Σ on Db(C) naturally defines an automorphism of CC still denoted by Σ. Following [9], we shall write
Ext1CC

(X,Y ) instead of HomCC
(X,ΣY ). A set S of objects of CC is called exceptional is Ext1CC

(X,Y )
for any X,Y ∈ S. It is called maximal exceptional, if it is exceptional and if X ∈ CC is isomorphic to
an object of S as soon as S ∪ {X} is exceptional. Finally, it is called tilting if it is maximal exceptional
and if disctinct objects in S are not isomorphic. Assume that C = A is a basic finite dimensional piecewise
hereditary k-algebra, then ([9, Thm. 3.3]) any tilting set of CA has exactly n elements where n is the
rank of the Grothendieck group of A. With this setting, a tilting object of CA is an object of the form
n⊕
i=1

Ti where {T1, . . . , Tn} is a tilting set (hence, a tilting object is always basic). Moreover, if T is a

tilting A-module, then T is also a tilting object of CA. The isomorphism classes of tilting objects of CA
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are the vertices of a connected unoriented graph (see [9]) such that there is an edge T − T ′ if and only if
T = X

⊕
T and T ′ = Y

⊕
T with X,Y indecomposable. In such a case, there exists triangles in CA:

X → B → Y → ΣX

Y → B′ → X → ΣY

where X → B and Y → B′ (resp. B → Y and B′ → X) are minimal left (resp. right) add(T )-
approximation.

Comparison of Galois coverings (see [20]). Let A and B be basic connected finite dimensional
k-algebras and let G be a group. Let T = T1

⊕
. . .
⊕
Tn be a basic tilting A-module (with Ti indecom-

posable), let B = EndA(T ). Hence, B is a k-category with set of objects {T1, . . . , Tn} and with space
of morphisms from Ti to Tj equal to HomA(Ti, Tj). We recall here the comparison between Gal(A) and
Gal(B) obtained in [20]. Assume that the following conditions hold and that so do the corresponding
conditions hold for T viewed as a Bop-module:

(H1) T is of the first kind w.r.t. any connected Galois covering of A,

(H2) if X is an indecomposable direct summand of T , if F : C → A is a connected Galois covering and if

X̃ ∈ mod(C) is such that FλX̃ ≃ X, then GX̃ := {g ∈ G | gX̃ ≃ X} = 1,

(H3) for any automorphism ψ : A→ A extending the identity map on objects, we have ψ.T ≃ T .

For every connected Galois covering F : C → A with group G and every i, fix TFi ∈ mod(C) such that
FλT

F
i = Ti. This defines a connected Galois covering FT : EndC(

⊕
g∈G,i

TFi ) → B with group G as follows:

1. EndC(
⊕
g∈G,i

TFi ) is the k-category whose set of objects is { gTFi | g ∈ G, i ∈ {1, . . . , n}}, whose space

of morphisms from gTFi to hTFj is equal to HomC( gTFi ,
hTFj ) and whose composition of morphisms

is induced the one in mod(C),

2. FT ( gTFi ) = Ti for every g ∈ G, i ∈ {1, . . . , n},

3. FT (f) = Fλf for every f ∈ HomC( gTFi ,
hTFj ).

With this construction, the mapping F 7→ FT defines a bijective mapping from the set of equivalence
classes of connected Galois coverings with group G of A to the set of equivalence classes of connected
Galois coverings with group G of B, for any group G.

Throughout this text, all the considered locally bounded k-categories are supposed to be of finite
global dimension.

2 Covering properties on the derived category

Let F : C → A be a Galois covering with group G and with C and A locally bounded. The aim of this
section is to extend Fλ : mod(C) → mod(A) to a triangle functor Fλ : Db(A) → Db(A) and to obtain
similar features in terms of dg functors AC → AA and additive functors H0(AC) → H0(AA). We begin
with the following useful lemma.

Lemma 2.1. There exists a triangle functor Fλ : Db(C) → Db(A) such that the following diagram com-
mutes:

mod(C) //

Fλ

��

Db(C)

Fλ

��

mod(A) // Db(A)

(D1)

Moreover, Fλ : Db(C) → Db(A) has the covering property.

Proof: The first assertion is due to the fact that Fλ : mod(C) → mod(A) is an exact functor. On the
other hand, if we denote by Kb(?) the homotopy category of bounded complexes, then, it is easily checked
that Fλ : Kb(proj(C)) → Kb(proj(A)) has the covering property (recall that Fλ : mod(C) → mod(A) sends
projective modules to projective modules). Since A and C have finite global dimension, we get the last
assertion. �

6



Since Fλ : mod(C) → mod(A) sends projective C-modules to projective A-modules, hence, it naturally
defines a dg functor Fλ : AC → AA commuting with the shift and such that the following diagram
commutes:

proj(C) //

Fλ

��

AC

Fλ

��
proj(A) // AA

The following lemma is a direct consequence of the fact that Fλ : mod(C) → mod(A) has the covering
property and of the fact that we are dealing with bounded complexes.

Lemma 2.2. Fλ : AC → AA and H0(Fλ) : H0(AC) → H0(AA) have the covering property. Moreover,
the following diagram is commutative:

H0(AC)

H0(Fλ)

��

∼
// Db(C)

Fλ

��

H0(AA)
∼

// Db(A)

(D2)

For short, we shall write Fλ : H0(AC) → H0(AA) instead of H0(Fλ) : H0(AC) → H0(AA).

3 Dg functors inducing Serre functors and compatible with push-down

functors

Let F : C → A be a Galois covering with group G and with C and A locally bounded. The aim of this
section is to construct dg functors θC : AC → AC and θA : AA → AA and triangle functors νA : Db(A) →
Db(A) and νC : Db(C) → Db(C) with the following requirements:

1. θC and νC are G-equivariant,

2. νA and νC are Serre functors,

3. θA induces νA and θC induces νC,

4. θA ◦ Fλ ≃ Fλ ◦ θC as dg functors AC → AA.

3.1 The G-equivariant dg functor θC and the G-equivariant Serre functor νC

Since G acts on C, it also acts on C × Cop via (x, y) 7→ (gx, gy), for any g ∈ G. This defines a G-action on
C − C-bimodules as follows: gX(x, y) = X(g−1x, g−1y) for X a C − C-bimodule, g ∈ G and x, y ∈ ob(C).

Recall that any Serre functor νC : Db(C) → Db(C) is isomorphic to the total derived functor ?
L

⊗
C
X where

p : X ։ D(C) is any projective resolution of the locally finite dimensional C − C-bimodule D(C). The
following lemma proves that X may be chosen to be G-invariant.

Lemma 3.1. There exists a projective resolution p : X ։ D(C) of C − C-bimodule where X is a (right
bounded) complex of locally finite dimensional projective C−C-bimodules such that gX = X for any g ∈ G.

Proof: The category of locally finite dimensional C − C-bimodules X such that gX = X for any g ∈ G
is an abelian category and contains C and C × Cop. Whence the lemma. �

Let θC be the dg functor ? ⊗
C
X : AC → AC where X is as in Lemma 3.1. Also, let νC : Db(C) → Db(C)

be the triangle functor ?
L

⊗
C
X. By construction, the following diagram is commutative:

H0(AC)
∼

//

H0(θC)

��

Db(C)

νC

��

H0(AC)
∼

// Db(C)

(D3)

Lemma 3.2. νC is a G-equivariant Serre functor and θC is G-equivariant and commutes with the shift.
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Proof: By construction, νC is a Serre functor. For short, let us denote by A the dg category whose
objects are the bounded complexes of C-modules, whose space of morphisms X → Y of degree d are
the families (fn : Xn → Y n+d)n∈Z of morphisms of C-modules and whose differential of morphisms is
induced by the differential of the complexes. Hence, we have a dg functor ? ⊗

C
X : A → A. The G-action

on mod(C) naturally defines a G-action on A and in order to prove the lemma, it suffices to prove that
? ⊗

C
X : A → A is G-equivariant. Let M be a bounded complex of C-modules and let g ∈ G. Then, for

any x ∈ ob(C), the G-equivariance of X implies (with the notation ⊗
y
:= ⊗

yCy

):

g

(
M ⊗

C
X

)
(x) =

⊕
y∈ob(C)

M(y) ⊗
y
X(y, g−1x) =

⊕
y∈ob(C)

M(y) ⊗
y
X(gy, x)

=
⊕

y∈ob(C)

M(y) ⊗
g.y

X(gy, x) =
⊕

y∈ob(C)

M(g−1.y) ⊗
y
X(y, x)

=

(
gM ⊗

C
X

)
(x)

The same arguments show that if u ∈ yCx, then g

(
M ⊗

C
X

)
(u) =

(
gM ⊗

C
X

)
(u) and that for any

f ∈ Ad(M,N), then g

(
f ⊗

C
X

)
= gf ⊗

C
X. Hence ? ⊗

C
X : A → A is G-equivariant. Whence the lemma.

�

3.2 The dg functor θA compatible with Fλ and θC

Now we are going to construct the dg functor θA : AA → AA such that Fλ ◦ θC ≃ θA ◦ Fλ as dg functors
from AC to AA. In this purpose, we introduce some useful data.

Fix L : ob(A) → ob(C) a section of F : ob(C) → ob(A) and let PC be the full subcategory of proj(C)
such that ob(PC) = { g

L(x)C? | g ∈ G and x ∈ ob(A)}. Hence:

- add(PC) is a skeleton of proj(C),

- ob(PC) is G-stable (i.e. gX ∈ ob(PC) if g ∈ G and X ∈ ob(PC)).

Let PA be the full subcategory of proj(A) such that ob(PA) = {FλX | X ∈ ob(PC)}. One checks the
following facts easily:

- C and PC (resp. A and PA) are isomorphic k-categories, more precisely, there exists a commutative
diagram:

C
∼

//

F

��

PC

Fλ

��

A
∼

// PA

where Fλ : PC → PA is the restriction of Fλ : mod(C) → mod(A), where C → PC is gL(x) 7→ g

L(x)C?

and where A→ PA is x 7→ Fλ L(x)C?,s

- Fλ : PC → PA is a Galois covering with group G.

- add(PA) is a skeleton of proj(A).

Throughout this subsection, we shall write A′
A (resp. A′

C) for the full dg subcategory of AA (resp. of
AC) of bounded complexes in add(PA) (resp. add(PC)).

In order to construct θA we will use a formal construction presented in the following lemma. This
construction will be used later in order to prove that θA induces a Serre functor. In this lemma, we
consider PA as a full dg subcategory (resp. as a full additive subcategory) of AA (resp. H0(AA)).

Lemma 3.3. Let ϕ : PA → AA (resp. ϕ : PA → H0(AA)) be a dg functor (resp. an additive functor).
Then, there exists a dg functor ϕ : A′

A → AA (resp. an additive functor ϕ : H0(A′
A) → H0(AA)) com-

muting with Σ and extending ϕ. The construction of ϕ is such that if ϕ is the restriction to PA of ? ⊗
A
Y

(resp. of H0( ? ⊗
A
Y )) for some complex Y of locally finite dimensional projective A− A-bimodules, then

ϕ is the restriction of ? ⊗
A
Y to A′

A (resp. of H0( ? ⊗
A
Y ) to H0(A′

A)).
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Proof: We shall prove the lemma for ϕ : PA → AA, the proof for the second situation is similar. First, ϕ
naturally extends to a dg functor ϕ : add(PA) → AA. Let M be a complex in add(PA). We define ϕ(M)
as follows:

1. ϕ(M)n =
⊕
i∈Z

ϕ(M i)n−i, for any n ∈ Z,

2. dnϕ(M) : ϕ(M)n → ϕ(M)n+1 is the morphism whose restriction to ϕ(M i)n−i (i ∈ Z) is equal to:

ϕ(M i)n−i


(−1)idn−i

ϕ(Mi)

ϕ(diM )n−i




−−−−−−−−−−−→ ϕ(M i)n+1−i ⊕ ϕ(M i+1)n−i

It is a basic exercise on complexes to check that ϕ(M) ∈ AA.
Let u ∈ A0(M,N) where M,N are bounded complexes in add(PA). We define ϕ(u) : ϕ(M) →

ϕ(N) to be the morphism of graded C-modules defined as follows. For any n ∈ Z, the restriction of
ϕ(u)n :

⊕
i∈Z

ϕ(M i)n−i →
⊕
i∈Z

ϕ(N i)n−i to ϕ(M i)n−i is equal to ϕ(ui)n−i : ϕ(M i)n−i → ϕ(N i)n−i. Hence

ϕ(u) ∈ A0(ϕ(M), ϕ(N)).
Let u ∈ Ad(M,N) where M,N are complexes in add(PA). Then u ∈ A0(M,ΣdN). Thus ϕ(u), as

defined above, lies in A0(M,ΣdN) = Ad(M,N). Hence, we have defined a graded functor ϕ : A′
A → AA

which extends ϕ. Moreover, the following facts are easily verified:

1. ϕ is a dg functor and commutes with the shift,

2. if ϕ is the restriction of ? ⊗
A
Y to PA, then ϕ is the restriction of ? ⊗

A
Y to A′

A.

�

Using the fact that Fλ : PC → PA is a Galois covering, we are able to exhibit a dg functor θA : AA → AA

compatible with θC:

Lemma 3.4. There exists a dg functor θA : AA → AA which commutes with the shift and such that the
following diagram commutes up to isomorphism of dg functors:

AC

Fλ

��

θC
// AC

Fλ

��

AA
θA

// AA

(D4)

Proof: First, let us define θA on PA. Since θC : AC → AC (resp. Fλ : AC → AA) is G-equivariant (resp.
G-invariant) and since Fλ : PC → PA is a Galois covering with group G, we infer that there exists a
graded functor θA : add(PA) → AA such that the following diagram is commutative:

add(PC)

Fλ

��

θC
// AC

Fλ

��
add(PA)

θA
// AA

Notice that if f = Fλ(h) with h a morphism in PC, then d(θA(f)) = d(Fλ(θC)(h)) = 0 because Fλ : AC →
AA and θC are dg functors. Moreover, since Fλ : PC → PA is a Galois covering, we also know that
any morphism in PA is the sum of (finitely many) morphisms of the form Fλ(h). This proves that
θA : PA → AA is a dg functor. From Lemma 3.3 applied to ϕ = θA, we deduce that θA is the restriction
of a dg functor θA : A′

A → AA commuting with the shift. Also, Lemma 3.3 applied to ϕ equal to the
restriction of θC to PC, proves that the preceding commutative diagram extends to the following one:

A′
C

θC
//

Fλ

��

AC

Fλ

��

A′
A

θA
// AA

9



Recall that the embedding add(PC) →֒ proj(C) (resp. add(PA) →֒ proj(A)) is an equivalence of additive
categories. Thus, the embedding A′

C →֒ AC (resp. A′
A →֒ AA) is an equivalence of dg categories. There-

fore, if AA
∼
−→ A′

A is an inverse equivalence of A′
A →֒ AA, then the composition AA

∼
−→ A′

A

θA−−→ AA fits
the lemma. �

3.3 The Serre functor νA induced by θA

Let us fix once and for all the section a dg functor θA as in Lemma 3.4 and let νA be a triangle functor
Db(A) → Db(A) such that the following diagram commutes:

H0(AA)
∼

//

H0(θA)

��

Db(A)

νA

��

H0(AA)
∼

// Db(A)

(D5)

We shall keep the notations (PA, PC, A′
A and A′

C) introduced in the preceding subsection. In order
to prove that νA is a Serre functor, we first prove the following lemma.

Lemma 3.5. There exists an isomorphism of functors PC → mod(A):

Fλ(?) ⊗
A
DA ≃ Fλ(? ⊗

C
DC)

Proof: We shall use some well known isomorphisms of functors. Hence, the necessary verifications are
left to the reader. The two following functors from C to mod(C) are isomorphic:

x 7→ xC? ⊗
C
DC and x 7→ D( ?Cx)

Moreover, the following functors from C to mod(A) are isomorphic:

x 7→ FλD( ?Cx) and x 7→ D( ?AF (x))

From these two isomorphisms, we deduce that the following functors from C to mod(A) are isomorphic:

x 7→ Fλ( xC? ⊗
C
DC) and x 7→ D( ?AF (x)) (i)

On the other hand, the following functors from C to mod(A) are isomorphic:

x 7→ Fλ xC? and x 7→ F (x)A?

Moreover, we have an isomorphism between the following functors from the full subcategory { xA? | x ∈
ob(A)} of mod(A) to mod(A):

xA? 7→ xA? ⊗
A
DA and x 7→ D( ?Ax)

From these two isomorphisms, we deduce that the following functors from C to mod(A) are isomorphic:

x 7→ Fλ xC? ⊗
A
DA and x 7→ D( ?AF (x)) (ii)

From (i), (ii) and from the isomorphism x 7→ xC? from C to PC we deduce the announced isomorphism.
�

Lemma 3.6. νA : Db(A) → Db(A) is a Serre functor.

Proof: Recall from Lemma 3.1 that p : X ։ DC is a projective resolution of DC viewed as a C − C-
bimodule and that θC = ? ⊗

C
X : AC → AC . Let us fix q : Y ։ DA a projective resolution of D) viewed

as an A− A-bimodule so that ?
L

⊗
A
Y : Db(A) → Db(A) is a Serre functor. In order to prove that νA and

?
L

⊗
A
Y are isomorphic, we shall first construct a morphism ψ : H0(θA) → H0( ? ⊗

A
Y ) between functors

from H0(AA) to H0(AA). In this purpose, we shall proceed in two steps: first construct a natural

10



transformation from PA →֒ H0(AA)
H0(θA)
−−−−−→ H0(AA) to PA →֒ H0(AA)

H0( ?⊗
A
Y )

−−−−−−→ H0(AA), then, extend
this natural transformation to H0(AA) using the construction of θA. Thanks to Lemma 3.5, and because
q : Y ։ DA is a projective resolution, we have a natural transformation ψ where the unlabelled arrows
are the natural inclusions:

ψ

��

PC
// H0(AC)

H0(θC)
// H0(AC)

Fλ
// H0(AA)

PC
// H0(AA)

Fλ

// H0(AA)
H0( ?⊗

A
Y )

// H0(AA)

Notice that since θC = ? ⊗
C
X, since p : X ։ DC and q : Y ։ DA are projective resolutions, and

since Fλ(?) ⊗
A
DA ≃ Fλ(? ⊗

C
DC) as functors PC → mod(A), the above natural transformation is an

isomorphism of functors.
Using the fact that the dg functors θA ◦ Fλ and Fλ ◦ θC are isomorphic, we deduce the following

isomorphism of functors, still denoted by ψ, notice that two involved functors are G-invariant:

ψ

��

PC

Fλ
// PA // H0(AA)

H0(θA)
// H0(AA)

PC

Fλ
// PA // H0(AA)

H0( ?⊗
A
Y )

// H0(AA)

Since Fλ : PC → PA is a Galois covering, this defines the following isomorphism of functors:

ψ

��

add(PA) // H0(AA)
H0(θA)

// H0(AA)

add(PA) // H0(AA)
H0( ?⊗

A
Y )

// H0(AA)

Recall from the proof of Lemma 3.4, that A′
A

θA−−→ AA is constructed starting from its restriction to

add(PA) and that if one performs this construction to the restriction of AA

?⊗
A
Y

−−−→ AA to add(PA), then,
one gets the restriction of this dg functor to A′

A. Therefore, the above isomorphism of functors gives rise
to the follwing natural transformation, where the unlabelled arrows are the natural inclusions:

ψ

��

H0(A′
A) // H0(AA)

H0(θA)
// H0(AA)

H0(A′
A) // H0(AA)

H0(?⊗
A
Y )

// H0(AA)

Since the embedding A′
A →֒ AA and the functor H0(A) → Db(A) are equivalences, we deduce a nat-

ural transformation ψ : νA → ?
L

⊗
A
Y between triangle functors Db(A) → Db(A). Moreover, ψM is an

isomorphism for any M ∈ PA as observed above. Since the smallest triangulated subcategory of Db(A)
containing PA is Db(A) (recall that gldim A < ∞ and that add(PA) →֒ proj(A) is an equivalence), we

deduce that ψ : νA → ?
L

⊗
A
Y is an isomorphism. So νA is a Serre functor. �

4 Covering properties on the cluster category and on the triangulated

hull

Let F : C → A be a Galois covering with group G and with C and A locally bounded. Let us fix dg
functors θA, θC and Serre functors νA, νC as obtained in the preceding section.
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4.1 The additive functor Fλ : CC → CA

We have a G-equivariant Serre functor νC : Db(C) → Db(C), hence G acts naturally on CC (see Section 1).
The following lemma shows the compatibility between Fλ : Db(C) → Db(A) and νC : Db(C) → Db(C).

Lemma 4.1. Fλ ◦ νC ≃ νA ◦ Fλ.

Proof: From (D4), we deduce a commutative diagram of additive categories

H0(AC)

Fλ

��

H0(θC)
// H0(AC)

Fλ

��

H0(AA)
H0(θA)

// H0(AA)

This diagram together with (D3) and (D5) imply the lemma. �

Tanks to Lemma 4.1, we deduce that there exists an additive functor Fλ : CC → CA such that the
following diagram commutes:

Db(C) //

Fλ

��

CC

Fλ

��

Db(A) // CA

(D6)

Lemma 4.2. Fλ : CC → CA has the covering property.

Proof: Let X,Y ∈ CC. Then, the mapping ι :
⊕
g∈G

HomCC
( gX,Y ) → HomCA(FλX,FλY ) induced by

Fλ is the direct sum of the mappings:

ιn :
⊕

g∈G

HomDb(C)((νCΣ−2)n gX,Y ) → HomDb(A)((νAΣ−2)nFλX,FλY )

for n ∈ Z. Using the isomorphism νA◦Fλ ≃ Fλ◦νC of Lemma 4.1, using the fact that Fλ : Db(C) → Db(A)
has the covering property (see Lemma 2.1) and using the G-equivariance of νC (and the one of Σ) , we
deduce that ιn is an isomorphism because the following mapping is an isomorphism:

⊕

g∈G

HomDb(C)(
g
(
(νCΣ−2)nX

)
, Y ) → HomDb(A)(Fλ

(
(νCΣ−2)nX

)
, Y )

Hence, ι is a bijective mapping. With similar arguments, we also prove that the mapping
⊕
g∈G

HomCC
(X, gY ) →

HomCA(FλX,FλY ) induced by Fλ is bijective. �

The preceding lemma gives an additive functor CC → CA with the covering property. On the other
hand, thanks to (D4) we know that there exists a dg functor Fλ : BC → BA such that the following
diagram commutes:

AC
//

Fλ

��

BC

Fλ

��

AA
// BA

Hence, the following diagram commutes also:

H0(AC) //

Fλ

��

H0(BC)

Fλ

��

H0(AA) // H0(BA)

(D7)

For short, we shall write Fλ : H0(BC) → H0(BA) instead of H0(Fλ) : H0(BC) → H0(BA).

Lemma 4.3. Fλ : BC → BA and Fλ : H0(BC) → H0(BA) have the covering property.
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Proof: Using arguments similar to those of the proof of Lemma 4.2, we prove that Fλ : BC → BA has
the covering property. Using basic linear algebra arguments one infers that H0(Fλ) : H0(BC) → H0(BA)
also has the covering property. �

The following lemma shows the compatibility between Fλ : H0(BC) → H0(BA) and Fλ : CC → CA.

Lemma 4.4. The following diagram commutes:

H0(BC)
∼

//

Fλ

��

CC

Fλ

��

H0(BA)
∼

// CA

(D8)

Proof: Let us consider the following diagram:

H0(AC) //

Fλ

��

$$IIIIIIIII
H0(BC)

##GG
GG

GG
GG

G

Fλ

��

Db(C) //

Fλ

��

CC

Fλ

��

H0(AA) //

$$IIIIIIIII
H0(BA)

##GG
GG

GG
GG

G

Db(A) // CA

Thanks to (D2), (D6) and (D7), we know that all the faces of the above diagram commute excepted the
one of the lemma. By construction, H0(AC) → H0(BC) extends the identity map on objects and any
morphism in H0(BC) is the sum of (finitely many) images of morphisms in H0(AC). This proves the
announced commutativity. �

4.2 The triangle functor Fλ : MC → MA

The dg functor Fλ : BC → BA defines a triangle functor D(BC) → D(BA) which we will denote Fλ for
simplicity. Since Fλ : BC → BA is a dg functor, we have the following commutative diagram:

H0(BC) //

Fλ

��

D(BC)

Fλ

��

H0(BA) // D(BA)

(D9)

Also, recall that MC (resp. MA) is the triangle closure of H0(BC) (resp. of H0(BA)) in D(BC) (resp.
in D(BA)). Since Fλ : D(BC) → D(BA) is a triangle functor, we deduce that there exists a triangle functor
Fλ : MC → MA such that the following diagram commutes:

H0(BC) //

Fλ

��

MC

Fλ

��

H0(BA) // MA

(D10)

Lemma 4.5. Fλ : MC → MA has the covering property.

Proof: For X,Y ∈ D(BC), let us denote by ιX,Y the mapping:

⊕

g∈G

HomD(BC)(
gX,Y ) → HomD(BA)(FλX,FλY )
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induced by Fλ. Obviously ιX,Y is an isomorphism if and only if ιΣX,Y is an isomorphism, if and only if
ιX,ΣY is an isomorphism. Moreover, using the fact that Hom-functors are cohomological, we infer that
if X → X ′ → X ′′ → ΣX is a triangle in D(BC), then ιX,Y , ιX′,Y and ιX′′,Y are all isomorphisms as
soon as two of them are isomorphisms. Finally, Lemma 4.3 implies that ιX,Y is an isomorphism for any
X,Y ∈ H0(BC). These three arguments prove that ιX,Y is an isomorphism for any X,Y ∈ MC. Using
similar arguments, one also proves that

⊕
g∈G

HomD(BC)(X,
gY ) → HomD(BA)(FλX,FλY ) is an isomor-

phism for any X,Y ∈ MC. �

To summarise the constructions made in this section and in the two preceding ones, we deduce from
(D1), (D2), (D6), (D7), (D8) and (D10) that we have the following commutative diagram:

H0(AC)

∼

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fλ

��

// H0(BC)

∼

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fλ

��

// MC

Fλ

��

H0(AA)

∼

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

// H0(BA)

∼

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

// MA

mod(C) //

Fλ

��

Db(C) //

Fλ

��

CC

Fλ

��

mod(A) // Db(A) // CA

(D)

where:

1. the horizontal and oblique arrows are the natural ones,

2. G acts on all the categories relative to C,

3. every vertical arrow has the covering property for the corresponding G-action,

4. Fλ : Db(C) → Db(A) and Fλ : MC → MA are triangle functors.

From now on, whenever A is a locally bounded k-category, we shall identify Db(A) and H0(AA), CA
and H0(BA) and we shall denote by X 7→ X∧ the fully faithful additive functor CA →֒ MA induced by
these identifications and by the Yoneda embedding H0(BA) →֒ MA. In particular, MA is generated, as a
triangulated category, by CA. Also, whenever F : C → A is a Galois covering, we will always assume that
we are given the Serre functors νA and νC and the dg functors θA and θC as constructed in the previous
section, so that (D) holds.

5 A criterion on representability of objects in the triangulated hull

Let A be a locally bounded k-category. In the present section, we aim at presenting a useful criterion for
an object X ∈ MA to be of the form M∧ with M ∈ CA. We shall denote by τA the Auslander-Reiten
translate on Db(A). Recall ([12]) that τA : Db(A) → Db(A) is a triangle equivalence isomorphic to νAΣ−1

for any Serre functor νA and that τA extends the Auslander-Reiten translation on mod(A)\proj(A).
Recall also that if X ∈ mod(A) and i > 0, then (τAΣ−1)iX ≃ Σ−lM (resp. (τAΣ−1)−iX ≃ ΣlM) for
some M ∈ mod(A) and some l ∈ {i, i+ 1, . . . , 2i}. We begin with the following useful lemma:

Lemma 5.1. Let X ∈ mod(A) and let P ∈ mod(A) be projective. Then, the natural inclusion mapping
HomDb(A)(P,X) →֒ HomCA(P,X) is a bijection.

Proof: It suffices to show that HomDb(A)(P, (τAΣ−1)nX) = 0 for any n ∈ Z\{0}. For any such n, we

have (τAΣ−1)nX ≃ ΣlnMn where Mn ∈ mod(A) and ln 6= 0. Since P is projective, we deduce that
HomDb(A)(P, (τAΣ−1)nX) = 0. �
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Later we shall compare A-modules which are isomorphic in CA. In this purpose, the two following
lemmas will be helpful.

Lemma 5.2. Let X,Y ∈ mod(A). If X ≃ Y in CA, then X ≃ Y in mod(A).

Proof: The assumption implies that there exists i ∈ Z such that ΣiY ≃ τ iAX in Db(A). Moreover, there
exists M ∈ mod(A) and l ∈ Z with the sign of i and such that τ iAX ≃ Σ−lM in Db(A). If i 6= 0, we infer
that Σi+lY ≃M in Db(A), with i+ l 6= 0. This is impossible, so i = 0 and X ≃ Y in Db(A) and therefore
in mod(A). �

Lemma 5.3. Assume that A is a piecewise hereditary finite dimensional algebra and let F : C → A be a
Galois covering with group G and with C locally bounded. Let X,Y ∈ MC be such that FλX ≃ FλY ∈
ind(CA). Then, there exists g ∈ G such that Y ≃ gX in MC.

Proof: Recall that the assumption on A implies that CA and MA coincide. Also, notice that since
FλX and FλY are indecomposable, X and Y are so. Since Fλ : MC → CA has the covering property
and since FλX ≃ FλY , there exist morphisms ϕi ∈ HomMC

( giX,Y ) (with 1 6 i 6 t, gi ∈ G) such
that f := Fλϕ1 + . . . + Fλϕt : FλX → FλY is an isomorphism in CA. Thus, IdFλX = f−1 ◦ Fλϕ1 +
. . . + f−1 ◦ Fλϕt. Since FλX is indecomposable, EndCA(FλX) is a local algebra and therefore, at least
one of the f−1 ◦ Fλϕi is invertible. Notice that if f−1Fλϕi is invertible, then Fλϕi : FλX → FλY is a
section and therefore an isomorphism (because FλX and FλY are indecomposable). This proves that
there exists ϕ ∈ HomMC

(g0X, Y ) (with g0 ∈ G) such that Fλϕ : FλX → FλY is an isomorphism. Since
Fλ : MC → CA has the covering property, we infer that there exists (ψg)g∈G ∈

⊕
g∈G

HomMC
(Y, gX) such

that IdFλX =
∑
g∈G

Fλψg ◦Fλϕ. Since ψg ◦ϕ ∈ HomMC
( g0X, gX) for every g, the same argument proves

that ψgϕ = 0 if g 6= g0 and that ψg0ϕ = IdX . Thus, ϕ is left invertible. Using similar arguments, one
proves that ϕ is right invertible also. Hence, ϕ is invertible and Y ≃ g0X in MC. �

If X ∈ MA, then x ∈ ob(A) 7→ HomMA( xA?
∧,X) defines an A-module which we shall denote by X .

This way, we get an additive functor:

MA −→ mod(A)
X 7−→ X

Proposition 5.4. Let X ∈ mod(A). Then, there exists an isomorphism of A-modules: X
∼
−→ X∧. This

isomorphism is functorial in X.

Proof: Let x ∈ ob(A). Recall the natural isomorphism:

X(x) −→ HomA( xA?,X)
m 7−→ (u ∈ xAy 7→ mu ∈ X(y))

Moreover, HomA( xA?, X) → HomDb(A)( xA?,X) and HomCA( xA?,X) → HomMA( (xA?)
∧,X∧) are

isomorphisms because mod(A) → Db(A) and CA → MA are fully faithful. Finally, Lemma 5.1 proves
that HomDb(A)( xA?,X) → HomCA( xA?,X) is an isomorphism. Therefore, we have an isomorphism

of vector spaces X(x)
∼
−→ HomMA( (xA?)

∧,X∧). We let the reader verify that this defines a functorial
isomorphism X

∼
−→ X∧ of A-modules. �

As a corollary, we deduce the following criterion.

Corollary 5.5. Let F : C → A be a Galois covering. Let X ∈ mod(A) and assume that there exists
Y ∈ MC such that FλY ≃ X∧ in CA. Then, X ≃ FλY in mod(A). If moreover A is a piecewise
hereditary finite dimensional k-algebra and if X is indecomposable, then there exists g ∈ G such that
(gY )∧ ≃ Y (so that Y is necessarily a C-module).

Proof: Let us fix a lifting L : ob(A) → ob(C) of F : ob(C) → ob(A). Let x ∈ ob(A). Since Fλ : MC → MA

has the covering property, we deduce that the following mapping defined by Fλ is bijective:

λx :
⊕

g∈G

HomMC

(
g(L(x)C?)

∧, Y
)
→ HomMA

(
(Fλ L(x)C?)

∧, FλY
)

For every x ∈ ob(A), let ιx : Fλ L(x)C?
∼
−→ xA? be the isomorphism in mod(A) such that for any y ∈ ob(A),

ιx(y) : (Fλ L(x)C?)(y) → ( xA?)(y) is the bijective mapping
⊕

y′∈F−1(y)
L(x)Cy′ → xAy induced by F : C → A.
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The isomorphisms ιx and λx define the following isomorphism:

µx :
⊕

g∈G

HomMC

(
g(L(x)C?)

∧, Y
)
→ HomMA

(
( xA?)

∧, FλY
)

Hence, for every x, we have an isomorphism of vector spaces µx : FλY (x)
∼
−→ FλY (x) and the reader

may easily check that these isomorphism define an isomorphism FλY ≃ FλY in mod(A). From the
isomorphism X∧ ≃ FλY in MA and from Proposition 5.4, we deduce the isomorphisms in mod(A):
X ≃ X∧ ≃ FλY ≃ FλY . The last assertion is a consequence of these isomorphisms and of Lemma 5.3.�

6 Tilting modules of the first kind with respect to Galois coverings

Throughout this section, A is assumed to be a basic connected piecewise hereditary of type Q finite
dimensional k-algebra and F : C → A is a Galois covering with group G and with C locally bounded.
Recall ([18]) that the assumption on A implies that CA ≃ H0(BA) = MA. For simplicity, if X ∈ CC, we
shall write X instead of X∧ for the corresponding element of MC. The aim of this section is to prove the
following facts for any tilting A-module T :

(H1) T is of the first kind w.r.t. Fλ : mod(C) → mod(A),

(H2) for any indecomposable direct summandX ∈ mod(A) of T and any X̃ ∈ mod(C) such that FλX̃ ≃ X,
we have GX̃ = 1,

(H3) if ψ : A
∼
−→ A is an automorphism extending the identity map on objects, then ψ.T ≃ T in mod(A).

We will devote a subsection to each point. All the results and proofs presented in this paragraph are
nothing but an adaptation to the triangulated setting of MC and MA = CA of the results and proofs of
[20, Sect. 3] in the setting of abelian categories (mod(A) and mod(C)).

For short, we shall say that X ∈ ind(CA) is of the first kind w.r.t. Fλ : MC → CA if and only if there
exists Y ∈ MC such that FλY ≃ X (notice that we do not require that Y ∈ CC). More generally, X ∈ CA
will be called of the first kind w.r.t. Fλ : MC → CA if and only if it is the direct sum of (finitely many)
indecomposable objects in CA of the first kind w.r.t. Fλ : MC → CA.

6.1 Proof of assertion (H1)

First, we prove the following.

Proposition 6.1. Let T ∈ CA be a tilting object. Then T is of the first kind w.r.t. Fλ : MC → CA.

In order to prove Proposition 6.1, we will prove the two following dual lemmas.

Lemma 6.2. Let ∆ : X
u
−→M → Y → ΣX be triangle in CA verifying the following hypotheses:

. X ∈ ind(CA) and X = FλX̂ (with X̂ ∈ ind(MC)),

. M = M1

⊕
. . .
⊕
Mt where Mi = FλM̂i ∈ ind(CA) (with M̂i ∈ ind(MC)), for every i,

. Ext1CA
(Y,M) = 0.

Then, (∆) is isomorphic to a triangle:

X




Fλu
′
1

...
Fλu

′
t




−−−−−−→M1

⊕
. . .
⊕

Mt → Y → ΣX

where u′
i ∈ HomMC

(X̂, giM̂i) for some gi ∈ G, for every i.

Lemma 6.3. Let ∆ : X →M
v
−→ Y → ΣX be triangle in CA verifying the following hypotheses:

. Y ∈ ind(CA) and Y = FλŶ (with Ŷ ∈ ind(MC)),

. M = M1

⊕
. . .
⊕
Mt where Mi = FλM̂i ∈ ind(CA) (with M̂i ∈ ind(MC)), for every i,

. Ext1CA
(M,X) = 0.
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Then, (∆) is isomorphic to a triangle:

X →M1

⊕
. . .
⊕

Mt




Fλv
′
1

...
Fλv

′
t




−−−−−→ Y → ΣX

where v′i ∈ HomMC
( giM̂i, Ŷ ) for some gi ∈ G, for every i.

Proof of Lemma 6.2: Let us say that u ∈ HomCA(X,Mi) is homogeneous of degree g ∈ G if and

only if u = Fλu
′ with u′ ∈ HomMC

(X̂, gM̂i). Since Fλ : MC → CA has the covering property, any
u ∈ HomA(X,Mi) is (uniquely) the sum of d homogeneous morphisms of pairwise different degrees (with

d > 0). Let us write u =



u1

...
ut


 with ui : X → Mi for each i. We may assume that u1 : X → M1 is not

homogeneous. Thus u1 = h1 + . . .+ hd where d > 2 and h1, . . . , hd : X →M1 are non zero homogeneous
morphisms of pairwise different degree. In order to prove the lemma, it suffices to prove that (∆) is

isomorphic to a triangle X
u′

−→ M → Y → ΣX where u′ =




u′
1

u2

...
ut


 with u′

1 equal to the sum of at most

d − 1 nonzero homogeneous morphisms X → M1 of pairwise different degrees. For simplicity we adopt
the following notations:

. M = M2

⊕
· · ·
⊕
Mt (so M = M1

⊕
M),

. u =



u2

...
ut


 : X → M (so u =

[
u1

u

]
: X →M1

⊕
M),

. h = h2 + . . .+ hd : X →M1 (so u1 = h1 + h).

From HomCA(∆,M1) we get the exact sequence:

HomCA(M1

⊕
M,M1)

u∗

−−→ HomCA(X,M1) → Ext1CA
(Y,M1) = 0

So there exists [λ, µ] : M1

⊕
M →M1 such that h1 = [λ, µ]u. Hence:

h1 = λu1 + µu = λh1 + λh+ µu (i)

Let us distinguish two cases whether λ ∈ EndA(M1) is invertible or nilpotent (recall that M1 ∈ ind(CA)):
• If λ is invertible then:

θ :=

[
λ µ
0 IdM

]
: M1

⊕
M → M1

⊕
M

is invertible. Using (i) we deduce an isomorphism of triangles:

X


u1

u




// M1

⊕
M //

θ

��

Y //

∼

��

ΣX (∆)

X


h1

u




// M1

⊕
M // Y // ΣX (∆′)

Since h1 : X →M1 is homogeneous, (∆′) fits our requirements.
• If λ ∈ EndCA(M1) is nilpotent, let p > 0 be such that λp = 0. Using (i) we get the following equalities:

h1 = λ2h1 + (λ2 + λ)h+ (λ+ IdM1
)µu

...
...

...

h1 = λth1 + (λt + λt−1 + . . .+ λ)h+ (λt−1 + . . .+ λ+ IdM1
)µu

...
...

...

h1 = λph1 + (λp + λp−1 + . . .+ λ)h+ (λp−1 + . . .+ λ+ IdM1
)µu
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Since λp = 0 and u1 = h1 + h we infer that:

u1 = λ′h+ λ′µu

where λ′ := IdM1
+ λ+ . . .+ λp−1 ∈ EndCA(M1) is invertible. So we have an isomorphism:

θ :=

[
λ′ λ′µ
0 IdM

]
: M1

⊕
M →M1

⊕
M

and consequently we have an isomorphism of triangles:

X


h
u




// M1

⊕
M

θ

��

// Y //

∼

��

ΣX (∆′)

X


u1

u




// M1

⊕
M // Y // ΣX (∆)

where h = h2 + . . .+hp is the sum of p−1 non zero homogeneous morphisms of pairwise different degree.
So (∆′) fits our requirements. This finishes the proof of the lemma. �

The proof of Lemma 6.3 is the dual of the one of Lemma 6.2, so we omit it. Thanks to these two
lemmas, we can prove Proposition 6.1.
Proof of Proposition 6.1: Since A is a tilting object in CA and since it is of the first kind w.r.t.
Fλ : mod(C) → mod(A) (hence, w.r.t. Fλ : MC → CA) we only need to prove that for any edge T − T ′ in
the tilting graph of CA, T ′ is of the first kind w.r.t. Fλ : MC → CA if the same holds for T . Recall from
Section 1, that there exists a triangle in CA:

X
u
−→M → Y → ΣX (∆)

such that:

1. T = X
⊕
T , T ′ = Y

⊕
T , X, Y ∈ ind(CA),

2. M ∈ add(T ),

3. u is a minimal left add(T )-approximation of X and M → Y is a minimal right add(T )-approximation
of Y .

By assumption on T , we know that X, M and T are of the first kind w.r.t. Fλ : MC → CA. Thus, we
only need to prove that the same holds for Y . Thanks to Lemma 6.2 and with the same notations, we
know that (∆) is isomorphic to a triangle:

X

u′=




Fλu
′
1

...
Fλu

′
t




−−−−−−−−→M1

⊕
. . .
⊕

Mt → Y → ΣX (∆′)

where u′
i ∈ HomMC

(X̂, giM̂i) for some gi, for every i. Let v :=



u′

1

...
u′
t


 ∈ HomMC

(X̂,
t⊕
i=1

giM̂i), so that

u′ = Fλv. Then, v may be completed into a triangle in MC:

X̂
v
−→

t⊕

i=1

giM̂i → Ŷ → ΣX̂ (∆′′)

Since u′ = Fλv, we deduce that Fλ(∆
′′) and (∆) are isomorphic triangles of CA. In particular, FλŶ ≃ Y

in CA. This proves the proposition. �

Notice that the proof of Proposition 6.1 gives the following fact:
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Remark 6.4. If T − T ′ is an edge of the tilting graph of CA, then there exists a triangle in MC:

X
ι
−→M

π
−→ Y

η
−→ ΣX (∆)

such that:

- FλX,FλY ∈ ind(CA) (hence X,Y ∈ ind(MC)),

- T = FλX
⊕
T , T ′ = FλY

⊕
T and FλM ∈ add(T ),

- Fλiota : FλX → FλM (resp. Fλπ : FλM → FλY ) is a minimal left (resp. right) add(T )-approximation.

From Corollary 5.5 and Proposition 6.1, we deduce that (H1) is satisfied:

Proposition 6.5. Any tilting A-module is of the first kind w.r.t. Fλ : mod(C) → mod(A).

Proof: Let X be a direct summand of T . Since T is a tilting object of CA, Proposition 6.1 implies that
there exists Y ∈ MC such that X ≃ FλY in CA. Corollary 5.5 implies that there exists Z ∈ mod(C) such
that X ≃ FλZ in mod(A). �

6.2 Proof of assertion (H2)

Proposition 6.6. Let T be a tilting object in CA, let M be an indecomposable direct summand of T and
let M̃ ∈ MC be such that FλM̃ ≃M in MC (see Proposition 6.1. Then:

g ∈ G\{1} =⇒ gM̃ 6≃ M̃ in MC (⋆)

Proof: First, let us verify that (⋆) is verified if T = A. Under this assumption, there is some x ∈ ob(A)
such that X ≃ xA? in MC. Thanks to Lemma 5.3, we infer that there exists x′ ∈ ob(C) such that

X̃ ≃ x′C? (with F (x′) = x). If g ∈ G is such that X̃ ≃ gX̃ in MC, then g
x′C? ≃ x′C? in MC. From

Lemma 5.2, we infer that g x′C? ≃ x′C? in mod(A) and therefore, that g = 1.
Thus, in order to prove the proposition, it suffices to prove the following implication for any edge

T − T ′ in the tiling graph of CA: (⋆) holds for T ⇒ (⋆) holds for T ′. Let us use Remark 6.4 from which
we adopt the notations. Thanks to Lemma 5.3, and because (⋆) holds for T , we only need to prove the
implication gY ≃ Y in MC ⇒ g = 1. Let ϕ : Y → gY be an isomorphism in MC (with g ∈ G), and
let us prove that g = 1. To do this we will exhibit an isomorphism θ : X → gX. Since T is tilting,
we have Ext1CA

(FλM,FλX) = Ext1CA
(FλX,FλM) = 0. These equalities imply the following ones, since

Fλ : MC → CA has the covering property:

Ext1CC
( gM,X) = Ext1CC

(M, gX) = 0 (i)

With HomMC
(M, g∆), this last equality gives the exact sequence:

HomMC
(M, gM)

( gπ)∗
−−−−→ HomMC

(M, gY ) → Ext1MC
(M, gX) = 0

From this exact sequence, we deduce the existence of ψ ∈ HomMC
(M, gM) such that the following

diagram commutes:

M
π

//

ψ

��

Y

ϕ

��
gM

gπ
// gY

This implies the existence of θ ∈ HomMC
(X, gX) making commute the following morphism of triangles

in MC:

X
ι

//

θ

��

M
π

//

ψ

��

Y

ϕ

��

η
// ΣX (∆)

gX
gι

// gM
gπ

// gY
gη

// Σ gX (g∆)

(ii)

We claim that θ : X → gX is an isomorphism. The arguments that have been used to get (ii) may be
adapted (just replace the use of HomMC

(M, g∆) and of ϕ : Y → gY byHomMC
( gM,∆) and ϕ−1 : gY →
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Y ) to get the following morphisms of triangles in MC:

gX
gι

//

θ′

��

gM
gπ

//

ψ′

��

gY

ϕ−1

��

gη
// Σ gX (g∆)

X
ι

// M
π

// Y
η

// ΣX (∆)

(iii)

In order to show that θ : X → gX is an isomorphism, let us show that θ′θ ∈ EndCC
(X) is an isomorphism.

Notice (ii) and (iii) give the morphism of triangles in MC:

X
ι

//

θ′θ−idX

��

M
π

//

ψ′ψ−IdM

��

Y

0

��

η
// ΣX (∆)

X
ι

// M
π

// Y
η

// ΣX (∆)

(iv)

In particular we have π(ψ′ψ − IdM ) = 0, so there exists λ ∈ HomMC
(M,X) such that:

ψ′ψ − IdM = ιλ

Therefore:
ι(θ′θ − IdX) = ιλι

This implies that there exists f ∈ HomMC
(X,Σ−1Y ) such that θ′θ−IdX−λι = η′f , where η′ = Σ−1 = η.

Thus:
θ′θ = IdX + λι+ η′f

Notice that:

1. Fλ(λι) ∈ EndCA(FλX) factorises through FλM , and FλX is indecomposable in CA and is not
a direct summand of FλM (indeed, T = FλX

⊕
T is basic and FλM ∈ add(T )). So Fλ(λι) is

nilpotent. Since Fλ : MC → CA is faithful (because it has the covering property), we infer that λι
is nilpotent.

2. Fλ(η
′f) ∈ EndCA (FλX) factorises through FλY . Since FλX is not a direct summand of FλY

(because T = FλX
⊕
T and T ′ = FλY

⊕
T are not isomorphic) we infer that Fλ(η

′f) is nilpotent.
So η′f is nilpotent.

These two arguments prove that θ′θ = IdX + λι + η′f ∈ EndMC
(X) is invertible. Let ϕ : gX → X be

such that ϕθ = IdX . So Fλ(ϕ)Fλθ = IdFλX . Since FλX ∈ CA is indecomposable, this implies that Fλθ
is invertible and that FλθFλϕ = IdFλX . Since Fλ : MC → CA is faithful, we get θϕ = IdgX . This proves
that θ : X → gX is an isomorphism. Recall that we assumed (⋆) is verified for T , so g = 1. This finishes
the proof of the proposition. �

Thanks to Proposition 6.6 and to the fact that a tilting A-module is a tilting object of CA, we deduce
that (H2) is satisfied.

Proposition 6.7. If T is a tilting A-module, then GX̃ = 1 for any X̃ ∈ mod(C) such that FλX̃ is an
indecomposable direct summand of T .

The proof is immediate.

6.3 Proof of assertion (H3)

Notice that if ψ : A → A is an isomorphism extending the identity map on objects, then ψ and ψ−1 are
Galois coverings such that ψ. = ψ−1

λ = (ψ−1)λ (see for example [20, Lem. 1.3]). Therefore, we have a
well defined triangle functor ψ. : CA → CA which is a triangle equivalence with inverse ψλ : CA → CA.

Proposition 6.8. Let T ∈ CA be a tilting object and let ψ. : A
∼
−→ A be an automorphism extending the

identity map on objects. Then ψ.T ≃ T in CA.

Proof: The conclusion of the proposition holds if T = A (see for example [20, Prop. 3.7]). Let ψ : A→ A
be an isomorphism extending the identity map on objects. In order to prove the proposition, it suffices
to prove the following implication for any edge T − T ′ in the tilting graph of CA: ψ.T ≃ T ⇒ ψ.T ′ ≃ T ′.
For such an edge, we have the following data:
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- T = X ⊕ T with X ∈ ind(A),

- T ′ = Y ⊕ T with Y ∈ ind(A),

- a non split triangle X
u
−→ M → Y → ΣX where M ∈ add(T ) and where u : X → M is the minimal

left add(T )-approximation of X.

Notice that we only need to prove that ψ.Y ≃ Y . Since ψ. : CA → CA is a triangle equivalence, we have

a non split triangle ψ.X
ψ.u
−−→ ψ.M → ψ.Y → Σψ.X verifying: ψ.M ∈ add(ψ.T ) and ψ.u : ψ.X → ψ.M is

the minimal left add(ψ.T )-approximation of ψ.X. Moreover ψ.X ≃ X, ψ.M ≃ M and ψ.T ≃ T because

ψ.T ≃ T . So, we have two triangles X
u
−→ M → Y → ΣX and X

u′

−→ M → ψ.Y → ΣX where u and
u′ are both minimal left add(T )-approximations. This implies that Y ≃ ψ.Y in CA. So ψ.T ′ ≃ T ′ in CA.�

Using Lemma 5.1 and Proposition 6.8, we deduce easily the following proposition.

Proposition 6.9. Let T be a tilting A-module and let ψ : A → A be an isomorphism extending the
identity map on objects. Then ψ.T ≃ T in mod(A).

7 Proof of the main theorems

In this section, we prove Theorem 1, Corollary 2 and Theorem 3 that were announced in the introduction.
We fix A a basic connected finite dimensional k-algebras (of finite global dimension). We shall freely use
the construction of [20] recalled at the end of Section 1. Since we will use it many times, we recall the
following theorem due to D. Happel:

Theorem 7.1. (Happel, [12, Cor 5.5]) Let A be a finite dimensional k-algebra. Then, A is piecewise
hereditary of type Q if and only if there exists a sequence A0 = kQ,A1, . . . , Al = A of finite dimensional
k-algebras and a sequence T (1) ∈ mod(A0), . . . , T

(l) ∈ mod(Al−1) of tilting modules such that A1 ≃
EndA0

(T1), . . . , Al ≃ EndAl−1
(Tl).

In order to prove Theorem 1, we first prove the following proposition.

Proposition 7.2. Let T be a tilting A-module. Assume that the assertions (H1), (H2) and (H3) are

satisfied and that A admits a universal cover F̃ : C̃ → A with group π1(A). Then EndA(T ) admits a
universal cover with group π1(A).

Proof: Let us write T = T1

⊕
. . .
⊕
Tn with Ti ∈ mod(A) indecomposable and let us set B = EndA(T ).

Let us denote by C the full subcategory of Gal(A) whose objects are the connected Galois coverings F

such that there exists a morphism F̃ → F . Hence, any connected Galois covering of A is equivalent to
an object in C. We shall construct a (fully faithful) functor C → Gal(EndA(T )). In this purpose, we fix
some data.

1. For every i, let us fix T̃i ∈ mod(C̃) such that F̃λT̃i = Ti,

2. For every F ∈ C, let us fix a morphism pF : F̃ → F in C (with pF̃ = IdF̃ ) and let us set TFi := pFλ T̃i

for every i ∈ {1, . . . , n}. Since F ◦ pF = F̃ , we deduce that FλT
F
i = Ti for every i.

3. Let u : F → F ′ be a morphism in C. Thus, pF
′

, upF ∈ HomC(F̃ , F ′) so that there exists a unique

hu ∈ Aut(F ′) such that: hupF
′

= upF .

Now, let u : F → F ′ be a morphism in C where F : C → A and F ′ : C′ → A. Notice that for any
g ∈ Aut(F ) and any i ∈ {1, . . . , n}, we have:

uλ(
gTFi ) = uλ

(
g(pFλ T̃i)

)
= λu(g)uλp

F
λ T̃i = λu(g)hu

pF
′

λ T̃i = λu(g)hu

TF
′

i

Recall from Section 1 that λu : Aut(F ) → Aut(F ′) is the unique group morphism such that λu(h)u = uh
for any h ∈ Aut(F ). The above equality proves that we have a well defined functor:

uT : EndC

(
⊕

g∈Aut(F ),i

gTFi

)
−→ EndC′

(
⊕

g′∈Aut(F ′),i

g′TF
′

i

)

gTFi 7−→ uλ(
gTFi ) = λu(g)hu

TF
′

i

gTFi
f
−→ hTFj 7−→ uλ(f)

Recall from Section 1 that FT and F ′
T are connected Galois coverings of B with group Aut(F ) and Aut(F ′)

respectively. Since FT , F ′
T and uT are defined using Fλ, F

′
λ and uλ respectively and since F ′u = u, we
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deduce that F ′
TuT = FT . In other words, uT : FT → F ′

T is a morphism of connected Galois coverings of
B. Also, with the same arguments, one proves easily that (IdF )T = IdFT and that (u′u)T = u′

TuT for
any object F of C and any morphisms u, u′ in C. Hence, we have constructed a functor:

ψ : C → Gal(B)
F 7→ FT

F
u
−→ F ′ 7→ FT

uT−−→ F ′
T

In particular, ψ(C) is a subcategory of Gal(B) such that any object of ψ(C) is the target of a morphism

in Gal(B) with source ψ(F̃ ).
For every connected Galois covering F : C → A not lying in C, let us fix TF1 , . . . , T

F
n ∈ mod(C) such

that FλT
F
i = Ti. This defines the connected Galois covering FT of B. From Section 1, we know that the

mapping:
ob(Gal(A)) → ob(Gal(B))

F 7→ FT

induces a bijection between ob(Gal(A))/ ∼ and ob(Gal(B))/ ∼. Hence, any object in Gal(B) is equiv-

alent to an object in ψ(C). This proves that ψ(F̃ ) is a universal cover of B, with group Aut(F̃ ) = π1(A).�

Remark 7.3. The reader may easily check that the functor ψ : C → Gal(B) is fully faithful.

Thanks to Proposition 7.2, we are able to prove the first two main results of this text.
Proof of Theorem 1: Since kQ has a universal cover with group π1(Q) and since the assertions (H1),
(H2) and (H3) are satisfied for any piecewise hereditary algebra of type Q and for any tilting module
over this algebra, the theorem is a consequence of Theorem 7.1 and Proposition 7.2 using an immediate
induction. �

Proof of Corollary 2: Thanks to Theorem 1 and to the characterisation of the simple connectedness
of A (see the introduction or [21, Cor. 4.5]) we infer that A is simply connected if and only if π1(Q)
is trivial, i.e. Q is a tree. On the other hand, it was proved in [13] that dimkHH

1(kQ) = rk(π1(Q)).
Since dimkHH

1(A) = dimkHH
1(kQ) (see [17]), we conclude that A is simply connected if and only if

HH1(A) = 0. �

In order to prove Theorem 3, we will proceed in several steps. First, we prove the following lemma.
This lemma is a direct consequence of tilting theory when the group of the considered Galois covering is
infinite. However, recall that if F : C → A is a Galois covering with finite group, then F.T is not finite
dimensional if T is a nonzero A-module.

Lemma 7.4. Let F : C → A be a connected Galois covering with group G. Let T = T1

⊕
. . .
⊕
Tn be a

tilting A-module (with Ti indecomposable) and assume that Ti = FλT̃i for some T̃i ∈ mod(C), for every i.
Then:

1. Ext1C( gT̃i,
hT̃j) = 0 for every i, j ∈ {1, . . . , n} and every g, h ∈ G.

2. pdC( gT̃i) 6 1 for every i and every g.

3. if P ∈ mod(C) is an indecomposable projective C-module, then there exists an exact sequence 0 →

P → T (1) → T (2) → 0 where T (1), T (2) ∈ add({ gT̃i | i ∈ {1, . . . , n}, g ∈ G}) ⊆ mod(C).

Proof: The first two assertions are direct consequences of the fact that T is tilting and of Lemma 2.1.
Let P ∈ mod(C) be indecomposable projective. So R := FλP ∈ mod(A) is indecomposable projective.
Since A has finite global dimension and since T is tilting, we deduce that T is cotilting. Using the
fact that Ext1A(R,T ) = 0, we infer that there exists an exact sequence 0 → R → X → Y → 0 with
X,Y ∈ add(T ). Thanks to [20, Lem 7.4] (from which Lemma 6.2 is inspired), the fact that Q = FλP
is indecomposable, that X is of the first kind w.r.t. F and that Ext1A(T, T ) = 0 imply that there exists

an exact sequence 0 → P → X ′ → Y ′ → 0 in mod(C), withX ′, Y ′ ∈ add({ gT̃i | i ∈ {1, . . . , n}, g ∈ G}). �

The preceding lemma allows us to prove the following proposition. Once again, this proposition is
a direct consequence of tilting theory when the involved group is infinite. The proof of the following
proposition is an adaptation of the proof of [12, III.2.10].

Proposition 7.5. Let T = T1

⊕
. . .
⊕
Tn be a basic tilting A-module (with Ti indecomposable) and set

B = EndA(T ). Let F : C → A be a connected Galois covering with group G and assume that that the two
following conditions are satisfied:

22



1. for every i, T̃i ∈ mod(C) is such that FλT̃i = Ti,

2. GT̃i
= 1 for every i.

Let FT : EndC(
⊕
g,i

gT̃i) → B be the associated connected Galois covering with group G. Then C and

EndC(
⊕
g,i

gT̃i) are have equivalent bounded derived categories.

Proof: For short, we shall write C′ := EndC(
⊕
g,i

gT̃i) and X := add({ gT̃i | i ∈ {1, . . . , n}, g ∈ G}) ⊆

mod(C). Since B = EndA(T ) with T tilting and since C′ → B is a Galois covering, we infer that C′ has
finite global dimension. Thanks to Lemma 7.4, we may apply the proofs of [12, 2.1, 2.5] and deduce that
the natural functor Kb(X ) → Db(C) is fully faithful and dense. Here Kb(X ) is the homotopy category of
bounded complexes in X . Moreover, by construction of C′, the functor HomC(?, F.T ) : X → proj(C′) is
an equivalence and so is the induced functor Kb(X ) → Kb(proj(C′)). Finally, Kb(proj(C′)) → Db(C′) is
an equivalence because C′ has finite global dimension. Hence Db(C) ≃ Kb(X ) ≃ Db(C′). �

Proof of Theorem 3: Let us use Theorem 7.1 from which we keep the notations and let us prove the
theorem by induction on l. If l = 0, then A ≃ kQ. Since C → A is a connected Galois covering with
group G, [21, Prop. 4.4] implies that there exists a quiver Q′ and a Galois covering Q′ → Q with group
G such that C ≃ kQ′. Whence the conclusion if l = 0. Now assume that l > 0 and that the conclusion of
the theorem holds for Al−1. Let us set T := T (l). Recall from the first section that T is a basic tilting
Aop-module and that Al−1 ≃ EndAop (T )op. If F : C → A is a connected Galois covering with group G,
then so does F op : Cop → Aop and since A is piecewise hereditary of type Q, so does Aop. Hence, (H1),
(H2) and (H3) are satisfied for Aop and T ∈ mod(Aop). From Proposition 7.5, we deduce that there
exists a connected Galois covering F ′ : C′ → EndAop(T ) with group G and that Db(C′) ≃ Db(Cop) (and
therefore Db(C) ≃ Db(C′op)) as triangulated categories. Since F ′op : C′op → EndAop(T )op ≃ Al−1 is also a
connected Galois covering with group G, we infer, by induction hypothesis, that C′op is piecewise hered-
itary of type Q′ such that there exists a Galois covering Q′ → Q with group G. From the equivalence
Db(C) ≃ Db(C′op) we deduce that the same property holds for C. �

As an application of Theorem 3, we give the following corollary which compares the tilting objects of
CA′ and those of CA when A′ → A is a Galois covering with finite group (so that A′ is finite dimensional).

Corollary 7.6. Let F : A′ → A be a connected Galois covering with finite group G, where A is piecewise
hereditary of type Q. Let T (resp. T ′) be the set of isomorphism classes of tilting objects of CA (resp. of

CA′). For every T ∈ T , let T̃ ∈ CA′ such that FλT̃ ≃ T (see Proposition 6.1). Then, the following map
is bijective:

T −→ T ′

T 7−→
⊕
g∈G

gT̃ (⋆)

This bijection restricts to a bijection:
T 7−→ F.T (⋆⋆)

from the set of isomorphism classes of tilting A-modules to the set of isomorphism classes of G-invariant
tilting A′-modules.

Proof: Thanks to Theorem 3, we know that A′ is piecewise hereditary. Hence, CA′ = MA′ is triangulated
and Fλ : CA′ → CA is a triangle functor with the covering property. For simplicity, we shall make no
distinction between an object an its isomorphism class.

• Let T = T1

⊕
. . .
⊕
Tn ∈ T (with Ti ∈ CA indecomposable). For every i, let T̃i ∈ CA′ (necessarily

indecomposable) such that FλT̃i ≃ Ti. Then:

1. gT̃i ≃ T̃i =⇒ g = 1 for every g ∈ G (see Proposition 6.6),

2.
⊕
g∈G

gT̃ =
⊕

g∈G, i

gT̃i (see Lemma 5.3),

3.
⊕
g∈G

Ext1A′( gT̃ , T̃ ) ≃ Ext1A(T, T ) = 0 because T is tilting and Fλ has the covering property.

Hence,
⊕
g∈G

gT̃ is a basic exceptional object of CA′ and is the direct sum of n.|G| = rk(K0(A
′)) indecom-

posables. So
⊕
g∈G

gT̃ ∈ T ′. This proves that (⋆) is well-defined. This proves also that (⋆⋆) is well defined

because if T ∈ mod(A), then all the introduced objects lie in mod(A′) (see Proposition 6.5).
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• Let T = T1

⊕
. . .
⊕
Tn ∈ T and T ′ = T ′

1

⊕
. . .
⊕
T ′
n ∈ T (with Ti, T

′
i indecomposable for every i)

and assume that
⊕
g∈G

gT̃ ≃
⊕
g∈G

gT̃ ′. For every i, fix T̃i, T̃ ′
i ∈ CA′ such that FλT̃i ≃ Ti and T̃ ′

i ≃ T ′
i . So,

up to a permutation of indices, there exists gi ∈ G such that T̃ ′
i ≃

gi T̃i, for every i. So:

T ′ ≃
⊕

g,i

FλT̃ ′
i ≃

⊕

g,i

FλT̃i ≃ FλT̃ ≃ T ′

Thus, (⋆) and (⋆⋆) are injective.

• Let M ∈ T ′G. Let us write M =
n′⊕
i=1

Mi (where n′ = rk(K0(A
′)) = n.|G|) with Mi ∈ CA′

indecomposable. Let us write i ≈ j if and only if Mj ≃ gMi for some g ∈ G and let {i1, . . . , il} be a
complete set of representative of {1, . . . , n′}/ ≈ in {1, . . . , n}. Since M ∈ T ′G, we infer that M is a direct
summand of

⊕
g∈G

gM ′, where M ′ := Mi1 ⊕ . . .⊕Mil . In particular, l > n. Since Mij is a direct summand

of M and since M is G-invariant, we also deduce that gMij is a direct summand of M , for every j. This
proves that add(M) = add(

⊕
g∈G

gM ′), then:

1. Ext1A′(gM ′,M ′) = 0 because Ext1A′( gM,M) = Ext1A′(M,M) = 0,

2. FλM
′ is basic by construction of M ′ and thanks to Lemma 5.3,

3. Ext1A(FλM
′, FλM

′) ≃
⊕
g∈G

Ext1A′( gM ′,M ′) = 0 because Fλ has the covering property.

These facts prove that FλM
′ is basic and exceptional in CA. Let T ′ ∈ CA be such that T ′

⊕
FλM

′

is tilting and let T̃ ′ ∈ CA′ be such that FλT̃ ′ ≃ T ′. From the first point of the proof, we know that⊕
g∈G

g(T̃ ′ ⊕M ′) is tilting. Since
⊕
g∈G

gM ′ is the direct sum of l.|G| > n.|G| = rk(K0(A
′)) indecompos-

ables, we infer that l = n and that T ′ = 0. Hence FλM
′ ∈ T and M =

⊕
g∈G

gM ′. Thus (⋆) is surjective

and therefore bijective. Finally, notice that if M ∈ mod(A′), then M ′ ∈ mod(A′) and FλM
′ ∈ mod(A).

This proves that (⋆⋆) is also bijective. �

References
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