Catalytic majorization and $\ell_p$ norms - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2008

Catalytic majorization and $\ell_p$ norms

Guillaume Aubrun
Ion Nechita

Résumé

An important problem in quantum information theory is the mathematical characterization of the phenomenon of quantum catalysis: when can the surrounding entanglement be used to perform transformations of a jointly held quantum state under LOCC (local operations and classical communication) ? Mathematically, the question amounts to describe, for a fixed vector $y$, the set $T(y)$ of vectors $x$ such that we have $x \otimes z \prec y \otimes z$ for some $z$, where $\prec$ denotes the standard majorization relation. Our main result is that the closure of $T(y)$ in the $\ell_1$ norm can be fully described by inequalities on the $\ell_p$ norms: $\|x\|_p \leq \|y\|_p$ for all $p \geq 1$. This is a first step towards a complete description of $T(y)$ itself. It can also be seen as a $\ell_p$-norm analogue of Ky Fan dominance theorem about unitarily invariant norms. The proofs exploits links with another quantum phenomenon: the possibiliy of multiple-copy transformations ($x^{\otimes n} \prec y^{\otimes n}$ for given $n$). The main new tool is a variant of Cramér$ theorem on large deviations for sums of i.i.d. random variables.
Fichier principal
Vignette du fichier
majorization.pdf (218.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00131097 , version 1 (15-02-2007)
hal-00131097 , version 2 (18-06-2007)

Identifiants

Citer

Guillaume Aubrun, Ion Nechita. Catalytic majorization and $\ell_p$ norms. Communications in Mathematical Physics, 2008, 278, pp.133-144. ⟨hal-00131097v2⟩
96 Consultations
392 Téléchargements

Altmetric

Partager

More