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Asymptotics of random density matrices

Ion Nechita
∗

Abstract

We investigate random density matrices obtained by partial tracing
larger random pure states. We show that there is a strong connection
between these random density matrices and the Wishart ensemble of ran-
dom matrix theory. We provide asymptotic results on the behavior of
the eigenvalues of random density matrices, including convergence of the
empirical spectral measure. We also study the largest eigenvalue (almost
sure convergence and fluctuations).

1 Introduction

Physicists and computer scientists working with finite size quantum systems are
often interested in properties of typical states, such as entanglement, entropy,
etc. In order to estimate such quantities, one has to endow the set of states
(pure or mixed) with a certain probability measure and compute averages with
respect to this measure. It has been known for a certain while now that there
exists an ”uniform” (in a way which will precised later) measure on the set
En of pure states of size n. However, the situation is less simple when dealing
with density matrices: there is no widely accepted candidate for a ”canonical”
measure on the set Dn of all density matrices of size n.

One may find in the literature two classes of probabilities on Dn:

• the induced measures, where random density matrices are obtained by
partial tracing a larger random pure state,

• the metric measures, where the measure is the volume element associated
to a particular distance on Dn.

Depending on the physical nature of the model, one may choose different
measures from one class or the other. In this work we study the measures of
the first class.

The induced measures were introduced by Braunstein [2] and studied later
by Hall [5], Życzkowski and Sommers [13, 15]. In the first part of this work
we provide a rigorous construction of these measures. In the second part, we
give some new explicit and recurrence formulas for the moments and we study
the asymptotic behavior of the spectrum of such random density matrices. Our
approach is based on the connection with the well-known theory of Wishart
random matrices.
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Our paper is organized as follows. In section 2 we recall the construction
of the induced measures, adding mathematical rigor to the existing literature.
Section 3 is devoted to recalling some results on the Wishart ensemble and
making explicit the connection with random density matrices. We deduce the
distribution of the eigenvalues and we study the moments. In Section 4 we study
two models of large random density matrices, providing results on the behavior
of the spectrum. A discussion of the results as well as ideas for generalizing our
work are presented at the end of the paper.

2 From pure states to density matrices

We start by introducing and motivating the model of random density matrices
that we consider.

As explained in the Introduction, one would like to endow the set of density
matrices on a complex Hilbert space H with a “natural” probability measure.
It turns out that there is no straightforward way of doing this, so one has to
make some additional hypothesis in order for a probability measure to stand
out as the most natural one. Our approach here is based on the definition
of a density matrix as it is usually understood in the theory of open quantum
systems. We consider that the system described by the density matrix is coupled
to an environment and that the compound system is in a random pure state.
More precisely, we shall make two assumptions:

(A1) The system H is coupled to an environment K and the compound system
H⊗K is in a pure state |ψ〉.

(A2) The pure state |ψ〉 is uniformly distributed on the set of all pure states
on H⊗K.

The first assumption is motivated by a large class of models considered in
physics or quantum information theory. The general framework is provided by
a system H ⊗ K in a pure state, isolated from its environment. Suppose that
one has access only to the sub-system H. This may happen for several different
reasons: K may be not accessible (e.g. H and K are in distant galaxies) or K
may be too complicated to study (a heat bath or a noisy channel, for example).
In these situations, it is natural to make the assumption (A1). Let us turn now
to the second assumption. If one has no a priori information on the systems H
and K, it makes sense to suppose (A2). Moreover, it turns out that there exists
an unique uniform probability measure on the set of pure states of given size,
so we shall consider uniform pure states on the compound system.

However, there are situations when one of the two hypotheses (A1) or (A2)
is not physically motivated. For instance, when one has no knowledge of an en-
vironment coupled to the system K, there is no reason to suppose (A1). Instead,
one should use other probability measures, such as the Bures measure (see the
discussion in [13]). On the other hand, even if (A1) corresponds to the physical
reality, one may have extra information on the system H or K (or both). For
example, it may be that the state of the environment K has a particular form;
thus, it makes no sense to assume (A2) and our model would not be adapted to
such situations.

In the next section, motivated by the assumption (A2), we shall construct
the uniform measure on the set of pure states of given size. Then, by partial
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tracing, we shall provide the probability which verifies the assumptions (A1)
and (A2).

2.1 The canonical probability measure on the pure states

In quantum mechanics, a pure state is described by a norm one vector in a n-
dimensional complex vector spaceH. The phase of pure states is not determined,
i.e.

|eiθψ〉 = |ψ〉 ∀ θ ∈ R (1)

In order to make this definition rigorous, we introduce the following equiva-
lence relation on H r {0}:

x ∼ y ⇔ ∃λ ∈ C
∗ such that x = λy. (2)

Definition 1. A pure state |ψ〉 is an element of the quotient space (Hr{0})/ ∼.
We denote by En the set of pure states of size n.

As all complex Hilbert spaces are isomorphic to C
n, the set En is the set of

rays in Cn. We endow En with the associated quotient topology and the Borel
σ-field. We now turn to the construction of the uniform probability measure on
En.

As stated in the assumption (A2), the probability on En should be the most
uniform one, as there is no a priori information on the state |ψ〉. In particular,
as there is no preferred basis of H, the uniform measure should be invariant by
changes of bases. In our framework (H is a complex Hilbert space), changes of
bases are provided by unitary applications. As a consequence, we ask that the
uniform probability measure should be unitarily invariant.

Definition 2. A measure νn on En is unitarily invariant if

νn(UA) = νn(A),

for all unitary U ∈ U(n) and for all Borel subset A ⊂ En.

It turns out that this condition is strong enough to completely specify a
measure on En, i.e. there is an unique unitarily invariant probability measure
on En. This follows from a well-known result in probability theory regarding
group actions (see [7]). Let us recall it here.

Let G be a topological group acting on a topological space X . We call its
action transitive if for all x, y ∈ X , there exists g ∈ G such that y = g · x and
proper if for all g ∈ G, the application X ∋ x 7→ g ·x is proper, i.e. the pre-image
of a compact set is compact. We then have the following

Theorem 1 ([7]). Let G be a topological group which acts transitively and
properly on a topological space X. Suppose that both G and X are locally compact
and separable. Then there exists an unique (up to a constant) measure ν on X
which is G-invariant.

In order apply this result to our situation, we consider the action of the
unitary group U(n) on the set En by left multiplication. We obtain the following
proposition.
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Proposition 1. The action of U(n) on En is transitive and proper and thus
there exists an unique unitarily invariant probability measure νn on En.

Proof. First of all, notice that this action is well defined: the class |Uψ〉 does
not depend on ψ, but only on the class |ψ〉; we say that the multiplication by
an unitary is a class application. In order to show that the action is transitive,
consider two classes |ψ〉 and |ϕ〉 and an unitary U ∈ U(n) such that Uψ = ϕ
(such an unitary always exists). It follows then that U |ψ〉 = |ϕ〉. Finally, the
action is compact, as the set En is compact and the multiplication applications
are continuous. Thus, the action verifies the hypothesis of Theorem 1, and
as a consequence there is an unique unitarily invariant measure on En. More-
over, given the compacity of En we can choose the measure of unit mass, which
concludes the proof of the Proposition.

Existence and unicity being settled, one would like to dispose of more con-
crete descriptions on the distribution νn. It turns out that there are two ways
of doing that.

First of all, let us recall the definition of a complex Gaussian random variable.
Let X and Y be two independent real Gaussian random variables of mean 0 and
variance 1/2. Then Z = X+ iY is said to have a complex Gaussian distribution
of mean 0 and variance 1. We denote by NC(0, 1) the law of Z. A complex
vector (Z1, . . . , Zn) is said to have distribution Nn

C
(0, In) if the random variables

Z1, . . . , Zn are independent and have distribution NC(0, 1).
Consider now a complex Gaussian vector X ∼ Nn

C
(0, In) and the projection

application

Π : C
n ≈ H → En (3)

x 7→ |x〉 (4)

It is well-known in probability theory that the law of X is unitarily invariant in
Cn. This property remains valid for the projection Π(X) and thus the law of |X〉
is unitarily invariant on En. As there is only one unitarily invariant distribution
on En, we have |X〉 ∼ νn.

We can also obtain the law νn from another well-known probability distribu-
tion, the Haar measure on U(n). In order to do this, consider a Haar-distributed
unitary matrix U . Obviously, the distribution of U is unitarily invariant; the
same will hold true for the first column Y of U and for its class |Y 〉. Thus |Y 〉
has distribution νn. We sum up these results in the following

Proposition 2. 1. Let X be a random complex vector of law Nn
C

(0, In).
Then the class |X〉 of X is distributed along νn.

2. Let U be a random unitary matrix distributed along the Haar measure
on U(n) and let Y be the first column of U . Then the class |Y 〉 has
distribution νn.

2.2 The induced measure on density matrices

In this section we effectively construct the induced measures on density matrices
that will be studied in the rest of the article. As stated in the Introduction, the
induced measure of parameters n and k is obtained as follows:
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• Consider a product space H ⊗ K of two complex Hilbert spaces H (of
dimension n) and K - the environment - of dimension k. This is the global
space system + environment.

• Take an uniform random pure state |ψ〉 on H ⊗ K (see the assumption
(A2)).

• Consider the (random) pure density matrix |ψ〉〈ψ| corresponding to the
pure state |ψ〉.

• Take ρ = TrK(|ψ〉〈ψ|), the partial trace of |ψ〉〈ψ| with respect to the
environment K. The law of the random variable ρ is the desired probability
measure, which we shall note µn,k.

As in our formalism |ψ〉 is an equivalence class, we shall define the pure
density matrix |ψ〉〈ψ| by:

|ψ〉〈ψ| =
ψ · ψ∗

Tr(ψ · ψ∗)
∈ Mnk(C). (5)

Clearly, ψ 7→ |ψ〉〈ψ| is a class function (it does not depend on the repre-
sentant ψ chosen, but only on the class |ψ〉), so |ψ〉〈ψ| is well-defined. The
normalizing factor Tr(ψ · ψ∗) appears because we want the matrix |ψ〉〈ψ| to be
trace one; this could have been avoided by considering a norm one vector ψ,
since Tr(ψ · ψ∗) = ‖ψ‖2.

We now turn to the third step of the above construction and recall that the
partial trace is the unique application TrK : Mnk(C) → Mn(C) such that

Tr((A⊗ IK)B) = Tr(ATrK(B)) ∀A ∈ Mn(C), B ∈ Mnk(C). (6)

Its expression for elementary matrices (a1, a2 ∈ H, b1, b2 ∈ K) is

TrK[(a1 ⊗ b1) · (a2 ⊗ b2)
∗] = 〈b2, b1〉 · a1a

∗
2. (7)

We have now all the elements needed for the definition of the induced mea-
sures:

Definition 3. The induced measure of parameters n and k is the distribution
µn,k of the random density matrix

ρ = TrK(|ψ〉〈ψ|), (8)

where |ψ〉 is an uniform pure state on H⊗K of distribution νnk.

In order to get a better understanding of the measure µn,k, we write ψ in
an orthonormal basis {ei ⊗ fj ; 1 ≤ i ≤ n, 1 ≤ j ≤ k} of H⊗K:

ψ =

n
∑

i=1

k
∑

j=1

ψij ei ⊗ fj. (9)

Thus the matrix |ψ〉〈ψ| has coordinates (in the same basis):

|ψ〉〈ψ|ij;i′j′ =
ψij ψi′j′

∑n
α=1

∑k
β=1 |ψαβ |2

. (10)
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After taking the partial trace, we obtain

ρii′ =

∑k
j=1 ψij ψi′j

∑n
α=1

∑k
β=1 |ψαβ |2

. (11)

Now, if we arrange the coordinates ψij of ψ in a n × k matrix X such that
X(i, j) = ψij , we have

ρ =
X ·X∗

Tr(X ·X∗)
. (12)

Several important remarks should be made at this point. First of all, consider
U ∈ U(n) and the density matrix ρ′ obtained by replacing ψ with (U ⊗ IK)ψ:

ρ′ = TrK(|(U ⊗ IK)ψ〉〈(U ⊗ IK)ψ|). (13)

By the properties of the partial trace, we have that ρ′ = UρU∗. But recall that
the law of |ψ〉 is unitarily invariant; it is thus invariant by U ⊗ IK (which is
an element of U(nk)). Hence the law µn,k is invariant by unitary conjugation.
Being positive, and thus self-adjoint, density matrices diagonalize:

ρ = V DV ∗, (14)

with V an unitary and D a diagonal matrix with positive entries. The unitary
invariance of µn,k corresponds to the fact that V is distributed along the Haar
measure on U(n). Remains, of course, the question of the distribution of D,
the diagonal matrix of eigenvalues, which will be answered in Section 3.2 (see
Proposition 4).

Another important question concerns the law of the matrix X . Recall that
the coordinates of X are those of ψ, rearranged in a n × k matrix. Since the
pure state |ψ〉 is distributed along the uniform measure νnk, we know, by the
second point of Proposition 2, that we can take for ψ a complex Gaussian vector
in Cnk. Thus, the elements of X are independent, complex Gaussian random
variables.

Lemma 1. Let X be a n× k complex matrix such that the entries are indepen-
dent identically distributed (i.i.d.) NC(0, 1) random variables. Then, the matrix

ρ =
X ·X∗

Tr(X ·X∗)
(15)

has distribution µn,k.

This lemma motivates the study of matrices of type W = X ·X∗, which will
be taken up in the next section.

3 Wishart matrices. Results at fixed size

3.1 The Wishart ensemble

This section is devoted to introducing the Wishart ensemble of random matri-
ces. Introduced in the 1930’s to study covariance matrices in statistics, Wishart
matrices have found many applications, both theoretical (random matrix the-
ory) and practical: principal component analysis, engineering, etc. Let us start
by recalling the definition of the Wishart ensemble:
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Definition 4. Let X be a n× k complex matrix such that the entries are i.i.d.
NC(0, 1) random variables. The n× n matrix W = X ·X∗ is called a Wishart
random matrix of parameters n and k.

In virtue of Lemma 1, there is a strong connection between the distribution
of Wishart matrices and the random density matrices we study. More precisely,
if W is a Wishart matrix, then

ρ =
W

TrW
(16)

has distribution µn,k.
We shall give a list of results on Wishart matrices that will be used later

in the study of random density matrices. As the results are rather classical in
random matrix theory, we will not supply proofs, but only references to the
original papers.

We start with a result on the eigenvalues of a Wishart matrix. Being of the
form W = X · X∗, Wishart matrices are positive and thus they admit n non-
negative eigenvalues λ1, . . . , λn. The next proposition provides the distribution
of the random vector (λ1, . . . , λn) (see [8]).

Proposition 3. Let W be a random n × n Wishart matrix with parameters n
and k. Then the distribution of the eigenvalues (λ1, . . . , λn) has a density with
respect to the Lebesgue measure on Rn

+ which is given by

ΦW
n,k(λ1, . . . , λn) = CW

n,k exp

(

−
n
∑

i=1

λi

)

n
∏

i=1

λk−n
i ∆(λ)2, (17)

where CW
n,k is the constant

[

∏n−1
j=0 Γ(n+ 1 − j)Γ(k − j)

]−1

and

∆(λ) =
∏

1≤i<j≤n

(λi − λj). (18)

When studying large random matrices, one important question is to what
resembles the spectrum of a random matrix in the limit n → ∞? In order to
answer such a question, one introduces the empirical spectral measure

Ln(W ) =
1

n

n
∑

i=1

δλi
, (19)

which is a random probability measure (it depends on W , which is random).
It turns out that, almost surely, the random measures Ln(W ) converge to a
deterministic probability measure, the Marchenko-Pastur distribution.

Definition 5. For c ∈]0,∞[, we denote by µc the Marchenko-Pastur probability
measure given by the equation

µc = max{1 − c, 0}δ0 +

√

(x− a)(b − x)

2πx
1[a,b](x)dx, (20)

where a = (
√
c− 1)2 and b = (

√
c+ 1)2.
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The result is contained in the following theorem (see [4]).

Theorem 2. Assume that c ∈]0,∞[, and let (k(n))n be a sequence of integers
such that limn→∞ k(n)/n = c. Consider a sequence of random matrices (Wn)n

such that for all n, Wn is a Wishart matrix of parameters n and k(n). Define
the renormalized empirical eigenvalue distribution of Wn by

Ln =
1

n

n
∑

i=1

δn−1λi(Wn),

where λ1(Wn), · · · , λn(Wn) are the eigenvalues of Wn. Then, almost surely, the
sequence (Ln)n converges weakly to the Marchenko-Pastur distribution µc.

Another object of interest in random matrix theory is the largest eigenvalue
of a large random matrix. The next result shows that in the Wishart case,
it converges almost surely to the right edge of the support of the Marchenko-
Pastur distribution; similarly to the Central Limit Theorem, the nature of the
fluctuations is known (see [1] and [6]).

Theorem 3. Assume that c ∈]0,∞[, and let (k(n))n be a sequence of integers
such that limn→∞ k(n)/n = c. Consider a sequence of random matrices (Wn)n

such that for all n, Wn is a Wishart matrix of parameters n and k(n), and let
λmax(Wn) be the largest eigenvalue of Wn. Then, almost surely,

lim
n→∞

1

n
λmax(Wn) = (

√
c+ 1)2. (21)

Moreover, the following limit holds in distribution

lim
n→∞

λmax(Wn) − n(
√
c+ 1)2

n1/3(1 +
√
c)(1 + 1/

√
c)1/3

= W2. (22)

Here, W2 is the Tracy-Widom law of order 2; as even the definition of this
probability distribution is well beyond the scope of this work, we encourage the
reader to look it up in [14], the original paper of Tracy and Widom.

3.2 The spectrum of a density matrix

Recall from Section 2.2 that when considering the diagonalization of a random
density matrix

ρ = V DV ∗, (23)

the unitary matrix V is distributed along the Haar measure on the unitary group
U(n). In this section we compute the distribution of the diagonal matrix D, i.e.
the spectrum of a density matrix with distribution µn,k.

Here, as well as in the next section, the parameters n and k will be fixed,
and we shall assume that k ≥ n. If n > k, by a property of the partial trace
application, the matrix ρ will have n − k null eigenvalues and k eigenvalues
identical to those of the density matrix

σ = TrH(|ψ〉〈ψ|).

In consequence, the study of the spectrum of ρ is equivalent to the study of
the spectrum of σ. Moreover, the size of σ’s environment (n) is larger than
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the dimension of σ itself (k), and we can apply the first case. In conclusion,
whenever n is larger than k, we interchange n and k, and we append n− k null
eigenvalues to the spectrum of ρ.

Recall that if W is a Wishart matrix of parameters n and k, then ρ =
W/TrW has distribution µn,k. It follows that if (λ1, . . . , λn) are the eigenvalues

of W and (λ̃1, . . . , λ̃n) are those of ρ, then we have

λ̃i =
λi

∑n
j=1 λj

, ∀1 ≤ i ≤ n. (24)

As the trace of a density matrix equals one, the (random) vector (λ̃1, . . . , λ̃n)
is confined in the (n−1)-dimensional probability simplex Σn−1 = {(x1, · · · , xn) ∈
Rn

+ :
∑n

i=1 xi = 1}. Note that λ̃n is a function of λ̃1, . . . , λ̃n−1, so we will show

that the distribution of (λ̃1, . . . , λ̃n−1) admits a density w.r.t. the Lebesgue
measure on Σn−1.

Proposition 4. The distribution of the (unordered) eigenvalues λ̃1(ρ), . . . , λ̃n−1(ρ)
has a density with respect to the Lebesgue measure on Σn−1 given by

Φn,k(λ̃1, . . . , λ̃n−1) = Cn,k

n
∏

i=1

(λ̃i)
k−n∆(λ̃)2, (25)

where

Cn,k =
Γ(nk)

∏n−1
j=0 Γ(n+ 1 − j)Γ(k − j)

. (26)

Remark 1. In the formula (25), there are only n − 1 variables; λ̃n is not a
variable, but merely the notation λ̃n = 1 − (λ̃1 + · · · + λ̃n−1).

Proof. Let us start from the Wishart distribution of eigenvalues and consider
the change of variables

(λ1, . . . , λn) 7→ (λ1, . . . , λn−1, S) 7→ (27)

7→ (λ1/S, . . . , λn−1/S, S) = (λ̃1, . . . , λ̃n−1, S), (28)

where S =
∑n

i=1 λi is the sum of the Wishart eigenvalues. The Jacobian of this
transformation equals 1/Sn−1, and we get

Φ
(λ̃,S)
n,k (λ̃1, . . . , λ̃n−1, S) = CW

n,k exp(−S)
n
∏

i=1

(Sλ̃i)
k−n∆(Sλ̃)2Sn−1. (29)

We get now to the crucial point of the proof. Clearly, the above density factorizes
as

Φ
(λ̃,S)
n,k (λ̃1, . . . , λ̃n−1, S) = CW

n,k ×
[

n
∏

i=1

λ̃k−n
i ∆(λ̃)2

]

×
[

Snk−1 exp(−S)
]

. (30)

Hence, the normalized eigenvalues (λ̃1, . . . , λ̃n−1) and the sum of the Wishart
eigenvalues S are independent random variables.

9



In order to compute the distribution of (λ̃1, . . . , λ̃n−1), it suffices to take the
marginal with respect to S; we get

Φn,k(λ̃1, . . . , λ̃n−1) = Cn,k

n
∏

i=1

λ̃k−n
i ∆(λ̃)2, (31)

where

Cn,k = CW
n,k ·

∫ ∞

0

Snk−1e−SdS = Γ(nk)CW
n,k = (32)

=
Γ(nk)

∏n−1
j=0 Γ(n+ 1 − j)Γ(k − j)

. (33)

As a byproduct of the proof, we also obtain the following characterisation
of the induced measure.

Corollary 1. The law of a random density matrix ρ of parameters n and k is
the law of a Wishart matrix W of the same parameters conditioned by TrW = 1.

Proof. From the formula (30) we see that the normalized eigenvalues and the
trace of a Wishart matrix are independent random variables. Thus, taking the
marginal with respect to the trace is equivalent to conditioning on the event
(TrW = 1). Note however that (TrW = 1) has zero probability.

In the Figure 1 we have plotted the density functions for n = 2 and several
values of k using the analytic formula (25). For n = 3 we have randomly
generated random density matrices and plotted the probability simplex Σ2 along
with the points corresponding to the spectra (Figure 2). We notice that for
large values of k (the size of the environment), the spectrum concentrates to the
middle point in Σn−1. This is a general phenomenon and it will be studied in
section 4.1.
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Figure 1: Theoretical eigenvalue distribution for (n = 2, k = 2), (n = 2, k = 10)
and (n = 2, k = 50).

3.3 Moments

The aim of this section is to provide formulas for the moments of order q of
a random density matrix of distribution µn,k. In order to do that, we shall
introduce the some notation: En,k[·] will denote the expectation with respect
to the law µn,k and EW

n,k[·] the expectation with respect to the law of Wishart
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Figure 2: Empirical eigenvalue distribution (5000 matrices) for (n = 3, k = 3),
(n = 3, k = 10) and (n = 3, k = 100).

matrices with parameters n and k. We will use the corresponding result on the
Wishart ensemble and derive explicit formulas, as well as recurrence relations.
The following proposition provides a bridge between the moments of a density
matrix and those of a Wishart matrix with the same parameters.

Proposition 5. Let En,k[Tr(ρq)] be the moment of a random density matrix of
parameters n and k and let EW

n,k[Tr(W q)] be the moment of a Wishart matrix
having the same parameters. Then,

En,k[Tr(ρq)] =
EW

n,k[Tr(W q)]

nk(nk + 1) · · · (nk + q − 1)
. (34)

Proof. By using the same technique as in the proof of the Proposition 4, we get

E
W
n,k[Tr(W q)] = En,k[Tr(ρq)]

Γ(nk + q)

Γ(nk)
, (35)

which is the same as equation (34).

We can find in the literature different explicit and recurrence formulas for
E
W
n,k[Tr(W q)]. From the one in [4], we get

En,k[Tr(ρq)] =
Γ(nk)

Γ(nk + q)

q
∑

j=1

(−1)j−1 [k + q − j]q[n+ q − j]q
(q − j)!(j − 1)!

, (36)

where [a]q = a(a− 1) · · · (a− q + 1). The recurrence formula (see [4])

En,k[Tr(ρq)] =
(2q − 1)(n+ k)

(nk + q − 1)(q + 1)
En,k[Tr(ρq−1)]+ (37)

+
(q − 2)((q − 1)2 − (k − n)2)

(nk + q − 1)(nk + q − 2)(q + 1)
En,k[Tr(ρq−2)] (38)

allows us to easily compute some averages:

En,k[Tr(ρ2)] =
n+ k

nk + 1
, (39)

En,k[Tr(ρ3)] =
n2 + 3nk + k2 + 1

(nk + 1)(nk + 2)
, (40)

En,k[Tr(ρ4)] =
n3 + 6n2k + 6nk2 + k3 + 5n+ 5k

(nk + 1)(nk + 2)(nk + 3)
, etc. (41)

These formulas are consistent with the ones of [13] and [15].
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4 Asymptotics

The last part of this paper is devoted to the study of random density matrices
corresponding to large systems. We shall consider two models, both motivated
physically:

1. In the first model, the size of the density matrix n is constant and the size
of the environment k tends to infinity. Such a situation arises typically
when one studies a small system (a qubit, a pair of qubits, etc.) coupled
to a much larger environment. We show that in the limit k → ∞, den-
sity matrices distributed along µn,k converge to the maximally mixed (or
chaotic) state I /n.

2. In the second model, both n and k tend to infinity and k/n → c >
0. This model describes a large system coupled to a large environment
with constant ratio of size (dimK/ dimH ≈ c). In this case we show
that the spectral measures of density matrices of law µn,k converge to a
deterministic measure known in random matrix theory as the Marchenko-
Pastur distribution (see Definition 5). We also study the convergence and
the fluctuations of the largest eigenvalue of random density matrices.

4.1 The first model

Consider the density function of µn,k with n fixed and k → ∞:

Φn,k(λ1, . . . , λn−1) = Cn,k

n
∏

i=1

λk−n
i ∆(λ)2. (42)

As n is fixed, the Vandermonde factor ∆(λ) is constant. The other factor,
properly normalized in order to get a probability density, is the Dirichlet measure
of parameter α = k − n+ 1:

Φ
′

n,k(λ1, . . . , λn−1) = C
′

n,k

n
∏

i=1

λα−1
i . (43)

The next result is well-known in probability theory. We shall sketch its proof
for the sake of completenss.

Theorem 4. The Dirichlet measure converges weakly as α → ∞ to the Dirac
measure δ(1/n,...,1/n)

Proof. The idea behind the proof is to show that the variance of a Dirichlet-
distributed random variable converges to 0 as its parameter converges to infinity.
Let X be such a random variable. X has a density with respect to the Lebesgue
measure on the probability simplex given by:

f(x1, . . . , xn) =
Γ(nα)

Γ(α)n

n
∏

i=1

xα−1
i .

It is easy to compute

E

[

∥

∥

∥

∥

X −
(

1

n
, . . . ,

1

n

)∥

∥

∥

∥

2
]

= nE

[

x2
1 −

2x1

n
+

1

n2

]

=
α+ 1

nα+ 1
− 1

n
→ 0. (44)

12



As the maximally mixed state I /n is the unique state having spectrum
{1/n, . . . , 1/n}, we get:

Corollary 2. Density matrices of the first model converge almost surely to the
maximally mixed (or chaotic) state I /n.

Remark 2. The same result can be obtained by an entropic argument. It turns
out that the mean von Neumann entropy S(ρ) = −Tr(ρ log ρ) can be computed
for a random density matrix distributed along µn,k:

En,k[S(ρ)] =

nk
∑

i=k+1

1

i
− n− 1

2k
.

This formula has been conjectured by Page [9] and has been subsequently proved
(see [11, 12]) using various methods. Let us explain how it implies the corollary.
First, fix n and let k grow to infinity, as in our model. The mean entropy is
easily seen to converge to logn. This turns out to be the maximum von Neumann
entropy for a system with n degrees of freedom. It is attained at the state I/n,
the unique state of maximum uncertainty.

4.2 The second model

In the second model, both the size of the density matrix and the size of the
environment tend to infinity. In order to use the results on the Wishart ensemble
(Theorems 2 and 3), we need appropriate results on the behavior of the trace S
of a Wishart matrix.

Lemma 2. Assume that c ∈]0,∞[, and let (k(n))n be a sequence of integers
such that limn→∞ k(n)/n = c. Consider a sequence of random matrices (Wn)n

such that for all n, Wn is a Wishart matrix of parameters n and k(n). Let
Sn = TrWn be the trace of Wn. Then

Sn

nk(n)
→ 1 almost surely (45)

and
Sn − nk(n)
√

nk(n)
⇒ N (0, 1), (46)

where “ ⇒ ” denotes the convergence in distribution.

Proof. Recall that Wn = Xn · X∗
n, when Xn is a n × k(n) matrix with i.i.d.

complex Gaussian entries. We have

Sn =

n
∑

i=1

k(n)
∑

j=1

|Xij |2 =

n
∑

i=1

k(n)
∑

j=1

(Re(Xij)
2 + Im(Xij)

2). (47)

The random variables {Re(Xij), Im(Xij)}ij are i.i.d. with distribution N (0, 1/2)
and thus, by the law of large numbers, we have, almost surely,

lim
n→∞

Sn

2nk(n)
=

1

2
, (48)

completing the proof of the first result. The second result follows from the
Central Limit Theorem.
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We can now state and prove the analogue of Theorem 2 for random density
matrices:

Theorem 5. Assume that c ∈]0,∞[, and let (k(n))n be a sequence of integers
such that limn→∞ k(n)/n = c. Consider a sequence of random density matrices
(ρn)n such that for all n, ρn has distribution µn,k(n). Define the renormalized
empirical distribution of ρn by

Ln =
1

n

n
∑

i=1

δcnλi(ρn), (49)

where λ1(ρn), · · · , λn(ρn) are the eigenvalues of ρn. Then, almost surely, the
sequence (Ln)n converges weakly to the Marchenko-Pastur distribution µc.

Proof. We know (Theorem 2) that the empirical distribution of eigenvalues for
the Wishart ensemble

LW
n =

1

n

n
∑

i=1

δn−1λi(Wn), (50)

converges almost surely to the Marchenko-Pastur distribution of parameter c.
Recall that the eigenvalues of the density matrix ρn = Wn/Tr(Wn) are those
of Wn divided by the trace Sn of Wn. We have thus the following formula for
the empirical spectral measure of ρ:

Ln =
1

n

n
∑

i=1

δcnλi(Wn)/Sn
=

1

n

n
∑

i=1

δ
n−1λi(Wn)· cn2

Sn

. (51)

The last equation is the same as equation (50) with the Dirac measures per-
turbed by a factor of cn2/Sn which converges, almost surely, to 1 (by the pre-
ceding lemma). We are now going to show that such a perturbation does not
change the limit in distribution. In order to achieve this, recall that when the
limit measure is compactly supported, the convergence in distribution is equiv-
alent to the convergence of moments. If we compute the q-th moment of the
measures LW

n and Ln, we find:

〈xq, LW
n 〉 =

1

n

n
∑

i=1

(

n−1λi(Wn)
)q
, (52)

and, respectively,

〈xq , Ln〉 =
1

n

n
∑

i=1

(

n−1λi(Wn)
)q ·

(

cn2

Sn

)q

. (53)

These expressions have the same limit as n→ ∞ for all q, and thus Ln converges
to the Marchenko-Pastur distribution.

In the Figure 3, we have plotted for several values of c and large n and k a
histogram of the spectrum for one density matrix and the theoretical density
of the Marchenko-Pastur distribution (see Remark 3). We can see that the
empirical histogram matches closely the theoretical curve for rather mild values
of n (here n = 1000).

We now turn to the study of the largest eigenvalue of random density ma-
trices. As before, we use the corresponding result on the Wishart ensemble
(Theorem 3) and the control over the trace (Lemma 2):
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Figure 3: Empirical and limit measures for (n = 1000, k = 1000), (n = 1000, k =
2000) and (n = 1000, k = 10000).

Theorem 6. Assume that c ∈]0,∞[, and let (k(n))n be a sequence of integers
such that limn→∞ k(n)/n = c. Consider a sequence of random matrices (ρn)n

such that for all n, ρn has distribution µn,k(n), and let λmax(ρn) be the largest
eigenvalue of ρn. Then, almost surely,

lim
n→∞

cnλmax(ρn) = (
√
c+ 1)2. (54)

Moreover,

lim
n→∞

n2/3
[

cnλmax(ρn) − (
√
c+ 1)2

]

(1 +
√
c)(1 + 1/

√
c)1/3

= W2 in distribution. (55)

Proof. By the first part of Theorem 3, the (normalized) largest eigenvalue
1
nλmax(Wn) of a Wishart matrix converges almost surely to (

√
c + 1)2. Ob-

viously, we have

λmax(ρn) =
λmax(Wn)

Sn
, (56)

and, by the Lemma 2, Sn/(cn
2) converges (almost surely) to 1. Finally, we

obtain formula (54).
For the second part of the theorem, what we need to do, normalizations

apart, is to show that the trace of a Wishart matrix fluctuates less than the
largest eigenvalue. For the Wishart case, we have

λmax(Wn) = n(
√
c+ 1)2 + n1/3(1 +

√
c)(1 + 1/

√
c)1/3(W2 + o(1)), (57)

and
Sn = nk(n) +

√

nk(n)(N + o(1)). (58)

Again, λmax(ρn) = λmax(Wn)/Sn and after simplifications, one obtains the
desired formula (55).

Remark 3. Note that Theorem 5 and the first part of Theorem 6 deal with al-
most sure convergences. This means that when considering sequences of random
density matrices of increasing size, the respective convergences will fail only on
a set of null measure. This is to be compared with typicality results for random
density matrices obtained recently in [3], [10] by concentration of measure tech-
niques. These results give bounds (at fixed matrix size) on the probability that
a random matrix is far from its expected value, while our results deal with the
more subtle convergence of rescaled quantities, such as the spectral distribution
or the largest eigenvalue.
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5 Conclusions

We investigated random density matrices distributed along the so-called induced
measures. After introducing them as partial traces of larger random pure states,
we provided some explicit and recurrence relations for the moments of such
density matrices. Using results on Wishart matrices, we then considered large
density matrices. In a first model, a fixed size system was coupled to a very
large environment; we showed that an uniform pure state on the compound
system corresponds to the maximally mixed (or chaotic) density matrix on the
fixed-size system. In parallel with Wishart matrices, we studied the regime
dimK/ dimH → c. We obtained the almost sure convergence of the empirical
spectral measure and of the largest eigenvalue, as well as the fluctuations of
the largest eigenvalue. Results from random matrix theory were easily adapted
for density matrices. Other important quantities, such as correlation functions,
require a more detailed analysis, and this will be the subject of further work.
Also, it may be interesting to study such asymptotics for other probability
measures on density matrices, such as the Bures measure.

Acknowledgment: The author would like to thank Guillaume Aubrun for
useful ideas which led to several simplifications in some proofs.
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[13] H.-J. Sommers and K. Życzkowski, Statistical properties of random density
matrices, J. Phys. A, 37 (2004), no. 35, pp. 8457–8466.

[14] C. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles,
Comm. Math. Phys., 177 (1996), no. 3, pp. 727–754.
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