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Universidad de Sevilla

Avda. de los Descubrimientos s.n., 41092 Seville, Spain

Emmanuel Trélat
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Abstract. We consider the problem of generating and tracking a trajectory between two arbitrary parabolic

profiles of a periodic 2D channel flow, which is linearly unstable for high Reynolds numbers. Also known

as the Poiseuille flow, this problem is frequently cited as a paradigm for transition to turbulence. Our

procedure consists in generating an exact trajectory of the nonlinear system that approaches exponentially

the objective profile. Using a backstepping method, we then design boundary control laws guaranteeing that
the error between the state and the trajectory decays exponentially in L2, H1, and H2 norms. The result is

first proved for the linearized Stokes equations, then shown to hold locally for the nonlinear Navier-Stokes

system.

1. Introduction. One of the few situations in which analytic expressions for solutions of the stationary flow
field are available is the channel flow problem. Also known as the Poiseuille flow, this problem is frequently
cited as a paradigm for transition to turbulence. Poiseuille flow requires an imposed external pressure
gradient for being created and sustained (see [5]). The magnitude of the pressure gradient determines the
value of the centerline velocity, which parameterizes the whole flow.

It is very well known that this solution goes linearly unstable for Reynolds numbers greater than the so-
called critical Reynolds number, ReCR ≈ 5772 (see [31]), even though the non-normality of the problem [29]
may lead to large transient growth and enable a transition to turbulence at substantially smaller Reynolds
number. Stabilization of Navier-Stokes equation for general geometries has been widely studied (see, e.g.,
[16, 17, 4, 28] and the references therein). For channel flow geometry, there are some particular results. The
problem of locally stabilizing the equilibrium has been considered by means of discretized optimal control
(see [23]), Lyapunov analysis (see [1,2]), spectral decomposition and pole placement (see [3,38]), and using the
backstepping technique (see [39,41]). Observers have been developed as well using dual methods (see [22,40]).

However, all prior works in channel flow consider a constant pressure gradient and a developed flow which
is already close to the desired solution. The problem of tracking time varying profiles generated by unsteady
pressure gradients has, so far, not been considered from a control point of view. Stability for channel flow
driven by unsteady pressure gradient has been previously studied (see [25]). Velocity tracking problems have
been considered in an optimal control framework (see [20]).
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Figure 1. 2D Channel Flow and equilibrium profile (actuation is on the top wall).

In this paper, we consider the problem of moving the state from one Poiseuille equilibrium to another,
following a pre-determined flow trajectory that should be “nice” in some sense. For example, we may wish
to smoothly accelerate fluid at rest up to a given Reynolds number, probably over the critical value, avoiding
transition to turbulence. The means at our disposal are the imposed pressure gradient and boundary control
of the velocity field. We consider velocity actuation at one of the walls.

This is a problem of practical interest which, to the best of our knowledge, has not been solved or even
been considered so far, since all control laws in the literature are designed for one given Poiseuille flow (fixed
Reynolds number).

A possible solution for the problem would be to apply quasi-static deformation theory; this would require
to modify the pressure gradient very slowly, and simultaneously gain-schedule a fixed Reynolds number
boundary controller (see [39]) for tracking a (slowly) time varying trajectory, which in general would not be
an exact solution of the system. This idea has been already used for moving between equilibria of a semilinear
heat equation (see [12]), a semilinear wave equation (see [13]), or a Schrödinger’s equation (see [6, 7]).
Other applications include the shallow water problem (see [11]) and the Couette-Taylor flow controllability
problem (see [32]). In this paper, however, we follow an alternative approach, finding analytically an exact,
fast trajectory of the system which is then stabilized by means of boundary control. The advantage of
this approach is that it reaches the objective profile requiring substantially less time and, apart from the
imposed pressure gradient which steers the system, the boundary velocity control effort is only necessary for
stabilization and will be zero in the absence of perturbations.

The procedure used for stabilization is similar to the method used in [41] for local stabilization of a steady
Poiseuille profile, and it is based on the backstepping method (see [34,36]), which has been also employed in
other flow control problems (see [42]). The method requires to solve a nonstandard partial integro-differential
boundary value problem, and we provide a proof of its solvability. A simpler and similar looking equation was
used, for other purposes, in [10] and in [33], where time analyticity of coefficients is assumed for obtaining
solvability. Later, in [24] it is shown that for general C∞ coefficients the equation has no solutions. We settle
the issue by showing that the most natural class of functions for which the equation is solvable is the Gevrey
class (see [19]).

The organization of the paper is as follows. Section 2 contains a detailed presentation of the results: the
model is described in Section 2.1; an expression for the control laws designed using a backstepping method,
the main result and the strategy of the proof are provided in Section 2.4. Section 3 is devoted to the proof of
the main result: mathematical preliminaries are given in Section 3.1; then, a stabilization result is proved for
the linearized system in Section 3.2; the main result (Theorem 2.1) is finally derived in Section 3.3. Section
4 is an appendix containing technical results needed in the proof.

2. Main result.

2.1. Channel flow model. We consider a 2D incompressible fluid filling a region Ω between two infinite
planes separated from each other by a distance L. The exact setting is depicted on Figure 1, on which
an example of an equilibrium profile is shown. Define Uc as a velocity scale, where Uc is the maximum
centerline velocity, ρ and ν as the density and the kinematic viscosity of the fluid, respectively, and the
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Reynolds number, Re, as Re = Uch/ν. Then, using L, L/Uc and ρνUc/L as length, time and pressure scales
respectively, the nondimensional 2D Navier-Stokes equations are

ut =
△u
Re

− px − uux − vuy, (1)

vt =
△v
Re

− py − uvx − vvy, (2)

where u is the streamwise velocity, v the wall-normal velocity, and p the pressure, with boundary conditions

u(t, x, 0) = v(t, x, 0) = 0, u(t, x, 1) = U(t, x), v(t, x, 1) = V (t, x). (3)

In (3), U and V are the actuators located at the upper wall, which can be actuated independently for each
x. The fluid is considered incompressible, so that the velocity field must verify the divergence-free condition

ux + vy = 0. (4)

In these nondimensional coordinates, Ω is defined by

Ω = {(x, y) ∈ R
2 : 0 ≤ y ≤ 1}, (5)

with boundary ∂Ω = ∂Ω0 ∪ ∂Ω1, where ∂Ωi = {(x, y) ∈ R
2 : y = i}, i = 0, 1. We refer to ∂Ω0 as the

uncontrolled boundary, and to ∂Ω1 as the controlled boundary.

2.2. Poiseuille flows. A family of stationary solutions of (1)–(3) is the one-parameter Poiseuille family of
parabolic profiles (Pδ) defined by

Pδ = (uδ, vδ, pδ) =

(

4δy(1 − y), 0,− 8δ

Re
x

)

,

where the parameter δ stands for the maximum centerline velocity. Note that the velocity actuation at the
wall is zero for Pδ, since both uδ and vδ are zero at the boundaries. The pressure gradient pδ

x = − 8δ
Re must

be externally sustained for Pδ to be a stationary solution (see, e.g. [5, p. 182-183]).
We next describe in Section 2.3 a trajectory steering the system from a given (arbitrary) Poiseuille flow

Pδ0 to another one Pδ1 . In general this trajectory is unstable, and must be stabilized by means of boundary
controls. In Section 2.4, we provide explicit feedback laws which stabilize this trajectory exponentially. We
also make precise the analytic functional framework in which one has existence and uniqueness of a solution
for the closed loop system together with exponential stability (Theorem 2.1).

2.3. Generation of the trajectory to be tracked. Given δ0 and δ1, we first generate a trajectory
Θ(t) = (u(t), v(t), p(t)) (where space dependence is omitted for clarity) connecting Pδ0 to Pδ1 . We assume
δ0 = 0 and δ1 = 1 for simplicity. Consider the trajectory Θq(t) defined by

Θq(t) = (uq(t), vq(t), pq(t)) = (g(t, y), 0,−xq(t)), (6)

where q is the chosen external pressure gradient. Then, Θq(t) verifies (1)–(4) with U = V = 0 if

gt =
gyy

Re
+ q. (7)

Since P0 ≡ 0, we set Θq(0) = 0, which implies g(0, y) = q(0) = 0. We impose g(t, 0) = g(t, 1) = 0 so no
velocity control effort is needed to steer the control system, only to stabilize it. Given these initial-boundary
data, choosing q completely determines g from (7) and consequently Θq(t), so q(t) parameterizes Θq(t).
Setting

q(t) =
8

Re

(

1 − e−ct
)

, (8)

with c > 0 a design parameter, one has q(0) = 0 and limt→∞ q(t) = 8/Re. This selection of q determines a
value g in (7) that verifies

lim
t→∞

g(t, y) = 4y(1 − y)

(see Lemma 4.1 in Section 4.1 in the Appendix, where other properties of g are derived). It follows that
Θq(t) is a solution of the trajectory generation problem, since its components are smooth and solve (1)–(4),
and one has Θq(0) = P0 and limt→∞ Θq(t) = P1, so Θq(t) connects the chosen Poiseuille profiles (reaching
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P1 in infinite time, however by construction through rapidly decaying exponentials, Θq closely approaches
P1 after a short time; in this sense, we consider Θq a fast trajectory).

Remark 2.1. The fact that an exact trajectory is obtained from a linear parabolic equation (Equation (7))
can be exploited to move between equilibria in arbitrary finite time, since it is known (see [15]) that this
kind of equations have finite-time zero controllability for even initial data (i.e., g(0, 1−y) = g(0, y), for every
y ∈ [0, 1]). Motion planning theory for the heat equation (see [27]) allows to define an explicit finite-time
trajectory, in the framework of Gevrey functions. We do not pursue a finite-time result (exponential stability
is enough for practical purposes), however we present in Section 4.2 in the appendix a proof guaranteeing
that our method allows tracking of trajectories defined in Gevrey spaces.

2.4. Construction of stabilizing feedback laws and main result. In general, the trajectory Θq, t ∈
[0,+∞), is unstable. Our goal is to design control feedback laws permitting to track the trajectory Θq(t).
Define first the error variables

(ũ, ṽ, p̃) = (u, v, p) − Θq(t) = (u− g(t, y), v, p+ xq(t)).

In these new variables, one has, dropping tildes for ease of notation,

ut =
△u
Re

− px − uux − vuy − g(t, y)ux − gy(t, y)v, (9)

vt =
△v
Re

− py − uvx − vvy − g(t, y)vx, (10)

and the same divergence-free condition and boundary conditions as before, i.e.,

ux + vy = 0, (11)

u(t, x, 0) = v(t, x, 0) = 0, u(t, x, 1) = U(t, x), v(t, x, 1) = V (t, x). (12)

Our new control objective is to stabilize the equilibrium at the origin in (9)–(12) by means of suitable
feedback laws U and V . Linearizing (9)–(12) around 0, we obtain the unsteady Stokes equations

ut =
△u
Re

− px − g(t, y)ux − gy(t, y)v, (13)

vt =
△v
Re

− py − g(t, y)vx, (14)

with the divergence-free condition
ux + vy = 0, (15)

and the boundary conditions

u(t, x, 0) = v(t, x, 0) = 0, u(t, x, 1) = U(t, x), v(t, x, 1) = V (t, x). (16)

Our strategy consists in using a backstepping method in order to design control laws stabilizing the origin
of (13)–(16). Then, we prove that these control laws stabilize locally the origin of (9)–(12).

2.4.1. Functional framework. In our main result (Theorem 2.1), an assumption of periodicity in x is required
for the initial condition. Combined with a uniqueness argument, this permits to show that the velocity field
(u, v) and the pressure p are periodic in x with some period, say, 2h > 0. This fact is essential in our analysis,
and standard in the study of Stokes or Navier-Stokes equations (see, e.g., [37, 32]).

In order to take into account this periodicity, we set

Ωh = {(x, y) ∈ Ω : −h < x < h}.
Let L2(Ωh) be the usual space of square-integrable functions on Ωh, endowed with the scalar product

(φ, ψ)L2(Ωh) =
∫ h

−h

∫ 1

0
φ(x, y)ψ(x, y)dydx. Similarly, consider the spaces H1(Ωh) and H2(Ωh), defined as

usual. Define L2
h(Ω) as the closure of the set of continuous, 2h-periodic in x, functions on Ω with respect to

the norm induced by the scalar product

(φ, ψ)L2
h(Ω) = (φ|Ωh

, ψ|Ωh
)L2(Ωh).

In other words,

L2
h(Ω) = {f ∈ L2

loc(Ω) : f |Ωh
∈ L2(Ωh), f(x+ 2h, y) = f(x, y) for a.e. (x, y) ∈ Ω}.
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Furthermore, define the spaces

H1
h(Ω) = {f ∈ L2

h(Ω) : f |Ωh
∈ H1(Ωh), f |x=−h = f |x=h in the trace sense},

H2
h(Ω) = {f ∈ H1

h(Ω) : f |Ωh
∈ H2(Ωh), ∇f |x=−h = ∇f |x=h in the trace sense},

endowed with the corresponding norms. Similarly, denoting w = (u, v), define

H0
0h(Ω) = {w ∈ [L2

h(Ω)]2 : ux + vy = 0, v|∂Ω0
= 0},

H1
0h(Ω) = {w ∈ [H1

h(Ω)]2 : ux + vy = 0,w|∂Ω0
= 0},

H2
0h(Ω) = H1

0h(Ω) ∩ [H2
h(Ω)]2,

endowed with the scalar product of, respectively, [L2
h(Ω)]2, [H1

h(Ω)]2 and [H2
h(Ω)]2 (see, e.g., [37, page 9] for

the precise meaning of v|∂Ω0
= 0 for w ∈ [L2

h(Ω)]2 satisfying ux +vy = 0; note that u|∂Ω0
= 0 has, in general,

no meaning for w ∈ [L2
h(Ω)]2 even satisfying ux + vy = 0). These are the spaces for the velocity field where

the main result is proved.

2.4.2. Design of stabilizing controls. We now define the stabilizing control laws for the controllers V and
U . The way they are designed relies on a backstepping method, as explained in details in Section 3. The
controller V (t, x) is a dynamic controller, found as the unique solution of the forced parabolic equation

Vt =
Vxx

Re
−

∑

0<|n|<M

∫ h

−h

eiγn(ξ−x)

(

2i

∫ 1

0

gy(t, η) cosh (γn(1 − η)) v(t, ξ, η)dη

−iuy(t, ξ, 0) − uy(t, ξ, 1)

Re

)

dξ, (17)

initialized at zero1, with the periodicity conditions V (t, x+ h) = V (t, x). The control law U is defined by

U(t, x) =
∑

0<|n|<M

∫ h

−h

∫ 1

0

eiγn(ξ−x)Kn(t, 1, η)u(t, ξ, η)dηdξ, (18)

where M = 2h
√

Re
π , and γn = πn/h. For every integer n such that 0 < |n| < M , Kn in (18) is the solution

of the kernel equation

Knt =
1

Re
(Knyy −Knηη) − λn(t, η)Kn + fn(y, η) −

∫ y

η

fn(ξ, η)Kn(t, y, ξ)dξ, (19)

which is a linear partial integro-differential equation in the region Γ = {(t, y, η) ∈ (0,∞) × T }, where
T = {(y, η) ∈ R

2 : 0 ≤ η ≤ y ≤ 1}, with boundary conditions

Kn(t, y, y) = −Re
(∫ y

0

λn(σ)

2
dσ + µn(0)

)

, (20)

Kn(t, y, 0) = Re

(∫ y

0

µn(σ)Kn(t, y, σ)dσ −µn(y)

)

, (21)

and where the coefficients in (19)–(21) are

λn(t, y) = −iγng(t, y), (22)

fn(t, y, η) = − iγn

(

gy(t, y) + 2γn

∫ y

η

gy(t, σ) sinh (γn(y − σ)) dσ

)

, (23)

µn(y) =
γn

Re

cosh (γn(1 − y)) − cosh (γny))

sinh γn
. (24)

The solvability of (19)–(21) is stated in Proposition 3.3, and investigated in details in Section 4.2 (Appendix).

1If the velocity field initial conditions at the boundary were not zero, then it is required that V (0, x) = v(0, x, 1). We assume

for simplicity v(0, x, 1) = 0.
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Remark 2.2. Averaging (in x) Equation (17), it can be seen that the mean component of V is zero (provided
it is initialized at zero), thus the physical constraint of zero net flux is enforced. This can be written as
∫ h

−h
V (t, ξ)dξ = 0. Verifying this condition is crucial, since its violation would imply not satisfying mass

conservation in the channel.

2.4.3. Statement of the stability result.

Theorem 2.1. There exist ε > 0, C1 > 0 and C2 > 0, both depending only on c, δ0, δ1, h and Re, such
that, for every w0 = (u0, v0) ∈ H2

0h(Ω) satisfying ‖w0‖H0
0h(Ω) < ε and the compatibility conditions

u0(x, 1) =
∑

0<|n|<M

∫ h

−h

∫ 1

0

eiγn(ξ−x)Kn(0, 1, η)u0(ξ, η)dηdξ, v0(x, 1) = 0,

there exists a unique

w = (u, v) ∈ L2(0,∞;H2
0h(Ω)), with wt ∈ L2(0,∞;H1

h(Ω)2),

such that

u(0, x, y) = u0(x, y), v(0, x, y) = v0(x, y),

and, for some p ∈ L2(0,∞;H1
h(Ω)), Equations (9)-(12) hold with U and V defined by (17)-(24). Moreover,

‖w(t)‖Hi
0h(Ω) ≤ C1e

−C2t‖w0‖Hi
0h(Ω), ∀t ≥ 0, ∀i ∈ {0, 1, 2}.

Remark 2.3. If, in the previous results, the initial data w0 is only in H1
0h(Ω), we still have a unique solution

w ∈ L2(0,∞;H1
0h(Ω)), with now p ∈ L2(0,∞;L2

h(Ω)), and the exponential decay property in Hi
0h(Ω)-norm,

for i ∈ {0, 1}.
Remark 2.4. The exponential decay rate C2 in the theorem can be made as large as desired, just increasing
as much as necessary M and λn in (22), so that

M =
2h

√
Re

π
+ M̄, λn = −iγng(t, y) + λ̄,

for M̄, λ̄ > 0 large enough. Increasing M means that more modes are controlled, whereas the uncontrolled
modes (see Section 3.2.1) are more damped, except the mode n = 0 (see the beginning of Section 3.2.1).
To control and damp more the mode n = 0, one can use, for example, the pole-shifting method described
in [12]. Increasing λ means that more damping is added in the target system (49), so that controlled modes
(see Section 3.2.2) decay faster.

Remark 2.5. Even though the controller (17)–(24) looks rather involved, it is not hard to compute and
implement. One has to solve a finite set of linear PIDE equations (19)–(21) for computing the Kn’s; we
provide an symbolically computable solution via a convergent infinite series, whose partial sums provides an
approximation to the controller. The kernel equations can be solved numerically as well, which can be done
fast and efficiently compared, for example, with LQR—where nonlinear time dependent Riccati equations
appear (see [34] for a numerical comparison between LQR and backstepping).

Remark 2.6. The result can be extended in a number of ways. Control laws (17)–(18) are defined by state
feedback laws, so Theorem 2.1 requires knowledge of the full state. An output feedback design is possible
applying a backstepping observer methodology dual to the techniques we follow here (see [35,40]). Then, only
measurements of pressure and skin friction are required. A 3D channel flow, periodic in two directions, is also
tractable, adding some refinements which include actuation of the spanwise velocity at the wall (see [9] for
the new techniques and difficulties involved). All cited references consider the steady problem of stabilizing
a given Poiseuille profile, therefore some modifications to account for the unsteady coefficients have to be
done, in the same way the present paper extends the results of [39].

3. Proof of the main result. The structure of the proof is the following. We first start with mathematical
preliminaries (Section 3.1), then design control laws using backstepping theory and prove the stability result
for Stokes equations (Section 3.2) which represent the linearized system of the Navier-Stokes equations
around the Poiseuille profile. The main result (Theorem 2.1) is finally proved in Section 3.3.
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3.1. Mathematical preliminaries.

3.1.1. Fourier series expansion. The complex Fourier coefficients (φn(y))n∈Z of a given integrable 2h-periodic
in x function φ defined on Ω are given by

φn(y) =
1

2h

∫ h

−h

φ(x, y)e
inπ

h xdx, n ∈ Z.

We will write simply φn in the sequel. It is well known that if φ ∈ L2
h(Ω), then (φn(·))n∈Z ∈ ℓ2

(

Z, L2(0, 1)
)

,

i.e.,
∑

n∈Z

∫ 1

0
|φn(y)|2dy < ∞. Conversely, if (φn(·))n∈Z ∈ ℓ2

(

Z, L2(0, 1)
)

, then one can recover φ from its

Fourier series by φ(x, y) =
∑

n∈Z
φn(y)e−

inπ
h x.

Let φ, ψ ∈ L2
h(Ω). Recall that, according to Parseval’s formula,

(φ, ψ)L2
h(Ω) = 2h ((φn) , (ψn))ℓ2(Z,L2(0,1))

where the scalar product in ℓ2
(

Z, L2(0, 1)
)

is ((φn) , (ψn))ℓ2(Z,L2(0,1)) =
∑

n∈Z

∫ 1

0
φn(y)ψn(y)dy, and the bar

denotes the complex conjugate.
Given ψ ∈ L2(Ωh), one has

‖ψ‖2
L2(Ωh) = 2h‖ψn‖2

ℓ2(Z,L2(0,1)) = 2h
∑

n∈Z

‖ψn‖2
L2(0,1),

where ‖ψn‖2
L2(0,1) =

∫ 1

0
|ψn(y)|2dy. In the sequel we omit the subindexes when clear from the context.

3.1.2. Poincaré inequalities.

Lemma 3.1. (Poincaré’s inequality in H2(0, 1)). Suppose that f is a complex valued function belonging to
H2(0, 1), such that f(0) = f(1) = 0. Then ‖fy‖2

L2(0,1) ≤ ‖fyy‖2
L2(0,1).

Proof. Set f1(y) = ℜ(f) and f2 = ℑ(f). Since f1(0) = f1(1) = 0, there must exist a ∈ (0, 1) such that
f1y(a) = 0. Therefore,

f1y(y) =

{
∫ y

a
f1yy(η)dη for y ∈ (a, 1),

−
∫ a

y
f1yy(η)dη for y ∈ (1, a).

Hence, by Cauchy-Schwarz inequality, |f1y(y)|2 ≤
∫ 1

0
f2
1yy(η)dη, and integrating, the inequality follows for f1

(and analogously for f2).

Lemma 3.2. (Poincaré’s inequalities in H1
h(Ω) and H2

h(Ω)). Let φ ∈ H1
h(Ω) be such that φ|∂Ω0

≡ 0, and
ψ ∈ H2

h(Ω) such that ψ|∂Ωi
≡ 0 for i = 0, 1. Then

‖φ‖2
L2

h(Ω) ≤ ‖φy‖2
L2

h(Ω), (25)

‖ψy‖2
L2

h(Ω) ≤ ‖ψyy‖2
L2

h(Ω). (26)

Proof. Using Parseval’s formula, ‖φ‖2
L2

h(Ω)
= h

∑ ‖φn‖2
L2(0,1) ≤ h

∑ ‖φny‖2
L2(0,1), where we have used the

classical Poincaré’s formula for functions of H1(0, 1) vanishing at 0, since φ ∈ H1
h(Ω) implies φn ∈ H1(0, 1),

and φ|∂Ω0
≡ 0 implies φn(0) = 0.

By the same reasoning, ψ ∈ H2
h(Ω) implies ψn ∈ H2(0, 1), and ψ|∂Ωi

≡ 0 implies ψn(i) = 0, for i = 0, 1.
Applying Lemma 3.1 for every n leads to ‖ψy‖2

L2
h(Ω)

= h
∑ ‖ψny‖2

L2(0,1) ≤ h
∑ ‖φnyy‖2

L2(0,1) = ‖ψyy‖2
L2

h(Ω)
,

thus proving the lemma.

3.1.3. Transformations of L2 functions. The following definitions establish facts and notations useful for
designing our control laws, based on the backstepping method (see [34]). This method consists in finding an
invertible transformation of the original variables into others whose stability properties are easy to establish.

Definition 3.1. Let T = {(y, η) ∈ R
2 : 0 ≤ η ≤ y ≤ 1}. Given complex valued functions f ∈ L2(0, 1) and

K ∈ L∞(T ), we define the transformed variable g = (I −K)f , where the operator Kf is defined by

Kf(y) =

∫ y

0

K(y, η)f(η)dη,
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i.e., a Volterra operator. We call I − K the direct transformation with kernel K. Now, if there exists a
function L ∈ L∞(T ) such that f = (I + L)g, then we say that the transformation is invertible, and we call
I + L the inverse transformation, and L the inverse kernel (or the inverse of K).

Proposition 3.1. 1. The transformation I −K is invertible for every K ∈ L∞(T ). Moreover,

L(y, η) = K(y, η) +

∫ y

η

K(y, σ)L(σ, η)dσ = K(y, η) +

∫ y

η

L(y, σ)K(σ, η)dσ.

2. If f ∈ L2(0, 1) then g = (I −K)f ∈ L2(0, 1), and ‖g‖2
L2(0,1) ≤ (1 + ‖K‖L∞)2‖f‖2

L2(0,1). Similarly, if

g ∈ L2(0, 1) then f = (I + L)g ∈ L2(0, 1), and ‖f‖2
L2(0,1) ≤ (1 + ‖L‖L∞)2‖g‖2

L2(0,1).

The first point of this proposition is immediate from the theory of Volterra integral equations (see [21]).
The second point follows easily from the Cauchy-Schwarz inequality.

This result allows to define a norm equivalent to the L2 norm,

‖f‖2
KL2(0,1) = ‖(I −K)f‖2

L2(0,1) = ‖g‖2
L2(0,1). (27)

For C1(T ) and C2(T ) kernels K and L, one has an equivalent version of Proposition 3.1, allowing to define
respectively a KH1(0, 1) and KH2(0, 1) norm, respectively equivalent to the H1(0, 1) and H2(0, 1) norm:

‖f‖2
KH1(0,1) = ‖(I −K)f‖2

H1(0,1) = ‖g‖2
H1(0,1), (28)

‖f‖2
KH2(0,1) = ‖(I −K)f‖2

H2(0,1) = ‖g‖2
H2(0,1), (29)

where higher derivatives are calculated as follows:

gy = fy −K(y, y)f(y) −
∫ y

0

Ky(y, η)f(η)dη,

gyy = fyy −K(y, y)fy(y) − 2Ky(y, y)f(y) −Kη(y, y)f(y) −
∫ y

0

Kyy(y, η)f(η)dη,

and similarly for the inverse transformation. In particular, one has

(1 + ‖L‖L∞ + ‖Ly‖L∞)−2‖f‖2
H1(0,1) ≤ ‖f‖2

KH1(0,1) ≤ (1 + ‖K‖L∞ + ‖Ky‖L∞)2‖f‖2
H1(0,1),

and other similar estimates hold for the H2 norm.

3.1.4. Transformations of the velocity field. We define transformations of functions in H0
0h(Ω).

Definition 3.2. Consider a finite set A = {a1, . . . , aj} ⊂ Z, and K = (Kn(y, η))n∈A a family of L∞(T )

kernels. Then, for w = (u, v) ∈ H0
0h(Ω), the transformed variable ω = (α, β) = (I −K)w is defined through

its Fourier components by

ωn =

{

((I −Kn)un, 0) forn ∈ A,
wn, otherwise.

The inverse transformation, w = (I + L)ω, is defined by

w =

{

((I + Ln)αn, L̂nαn) forn ∈ A,
ωn, otherwise,

where the new operator L̂n is defined by L̂nf = −πin
h

∫ y

0

(

f(η) +
∫ η

0
L(η, σ)f(σ)dσ

)

dη.

It is straightforward to show that w is well defined. Indeed, for n ∈ A, the second component of w is
L̂nαn = −πin

h

∫ y

0

(

αn(η) +
∫ η

0
L(η, σ)αn(σ)dσ

)

dη, and, by definition of αn from the direct transformation,
and after some manipulation,

L̂nαn = −πin
h

∫ y

0

(

un(η) −
∫ η

0

(

Kn(η, σ) − Ln(η, σ) +

∫ η

σ

Ln(η, δ)Kn(δ, σ)dδ

)

un(δ)dσ

)

dη.

By Proposition 3.1, one gets L̂nαn = −πin
h

∫ y

0
un(η)dη. Since the divergence-free condition in Fourier space

is πin
hun + vny = 0 and vn(0) = 0, one gets L̂nαn =

∫ y

0
vny(η)dη = vn(y). This way, even though the
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second component of the velocity seems to be lost in the direct transformation, it can be recovered and the
transformation is still invertible. Using a similar argument as in Proposition 3.1,

‖ω‖2
H0

0h(Ω) ≤ (1 + ‖K‖L∞)2‖w‖2
H0

0h(Ω), ‖w‖2
H0

0h(Ω) ≤ (1 +N2)(1 + ‖L‖L∞)2‖ω‖2
H0

0h(Ω),

where N = maxn∈A{π n
h}, and ‖K‖L∞ = maxn∈A ‖Kn‖L∞ , ‖L‖L∞ = maxn∈A ‖Ln‖L∞ . This allows the

definition of a norm, as in (27), equivalent to the H0
0h(Ω), that we call KH0

0h(Ω),

‖w‖KH0
0h(Ω) = ‖ω‖H0

0h(Ω). (30)

For C1(T ) and C2(T ) kernel families one can define as well KH1
0h(Ω) and KH2

0h(Ω) norms, respectively
equivalent to the regular H1

0h(Ω) and H2
0h(Ω) norms.

Remark 3.1. All previous results hold for transformation kernels depending on time, as long as they are uni-
formly bounded on the time interval (finite or infinite) considered (see Proposition 3.3 for such a statement).

3.2. Stabilization result for the linearized system. In this section we focus on the linearized system
(13)–(16) which consists of Stokes equations. We show how to design, using a backstepping method, the
control laws (17)–(18), and prove the following result, which is the analogous of Theorem 2.1 but for the
Stokes systems instead of the Navier-Stokes system.

Proposition 3.2. There exist C1 > 0 and C2 > 0, both depending only on c, δ0, δ1, h and Re, such that,
for every w0 = (u0, v0) ∈ H2

0h satisfying the compatibility conditions

u0(x, 1) =
∑

0<|n|<M

∫ h

−h

∫ 1

0

eiγn(ξ−x)Kn(0, 1, η)u0(ξ, η)dηdξ, v0(x, 1) = 0,

there exists a unique

w = (u, v) ∈ L2(0,∞;H2
0h(Ω)), with wt ∈ L2(0,∞;H1

h(Ω)2),

such that u(0, x, y) = u0(x, y), v(0, x, y) = v0(x, y), and, for some p ∈ L2(0,∞;H1
h(Ω)), Equations (13)–(16)

of the linear Stokes system hold with U and V defined by (17)-(24). Moreover,

‖w(t)‖Hi
0h(Ω) ≤ C1e

−C2t‖w0‖Hi
0h(Ω), ∀t ≥ 0, ∀i ∈ {0, 1, 2}.

The remaining part of this section is devoted to the proof of that result. The proof requires Lyapunov
methods. For denoting some positive constants that arise from various inequalities and norm equivalences,
we will repeatedly use C with some subscript.

Equations (13)–(14) written in Fourier space are

unt =
△nun

Re
− iγn(pn + g(t, y)un) − gy(t, y)vn, (31)

vnt =
△nvn

Re
− pny − iγng(t, y)vn, (32)

where △n = ∂yy − γ2
n has been introduced for simplifying the expressions, and where γn = πn/h. The

boundary conditions are

un(t, 0) = vn(t, 0) = 0, un(t, 1) = Un(t), vn(t, 1) = Vn(t), (33)

and the divergence-free condition is
γnun + vny = 0. (34)

From (31)–(32) an equation for the pressure can be derived,

pnyy − γ2
npn = −2iγngy(t, y)vn, (35)

with boundary conditions obtained from evaluating (32) at the boundaries and using (33),

pny(t, 0) = −iγn
uny(t, 0)

Re
, pny(t, 1) = −iγn

uny(t, 1)

Re
− V̇n − γ2

n

Vn

Re
. (36)

Equations for different n are uncoupled due to linearity and spatial invariance, allowing separate consideration
for each mode n. Most modes, which we refer to as uncontrolled, are naturally stable and thus left without
control. A finite set of modes are unstable and require to be controlled.
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3.2.1. Uncontrolled modes. These are n = 0 and large modes that verify |n| ≥ M , where M > 0 will be
made precise.

Mode n = 0 (mean velocity field). From (33) and (34), v0 ≡ 0. Then, u0 verifies u0t =
u0yy

Re ,

with u0(t, 0) = u0(t, 1) = 0. Applying Lemma 3.1, we have d
dt‖u0‖2 ≤ − 2

Re‖u0‖2, implying ‖u0(t)‖2 ≤
e−

2
Re t‖u0(0)‖2, where ‖ ‖ stands for the L2(0, 1), H1(0, 1), or H2(0, 1) norm.

Modes for large |n|. If wn = (un, vn), then, with Vn = Un = 0,

d

dt
‖wn‖2

L2(0,1)2 = −2
‖wny‖2

L2(0,1)2

Re
− 2γ2

n

‖wn‖2
L2(0,1)2

Re
− (gyun, vn)L2(0,1)2 − (gyvn, un)L2(0,1)2

− (un, iγnpn)L2(0,1)2 − (iγnpn, un)L2(0,1)2 − (vn, pny)L2(0,1)2 − (pny, vn)L2(0,1)2 .(37)

Consider the pressure terms like those in the second line of (37). Using the divergence-free condition iγnun +
vny = 0, and integrating by parts,

− (un, iγnpn)L2(0,1)2 = − (vny, pn)L2(0,1)2 = (vn, pny)L2(0,1)2 .

Therefore, the pressure terms in (37) cancel each other. Then, using the Cauchy-Schwarz inequality and the
inequality ab ≤ (a2 + b2)/2, one gets

d

dt
‖wn‖2

L2(0,1)2 ≤ −2
‖wny‖2

L2(0,1)2

Re
− 2γ2

n

‖wn‖2
L2(0,1)2

Re
+ ‖gy‖L∞(0,1)‖wn‖2

L2(0,1)2 . (38)

Since |gy(t, y)| ≤ 4 (see Lemma 4.1 in Section 4.1), choosing |γn| ≥
√

2Re, i.e., |n| ≥M = 2h
√

Re
π , yields

d

dt
‖wn‖2

L2(0,1)2 ≤ −2
‖wny‖2

L2(0,1)2

Re
− γ2

n

‖wn‖2
L2(0,1)2

Re
≤ −2

‖wn‖2
L2(0,1)2

Re
, (39)

by Poincaré’s inequality, therefore achieving L2 exponential stability for large modes (|n| ≥M).
The H1 exponential stability is proved for the same set of modes. Indeed, compute

d

dt
‖wny‖2

L2(0,1)2 , = (wny,wnyt)L2(0,1)2 + (wnyt,wny)L2(0,1)2

= −(wnyy,wnt)L2(0,1)2 − (wnt,wnyy)L2(0,1)2

= −2
‖wnyy‖2

L2(0,1)2

Re
− 2γ2

n

‖wny‖2
L2(0,1)2

Re
+ iγn(wnyy, gwn)L2(0,1)2

−iγn(gwn,wnyy)L2(0,1)2 + iγn(unyy, pn)L2(0,1) − iγn(pn, unyy)L2(0,1)

−(vnyy, pny)L2(0,1) − (pny, vnyy)L2(0,1) − (unyy, gyvn)L2(0,1) − (gyvn, unyy)L2(0,1).

Let us study first the terms without pressure. Using integrations by parts, the Cauchy-Schwarz inequality
and the divergence-free condition, one gets

iγn(wnyy, gwn)L2(0,1)2 − iγn(gwn,wnyy)L2(0,1)2 − (unyy, gyvn)L2(0,1) − (gyvn, unyy)L2(0,1)

= −iγn(wny, gwny + gywn)L2(0,1)2 + iγn(gwny + gywn,wny)L2(0,1)2

+(uny, gyyvn + gyvny)L2(0,1) + (gyyvn + gyvny, uny)L2(0,1)

= −iγn(wny, gywn)L2(0,1)2 + iγn(gywn,wny)L2(0,1)2 + (uny, gyyvn)L2(0,1)

+(gyyvn, uny)L2(0,1) + iγn(uny, gyun)L2(0,1) − iγn(gyun, uny)L2(0,1)

= −iγn(wny, gywn)L2(0,1)2 + iγn(gywn,wny)L2(0,1)2 + (uny, gyyvn)L2(0,1) + (gyyvn, uny)L2(0,1)

≤ γ2
n + 1

Re
‖wny‖2

L2(0,1)2 +Re
(

‖gy‖2
L∞(0,1) + ‖gyy‖2

L∞(0,1)

)

‖wn‖2
L2(0,1)2 .

Concerning the pressure terms, we have

iγn(unyy, pn)L2(0,1) − iγn(pn, unyy)L2(0,1) − (vnyy, pny)L2(0,1) − (pny, vnyy)L2(0,1)

= −
[

vnyy(t, y)pn(t, y) + vnyy(t, y)pn(t, y)

]y=1

y=0

= −Re
[

pny(t, y)pn(t, y) + pny(t, y)pn(t, y)

]y=1

y=0

, (40)

where the last equality is deduced from (32) evaluated at the boundaries.
10



Lemma 3.3. −
[

pny(t, y)pn(t, y) + pny(t, y)pn(t, y)

]y=1

y=0

≤ 2‖gy‖2
L∞(0,1)‖vn‖2

L2(0,1).

Proof. Multiplying the Poisson pressure equation (35) by pn and integrating, one gets

(pnyy, pn)L2(0,1) − γ2
n‖pn‖2

L2(0,1) = −2iγn(gy(t, y)vn, pn)L2(0,1).

Integrating by parts, and using (36), it follows that
[

pny(t, y)pn(t, y)

]y=1

y=0

− ‖pny‖2
L2(0,1) − γ2

n‖pn‖2
L2(0,1) = −2iγn(gy(t, y)vn, pn)L2(0,1),

and, using Cauchy-Schwarz inequality, − [pny(t, y)pn(t, y)]
y=1
y=0 ≤ ‖gy‖2

L∞(0,1)‖vn‖2
L2(0,1).

From the previous estimates, one gets

d

dt
‖wny‖2

L2(0,1)2 ≤ −2
‖wnyy‖2

L2(0,1)2

Re
− 2γ2

n

‖wny‖2
L2(0,1)2

Re
+
γ2

n + 1

Re
‖wny‖2

L2(0,1)2

+Re
(

3‖gy‖2
L∞(0,1) + ‖gyy‖2

L∞(0,1)

)

‖wn‖2
L2(0,1)2 ,

and, using Lemmas 3.1 and 4.1,

d

dt
‖wny‖2

L2(0,1)2 ≤ −
‖wnyy‖2

L2(0,1)2

Re
− γ2

n

‖wny‖2
L2(0,1)2

Re
+ C3‖wn‖2

L2(0,1)2 .

Setting L =
1+ReC3+γ2

n

2 ‖wn‖2
L2(0,1)2 + ‖wny‖2

L2(0,1)2 , which is obviously equivalent to the H1 norm, one has

d

dt
L ≤ −1 + γ2

n

Re
‖wn‖2

L2(0,1)2 −
1

Re
‖wny‖2

L2(0,1)2 ≤ −C4L,

where C4 > 0 depends on Re, but not on n. This establishes a H1 stability property for wn with a decay
rate independent of n.

We next prove H2 stability. For |n| ≥M , one has

‖wn‖2
H2(0,1)2 = ‖unyy‖2

L2(0,1) +‖vnyy‖2
L2(0,1) +γ2

n(‖uny‖2
L2(0,1) +‖vny‖2

L2(0,1))+γ4
n(‖un‖2

L2(0,1) +‖vn‖2
L2(0,1)).

Integrating by parts, one gets

‖△nun‖2
L2(0,1) = (unyy − γ2

nun, unyy − γ2
nun)L2(0,1)

= ‖unyy‖2
L2(0,1) + γ4

n‖un‖2
L2(0,1) − γ2

n(unyy, un)L2(0,1) − γ2
n(unyy, un)L2(0,1),

= ‖unyy‖2
L2(0,1) + γ4

n‖un‖2
L2(0,1) + 2γ2

n‖uny‖2
L2(0,1),

and hence, ‖△nwn‖L2(0,1)2 is equivalent to ‖wn‖H2(0,1)2 .

Lemma 3.4. For w verifying (31)–(32), the norm ‖△nwn‖L2(0,1)2 (and therefore ‖wn‖H2(0,1)2) is equivalent

to the norm (‖wn‖2
H1(0,1)2 + ‖wnt‖2

L2(0,1)2)
1/2.

Proof. From (31)–(32), one has

‖wnt‖2
L2(0,1)2 =

‖△nwn‖2
L2(0,1)2

Re2
+ Λ,

where

Λ = −iγn(pn, unt)L2(0,1) − iγn(g(t, y)un, unt)L2(0,1) − (gy(t, y)vn, unt)L2(0,1) − (pny, vnt)L2(0,1)

−iγn(g(t, y)vn, vnt)L2(0,1) +
1

Re

(

iγn(△nun, pn)L2(0,1) + iγn(△nun, g(t, y)un)L2(0,1)

−(△nun, gy(t, y)vn)L2(0,1) − (△nvn, pny)L2(0,1) + iγn(△nvn, g(t, y)vn)L2(0,1)

)

.

Integrating by parts and using the divergence-free condition,

− iγn(pn, unt) − (pny, vnt)L2(0,1) = (pn,−iγnunt + vnt)L2(0,1) = 0. (41)

Similarly,
iγn(△nun, pn)L2(0,1) − (△nvn, pny)L2(0,1) = − (△nvn(t, y)pn(t, y))

y=1
y=0 ,
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and using Equation (40) and Lemma 3.3,

− (△nvn(t, y)pn(t, y))
y=1
y=0 = −Re (pn(t, y)pn(t, y))

y=1
y=0 ≤ Re‖gy‖2

L∞(0,1)‖vn‖2
L2(0,1).

Hence,

Λ ≤ ‖gy‖2
L∞(0,1)‖vn‖2

L2(0,1) − iγn(g(t, y)un, unt)L2(0,1) − (gy(t, y)vn, unt)L2(0,1) − iγn(g(t, y)vn, vnt)L2(0,1)

+
1

Re

(

iγn(△nun, g(t, y)un)L2(0,1) − (△nun, gy(t, y)vn)L2(0,1) + iγn(△nvn, g(t, y)vn)L2(0,1)

)

.

Then,

|Λ| ≤ C1‖wn‖2
H1(0,1)2 +

1

2

(

‖wnt‖2
L2(0,1)2 +

‖△nwn‖2
L2(0,1)2

Re2

)

,

for some C1 > 0. The lemma follows.

Now, taking a time derivative in Equations (31)–(32), and applying the same argument as in the proof of
L2 stability, one gets

d

dt
‖wnt‖2

L2(0,1)2 ≤ −2
‖wnt‖2

L2(0,1)2

Re
+ C4‖wnt‖L2(0,1)2‖wn‖L2(0,1)2 ,

where the last term is due to the time-varying coefficients. Combining with the previous estimates for the
L2 and H1 norms and Lemma 3.4, the H2 stability property follows.

3.2.2. Controlled modes, and design of control laws. The remaining modes, such that 0 < |n| < M , are
open-loop unstable and must be controlled. We design the control laws in several steps.

Pressure shaping. Solving (35)–(36), one gets

pn = −2i

∫ y

0

gy(t, η) sinh (γn(y − η)) vn(t, η)dη + 2i
cosh (γny)

sinh γn

∫ 1

0

gy(t, η) cosh (γn(1 − η)) vn(t, η)dη

+i
cosh (γn(1 − y))

sinh γn

uny(t, 0)

Re
− cosh (γny))

sinh γn

(

i
uny(t, 1)

Re
+
V̇n

γn
+ γn

Vn

Re

)

. (42)

Note that Vn appears in (42), allowing to “shape” it. We design Vn to enforce in (42) a strict-feedback
structure in y (see [26]). This structural property is a sort of “spatial causality”, requiring that in the
expression for, say, f(t, y), no value of f(t, s) for s > y appears. It is a technical requirement in the
backstepping method for parabolic equations (see [34, 36]) used next. Seeking the strict-feedback structure
in (42), we choose Vn such that

V̇n

γn
= −γn

Vn

Re
− i

uny(t, 0) − uny(t, 1)

Re
− 2i

∫ 1

0

gy(t, η) cosh (γn(1 − η)) vn(t, η)dη, (43)

i.e.,

Vn = −i
∫ t

0

e−γ2
nτ

(

γn
uny(τ, 0) − uny(τ, 1)

Re
+ 2

∫ 1

0

gy(τ, η) cosh (γn(1 − η)) vn(τ, η)dη

)

dτ. (44)

Plugging (43) into (42), the pressure reduces to

pn = −2i

∫ y

0

gy(t, η) sinh (γn(y − η)) vn(t, η)dη + i
cosh (γn(1 − y)) − cosh (γny)

sinh γn

uny(t, 0)

Re
. (45)

Substituting (45) into (31)–(32) yields

unt =
unyy

Re
− γ2

nun

Re
− iγng(t, y)un − gy(t, y)vn − 2γn

∫ y

0

gy(t, η) sinh (γn(y − η)) vn(t, η)dη

+γn
cosh (γn(1 − y)) − cosh (γny)

Re sinh γn
uny(t, 0), (46)

vnt =
vnyy

Re
− γ2

nvn

Re
− iγng(t, y)vn + 2iγn

∫ y

0

gy(t, η) cosh (γn(y − η)) vn(t, η)dη

+iγn
sinh (γn(1 − y)) + sinh (γny)

Re sinh γn
uny(t, 0). (47)

12



Control of velocity field. Our objective is now to control (46)–(47) by means of Un. By (34), vn can be
computed as vn(y, t) = −iγn

∫ y

0
un(t, η)dη. Then, only (46) has to be considered. Using (34), we express

(46) as an autonomous equation in un,

unt =
△nun

Re
+ λn(t, y)un +

∫ y

0

fn(t, y, η)un(t, η)dη + µn(y)uny(t, 0),

with boundary conditions
un(t, 0) = 0, un(t, 1) = Un(t), (48)

where λn, fn and µn were defined in (22)–(24). This is a boundary control problem for a parabolic PIDE
with time-dependent coefficients, solvable by backstepping (see [36]) thanks to the strict-feedback structure.
Following [36], we map un, for each mode 0 < |n| < M , into the family of heat equations

αnt =
1

Re

(

−γ2
nαn + αnyy

)

, αn(k, 0) = αn(k, 1) = 0, (49)

where
αn = (I −Kn)un, un = (I + Ln)αn, (50)

are respectively the direct and inverse transformation. The kernel Kn is found to verify Equations (19)–(21),
and Ln verifies a similar equation, or can be derived from Kn using Proposition 3.1. For (19)–(21), the
following result holds.

Proposition 3.3. For every n ∈ A, there exists a solution Kn(t, y, η) of (19)–(21) defined in Γ = {(t, y, η) ∈
(0,∞)×T } and such that, for every k ∈ N, Kn ∈ L∞(0,∞; Ck(T )), where T = {(y, η) ∈ R

2 : 0 ≤ η ≤ y ≤ 1}.
A proof of this Proposition is provided in Section 4.2 (Appendix).
The control law is, from (50), (49) and (48),

Un =

∫ 1

0

Kn(t, 1, η)un(t, k, η)dη, (51)

Stability properties of the closed loop system follow from (49) and (50). From (49), one infers

‖αn(t)‖2
L2(0,1) ≤ e−

2
Re t‖αn(0)‖2

L2(0,1), ‖αn(t)‖2
H1(0,1) ≤ e−

2
Re t‖αn(0)‖2

H1(0,1),

‖αn(t)‖2
H2(0,1) ≤ e−

1
Re t‖αn(0)‖2

H2(0,1).

Hence, from (50) and using the norms (28)–(29), we obtain

‖un(t)‖2
KnL2(0,1) ≤ e−

2
Re t‖un(0)‖2

KnL2(0,1), ‖un(t)‖2
KnH1(0,1) ≤ e−

2
Re t‖un(0)‖2

KnH1(0,1),

‖un(t)‖2
KnH2(0,1) ≤ e−

1
Re t‖un(0)‖2

KnH2(0,1).

3.2.3. Stability for the whole system. Set A = {n ∈ Z : 0 < |n| < M} and K = Kn(t, y, η)n∈A. Applying

the control laws (51) and (44) in physical space (which yield (17)–(18)), we next prove stability in KH0
0h(Ω)

norm, defined by (30), estimating

‖w‖2
KH0

0h(Ω) =
∑

n/∈A

‖wn‖2
L2(0,1)2 +

∑

n∈A

‖un‖2
KnL2(0,1)

≤ e−
2

Re t

(

∑

n/∈A

‖wn(0)‖2
L2(0,1)2 +

∑

n∈A

‖un(0)‖2
KnL2(0,1)

)

≤ e−
2

Re t‖w(0)‖2
KH0

0h(Ω). (52)

By norm equivalence, this proves the L2 part of Proposition 3.2. Similarly,

‖w‖2
KH1

0h(Ω) = ‖u0‖2
H1(0,1) +

∑

0<|n|<M

‖un‖2
KnH1(0,1) +

∑

|n|≥M

‖wn‖2
H1(0,1)2

≤ e−
2

Re t‖u0(0)‖2
H1(0,1) +

∑

0<|n|<M

e−
2

Re t‖un(0)‖2
KnH1(0,1) +

∑

|n|≥M

C1e
−C2t‖wn(0)‖2

H1(0,1)2

≤ C3e
−C4t‖w(0)‖2

KH1
0h(Ω).

A similar argument shows H2 stability.
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3.2.4. Well-posedness. It remains to prove the well-posedness of the Stokes equations (13)–(16) with con-
trol laws (17)–(18). Define the spaces H1

per(−h, h) =
{

φ ∈ H1(−h, h) : φ(h) = φ(−h)
}

and H2
per(−h, h) =

{

φ ∈ H2(−h, h) : φ(h) = φ(−h), φx(h) = φx(−h)
}

.

Proposition 3.4. Given T > 0, assume that the velocity field (u, v), solution of (13)–(16), verifies (u, v) ∈
L2(0, T ;H2

0h(Ω)). Then, the control laws V and U respectively defined by (17) and (18) verify

U, V ∈ L2(0, T ;H2
per(−h, h)) ∩H1(0, T ;H1

per(−h, h)). (53)

Proof. From (17), one has Vt = Vxx

Re − f(t, x), where

f(t, x) =
∑

0<|n|<M

∫ h

−h

eiγn(ξ−x)

(

2i

∫ 1

0

gy(t, η) cosh (γn(1 − η)) v(t, ξ, η)dη − i
uy(t, ξ, 0) − uy(t, ξ, 1)

Re

)

dξ,

with V (t, h) = V (t,−h) and initial conditions V (0, x) = 0. Since f is defined as a finite sum of convolutions in
the periodic domain of certain functions with the smooth function eiγnx, we get that f ∈ L2(0, T ; Cp

per([−h, h])
for every integer p, where g ∈ Cp

per([−h, h]) means that g is of class Cp and g(i)(−h) = g(i)(h) for every
i ∈ {0, . . . , p}. Therefore, by standard properties of the heat equation (see for example [14, pg. 360,
Theorem 5] for the non-periodic case), we get V ∈ H1([0, T ), Cp

per([−h, h]) for every integer p, and the
conclusion follows for V . Similarly, the definition of U is

U(t, x) =
∑

0<|n|<M

∫ h

−h

∫ 1

0

eiγn(ξ−x)Kn(t, 1, η)u(t, ξ, η)dηdξ,

and the same kind of argument applies.

We use a slightly modified version of [20, Theorem 2.1] (see also [18, Theorem 4.4] for a similar argument).
Note that, from Remark 2.2 and the assumptions of Proposition 3.2, the following compatibility conditions
are verified:

u0(x, 1) = U(0, x), v0(x, 1) = V (0, x),

∫ h

−h

V (t, x)dx = 0.

Then, for U and V satisfying (53), there exists a unique solution of the Stokes equations (13)–(16) such
that (u, v) ∈ L2(0, T ;H2

0h(Ω)). This fact, combined with Proposition 3.4 and estimates of Section 3.2.3
guaranteeing the decay of the H2

0h(Ω) norm of the velocity field, yields existence and uniqueness for the
Stokes equations (13)–(16) with control laws (17)–(18) in L2(0,∞;H2

0h(Ω)).

3.3. Proof of Theorem 2.1. Proposition 3.2 proved in the previous subsection deals with the linearized
system, and is actually valid for any initial condition. If we now consider the Navier-Stokes (9)–(11), then,
due to the nonlinear terms, we obtain just local stability.

Denote the nonlinear term in the Navier-Stokes equations (9)–(11) by N = (Nu, Nv), i.e.,

Nu = −uux − vuy, Nv = −uvx − vvy.

It follows from [37, Lemma 3.4 p. 292] that, for some C depending only on h,

(w,N)
H0

0h(Ω) ≤ C‖w‖KH0
0h(Ω)‖w‖2

KH1
0h(Ω). (54)

The bound above is valid not only for (w,N)H0
0h(Ω) but for any partial sum of (wn,Nn)L2(0,1)2 , by the same

argument.
The application of pressure shaping and backstepping transformation to the nonlinear system yields a

new term in the target system, which appears as

αnt =
1

Re

(

−γ2
nαn + αnyy

)

+Nα
n ,

where Nα
n is defined by Nα

n = (I −Kn)Nu
n + (I −Kn)Np

n. The term Np
n is due to pressure shaping and is

defined by

Np
n = 2

∑

j∈Z

(

cosh (γny)

sinh γn

∫ 1

0

Nq
nj cosh (γn(1 − η)) dη +

∫ y

0

Nq
nj sinh (γn(y − η)) dη

)

,
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where Nq
nj = −γjγn−jujun−j − iγn−jujyvn−j . Then, for n ∈ A,

(αn, N
α
n )L2(0,1) ≤ C2

(

(|αn|, |Nu
n |)L2(0,1) + (|αn|, |Np

n|)L2(0,1)

)

≤ C2‖αn‖L2(0,1)

∑

j∈Z

(

|γj |‖ujun−j‖L2(0,1) + ‖ujyvn−j‖L2(0,1)

)

(1 + C3|γn−j |) , (55)

where C2 = 1 + ‖K‖L∞ and C3 = 2( sinh(γ1) sinh(γM )+cosh2(γM )
sinh(γ1)

). Bounding (55) further, one gets

(αn, N
α
n ) ≤ C2

2
‖αn‖L2(0,1)

∑

j∈Z

{

2|γj |2‖uj‖2
L2(0,1) + 2‖ujy‖2

L2(0,1)

+
(

1 + C2
3 |γn−j |2

)

(

‖u(n−j)‖2
L2(0,1) + ‖v(n−j)‖2

L2(0,1)

)}

≤ C4‖αn‖L2(0,1) ‖w‖2
KH1

0h(Ω), (56)

for some constant C4 > 0. For the KL2 norm of the velocity field, as in (52),

‖w‖2
KL2

0h(Ω) =
∑

n/∈A

‖wn‖L2(0,1)2 +
∑

n∈A

‖un‖2
KnL2(0,1).

Let us estimate the derivatives for each term of the right-hand side of this equality. We have

d

dt

∑

n/∈A

‖wn‖2
L2(0,1)2 ≤

∑

n/∈A

(−2

Re
‖wny‖2

L2(0,1)2 −
γ2

n

Re
‖wn‖2

L2(0,1)2 + (wn,Nn)L2(0,1)2

)

, (57)

and for n ∈ A, since ‖un‖KnL2(0,1) = ‖αn‖L2(0,1), one has

d

dt
‖un‖2

KnL2(0,1) =
d

dt
‖αn‖2

L2(0,1) ≤
−2

Re
‖αny‖2

L2(0,1) −
2γ2

n

Re
‖αn‖2 + (αn, N

α
n )L2(0,1). (58)

Then, summing (58) for n ∈ A, adding (57), and applying norm equivalences and the estimate (54), we get,
for some C0 > 0,

d

dt
‖w‖2

KH0
0h(Ω) ≤ −C0‖w‖2

KH1
0h(Ω) +

∑

n/∈A

(wn,Nn)L2(0,1)2 +
∑

n∈A

(αn, N
α
n )L2(0,1)

≤ ‖w‖2
KH1

0h(Ω)

(

C4‖w‖KH0
0h(Ω) + ‖w‖KH0

0h(Ω) − C0

)

.

Suppose that ‖w‖KH0
0h(Ω) < ǫ. Then

d

dt
‖w‖2

KH0
0h(Ω) ≤ ((C4 + 1)ǫ− C0) ‖w‖2

KH1
0h(Ω),

and choosing ǫ < C0

2(C4+1) ,

d

dt
‖w‖2

KH0
0h(Ω) ≤

−C0

2
‖w‖2

KH1
0h(Ω) ≤ −C5‖w‖2

KH0
0h(Ω),

by Poincaré’s inequality, where C5 > 0. This proves local exponential stability in the KH0
0h(Ω) norm and

therefore in the H0
0h(Ω) norm.

A similar argument applies with the H1
0h(Ω) and H2

0h(Ω) norms for proving local exponential stability;
we skip the details since it is clear that the extra nonlinear convection terms that would appear in the proof
(in a similar way to the proof for the H0

0h(Ω) norm) can be bounded by the linear terms in w, wx and wy

for small H1
0h(Ω) and H2

0h(Ω) norms2. Well-posedness follows in the same way as in Section 3.2.4, since the
argument of [20] applies to nonlinear Navier-Stokes equations.

2The only extra detail required would be a minor modification of Lemma 3.3 to account for the extra nonlinear terms in the

pressure Poisson equation.
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4. Appendix.

4.1. Properties of the function g.

Lemma 4.1. Let κm = π(2m+1). Consider g(t, y) defined by (7) where q is given by (8), boundary conditions
g(t, 0) = g(t, 1) = 0 and initial conditions g(0, y) ≡ 0. Assume as well that cRe 6= κ2

m for any m ∈ N. Then
g has the following properties.

i. The explicit expression for g in (0,∞) × [0, 1] is given by

g = 16
∞
∑

m=0

sin (κmy)

κm





1 − e−
κ2

m
Re t

κ2
m

− e−ct − e−
κ2

m
Re t

κ2
m − cRe



. (59)

ii. It holds that
lim

t→∞
g(t, y) = 4y(1 − y).

iii. The function g belongs to the space Cω(0,∞) × C∞[0, 1] (i.e., analytic in t and smooth in x).
iv. The estimates

0 < g(t, y) ≤ 1, |gy(t, y)| ≤ 4, −8 < gyy(t, y) ≤ 0,

hold for every t ≥ 0 and every y ∈ [0, 1].

Proof. In the proof we make use of many properties of the heat equation [14].
Point i is obtained by a Fourier expansion and application of Duhamel’s Principle for solving (7). That

yields the solution

g(t, y) = 2
∞
∑

m=0

sin (κmy)

κm

∫ t

0

e−
κ2

m
Re (t−τ)q(τ)dτ,

and plugging in the expression (8) for q and solving explicitly the integral (where the assumption on c is
used), (59) is found.

Point ii is obtained by passing to the limit in (59) as t goes to infinity. Then

lim
t→∞

g(t, y) = 16
∞
∑

m=0

sin (κmy)

κ3
m

= 4y(1 − y), (60)

which can be verified by computing the Fourier series of 4y(1 − y) which coincides with the infinite sum.
Point iii is a standard property of the solutions of the heat equation, taking into account that q itself is

Cω(0,∞) × C∞(0, 1).
Point iv is proved using the maximum principle for the heat equation. Having proved smoothness in

Point iii, we can first consider the equation that gyy verifies by differentiation of (7)

(gyy)t =
1

Re
(gyy)yy. (61)

The boundary conditions for (61) can be determined plugging (8) in (7), and taking limit as y goes to 0 and
1. Then, using the fact that g(t, 0) = g(t, 1) = 0, it follows that gyy(t, 0) = gyy(t, 0) = −8(1 − e−ct). The
initial condition is gyy(0, y) = 0, and it holds that limt→∞ gyy(t, y) = −8. By the maximum and minimum
principle, and since −8 < gyy(t, 0) < 0, it follows that −8 < gyy < 0.

Consider now gy. The fact that the boundary conditions of g are g(t, 0) = g(t, 1) = 0, the initial condition
is zero, and (7) has constant coefficients in y, implies that g is symmetric around y = 1/2, i.e., g(y) = g(1−y).
Hence, it follows that gy(y) = −gy(1 − y), which implies gy(1/2) = 0. Then,

gy(t, y) =

{ ∫ y

1/2
gyy(t, η)dη for y ∈ (1/2, 1),

−
∫ 1/2

y
gyy(t, η)dη for y ∈ (0, 1/2),

and the bound |gy(t, y)| ≤ 4 follows. For g, one has

g(t, y) =

{

−
∫ 1

y
gy(η)dη = −

∫ 1

y

∫ η

1/2
gyy(t, σ)dσdη for y ∈ (1/2, 1),

∫ y

0
gy(η)dη = −

∫ y

0

∫ 1/2

η
gyy(t, σ)dσdη for y ∈ (0, 1/2),

and the bound |g(t, y)| ≤ 1 follows, thus finishing the proof of Point iv.
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4.2. Kernel equations, and proof of Proposition 3.3. We actually derive a more general statement
which includes Proposition 3.3 as a particular case. We first recall the definition of the Gevrey class of
functions, which plays an important role in studying solutions of the heat equation (see [19, 8]). As shown
later, solutions to kernel partial integro-differential equations that appear in unsteady backstepping theory
are members of some Gevrey class.

Definition 4.1. A smooth function f defined on (0, T ), for T ∈ (0,∞], is Gevrey of order α, and we denote
f ∈ Gα(0, T ), if there exists numbers Q,R > 0 such that, for every positive integer k,

sup
t∈(0,T )

∣

∣

∣

∣

dkf

dtk

∣

∣

∣

∣

≤ Q
(k!)α

Rk
.

For a nonempty open subset O of R
n, and for m ∈ N, we denote by Hm,∞(O) the set of functions

ϕ ∈ L∞(O) whose derivatives ∂αϕ, α = (α1, . . . , αn) ∈ N
n with |α| =

∑n
i=1 αi ≤ m, are in L∞(O) (with

the agreement that H0,∞(O) = L∞(O)). This space, endowed with its usual norm, is a Banach space. For
functions of time and space, we define the following classes.

Definition 4.2. Given m ≥ 0 integer, a function f : (0, T ) × O → R, (t, y) 7→ f(t, y) is said to be
Gevrey of order α in time t ∈ (0, T ) and Hm,∞(O) in space, and we denote f ∈ Gα(0, T ;Hm,∞(O)), if
f(t, ·) ∈ Hm,∞(O) for every time t ∈ (0, T ), f(t, ·) possesses time derivatives of every order which also
belong to Hm,∞(O), and there exist numbers Q,R > 0 such that, for every positive integer k,

sup
t∈(0,T )

∣

∣

∣

∣

∣

∣

∣

∣

dkf

dtk

∣

∣

∣

∣

∣

∣

∣

∣

Hm,∞(O)

≤ Q
(k!)α

Rk
.

Consider now the kernel equation

ǫKyy − ǫKηη −Kt(t, y, η) = λ(t, η)K(t, y, η) − f(t, y, η) +

∫ y

η

K(t, y, ξ)f(t, ξ, η)dξ, (62)

with boundary conditions

K(t, y, y) =
−1

2ǫ

∫ y

0

λ(t, σ)dσ − g(t, 0)

ǫ
, K(t, y, 0) =

∫ y

0

K(t, y, σ)
g(t, σ)

ǫ
dσ − g(t, y)

ǫ
, (63)

in the domain (0, T ) × T , where ǫ > 0 and T > 0. The following result hold, where
◦
T denotes the interior

of T in R
2.

Proposition 4.1. 1. (Finite time) Assume T ∈ (0,∞). For coefficients f , g, λ satisfying

f ∈ Gα(0, T ;Hm−1,∞(
◦
T )), λ ∈ Gα(0, T ;Hm,∞(0, 1)), g ∈ Gα(0, T ;Hm+1,∞(0, 1)), (64)

the problem (62)–(63) has a unique solution K ∈ Gα(0, T ;Hm+1,∞(
◦
T )).

2. (Infinite time) For coefficients f , g, λ verifying

f ∈ Gα(0,∞;Hm−1,∞(
◦
T )) ∩ L∞(0,∞;Hm−1,∞(

◦
T )),

λ ∈ Gα(0,∞;Hm,∞(0, 1)) ∩ L∞(0,∞;Hm,∞(0, 1)),

g ∈ Gα(0,∞;Hm+1,∞(0, 1)) ∩ L∞(0,∞;Hm+1,∞(0, 1)),

the problem (62)–(63) has a unique solution K ∈ Gα(0,∞;Hm+1,∞(
◦
T )) ∩ L∞(0,∞;Hm+1,∞(

◦
T )).

This result includes Proposition 3.3 as a particular case, with α = 1, and passing to the limit m→ ∞.

Proof. Let us prove the first item. In the following it will be assumed that 1 ≤ α < 2. For α < 1 one
has to substitute everywhere in the section α by 1. We follow [34] to transform the PIDE into an integral
equation. Applying the change of variables ξ = y + η and β = y − η, and denoting G(t, ξ, β) = K(t, y, η) =

K
(

t, ξ+β
2 , ξ−β

2

)

, the PIDE (62) is transformed into

4ǫGξβ = Gt(t, ξ, β) +A(t, ξ, β)G(t, ξ, β) −B(t, ξ, β)

+

∫
ξ+β
2

ξ−β
2

G

(

t,
ξ + β

2
+ σ,

ξ + β

2
− σ

)

f

(

t, σ +
ξ − β

2
, σ − ξ − β

2

)

dσ, (65)
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with boundary conditions

Gξ(t, ξ, 0) =
−A(t, ξ, 0)

4ǫ
, G(t, ξ, ξ) =

−g(t, ξ)
ǫ

+

∫ ξ

0

G (t, ξ + σ, ξ − σ)
g(t, σ)

ǫ
dσ, (66)

in the domain (0, T ) × T1, where T1 = {(ξ, β) : 0 ≤ ξ ≤ 2, 0 ≤ β ≤ min{ξ, 2 − ξ}}, and where now

A(t, ξ, β) = λ

(

t,
ξ − β

2

)

∈ Gα(0, T );Hm,∞(
◦
T 1)),

B(t, ξ, β) = f

(

t,
ξ + β

2
,
ξ − β

2

)

∈ Gα(0, T ;Hm−1,∞(
◦
T 1)).

Changing the integration variable, we can rewrite Equation (65) as

4ǫGξβ = Gt(t, ξ, β) +A(t, ξ, β)G(t, ξ, β) −B(t, ξ, β) +

∫ β

0

G (t, ξ + σ, β − σ) f (t, σ + (ξ − β), σ) dσ.

Integrating, and using the boundary conditions (66), we reach

G(t, ξ, β) =
1

4ǫ

∫ ξ

β

∫ β

0

Gt(t, τ, σ)dσdτ +
1

4ǫ

∫ ξ

β

∫ β

0

A(t, τ, σ)G(t, τ, σ)dσdτ − 1

4ǫ

∫ ξ

β

∫ β

0

B(t, τ, σ)dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

∫ σ

0

G (t, τ + µ, σ − µ) f (t, µ+ (τ − σ), µ) dµdσdτ

− 1

4ǫ

∫ ξ

β

A(t, τ, 0)dτ − 1

ǫ
g(t, β) +

1

ǫ

∫ β

0

g(t, σ)G (t, β + σ, β − σ) dσ, (67)

an integro-differential equation that only contains time derivatives and spatial integrals. Following [34], we
seek a successive series approximation solution

G =
∞
∑

n=0

Gn(t, ξ, β), (68)

with

G0(t, ξ, β) = − 1

4ǫ

∫ ξ

β

∫ β

0

B(t, τ, σ)dσdτ − 1

4ǫ

∫ ξ

β

A(t, τ, 0)dτ − 1

ǫ
g(t, β),

and for n > 0,

Gn(t, ξ, β) =
1

4ǫ

∫ ξ

β

∫ β

0

(Gn−1)t(t, τ, σ)dσdτ +
1

4ǫ

∫ ξ

β

∫ β

0

A(t, τ, σ)Gn−1(t, τ, σ)dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

∫ σ

0

Gn−1 (t, τ + µ, σ − µ) f (t, µ+ (τ − σ), µ) dµdσdτ

+
1

ǫ

∫ β

0

g(t, σ)Gn−1 (t, β + σ, β − σ) dσ.

Since A, B, f and g are Gevrey are in Gα(0, T ;L∞(T1)), there exists R > 0 and M > 0 such that
∥

∥

∥

∥

∂k

∂tk
A(t, ·)

∥

∥

∥

∥

L∞(T1)

+

∥

∥

∥

∥

∂k

∂tk
B(t, ·)

∥

∥

∥

∥

L∞(T1)

+

∥

∥

∥

∥

∂k

∂tk
f(t, ·)

∥

∥

∥

∥

L∞(T1)

∥

∥

∥

∥

∂k

∂tk
g(t, ·)

∥

∥

∥

∥

L∞(T1)

≤M
(k!)α

Rk
, (69)

for every t ∈ (0, T ) and every k ∈ N. Define now h(t, t0) = 1

1− t−t0

R1/α

, for t0 ∈ [0, T ). Then, 1 ≤ |h(t, t0)|

whenever t ∈ [t0,
R1/α

2 + t0). Since

∂kh(t, t0)

∂tk
=

k!
(

1 − t−t0
R1/α

)k+1
Rk/α

=
k!h(t, t0)

k+1

Rk/α
,
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it is clear that, for t ∈ [t0,
R1/α

2 + t0), one has k!
Rk/α ≤ ∂kh(t,t0)

∂tk , and hence, by (69),

∥

∥

∥

∥

∂k

∂tk
A(t, ·)

∥

∥

∥

∥

L∞(T1)

+

∥

∥

∥

∥

∂k

∂tk
B(t, ·)

∥

∥

∥

∥

L∞(T1)

+

∥

∥

∥

∥

∂k

∂tk
f(t, ·)

∥

∥

∥

∥

L∞(T1)

∥

∥

∥

∥

∂k

∂tk
g(t, ·)

∥

∥

∥

∥

L∞(T1)

≤M

(

∂kh(t, t0)

∂tk

)α

, (70)

for every k ∈ N. We consider a uniform subdivision of (0, T ) into m subintervals,

(0, T ) =

(

0,
R1/α

2

)

∪
(

R1/α

2
, R1/α

)

∪ · · · ∪
(

(m− 1)
R1/α

2
, T

)

, (71)

where m is chosen so that the length of the last subinterval is less than or equal to R1/α

2 . For each subinterval,
set t0 as the infimum of the subinterval.

We show the proof for the subinterval t ∈ (0, R1/α

2 ); it proceeds equally for the rest of the subintervals
because t0 does not appear explicitly in the computations. This means that the bounds obtained below for

the interval (0, R1/α

2 ) uniformly holds in the whole interval (0, T ). Hence, it suffices to prove the result for

t ∈ (0, R1/α

2 ).
Denote h(t, 0) = h(t) for simplicity. We prove the existence of the solution defined by the successive

approximation series using a variant of the classical method of majorants (see [27] for a similar proof).

We claim that for all n ≥ 0, k ≥ 0, and (t, ξ, β) ∈ (0, R1/α

2 ) ×
◦
T 1,

∣

∣

∣

∣

∂k

∂tk
Gn(t, ξ, β)

∣

∣

∣

∣

≤
(

∂k

∂tk
h(t)n+1

)α
Cn+1

√

βn(ξ + β)n

(n!)γ
, (72)

where γ = 2 − α > 0 and C = 2
ǫR + 5M

ǫ .
Assume the above formula is true (it is proved next). Then, substituting in the successive approximation

series (68), one has, for k ≥ 0,
∣

∣

∣

∣

∂k

∂tk
G(t, ξ, β)

∣

∣

∣

∣

≤
∞
∑

n=0

(

∂k

∂tk
h(t)n+1

)α
Cn+1

√

βn(ξ + β)n

(n!)γ
≤
(

∂k

∂tk
H(t, ξ, β)

)α

, (73)

where

H(t, ξ, β) =
∞
∑

n=0

h(t)n+1C
(n+1)/α 2α

√

(1 + β)n(1 + ξ + β)n

(n!)γ/α

is an analytic function of all its variables in (t, ξ, β) ∈ [0, R1/α

2 ]×
◦
T 1, whenever α < 2. This is easily seen for

ξ and β. To see it for t, substitute ξ and β by their maximum (2 and 1 respectively). Then,

H(t, ξ, β) =
∞
∑

n=0

h(t)n+1C
(n+1)/α 2α

√
12n

(n!)γ/α
=

∞
∑

n=0

h(t)n+1D
n+1

(n!)δ
.

To check analyticity on [0, R1/α

2 ], since all terms in the sum are already analytic, we extend H to a disk

of radius R1/α in the complex plane, i.e. t ∈ C, |t| ∈ [0, R1/α

2 ] and check convergence for t on compact

subsets [30] of the disk. Set then t = R1/α

2 (1 − σ), where σ ∈ [0, 1]. Then,

H(t, ξ, β) ≤
∞
∑

n=0

(

2D

σ + 1

)n+1
1

(n!)δ
,

which converges for all values of D, σ, δ. Therefore H is also analytic in t. Then, by using (73), it follows
that G is in Gα(0, T ;L∞(T1)). Note that, as was stated before, the proof holds as well when using h(t, t0)

instead of h(t, 0), for t ∈ [t0, t0 + R1/α

2 ).
It remains to prove the estimate (72), by induction on n. For n = 0 and k = 0, one has, using (70),

|G0(t, ξ, β)| ≤ 1

4ǫ

∫ ξ

β

∫ β

0

Mh(t)αdσdτ +
1

4ǫ

∫ ξ

β

Mh(t)αdτ +
1

ǫ
Mh(t)α 2M

ǫ
≤ Ch(t)α,
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and for n = 0, k > 0,
∣

∣

∣

∣

∂kG0(t, ξ, β)

∂tk

∣

∣

∣

∣

≤ 1

4ǫ

∫ ξ

β

∫ β

0

M

(

∂k

∂tk
h(t)

)α

dσdτ +
1

4ǫ

∫ ξ

β

M

(

∂k

∂tk
h(t)

)α

dσ +
1

ǫ
M

(

∂k

∂tk
h(t)

)α

dσdτ

≤ 2M

ǫ

(

∂k

∂tk
h(t)

)α

≤ C

(

∂k

∂tk
h(t)

)α

,

so (72) is true for n = 0.
Suppose now it is true for n− 1. Then, for k = 0,

|Gn(t, ξ, β)| ≤ 1

4ǫ

∫ ξ

β

∫ β

0

∣

∣

∣

∣

∂Gn−1

∂t

∣

∣

∣

∣

(t, τ, σ)dσdτ +
1

4ǫ

∫ ξ

β

∫ β

0

Mh(t)α |Gn−1| (t, τ, σ)dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

∫ σ

0

|Gn−1| (t, τ + µ, σ − µ)Mh(t)αdµdσdτ +
1

ǫ

∫ β

0

Mh(t)α |Gn−1| (t, β + σ, β − σ)dσ,

and, using the induction hypothesis (72),

|Gn(t, ξ, β)| ≤ 1

4ǫ

∫ ξ

β

∫ β

0

(

∂

∂t
h(t)n

)α
Cn
√

σn−1(τ + σ)n−1

((n− 1)!)γ
dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

M
(

h(t)n+1
)α Cn

√

σn−1(τ + σ)n−1

((n− 1)!)γ
dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

∫ σ

0

M
(

h(t)n+1
)α Cn

√

(σ − µ)n−1(τ + σ)n−1

((n− 1)!)γ
dµdσdτ

+
1

ǫ

∫ β

0

M
(

h(t)n+1
)α Cn

√

(β − σ)n−1(2β)n−1

((n− 1)!)γ
dσ.

We have the following estimates:

∫ ξ

β

∫ β

0

√

σn−1(τ + σ)n−1dσdτ ≤ 2

∫ β

0

√

σn−1(ξ + σ)n+1

n+ 1
dσ ≤ 4

√

βn+1(ξ + β)n+1

(n+ 1)2
≤ 8

√

βn(ξ + β)n

(n+ 1)2
,

∫ ξ

β

∫ β

0

∫ σ

0

√

(σ − µ)n−1(τ + σ)n−1dµdσdτ = 8

√

(β)n+3(ξ + β)n+1

(n+ 1)2(n+ 3)
≤ 4

√

βn(ξ + β)n

(n+ 1)2
,

∫ β

0

√

(β − σ)n−1(2β)n−1dσ = 2

√

(2β)n−1(β)n+1

n+ 1
≤ 2

√

(β + ξ)n(β)n

n+ 1
,

from which it follows that

|Gn(t, ξ, β)| ≤
(

2

R
+ 5M

)

(

h(t)n+1
)α Cn

√

βn(ξ + β)n

ǫ(n!)γ
≤
(

h(t)n+1
)α Cn+1

√

βn(ξ + β)n

(n!)γ
.

Similarly, for k > 0, using Leibnitz’s formula together with (70) and the assumption hypothesis (72),
∣

∣

∣

∣

∂kGn

∂tk

∣

∣

∣

∣

≤ 1

4ǫ

∫ ξ

β

∫ β

0

(

∂k+1

∂tk+1
h(t)n

)α
Cn
√

σn−1(τ + σ)n−1

((n− 1)!)γ
dσdτ

+
M

4ǫ

∫ ξ

β

∫ β

0

(

k
∑

i=0

(

k
i

)(

∂i

∂ti
h(t)

)α ∣
∣

∣

∣

∂k−iGn−1

∂tk−i

∣

∣

∣

∣

(t, τ, σ)

)

dσdτ

+
M

4ǫ

∫ ξ

β

∫ β

0

∫ σ

0

(

k
∑

i=0

(

k
i

)(

∂i

∂ti
h(t)

)α ∣
∣

∣

∣

∂k−iGn−1

∂tk−i

∣

∣

∣

∣

(t, τ + µ, σ − µ)

)

dµdσdτ

+
M

ǫ

∫ β

0

(

k
∑

i=0

(

k
i

)(

∂i

∂ti
h(t)

)α ∣
∣

∣

∣

∂k−iGn−1

∂tk−i

∣

∣

∣

∣

(t, β + σ, β − σ)

)

dσ. (74)
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Using the previous estimates, we get
∣

∣

∣

∣

∂kGn

∂tk

∣

∣

∣

∣

≤ 2

ǫ

(

∂k+1

∂tk+1
h(t)n

)α
Cn
√

βn(ξ + β)n

(n+ 1)2((n− 1)!)γ

+

(

3M

ǫ(n+ 1)
+

2M

ǫ

)

(

k
∑

i=0

(

k
i

)(

∂i

∂ti
h(t)

)α(
∂k−i

∂tk−i
h(t)n

)α
)

Cn
√

βn(ξ + β)n

(n+ 1)(n− 1)!)γ
. (75)

For the first line, we will use
∂i

∂ti
h(t)n =

n

R1/α

∂i−1

∂ti−1
h(t)n+1. (76)

For the second line, using
(

∂i

∂ti
h(t)

)(

∂k−i

∂tk−i
h(t)n

)

= n
i!

(n+ k)(n+ k − 1) . . . (n+ k − i)

(

∂k

∂tk
h(t)n+1

)

,

we get

k
∑

i=0

(

k
i

)(

∂i

∂ti
h(t)

)α(
∂k−i

∂tk−i
h(t)n

)α

=

(

∂k

∂tk
h(t)n+1

)α

nα
k
∑

i=0

(i!)α−1k(k − 1) . . . (k − i+ 1)

(n+ k)α . . . (n+ k − i)α
. (77)

Lemma 4.2. For n, k ≥ 1, we have

k
∑

i=0

(i!)α−1k(k − 1) . . . (k − i+ 1)

(n+ k)α . . . (n+ k − i)α
≤ 1

n
.

Proof. Since 1 ≤ α < 2, it suffices to prove the inequality for α = 1, that can be written as
∑k

i=0(n− 1 + k − i)(n− 2 + k − i) . . . (k − i+ 1)

(n+ k)(n+ k − 1) . . . (k + 1)
≤ 1

n
.

The proof is then obvious, by induction on n.

Using (76), (77) and Lemma 4.2, we get, from (75),
∣

∣

∣

∣

∂kGn

∂tk

∣

∣

∣

∣

≤
(

∂k

∂tk
h(t)n+1

)α
Cn+1

√

βn(ξ + β)n

(n!)γ
,

thus proving (72).

We have proved that G ∈ Gα(0, T ;L∞(
◦
T 1)). To get higher regularity in space, we differentiate in the ξ

variable the integral equation (67), obtaining

Gξ(t, ξ, β) =
1

4ǫ

∫ β

0

Gt(t, ξ, σ)dσdτ +
1

4ǫ

∫ β

0

A(t, ξ, σ)G(t, ξ, σ)dσdτ − 1

4ǫ

∫ β

0

B(t, ξ, σ)dσdτ

+
1

4ǫ

∫ β

0

∫ σ

0

G (t, ξ + µ, σ − µ) f (t, µ+ (ξ − σ), µ) dµdσdτ − 1

4ǫ
A(t, ξ, 0)dτ,

which explicitly defines Gξ. Next, we differentiate in the β variable the integral equation (67), reaching

Gβ(t, ξ, β) =
1

4ǫ

∫ ξ

β

Gt(t, τ, β)dτ − 1

4ǫ

∫ β

0

Gt(t, β, σ)dσ +
1

4ǫ

∫ ξ

β

A(t, τ, β)G(t, τ, β)dτ

− 1

4ǫ

∫ β

0

A(t, β, σ)G(t, β, σ)dσ − 1

4ǫ

∫ ξ

β

B(t, τ, β)dτ +
1

4ǫ

∫ β

0

B(t, β, σ)dσ

+
1

4ǫ

∫ ξ

β

∫ β

0

G (t, τ + µ, β − µ) f (t, µ+ (τ − β), µ) dµdτ

− 1

4ǫ

∫ β

0

∫ σ

0

G (t, β + µ, σ − µ) f (t, µ+ (β − σ), µ) dµdσ +
1

4ǫ
A(t, β, 0)dτ − 1

ǫ
gβ(t, β)

+
1

ǫ
g(t, β)G (t, 2β, 0) +

1

ǫ

∫ β

0

g(t, σ)Gβ (t, β + σ, β − σ) dσ +
1

ǫ

∫ β

0

g(t, σ)Gξ (t, β + σ, β − σ) dσ,
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an integral equation for Gβ . It can be written as

Gβ(t, ξ, β) = Φ(t, ξ, β) +
1

ǫ

∫ β

0

g(t, σ)Gβ (t, β + σ, β − σ) dσ.

where the function Φ(t, ξ, β) is computed from G, A, B, and g. This equation is solved using a successive
approximation scheme as before. We skip the details.

Hence, Gξ and Gβ are well-defined, as long as gβ is well-defined. Iterating this process, higher order
derivatives can be computed as long as the coefficients are differentiable. It follows that the regularity of G

is determined by the regularity of the coefficients; it is proved by induction that G ∈ Gα(0, T ;Hm+1,∞(
◦
T 1)).

This means that G has the same regularity as g, has one more derivative than λ, and two more derivatives
than f . Moreover, repeating this argument for all values of m, if the coefficients are smooth in space, then
the kernel is smooth in ξ and β.

The second item of Proposition 4.1 is proved similarly, covering the infinite interval (0,∞) with an

infinite number of uniform subintervals of the form [t0,
R1/α

2 + t0). We obtain the same bounds for G. Hence
a compactness argument is not required, as we obtain a uniform, finite bound for G, showing that the
successive approximation series is well-defined for all times.
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