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Bahadur representation of sample quantiles for functional of Gaussian dependent sequences under a

minimal assumption

Let Y = (Y (1), . . . , Y (n)) a vector of n i.i.d. random variables such that F ′′ (ξ(p)) exists and is bounded in a neighborhood of ξ(p) and such that F ′ (ξ(p)) > 0, Bahadur proved that as n → +∞, Sen and Ghosh (1972) for φ-mixing variables, in [START_REF] Yoshihara | The Bahadur representation of sample quantiles for sequences of strongly mixing random variables[END_REF] for strongly mixing variables, and recently in [START_REF] Wu | On the Bahadur representation of sample quantiles for dependent sequences[END_REF] for short-range and long-range dependent linear processes, following works of [START_REF] Hesse | A Bahadur-type representation for empirical quantiles of a large class of stationary, possibly infinite-variance, linear processes[END_REF] and [START_REF] Ho | On the asymptotic expansion of the empirical process of long-memory moving averages[END_REF]. Finally, such a representation has been obtained by [START_REF] Coeurjolly | Hurst exponent estimation of locally selfsimilar Gaussian processes using sample quantiles[END_REF] for nonlinear functional of Gaussian sequences with correlation function decreasing as k -α for some α > 0.

ξ (p) -ξ(p) = p -F (p) f(ξ(p)) + r n ,
Ghosh (1971) that the remainder term satisfies r n = o P (n -1/2 ), which means that n 1/2 r n tends to 0 in probability. This result is sufficient for example to establish a central limit theorem for the sample quantile. Our goal is to extend Ghosh's result to nonlinear functional of Gaussian sequences with correlation function decreasing as k -α . The Bahadur representation is presented in Section 2 and is applied to a central limit theorem for the sample quantile. Proofs are deferred in Section 3.

Main result

Let {Y (i)} +∞ i=1 be a stationary (centered) gaussian process with variance 1, and correlation function ρ(•) such that, as i → +∞

|ρ(i)| ∼ i -α (1) 
for some α > 0.

Let us recall some background on Hermite polynomials: the Hermite polynomials form an orthogonal system for the Gaussian measure and are in particular such that

E (H j (Y )H k (Y )) = j! δ j,k
, where Y is referred to a standard Gaussian variable. For some measurable function g(•) defined on R such that E(g(Y ) 2 ) < +∞, the following expansion holds

g(t) = j≥τ c j j! H j (t) with c j = E (g(Y )H j (Y )) ,
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where the integer τ defined by τ = inf {j ≥ 0, c j = 0}, is called the Hermite rank of the function g. Note that this integer plays an important role. For example, it is related to the correlation of g(Y 1 ) and g(Y 2 ), for Y 1 and Y 2 two standard gaussian variables with

correlation ρ, since E(g(Y 1 )g(Y 2 ) = k≥τ (c k ) 2 k! ρ k = O (ρ τ ).
Our result is based on the assumption that F ′ g(Y ) (•) exists and is bounded in a neighborhood of ξ(p). This is achieved if the function g(•) satisfies the following assumption (see e.g. Dacunha-Castelle and Duflo (1982), p.33).

Assumption A(ξ(p)) : there exist U i , i = 1, . . . , L, disjoint open sets such that U i contains a unique solution to the equation g(t) = ξ g(Y ) (p), such that F ′ g(Y ) (ξ(p)) > 0 and such that g is a C 1 -diffeomorphism on ∪ L i=1 U i .
Note that this assumption allows us to obtain

F ′ g(Y ) (ξ g(Y ) (p)) = f g(Y ) (ξ g(Y ) (p)) = L i=1 φ(g -1 i (t)) g ′ (g -1 i (t))
, where g i (•) is the restriction of g(•) on U i and where φ(•) is referred to the probability density function of a standard Gaussian variable. Now, define, for some real u, the function h u (•) by:

h u (t) = 1 {g(t)≤u} (t) -F g(Y ) (u). ( 2 
)
We denote by τ (u) the Hermite rank of h u (•). For the sake of simplicity, we set τ p = τ (ξ g(Y ) (p)). For some function g(•) satisfying Assumption A(ξ(p)), we denote by

τ p = inf γ∈∪ L i=1 g(U i ) τ (γ), (3) 
that is the minimal Hermite rank of h u (•) for u in a neighborhood of ξ g(Y ) (p). Denote also by c j (u) the j-th Hermite coefficient of the function h u (•).

Theorem 1 Under Assumption A(ξ(p)), the following result holds as n → +∞

ξ (p; g(Y )) -ξ g(Y ) (p) = p -F ξ g(Y ) (p); g(Y ) f g(Y ) (ξ g(Y ) (p)) + o P (r n (α, τ p )) , (4) 
where g(Y ) = (g(Y (1), . . . , g(Y (n))), for i = 1, . . . , n and where the sequence (r n (α, τ p )) n≥1 is defined by

r n (α, τ p ) =          n -1/2 if ατ p > 1, n -1/2 log(n) 1/2 if ατ p = 1, n -ατ p/2 if ατ p < 1.
(5)
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Remark 1 The sequence r n (α, τ p ) is related to the behaviour short-range or long-range dependent behaviour of the sequence h u (Y (1)), . . . , h u (Y (n)) for u in a neighborhood of ξ(p). More precisely, it corresponds to the asymptotic behaviour of the sequence

  1 n |i|<n ρ(i) τ p   1/2
.

Corollary 2 Under Assumption A(ξ(p)), then the following convergence in distribu-

tion hold as n → +∞ ( i) if ατ p > 1 √ n ξ (p; g(Y )) -ξ g(Y ) (p) d -→ N (0, σ 2 p ), (6) 
where

σ 2 p = 1 f (p) 2 i∈Z j≥τ p c j (p) 2 j! ρ(i) j with f (p) = f g(Y ) (ξ g(Y ) (p)) and c j (p) = c j (ξ g(Y ) (p)). (ii) if ατ p < 1 n ατ p /2 ξ (p; g(Y )) -ξ g(Y ) (p) d -→ c τ p (p) τ p !f (p) Z τ p , (7) 
where

Z τ p = K(τ p , α) ′ R τ p exp(i(λ 1 + • • • + λ τ p )) -1 i(λ 1 + • • • + λ τ p ) τ p j=1 |λ j | (α-1)/2 B(dλ j )
and

K(τ p , α) = (1 -ατ p /2)(1 -ατ p ) τ p ! (2Γ(α) sin(π(1 -α)/2)) τ p 1/2
.

The measure B is a Gaussian complex measure and the symbol ′ means that the domain of integration excludes the hyperdiagonals {λ i = ±λ j , i = j}.

The proof of this result is omitted since it is a direct application of Theorem 1 and general limit theorems adapted to nonlinear functional of Gaussian sequences, e.g. [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF] and [START_REF] Dehling | The empirical process of some long-range dependent sequences with an application to U -statistics[END_REF].
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3 Proofs

Auxiliary Lemma

Lemma 3 For every j ≥ 1 and for all positive sequence (u n ) n≥1 such that u n → 0, as n → +∞, we have, under Assumption A(ξ(p))

I = R H j (t)φ(t)1 {|g(t)-ξ g(Y ) (p))|≤un} dt ∼ u n κ j , ( 8 
)
where κ j is defined, for every j ≥ 1,by

κ j =      -2 L i=1 φ ′ (g -1 i (ξ(p)) g ′ (g -1 i (ξ(p))) if j = 1, 2(-1) j L i=1 φ (j-2) (g -1 i (ξ(p)) g ′ (g -1 i (ξ(p)))
if j > 1.

(9)

Proof. Under Assumption A(ξ(p)), there exists n 0 ∈ N such that for all n ≥ n 0 ,

I = L i=1 I i with I i = U i H j (t)φ(t)1 {ξ(p)-un ≤ g(t) ≤ ξ(p)+un} dt. (10) 
Assume without loss of generality that the restriction of g(•) on U i (denoted by g i (•)) is an increasing function, we have

I i = U i H j (t)φ(t)1 {ξ(p)-un ≤ g(t) ≤ ξ(p)+un} dt = g -1 i (ξ(p)+un) g -1 i (ξ(p)-un) H j (t)φ(t)dt =    φ(m i,n ) -φ(M i,n ) = (m i,n -M i,n ) if j = 1 (-1) j φ (j-1) (M i,n ) -φ (j-1) (m i,n ) if j > 1,
where

M i,n = g -1 i (ξ(p) + u n ) and m i,n = g -1 i (ξ(p) -u n ).
Then, there exists ω n,i,j ∈ [m i,n , M i,n ] for every j ≥ 1 such that

I i =    (m i,n -M i,n ) φ (1) (ω n,i,1 ) if j = 1 (-1) j (M i,n -m i,n ) φ (j-2) (ω n,i,j ) if j > 1.
,

Under Assumption A(ξ(p)), we have, as n → +∞ ω n,i,j ∼ g -1 i (ξ(p)) and M i,n -m i,n ∼ 2u n 1 g ′ (g -1 i (ξ(p)))
, which ends the proof.
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Proof of Theorem 1

For the sake of simplicity, we set

ξ (p) = ξ (p; g(Y )), ξ(p) = ξ g(Y ) (p), F (•) = F (•; g(Y )), F(•) = F g(Y ) (•) et f(•) = f g(Y ) (•) and r n = r n (α, τ p ). Define, V n = r -1 n ξ (p) -ξ(p) and W n = r -1 n p -F(p) f(p) . The result is established if V n -W n P → 0 as n → +∞. It suffices to prove that V n and
W n satisfy the conditions of Lemma 1 of [START_REF] Ghosh | A new proof of the Bahadur Representation of Quantiles and an application[END_REF]:

• condition (a) : for all δ > 0, there exists ε = ε(δ) such that P (|W n | > ε) < δ.

• condition (b) : for all y ∈ R and for all ε > 0

lim n→+∞ P (V n ≤ y, W n ≥ k + ε) and lim n→+∞ P (V n ≥ y + ε, W n ≥ k)
condition (a) : from Bienaymé-Tchebyshev's inequality it is sufficient to prove that

EW 2 n = O(1). Rewrite W n = r -1 n n n i=ℓ+1 h ξ(p) (Y (i))
. Let c j (for some j ≥ 0) denote the j-th Hermite coefficient of h ξ(p) (•). Since h ξ(p) (•) has at least Hermite rank τ p , then

EW 2 n = r -2 n n 2 n i 1 ,i 2 =1 E h ξ(p) (Y (i 1 )) h ξ(p) (Y (i 2 )) = r -2 n n 2 n i 1 ,i 2 =1 j 1 ,j 2 ≥τp c j 1 c j 2 E (H j 1 (Y (i 1 )) H j 2 (Y (i 2 ))) = r -2 n n 2 n i 1 ,i 2 =1 j≥τ p (c j ) 2 (j)! ρ(i 2 -i 1 ) j = O   r -2 n × 1 n |i|<n ρ(i) τ p   = O (1) , from Remark 1.
condition (b) : let y ∈ R, we have

{V n ≤ y} = ξ (p) ≤ y × r n + ξ(p) = p ≤ F (y × r n + ξ(p)) = {Z n ≤ y n } , (11) 
with

Z n = r -1 n f(ξ(p)) F y × r n + ξ(p) -F y √ r n + ξ(p)
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y n = r -1 n f (ξ(p)) F y × r n + ξ(p) -p
Under Assumption A(ξ(p)), we have y n → y, as n → +∞. Now, prove that Z n -W n P → 0.

Without loss of generality, assume y > 0. Then, we have

W n -Z n = r -1 n f(p) F y × r n + ξ(p) -F y × r n + ξ(p) -F (ξ(p)) + F(ξ(p)) = r -1 n n 1 f(ξ(p)) n i=1 h ξ(p),n (Y (i))
where h ξ(p),n (•) is the function defined for t ∈ R by :

h ξ(p),n (t) = 1 ξ(p)≤g(t)≤ξ(p)+y×rn (t) -P ξ(p) ≤ g(Y ) ≤ ξ(p) + y × r n .
For n sufficiently large, the function h ξ(p),n (•) has Hermite rank τ p . Denote by c j,n the j-th Hermite coefficient of h ξ(p),n (•). From Lemma 3, there exists a sequence (κ j ) j≥τ p such that, as n → +∞ c j,n ∼ κ j × r n .

Since, for all n ≥ 1 E(h n (Y ) 2 ) = j≥τ p (c j,n ) 2 /j! < +∞, it is clear that the sequence (κ j ) j≥τ p is such that j≥τ p (κ j ) 2 /j! < +∞. By denoting λ a positive constant, we get,

as n → +∞ E(W n -Z n ) 2 = r -2 n n 2 1 f(ξ(p)) 2 n i 1 ,i 2 =1 E h ξ(p),n (Y (i 1 )) h ξ(p),n (Y (i 2 )) = r -2 n n 2 1 f(ξ(p)) 2 n i 1 ,i 2 =1 j 1 ,j 2 ≥τ p c j 1 ,n c j 2 ,n E (H j 1 (Y (i 1 )) H j 2 (Y (i 2 ))) = r -2 n n 2 1 f(ξ(p)) 2 n i 1 ,i 2 =1 j≥τ p c 2 j,n j! ρ(i 2 -i 1 ) j ≤ λ r -2 n n j≥τ p (κ j ) 2 j! r 2 n |i|<n ρ(i) j = O   1 n |i|<n ρ(i) τ p   = O(r 2 n ),
from Remark 1. Therefore, W n -Z n converges to 0 in probability, as n → +∞. Thus, for all ε > 0, we have, as n → +∞,

P (V n ≤ y, W n ≥ y + ε) = P (Z n ≤ y n , W n ≥ y + ε) → 0.
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Following the sketch of this proof, we also have P (V n ≥ y + ε, W n ≤ y) → 0, ensuring condition (b). Therefore, W n -Z n converges to 0 in probability, as n → +∞. Thus, for all ε > 0, we have, as n → +∞, P (V n ≤ y, W n ≥ y + ε) = P (Z n ≤ y n , W n ≥ y + ε) → 0.

Following the sketch of this proof, we also have P (V n ≥ y + ε, W n ≤ y) → 0, ensuring condition (b).
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  Bahadur representation of sample quantiles for functional of Gaussian dependent sequences 2 with r n = O a.s. n -3/4 log(n) 3/4 where a sequence of random variables U n is said to be O a.s. (v n ) if U n /v n is almost surely bounded. Kiefer obtained the exact rate n -3/4 log log(n) 3/4 . Under an Assumption on F (•) which is quite similar to the one done by Bahadur, extensions of above results to dependent random variables have been pursued in

  proposed in the i.i.d. case a much simpler proof of Bahadur's result

	which suffices for many statistical applications. He established under a weaker assump-
	tion on F(•) (F ′ (•) exists and is bounded in a neighborhood of ξ(p) and f(ξ(p)) > 0)
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