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FUNCTIONAL OF (GAUSSIAN DEPENDENT SEQUENCES UNDER A

MINIMAL ASSUMPTION
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SAGAG, Department of Statistics, Grenoble, FRANCE

September 30, 2008

We obtain a Bahadur representation for sample quantiles of nonlinear func-
tional of Gaussian sequences with correlation function decreasing as k=% for

some « > 0. This representation is derived under a mimimal assumption.

1 Introduction

We consider the problem of obtaining a Bahadur representation of sample quantiles in a
certain dependence context. Before stating in what a Bahadur representation consists,
let us specify some general notation. Given some random variable Y, F(-) = Fy(-) is
referred as the cumulative distribution function of Y, {(p) = &y (p) for some 0 < p < 1 as
the quantile of order p. If F{(-) is absolutely continuous with respect to Lebesgue measure,
the probability density function is denoted by f(-) = fy(:). Based on the observation
of a vector Y = (Y(1),...,Y(n)) of n random variables distributed as Y, the sample
cumulative distribution function and the sample quantile of order p are respectively
denoted by Fy (+Y) and Ey (p;Y) or simply by F\(, Y) and g(p; Y).

Let Y = (Y(1),...,Y(n)) a vector of n i.i.d. random variables such that F”(£(p))
exists and is bounded in a neighborhood of £(p) and such that F'(£(p)) > 0, Bahadur
proved that as n — +o0,

A p—F(p)
£(p) —&(p) = TEw)

! Key words and phrases. Gaussian processes, Bahadur representation of sample quantiles, Hermite

+ T,

expansions.
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with r, = Ogs. (n_g/ 4 log(n)3/ 4) where a sequence of random variables U, is said
to be Oy (vy) if U,/v, is almost surely bounded. Kiefer obtained the exact rate

n=%/*1log log(n)3/*

. Under an Assumption on F'(-) which is quite similar to the one done
by Bahadur, extensions of above results to dependent random variables have been pur-
sued in Ben and Ghosl ([L972) for ¢p—mixing variables, in [Yoshihara ([L995) for strongly
mixing variables, and recently in W (R00J) for short-range and long-range dependent
linear processes, following works of () and [Ho and Hsing | ([1996). Finally,
such a representation has been obtained by [Coeurjolly] (007) for nonlinear functional of
Gaussian sequences with correlation function decreasing as k= for some a > 0.

~ Ghosh (L971) proposed in the i.i.d. case a much simpler proof of Bahadur’s result
which suffices for many statistical applications. He established under a weaker assump-
tion on F(-) (F'(-) exists and is bounded in a neighborhood of £(p) and f(£(p)) > 0)

that the remainder term satisfies r,, = oﬂ,,(nfl/ 2), which means that n'/?r, tends to 0

in probability. This result is sufficient for example to establish a central limit theorem
for the sample quantile. Our goal is to extend Ghosh’s result to nonlinear functional of
Gaussian sequences with correlation function decreasing as k~“. The Bahadur represen-
tation is presented in Section J] and is applied to a central limit theorem for the sample

quantile. Proofs are deferred in Section [

2 Main result

Let {V(i)};: be a stationary (centered) gaussian process with variance 1, and correla-

tion function p(-) such that, as i — +oo

p(@)] ~ i (1)

for some a > 0.

Let us recall some background on Hermite polynomials: the Hermite polynomials
form an orthogonal system for the Gaussian measure and are in particular such that
E (H;(Y)H,(Y)) = j! 0, where Y is referred to a standard Gaussian variable. For
some measurable function g(-) defined on R such that E(g(Y)?) < +oo, the following
expansion holds

9t) = YT Hy(t)  with ¢ = B(g(Y)H;(Y)),

1
jZTJ'
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where the integer 7 defined by 7 = inf {j > 0,¢; # 0}, is called the Hermite rank of the
function g. Note that this integer plays an important role. For example, it is related to
the correlation of ¢g(Y7) and g(Y3), for Y7 and Y, two standard gaussian variables with
correlation p, since E(g(Y1)g(Y2) = > p>, (CIZ)Q ok =0 ().

Our result is based on the assumption that Fg’ (Y)(-) exists and is bounded in a neigh-

borhood of £(p). This is achieved if the function g(-) satisfies the following assumption
(see e.g. [Dacunha-Castelle and Dufld (1989), p.33).
Assumption A(&(p)) : there exist U;, ¢ = 1,..., L, disjoint open sets such that

Ui contains a unique solution to the equation g(t) = ,y(p), such that F;(Y) (&(p)) >0
and such that g is a C'—diffeomorphism on UZ ,U;.

Note that this assumption allows us to obtain

- 9(g; (1)
Flon(&gon () = Fyon (Geon (@) = Y =
(V)\Sg(Y) 9(Y)Sg(Y) 1’
g i=1 gl(gz (t))
where g;(-) is the restriction of g(-) on U; and where ¢(-) is referred to the probability
density function of a standard Gaussian variable.

Now, define, for some real u, the function h,(-) by:

ha(t) = Ligy<uy (t) — Fyvy(u). (2)

We denote by 7(u) the Hermite rank of h,(-). For the sake of simplicity, we set 7, =
7(€g(v)(p)). For some function g(-) satisfying Assumption A(£(p)), we denote by

Tp = inf 7(7), 3

P= ) () (3)

that is the minimal Hermite rank of h,(-) for u in a neighborhood of £,y)(p). Denote

also by c;(u) the j-th Hermite coefficient of the function h(-).

Theorem 1 Under Assumption A(E(p)), the following result holds as n — +oo

~ - = FPlEmpre™)
g(pag(Y)) gg(Y) (p) - fg(Y) (§g(y) (p)) + 0 ( n( ’ p)) ) (4)
where g(Y') = (9(Y(1),...,9(Y (n))), fori=1,...,n and where the sequence (rn(,Tp)),>;

is defined by

n=1/2 if oty > 1,
(e, 7p) =< n~Y2log(n)'/? if aty =1, (5)

n=oTp/ if o, < 1.
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Remark 1 The sequence (o, Tp) is related to the behaviour short-range or long-range
dependent behaviour of the sequence hy(Y (1)),...,hy(Y(n)) for u in a neighborhood of

&(p). More precisely, it corresponds to the asymptotic behaviour of the sequence
1/2

LS iy

li|l<n
Corollary 2 Under Assumption A(&€(p)), then the following convergence in distribu-
tion hold as n — 400
() if a7, > 1
~ d
Vi (£ g(V) = &on (1)) 5 N(0,02), (6)

7= s 30 30 LI with £6) = 00101 (8) 0 50) = 6y ()

(1) if o, < 1

oF ~ 4 ¢r,(p)
nT (€0 9(V)) ~ G 9) < 0 P ™)
!
where
el A) L e
7 K P N@=D/2B(d\.
Tp (Tp, @) /R?P iOrt 1 ) H A1 (dA;)
P _]:1
and

1/2
(1~ a7,/2)(1 — o7) ) |
D

K(Tp, o) = <;p! (2@ (o) sin(7(1 — @) /2

The measure B is a Gaussian complex measure and the symbol f’ means that the domain

of integration excludes the hyperdiagonals {\; = £X;,i # j}.

The proof of this result is omitted since it is a direct application of Theorem [[]
and general limit theorems adapted to nonlinear functional of Gaussian sequences, e.g.
Breuer and Majoq ([[983) and Dehling and Taqqu] ([[989).
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3 Proofs

3.1 Auxiliary Lemma

Lemma 3 For every j > 1 and for all positive sequence (up)n>1 such that u, — 0, as

n — +o0, we have, under Assumption A({(p))

I'= / Hi(0) o)1 {1g(t)—£,0v ()| <uin } A ~ Un Ky, (8)

where kj is defined, for every j > 1,by

#'(9; o
22@ 1 ((g )))) lfj = 17 (9)
kj = ¢(J )( »)
2(—1) Tk g— if 7 > 1.
Vo Ty Y
Proof. Under Assumption A(£(p)), there exists ng € N such that for all n > ny,

L

I=> I with I, —/ Hj(#)o(t) L egw)—un < o(0) < () +un}dt- (10)
i=1

Assume without loss of generality that the restriction of ¢(-) on U; (denoted by g;(-)) is

an increasing function, we have

I; = U Hj(t)¢(t)1{§(p)—Un < g(t) < E(p)+un}dt

g; ' (€(p)+un)
_ / H,(1)(t)dt
g; ' (€(p)—un)

¢(mz,n) - ¢(Ml,n) = (mi,n - Mi,n) ifj=1

(—1)7 (@U=D(M;) — U D (my ) i 5> 1,
where M;,, = g; ' (&(p) + u,) and m;,, = g; '(€(p) — u,). Then, there exists wy,;; €
[Mi n, M; ] for every j > 1 such that

s (M — Mip) ¢ (wn,i1) ifj=1
(—1) (Mipy = mip) 9D (wysy) 5 >1.
Under Assumption A(¢(p)), we have, as n — 400

i~ g A Mip =M ~ 2un — e
wnij~ 97 (€(p)) an i S G T E D))

which ends the proof. W
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3.2 Proof of Theorem

For the sake of simplicity, we set g(p) = E(p;g(Y)), £p) = &y (p), Ja (1) = ﬁ(.;g(y))7
F() = Fyyy(+) et f(+) = fgv)(-) and rp = rp(, Tp). Define,

Vo=t (€0) - 60) e wy =t (TP,

f(»)

The result is established if V,, — W, LA 0 as n — 4o00. It suffices to prove that V;, and
W, satisfy the conditions of Lemma 1 of ([977):

e condition (a) : for all § > 0, there exists € = £(d) such that P (|W,| > ¢) < 6.
e condition (b) : for all y € R and for all ¢ > 0

lim P(V, <y, W,>k+e) and lim P(V, >y+e W, >k)

n—-+o00 n—-+o0o

condition (a) : from Bienaymé-Tchebyshev’s inequality it is sufficient to prove that
EW? = O(1). Rewrite W,, = L >ioi1 hey (Y (4)). Let ¢; (for some j > 0) denote

n

the j-th Hermite coefficient of he(,)(+). Since he(,)(+) has at least Hermite rank 7, then

9 n
n . ;
EWZ =2 37 E (e (Y (1)) ey (Y (i2))
11,i2=1

_ n
r 2

=t Y Y B (Hj, (Y (i) Hy, (Y (i2))
i1,92=1 j1,j22>7p

ry (¢ . j
=2 Z Zwﬂ(h—“)
i1,42=1j>Tp J):
| =
=0 [m2x = o) | =0(),

from Remark [[.
condition (b) : let y € R, we have

Va<y} = {€0) Syxm+E0)}
= {p< Plyxm+€w)} =120 < wa}, (1)

with

2, = s (F(yx ) - F (= +60) )
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and
rot
= gegy (F(v 7o+ €0) =)

Under Assumption A ({(p)), we have y,, — y, asn — +oo. Now, prove that Z,—W,, Eo.

Without loss of generality, assume y > 0. Then, we have

,r—l
W_%_ﬂ)

— Zg

where he ) »(-) is the function defined for t € R by :

(ﬁ@an{@D—F@xnﬁf@»—ﬁ@@ﬂ+ﬂﬂm»

he@yn(t) =1
£(p), {g(p)gg(t)éf(p)ﬂxrn

}@%JKamSngsam+yxm)

For n sufficiently large, the function hg(p) ,,(-) has Hermite rank 7,. Denote by c;, the
j-th Hermite coefficient of he(y) ,(-). From Lemma [, there exists a sequence (k;);>7,
such that, as n — +o0

Cjm ™~ Kj X Tp.

Since, for all n > 1 E(h,(Y)?) = ijFp(Cj,n)Q/j! < 400, it is clear that the sequence
(kj)j>7, is such that 2j>?p (k4)%/§! < +o0o. By denoting A a positive constant, we get,

as n — 400

E(W, — Z")2 = 2 2 Z h&(p) Y (i1)) he(p)m (Y(ZZ)))

i1,i2=1
n

=2
- # m Z Z CjrnCian ks (Hijy (Y (01)) His (Y (i2)))

i1,i2=1 jl,j2>?p

n j?
= 2—7/1
n2 E@))? Z > |p

i1,i2=1j>Tp
<\ Tn_ Z /f] r2 Z 1 Z p(z)?p _ O(’I“2)
— n y nl’
J>Tp ‘ \<n ‘ \<n
from Remark [l Therefore, W, — Z,, converges to 0 in probability, as n — +oo. Thus,

for all € > 0, we have, as n — 400,

PV, <y Wp,>y+e)=P(Z, <yp,Wn>y+e)—0.
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Following the sketch of this proof, we also have P(V,, >y + ¢, W,, <y) — 0, ensuring
condition (b). Therefore, W,, — Z,, converges to 0 in probability, as n — +o0o0. Thus, for

all € > 0, we have, as n — 400,

Following the sketch of this proof, we also have P(V,, >y + ¢, W, <y) — 0, ensuring
condition (b).

Acknowledgement The author would like to thank the referee for his coments im-

proving the statement of Corollary 2.
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