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Abstract. We present in this paper a CHR based parsing method-
ology for parsing Property Grammars. This approach constitutes a
flexible parsing technology in which the notions of derivation and
hierarchy give way to the more flexible notion of constraint sat-
isfaction between categories. It becomes then possible to describe
the syntactic characteristics of a category in terms of satisfied and
violated constraints.

Different applications can take advantage of such flexibility, in par-
ticular in the case where information comes from part of the input
and requires the identification of selected phrases such as NP, PP,
etc. Our method presents two main advantages: first, there is no
need to build an entire syntactic structure, only the selected phrases
can be extracted. Moreover, such extraction can be done even from
incomplete or erroneous text: indication of possible kinds of error
or incompleteness can be given together with the proposed analysis
for the phrases being sought.

1 Introduction

Extracting selected phrases from written or spoken text is an important step for
many useful applications of language processing. For instance, concept extraction
or text summarization can benefit from a preliminary identification of all noun
phrases or verbs, to be further processed, e.g. through consulting a concept
hierarchy; question answering can focus on noun phrases or verbs at least for
the replies to be given; command oriented systems might focus on verb phrases;
temporal systems, on time adverbial phrases, etc.

Ideally we want to be able to extract concepts from text produced in real
life conversation, which typically is incomplete, often not perfectly grammatical,
and sometimes erroneous. Imperfections can result from normal human error in
actual speech, or be introduced by machines, as in the case of text produced
from speech recognition systems, which are renowned for their error-proneness.



Flexible parsing techniques offer great advantages in this perspective. Among
possible solutions, constraint-based approaches allow us to use the same parsing
mechanism (constraint satisfaction) whether the grammar is incomplete, het-
erogeneous, etc. Moreover, provided that no extra mechanisms than satisfaction
are used, constraints can be relaxed in accordance to user-defined criteria. In
particular, this can be done selectively (for some sentences but not others). For
instance, we may want to express that a noun requires a determiner inside a
noun phrase, unless we are dealing with a generic statement, as in “Lions sleep”.
To this effect, we can test the conditions relevant to genericity in the body of
the rule that relaxes the constraint imposing a determiner, so that only upon
them being satisfied will the constraint be relaxed.

Property-based linguistic models (see [Bes99a,Bes99b], [Blache05]) view lin-
guistic constraints as properties between sets of categories, rather than in the
more traditional terms of properties on hierarchical representations of completely
parsed sentences. This view has several advantages, such as allowing for mistakes
to be detected and pointed out rather than blocking the analysis altogether, and
facilitates dynamic processing of text produced on the fly, as needed for the
growing number of applications involving speech.

In this paper we refine a methodology for Property Grammars (cf. [Blache05])
first proposed in [Dahl04b] which relies exclusively on constraints. It controls
the parse through head-driven analysis, provides a direct interpretation of this
formalism while preserving all its theoretical properties at the implementation
level, and can focus on specific phrases- in the case of our toy implementation,
noun phrases- as mandated by a user’s modular and easy to change command. As
the implementation language, we use a specialized grammatical formalism called
CHRG (Constraint Handling Rule Grammars) described in [Christiansen01] on
top of CHR [Frithwirth98].

2 Representing syntax with constraints

The basic idea of Property Grammars is to represent different kinds of syntactic
information separately. In this approach, syntactic structure is not expressed in
terms of hierarchy, but only by means of relations between categories. We de-
scribe in this section how to represent such relations in terms of constraints and
take advantage of this in the perspective of a direct constraint-based implemen-
tation.

2.1 Background: Property Grammars

In our approach, syntactic properties rely on relations that do not have specific
topological constraints (they can for example be crossed). Categories are de-
scribed by means of such relations. As a consequence, the notion of constituency
is no longer crucial for the description process: a category is specified by a set of
properties rather than by a set of constituents. The fact that several categories
belong to a network of relations indicates that they characterize an upper-level



category. A syntactic category is then described by a set of properties which
represent relations between other categories (lexical or syntactic).

In this approach, the goal is to make explicit all the different relations that
can exist. We distinguish in this perspective the following types of information:

— linear precedence, which is an order relation between categories,

— subcategorization, which indicates coocurrence relations between categories
or sets of categories,

— the impossibility of cooccurrence between categories,

— the impossibility for a category to be repeated,

— the minimal set of obligatory constituents (usually one single constituent)
which is the head,

— semantic relations between categories, in terms of dependency.

These different kinds of information correspond to different properties, re-
spectively: linearity, requirement, exclusion, unicity, obligation, dependency. Such
information can always be expressed in terms of relations between categories, as
shown in the following examples:

— Linear precedence: Det < N (a determiner precedes the noun)

— Dependency: AP ~» N (an adjectival phrase depends on the noun)
Requirement: V/inf] = to (an infinitive comes with to)

Exclusion: seems ¢ ThatClause[subj/ (the verb seems cannot have That
clause subjects)

All syntactic categories are characterized by a set of relations that forms
a connected graph. The syntactic description of a language consists of all the
different relations that can be expressed between categories. A relation (also
called a property) can be conceived as a constraint on the set of categories. A
grammar is then a set of constraints and satisfiability becomes the core of the
parsing process (see [Blache01]). What is interesting in this approach is that
no implicit information, for example under the form of a specific mechanism,
is needed. In particular, there is no need to build a structure before being able
to verify its properties as it is the case with classical generative approaches
(although for convenience given what researchers are used to, we do provide a
tree as well as a side effect of parsing). Moreover, using satisfiability alone has
important consequences in the conception of the syntactic structure. Evaluating
a constraint system for a given set of categories allows us to specify precisely the
set of properties that are verified. In the same way, in the case of ill-formed input,
such evaluation identifies precisely the set of satisfied and violated constraints.
Such a result is then of deep interest in the sense that it identifies precisely all
the specificities of an input. In Property Grammars this information constitutes
the output of a parse, which is but the status of the constraint system after
evaluation.



2.2 The parsing schema

The basic mechanism in constraint satisfaction problems is to find, for a given set
of variables, an assignment that satisfies the constraint system. In the problem
addressed here, the variables are taken from the set of categories. An assign-
ment is given from an input (i.e. the sentence to be parsed). Starting from the
set of lexical categories corresponding to the words of the sentence, all possible
assignments (i.e. subsets of categories) are evaluated. When a syntactic cate-
gory is characterized, it is added to the set of categories to be evaluated. This
approach is basically incremental in the sense that any subset of categories can
be evaluated. This means that an assignment A can be completed by adding
other categories. When syntactic categories are inferred after the first step of
the process, it is then possible to complete the first assignments (made with
lexical categories) with new syntactic ones.

We have seen that in Property Grammars, a category is described by a set
of constraints. But reciprocally, it is possible to identify a category from a given
property. This is typically the case with properties expressing relationships be-
tween categories, such as linearity, requirement, obligation and dependency. Eval-
uating such properties makes it possible to infer that the syntactic category to
which the property is attached is being characterized. We have referred to these
properties under the collective name of selection constraints.

The role of selection constraints is central to our approach. The reason such
constraints allow us to select the characterized category is that they are local
to this category. Moreover, in some cases they have a global scope over the cat-
egory : their satisfiability value (i.e. satisfied or violated) cannot change for a
given category whatever the subset of constituents. As soon as the constraint
can be evaluated, this value is permanent. For example, when a linearity or a
dependency constraint is satisfied, adding new constituents to the category can-
not change this fact. Other kinds of constraints have to be re-evaluated at each
stage. For instance, when adding a new category, we need to verify that unicity
and exclusion are still satisfied. In all that follows, we call the latter filtering
constraints. Contrary to selection constraints, one cannot infer the materializa-
tion of a syntactic category from their evaluation. They play a filtering role in
the sense that they rule out some construction. Yet another type of constraint,
which we call recoverable constraints can succeed by the incorporation of one
more category into a given phrase for which, without this added category, the
constraint failed.

Let us examine what the consequences are on constraint evaluation. As ex-
plained above, the principle consists in completing original assignments with
new categories when they are inferred. Insofar as the evaluation of selection con-
straints (as soon as this evaluation can be performed) is valid through a complete
assignment, whatever its constituents, it is not necessary to re-calculate it. In
other words, when an assignment A is made by completing another assignment
A’, the set of selection constraints of A’ is inherited by A. We describe in the next
section the different types of properties and their consequence for new assign-



ments in more detail, with respect to a specific instance of the general parsing
schema we present here.

In the following, we note selection and filtering constraints as Rseject (C, XP)
and Rfilte,,(C, XP) in which C is the constraint and XP the syntactic category
to which the constraint is associated. For some assignment A, a constraint is rele-
vant (or can be evaluated) when the categories of A are a subset of the categories
involved in C. We note the fact that A can be evaluated for some constraint as
follows: A/Rgeiect(C, XP). We note the set of filtering and selection constraints
for a given category XP by R(C, XP) = Rseicct (C; XP)URtiiter (C, XP). Finally,
we note the state of the constraint system X' for an assignment A after evaluation
by SAT (A, Y). Each category is indexed by its boundaries, noted c(; ;).

Let K be the set of categories, noted c¢;, let i, j, k some indexes such that ¢ < j < k:

1 A(—{Ci,...,Cj}

2. if A/Ryetect(C, XP)

3 instantiate X P ;)

4 ¥ = JR(C, XP)

5. Char(A) «— SAT(A, X))

6. while SAT (A, X) acceptable
7 A— AU{c}

8 ¥ = R(C, XP)

9 Char(A) — SAT(A, %)
10. k—k+1

In this algorithm schema, the mechanism consists in evaluating the charac-
terization of all sequences of categories. The specificity of selection constraints
is used as a control device: when a selection constraint is satisfied, the described
category XP is instantiated and the related set of constraints X' is activated.
It is interesting to notice that a syntactic category can be projected by any se-
lection constraint, independently from any constituency information (especially
the head). Each new assignment, built by adding new juxtaposed categories to
the initial set, is then evaluated. Such a completion of the initial assignment is
possible when the satisfiability of X' for this new assignment is acceptable (cf. line
7). This notion implements the parser flexibility. When we need to build only
grammatical structures, acceptability is reduced to satisfiability. But for more
flexible parsing needs (e.g. spoken language), constraints can be relaxed. The
set of constraints to be relaxed, their number, etc. is indicated at this point.
Finally, the general process is repeated until no new category can be added.

This parsing schema proposes a general framework in which constraints can
be integrated. Each property is implemented by a constraint solver. The mech-
anism consists in building a characterization for each possible assignment (i.e.
any subset of categories). The particularity of selection constraints plays an im-
portant role in this schema. In a classical bottom-up technique, the mechanism
consists in finding a handle which links a set of categories with a non-terminal.



Such a relation in our approach is established between a set of properties and a
category. In contrast with phrase-structure techniques, the notion of constituency
does not play any particular role. As soon as a selection constraint is evaluated,
the corresponding syntactic category is added to the set of categories and all
the constraints participating in its description are activated. Concretely, all the
selection constraints can be evaluated with no need to know the upper-level
category, in contrast to filtering constraints which have to be activated.
Different strategies can be applied according to the needs of the parse. A
restricted application stipulates that all constraints have to be satisfied. In this
case, only grammatical characterization are built, all ill-formed structures are
ruled out. For more flexible applications, typically in the case of parsing spoken
language material, constraints have to be relaxed. In this case, characterizations
can contain violated constraints. We next describe how CFGs are used in our
approach to achieve direct interpretation in these kinds of flexible applications.

3 Direct interpretation in CHR

Our methodology for Property Grammar parsing has been designed to provide
direct interpretation of Property Grammar rules. This is an interesting contri-
bution with respect to Property Grammars themselves, but also a novel and
important proof-of-concept that can lead the way for any constraint-based pars-
ing formalism which relates categories contextually through their properties. To
the best of our knowledge, our methodology is the first one that permits an ex-
pression of such parsing constraints which is directly and efficiently executable.
Thus, we can say that our approach represents for grammars based on contex-
tual properties what DCGs represent for context-free grammars, in the sense
that they are as directly executable descriptive formalisms as DCGs3.

In this section we describe the different components of our methodology : the
notion of extended categories, which includes not only traditional information
such as category names and features, but also the category’s characterization
in terms of satisfied and unsatisfied constraints; the modular notation through
which a user defines the properties of a given grammar, the single rule through
which parsing proceeds, and the analysis of property inheritance which is used
in our system.

3.1 Extended Categories

Extended categories are of the form: cat(Name, Features, Graph, Sat, Unsat)
where Name is the category name, Features a list of features associated with the
category (which may be used to check some of the properties between categories),
Graph is a parse tree which is obtained as a side effect of parsing (which is built

3 Of course, DCGs do permit context sensitive parsing as well, but the context sensi-
tivity cannot be directly expressed through symbol contiguity, it has to be indirectly
expressed in extra arguments or through other extra devices such as linear implica-
tion.



even in those cases of incorrect input), and Sat and Unsat are respectively, the
list of satisfied and unsatisfied properties that the immediate daughters of Name
inside the Graph verify between them. In the case of single word categories, the
Sat and Unsat lists will be empty. These categories are created automatically
from user’s lexical definitions, which are done in terms of CHRG. For instance,
a user’s entry:

(1) [the] ::> cat(det, [singular,masculin]).
compiles into:
(2) [the] ::> cat(det, [singular,masculin],det(the),[],[]).

Because these are CHRG rules (i.e., grammar rules, as opposed to plain CHR,
rules), word boundaries are carried invisibly. If needed, we can retrieve them in
a grammar rule by adding : (Start,End) after the category, which will unify
Start to the starting point of the category, and End to its end point, or we can
write a plain CHR rule that looks at cat/5 not as a grammar rule, but as the
CHR constraint it compiles into, in which case Start and End can be retrieved
as the two first arguments of the corresponding constraint, cat/7.

3.2 User defined properties

Our system allows the user to enter the specific linear precedence, dependency,
requirement, exclusion, constituency and unicity properties that apply to the
grammar being defined, through simple primitive predicates which are respec-
tively prec/3,dep/3,req/3, exclude/3, cons/2, and one/2. Figure 3.2 ex-
emplifies for a simplified noun phrase.

Linear precedence |Dependence Constituency
prec(det,n,sn). |dep(det,n,sn).|cons(sn, [det,adj,sa,n]).
prec(det,sa,sn).|dep(n,sa,sn). |cons(sa,adjl).
prec(n,sa,sn).

Unicity Ezclusion Requirement Phrases
one(det,sn) . |exclude(sa,sup,sn).|req(n,det,sn).|xp(sn).
xp(sa).

Fig. 1. User defined properties

It is to be noted that while the user’s definition of constituency is not rigor-
ously needed (since, as we have seen, when selection properties are verified, the
determination of constituency follows as a side effect), having it explicitly de-
fined results in improved efficiency. Likewise, phrase definitions can be inferred
from any of the other properties, but defining them explicitly makes the sys-
tem easier and more readable. The user’s definitions of properties will be called
from system predicates which verify each of these properties on a given set of
categories, as we shall see next.



3.3 A single rule for inferring all new categories

Conceptually, little more than a single rule is enough for a string’s complete
bottom-up parse from contiguous constituents. This rule combines two consecu-
tive categories (one of which is of type XP or obligatory) into a third, by testing
each of the properties on the pair and creating the new property lists through
property inheritance (cf. next section). Its form is described in Fig. 2.

cat(¥,Y,L,TL,RL,SL,UL), cat(Y,Z,R,TR,RR,SR,UR) ==>
(k_or_xp(R,XP) -> (Ext=L, TE=TR, RE=RR, SatO0=SR, UnsatO=UR);
(k_or_xp(L,XP) -> (Ext=R, TE=TL, RE=RL, Sat0=SL, UnsatO=UL); fail) ),
!, ok_in(XP,Ext),
sat_properties(L,TL,RL,R,TR,RR,XP,Sat0,Unsat0,T,Sat,Unsat)
| cat(X,Z,XP,TE,T,Sat,Unsat).

Fig. 2. New Category Inference

This rule tests that one of the two categories (left or right) is a kernel (a
phrase head) and the other one of its extension (i.e., complement or adjunct),
and then assigns the corresponding features. It then successively tests each of the
PG properties among those categories, incrementally building as it goes along
the lists of satisfied and unsatisfied properties. Finally, it infers a new category of
type XP spanning both these categories, with the finally obtained Sat and Unsat
lists as its characterization. In practice, this rule unfolds into two symmetric
parts, to accommodate the situation in which the XP category appears before
the category Cat which is to be incorporated into it.

Constituents with discontinuities must also be allowed, for completeness. In
this case we consider two categories where the end node of the first does not
coincide with the start node of the second. Our current research does not yet
include discontinuous constituents, for which further linguistic constraints for
avoiding combinatorial explosion need to be incorporated.

The parser here described includes as well a sophisticated analysis of types
of properties which helps determine how the properties that have been found to
hold (fail) in a given phrase are inherited or not by the new phrase comprising
that phrase plus a category being incorporated into it. Knowing whether a given
property needs to be simply inherited (in which case it just remains as is in
the new list of properties) or affects previously recognized properties, and how,
allows us an efficient way to move from one list of properties to the next. This
analysis is beyond the scope of the present paper. Complete details can be found
in [Dahl04b]. The same work proposes a detailed analysis on how to refine the
notion of characterization. For our purposes here, let us just say that the user
can declare certain properties as relaxed, which results in sentences containing
errors related to those properties to be accepted nevertheless, while indication of
their failure is given in the output (in the form of a list of unsatisfied properties).



4 Extracting selected phrases as a side effect of parsing

One of the interests of our approach lies in its flexibility. The kind of parsing
techniques presented above makes it possible to parse substructures as well as
subpart of the input. This functionality is useful to deal with part of the input for
which no information can be built. It is for example the case with possibly long
lists of juxtaposed NP, frequent in spoken languages but for which no specific
syntactic relation can be given. But it is also interesting for some applications
in which the entire syntactic structure or, in other words, the description of all
possible syntactic categories is necessary. This is the case for question-answering,
information extraction, or terminological applications based on NP recognition.
In these systems, the knowledge of the argument structure, or the precise de-
scription of the relations between the different categories is not necessary. We
basically need to know what are the NPs of the input and, if possible, their
contents. Several techniques can be applied for this (see [Osborne99], [Tjong00])
that usually rely on the specification of patterns defining base NPs. In such ap-
proaches, it is difficult or even impossible to identify the kind of relations that
links the different constituents of the NP. In other words, it is not possible to
choose the granularity level. In PG, this possibility exists, simply by stipulat-
ing the constraints that have to be satisfied among the entire constraint system
that forms the grammar. This means that any category can be extracted. More-
over, the description granularity of the extracted category can also be chosen,
according to the needs.

4.1 Implementation details

Concretely, all irrelevant information is simply not taken into account. For ex-
ample, the categories that do not participate to a NP are ignored. The only
special mechanism needed to skip them is a filtering set of predicates which en-
sures that every category different from NP is deleted from the constraint store
upon the parse having finished, as first proposed in [Christiansen05a]. For the
case of noun phrases, we need to define a constraint we will call cleanup, which
we will call after the analysis of any phrase, and, for every category X different
from an NP, a simpagation rule of the form:

(3) cat(X,.,_,,.),!cleanup <:> true.

The exclamation mark combined with the rewrite symbol shown indicate
sympagation in CHRG: once the parse is completed and cleanup is put in the
store, the above rule removes from the store the matching category, and the
constraint cleanup remains for further use, in order to remove all categories
different from np.

The generation of such rules can be automated from a user’s command to
declare what phrases to focus on, e.g.:

(4) :—focus(np).



Similarly, we can include a mechanism for only leaving the outermost NPs
in the case of embedded ones. This option can be specified by the user through
the command

(5) : —outermost(np).

It is also possible to imagine an easy reuse from a language to another, simply
by adapting the properties. In the case of basic NPs, very close properties are
used for French and English.

4.2 Experiment

We did some experiments in applying this technique to a French medical cor-
pus. The following example illustrates the identification of some noun phrases,
extracted together with their syntactic characterizations. In these examples, the
output contains the type of the phrase (in this experiment, the noun phrase), its
morphosyntactic properties, its constituents and its characterization. This last
part of the output, as explained in the second section, is formed by the set of
satisfied and violated properties.

The example (6) illustrates the case of a simple NP, formed with a deter-
miner and a noun. Its characterization shows for example the satisfaction of a
precedence constraint between the determiner and the noun, some uniqueness
relations for these constituents as well as a mandatory cooccurrency between the
determiner and the noun.

Input |les cellules (the cells)

(6) cat (np, [plu,masc], sn(det(les),n(cellules)),
Output|[prec(det,n), dep(det,n), unicity(det), unicity(n),

exige(n,det), exclude(name,det), exclude(name,n)],[])

The second example, presented in (7), shows the integration of an embedded
AP. In this example, the AP (composed with a single adjective) has been identi-
fied separately. The characterization of the NP works exactly in the same way as
before (as explained in the presentation of the algorithm). In this example too,
all constraints belonging to the characterization are satisfied: precedence, exclu-
sion, unicity, etc. One can also remark the stipulation of a dependency relation
between the AP and the noun, that illustrates the capacity of the technique to
identify syntactico-semantic relations.

Input |les meilleures stratégies (the best strategies)

cat (up, [plu,masc], np(det(les), ap(adj(meilleures)),

(7) n(stratégies)), [dep(ap,n), unicity(n),
Output|exclude (name,n), exclude(name,ap), exclude(ap,sup),

prec(det,n), dep(det,n), unicity(det), exige(n,det),

exclude (name,det)], [1)

The example (8) presents the case of a complex NP. More precisely, this is
the case of an ill-formed input, due to a wrong POS-tagging: in this case, the last



adjectives of the list have been tagged as noun instead of adjectives. However,
the NP has been recognized, due to the possibility of relaxing constraints. In
this case, the uniqueness constraint applied to the noun has been violated. This
constraint belongs to the second part of the characterization in a separate list
of violated properties.

les cellules endothéliales immunotoxines peptides proapoptotiques

(the endothelials ... cells)
cat (np, [sing,masc],sn(det (les), n(cellules),

ap(adj(endothéliales)), n(immunotoxines), n(peptides),
(8) Output n(proapoptotiques)), [prec(det,n), dep(det,n),

exige(n,det), exclude(name,det), exclude(name,n),
dep(sa,n), exclude(name,sa), exclude(sa,sup)],
[unicity(n)])

Input

4.3 Towards semantics

Using such a symbolic robust approach to XP extraction makes it possible to
consider integrating semantic information. This is a great advantage in compar-
ison to other methods. Some dependencies can be included in the description so
that the extraction can come with different kinds of information, for example
concerning the argument structure or the roles of the possible arguments.

We develop in the following the example of NP extraction, illustrating how
such task is implemented in order to identify NPs together with their main mod-
ifiers. Basically, the kind of information that is needed in applications mentioned
above concerns the noun itself plus its different modifications. This means its
quantification (if any) and its classical direct modifiers. In the system described
here, the semantic structure of a NP is described by its head (the noun itself),
its specifier (the determiner) and two possible modifiers (AP and PP).

(9) HEAD N
SPEC Det
MOD AP
comp PP

Building such structure from a PG parser is direct. A minimal set of prop-
erties has to be checked in order to identify the NP and build the structure. In
order to simplify the description and improve the efficiency of the system, we do
not take into account relative clauses here. Moreover, also in a simplification per-
spective, we do not build embedded phrases. The only authorized one is the NP
itself. In the end, we obtain a description of the NP which is more complete than
the classical definition of a ”"base NP” (see [Osborne99]) and moreover makes it
possible to directly identify the relations inside the NP. The properties are then
the following:

Constituency|Const = {N, Det, Adv, Adj, Prep, NP}
Linearity Det < Adv; Det < N; Adv < Adj; Adj < N; N < Prep; Prep < NP
Requirement |Adv = Adj; NP = Prep




In PG, the entire representation of an objects (see [Blache05]) contains on the
one hand its properties, and on the other hand, its local information represented
in terms of features. The final description of the NP we use in the perspective
of the NP extraction system is then:

WP

[HEAD N
SPEC Det
MOD Adj
(10) COMP Prep

Const = {Det,N,Adj,Prep, Adv, Np}

PROPERTIES 4 Det < Adv; Det < N; Adv < Adj; etc.
Adv = Adj; NP = Prep

FORM

The extraction mechanism consists then in satisfying the set of constraints
defined in the property part of the NP object. When, a sequence of words from
the input satisfies this set of constraints, the corresponding structure (called
FORM) is built. By means of unification, the respective arguments of the structure
will be instantiated with the desired values.

5 Discussion, Conclusion

In our approach, as we have seen, syntactic categories are inferred from the
evaluation of properties, without any need of constituency information.

This aspect has important consequences on the role of constraints in the
parsing process. One of the problems with constraint-based approaches is that
constraints are usually expressed over high-level objects or structures. This is
the case for example in HPSG, in which complex feature-structures must first
be built before constraints can be evaluated. Similarly, Optimality Theory also
generates a set of structures (or candidate structures) and then uses constraints
to filter this set. In our approach, any constraint can be evaluated at any time
for any set of categories. Such evaluation, as explained above, dynamically adds
new information: the satisfaction of a selection constraint instantiates the syn-
tactic category it describes. But this instantiation is conceived almost as a side
effect of evaluation: satisfying constraints does not rely on the knowledge of the
upper-level category. In other words, the hierarchical information is no longer
preponderant in the parsing process. This means that one can evaluate subsets
of constraints, for example in the case of applications that only need NP recogni-
tion. In this approach, the conception of the relationship between grammar and
language becomes very different from that of the generative paradigm. In the
latter, a language is conceived as being generated by a grammar. In Property
Grammars, a grammar is only used as a characterization device of the language
properties.

As a consequence, instead of restricting the role of parsing to the evaluation
of the input’s grammaticality, we can propose a more flexible vision, in which a



parser’s output is the description of all the properties of the input. Concretely,
such a description consists in the state of the constraint system after evaluation—
in other words, the set of satisfied and violated constraints. We call such state
a characterization of the input. In some cases, a characterization only contains
satisfied constraints, but it can also be the case that some constraints can be
violated, especially when parsing real life corpora. In most cases, such violations
do not have consequences on the acceptability of the input.

One other formalism that shares the aims and some of the features of Prop-
erty Grammars are Dependency Grammars (cf. [Tesniere59] and on this point
[Mel’¢uk88]), a purely equational system in which the notion of generation, or
derivation between an abstract structure and a given string, is also absent. How-
ever, whereas in Dependency Grammars, as their name indicates, the property
of dependence plays a fundamental role, in the framework we are considering it
is but one of the many properties contributing to a category’s characterization.
Perhaps the work that most relates to ours is Morawietz’s [Morawietz00], which
implements deductive parsing [Shieber95] in CHR, and proposes different types
of parsing strategies (including one for Property Grammars) as specializations of
a general bottom-up parser. Efficiency however is not addressed beyond a gen-
eral discussion of possible improvements, so while theoretically interesting, this
methodology is in practice unusable due to combinatorial explosion. Moreover,
it produces all properties that apply for each pair of categories without keeping
track of how these categories are formed in terms of their subcategories, so there
is no easy way to make sense of the output in terms of a complete analysis of a
given input string.

The idea of throwing away the traditional, hierarchical parsing scheme in
favour of a view of parsing which involves properties on categories rather than
rewriting schemes first materialized in the 5P formalism (cf. [Bes99a,Bes99bl).
Preliminary work re. the advisability of a direct implementation of such an ap-
proach had yielded pessimistic results : [Blache95] showed that the mechanism of
verification of a constraint system for syntactic analysis could be very expensive,
given that the satisfiability of the system had to be verified in each stage. In the
present work, however, we have moved beyond that obstacle by our analysis of
property inheritance, which removes the need to recalculate all properties at each
stage, allowing us to inherit at each stage most of the previous stage’s properties,
while calculating only the minimally necessary new properties and updating the
previous properties along the lines of our property inheritance analysis. Thus,
our work has validated the model of property-centered parsing with respect to
efficiency, while preserving the level of generality of this theory. In addition, a
direct interpretation guarantees a better evolution of the initial system: it can
better adjust to changes in the theory and to experimental stages.

We hope to have convincingly argued that direct renditions of flexible, con-
straint based parsing formalisms can be made to run efficiently while preserving
a one to one correspondence between the conceptual and the representational
levels, including for such non traditional formalisms as Property Grammars, in



which category inference does not depend on hierarchical or even constituency
notions.

The representations allowed by our methodology, while extremely close to
the computer-independent, conceptual representations of these formalisms, are
directly executable, and moreover non-deterministic. This is satisfying with re-
spect to logic programming’s original aims of declarativeness and higher level
expressiveness. Together with the advantages of this approach, we are able to
even produce hierarchical depictions of the parse history of any category, in-
cluding “incorrect” or incomplete ones. This is not important in itself, but is
provided as an easy side effect, in the interest of historic comfort : we are all
used to thinking in terms of parse trees or graphs, so showing a parse record in
graph form may prove convenient to some users.

It is interesting to note that the parsing methodology we describe here has
been generalised into a concept formation system which provides a cognitive
sciences view of problem solving [Dahl04c]|.
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