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FUNCTIONAL INEQUALITIES AND UNIQUENESS OF THE

GIBBS MEASURE — FROM LOG-SOBOLEV TO POINCARÉ

PIERRE-ANDRÉ ZITT

Abstract. In a statistical mechanics model with unbounded spins, we prove
uniqueness of the Gibbs measure under various assumptions on finite volume
functional inequalities. We follow Royer’s approach ([11]) and obtain unique-
ness by showing convergence properties of a Glauber-Langevin dynamics. The
result was known when the measures on the box [−n, n]d (with free boundary
conditions) satisfied the same logarithmic Sobolev inequality. We generalize
this in two directions: either the constants may be allowed to grow sub-linearly
in the diameter, or we may suppose a weaker inequality than log-Sobolev, but
stronger than Poincaré. We conclude by giving a heuristic argument showing
that this could be the right inequalities to look at.

Introduction

Questions of convergence of dynamical models of statistical physics (e.g. Glauber
dynamics for the classical Ising model) have prompted people to study functional
inequalities for the equilibrium measures related to these dynamics, i.e. for Gibbs
states. These inequalities are indeed a good way to obtain convergence results for
semi-groups. Moreover, if the classical functional inequalities (Poincaré, logarithmic
Sobolev) are known to tensorize in a good way, studying them for non-product
measures in large dimensions was much more challenging, and Gibbs measures
are a natural example of these non-product measures. Therefore, many authors
(see e.g. [9, 12] for the bounded spins case, [3, 13, 8] for the unbounded case)
have investigated links between “uniform” functional inequalities, convergence of
associated dynamics and mixing properties of equilibrium measures.

In several cases, it was also proved that there is a regime in which all these
“good” properties hold simultaneously.

The “uniformness” we alluded to is typically “uniform on all (regular) finite
sets, and all boundary conditions”. However, in his book [11], G. Royer shows
that a logarithmic Sobolev inequality, uniform over the boxes [−n, n]d, for a single
boundary condition entails the uniqueness of the infinite volume Gibbs measure.

We show here that this assumption may be relaxed in two different ways. Firstly,
we show that the constants may be allowed to grow sublinearly in n. Secondly, we
may replace logarithmic Sobolev inequalities by weaker inequalities, and show the
uniqueness when we only suppose uniform Beckner inequalities (cf. theorem 2.2 for
a precise statement).

After introducing notations and preliminary estimates (section 1), we prove the
result concerning logarithmic Sobolev inequalities (sec. 2). In the last section, we
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2 PIERRE-ANDRÉ ZITT

show the result on Beckner inequalities and indicate a heuristic argument that they
may be the critical scale for uniqueness.

1. Notations and preliminary estimates

1.1. The model : equilibrium and dynamics.

1.1.1. The model — equilibrium. We consider a variant of the classical Ising model.
To define it, we briefly introduce the following notions, referring to [14] for details.
A configuration is a map x : Z

d → R. We denote by xL the restriction of x to the
subset L ⊂ Z

d. When L is a singleton, we will simply write xi; this is the spin at
site i. To each finite subset L of Z

d, and each configuration z (boundary condition),
we associate a Hamiltonian

UL,z(x) =
∑

i∈L

V (xi) +
∑

i,j∈L,i∼j

J(i − j)xixj +
∑

i∈L,j /∈L

J(i − j)xizj .

where V and J satisfy the following.

Hypothesis 1 (Self-interaction). The function V satisfies:

• convexity at infinity — there exists V1, V2 such that V = V1 = V2, V2 is C2

and compactly supported, inf V ′′
1 > 0.

• Polynomial growth — there exists constants aV , bV , and a dV > 0 such that

for all x, |V (x)| ≤ aV |x|
dV + b′V .

• There exists a a′
V ∈]0, 1[ such that x 7→ a′

V V ′(x)2 − V ′′(x) is bounded from
below.

Hypothesis 2. The interaction J : Z
d → R is a symmetric function with finite

support. We also define p(i) = |J(i)| and suppose that

σ
def
=
∑

i∈Zd

p(i) < inf V ′′
1 ,

where V1 is defined by the previous hypothesis.

These hypotheses are satisfied for the usual models, namely the gaussian case
and the double well potential :

V (x) = ax4 − bx2.

We then define the finite volume Gibbs measure on R
L by :

dµL,z(dxL) =
1

ZL,z
exp (−UL,z(xL)) .

where ZL,z =
∫

exp(−UL,x)dxL is a normalizing constant (note that we may abuse
notations and speak of UL,z(xL), since UL,z only depends on the spins in L).

Note that µL,z(dx), while it is originally defined as a measure on R
L, may be

extended to R
Z

d

by fixing x = z outside L. This enables us to define a kernel µL :

µL : z 7→ µL,z.

An infinite volume Gibbs measure is a measure on R
Z

d

that satisfies the DLR
equations :

∀L, L finite, µµL = µ.
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For technical and physical reasons, we will only consider tempered configurations
and measures. For every d, let P(d) be defined by

x ∈ P(d) ⇐⇒ ∃cx, ∀i, xi ≤ (1 + |i|)d.

A configuration is called tempered if it is in P(d), for some d. A tempered measure
is one that satisfies :

∃Cµ, ∀i ∈ Z
d, µ(|xi|) ≤ Cµ.

It may be shown ([14], section 2.2) that this is equivalent to other standard defini-
tions of temperedness, and that there exists a dtmp, depending only on the dimen-
sion d, such that every tempered measure µ satisfies:

(1) µ (P(dtmp)) = 1.

We will call elements of P(dtmp) well-tempered configurations.

1.1.2. A weight for tempered configurations. It will be convenient to compare two
different configurations, especially in the dynamical setting we will see in the next
section. To this end, we introduce (following Royer ([11]) the following weight:

(2) α(i) =
∑ p⋆n

σ′n
(i),

where p⋆n is the convolution product p ⋆ p · · · ⋆ p, σ′ satisfies σ′ < inf V ′′
1 , and we

recall that p(i) = |J(i)|.

Proposition 1.1. The weight α decays exponentially:

(3) ∃cα, dα, α(i) ≤ cα exp (−dα |i|) .

Moreover, it satisfies the following :

α ⋆ p ≤ σα

The proof is easy, and we refer to [14] for details.
The exponential decay of α shows that the tempered configurations x have a

finite ℓ2(α)-norm:
∑

α(i)x2
i < ∞.

1.1.3. The Glauber–Langevin dynamics. It may be shown (cf. [11]), using standard
tools, that in a finite volume L, the following SDE in R

L has a strong solution :

(4) dXs = dBs −∇UL,z(Xs)ds,

where Bs is a standard Card(L)-dimensional brownian motion.
Using the ℓ2(α) norm (where α is defined by (2)) and Gronwall-like arguments,

it is possible to compare the processes in different boxes, or starting from differ-

ent points. We denote by XL,z,x
t the process starting from x, in the box L with

boundary condition z.

Proposition 1.2. For every set L, let βL(j) =
∑

i 1i/∈Lα(i)α(j − i). Then, for all
L ⊂ M , and every tempered configuration x,

α(0)E

[

∑

i

α(i) sup
[0,t]

(

XL,0,x − XM,0,x
)2

]

≤ ek′t



‖x‖2
l2(βL) + c |α|

∑

j∈M\L

α(j)





(5)

Moreover, for every tempered x, ‖x‖l2(βLn) → 0.
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The proof, inspired by [11], may be found in [14] (lemmas 36 and 38). These
comparisons enable us to build an infinite volume dynamics. Moreover, we may let
M go to Z

d in (5) to get the following:

Proposition 1.3. Let X0,x be the infinite-volume process starting from x. Then:

(6) E

[

∑

i

α(i) sup
[0,t]

(

XL,0,x − X0,x
)2

]

≤ ek′t



‖x‖2
l2(βL) + c |α|

∑

j /∈\L

α(j)





This gives an explicit estimate of the error made when we approximate the
infinite volume dynamics by the finite volume one. This estimate can be made even
more explicit if we use the decay properties of α (equation (3), cf. lemma 38 and
prop. 39 of [14]).

Proposition 1.4. There is a dα such that:

(7) ∀x ∈ S′, ∃cx, ∀n, E

[

∑

i

α(i) sup
[0,t]

(

XL,0,x − X0,x
)2

]

≤ cx exp (k′t − dαn)

1.2. Polynomial bounds on the entropy and related quantities. We will
need bounds on some entropy-related quantities in finite time.

Proposition 1.5. Let x be a well-tempered configuration, and consider the pro-

cesses Xn def
= XLn,0,x

t . We define the following notations:

• hn
t is the density of the law of Xn

t with respect to the equilibrium measure
µLn,0;

• Hn
t is the entropy of this law (Hn

t = EntµLn
(hn

t ));
• Hn

p,t is given by

Hn
p,t =

∫

hn
t logp

+(hn
t )dµn,

where log+ is the positive part of the logarithm.

Then there exists a polynomial Q (depending on x) such that, for all p ≥ 1, and all
t ≥ 1,

(8) Hp,t(n) ≤ Q(n)p.

In particular, since Hn
t ≤ Hn

1,t, the entropy is polynomially bounded.
Moreover, the degree of Q does not depend on x (as long as x is well-tempered).

This is a refinement of a result by Royer [11] (which deals only with the entropy,
and does not precise the degree of Q, which will be needed later). The proof uses
Girsanov’s theorem to get an explicit expression of hn

t , which is then estimated
directly. The details may be found in [14].

2. From logarithmic Sobolev inequalities to uniqueness

2.1. Functional inequalities. Let us start by recalling a few definitions.

Definition 2.1. The measure µ on R
L satisfies a logarithmic Sobolev inequality

with constant C if

(9) Entµ(f2) ≤ C

∫

∑

i∈L

|∇if |
2
dµ.
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for every function f such that both sides make sense.
It satisfies a Poincaré inequality with constant C if

(10) Varµ(f) ≤ C

∫

∑

i∈L

|∇if |
2
dµ.

with the same restriction.
Finally, for a ∈ (0, 1), µ satisfies a generalized Beckner inequality GBI(a)with

constant C, if for any f ,

(11) sup
p∈]1,2[

∫

f2dµ − (
∫

fpdµ)2/p

(2 − p)a
≤ Ca

∫

|∇f |2 dµ.

The first two inequalities are well known, the third one was introduced in this
form by R. Latala and K. Oleszkiewicz in [7]. It is known (cf.[7, 1]) that we recover
Poincaré, resp. log-Sobolev, by letting a go to zero, resp. 1, in the definition of the
Beckner inequality. It is also known that Beckner inequalities may be compared :
GBI(a)implies GBI(a′), whenever a > a′.

We will prove the uniqueness starting from hypotheses on the finite volume Gibbs
measures, expressed in terms of functional inequalities. More precisely, we fix a
boundary condition (for simplicity, we choose the 0 boundary condition, however
the same results should hold if we replace 0 by a (fixed) tempered configuration z),
and make assumptions on the measures µn = µLn,0.

Assumption 1. µn satisfies a logarithmic Sobolev inequality, with constant Cn,
where :

Cn ≤ C
n

log(n)
,

and C is smaller than some explicit value (cf. (15)).

Assumption 2. µn satisfies a Beckner(a) inequality, with constant C, where a
and C do not depend on n. Moreover, a > amin, where amin only depends on the
potential and the lattice dimension (cf. (26) for its explicit value).

The main theorem is the following.

Theorem 2.2. If either Assumption 1 or Assumption 2 holds, there is only one
tempered Gibbs measure in infinite volume.

2.2. Uniqueness from logarithmic Sobolev. In this section, we prove theorem
2.2 under Assumption 1.

The main argument is the following. Let PL
t be the semi-group defined by the

SDE (4) in the finite box L, with boundary condition 0, and Pt be the infinite-
dimensional semi-group. For every f (in a class to be precised later), we can
decompose Ptf in the following way:

(12) Ptf =
(

Ptf − PL
t f
)

+
(

PL
t f − µLf

)

+ µLf.

The first term may be controlled thanks to equation (7). To get a good bound, we
see that the diameter of L should be of the order of t, to compensate the exp(kt).

More precisely, let us fix a ρ (a ratio between n and t) such that ρ > k′ > d′α,
and define n(t) = ⌊ρt⌋ + 1. By design, n(t) satisifies:

(13) n(t) ∈ [ρt, ρt + 1]
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This ensures
k′t − d′αn(t) ≤ (k′ − ρd′α)t,

where k′−ρd′α is a negative constant. Hence when t goes to ∞, E

[

∥

∥

∥X
L,0,x
t − Xx

t

∥

∥

∥

2

α

]

goes to zero. Plugging this back into (7) yields:

∀x ∈ S′,
∣

∣

∣Ptf(x) − P
Ln(t)

t f(x)
∣

∣

∣ −−−→
t→∞

0.

The second term of (12) depends on the convergence of a finite-dimensional
diffusion to its equilibrium measure. This is where our functional inequalities come
into play. Indeed, thanks to Pinsker’s inequality and the exponential decrease of
the entropy,
∣

∣

∣P
n(t)
t f − µnf

∣

∣

∣

2

≤ osc2(f)
∥

∥

∥L(X
Ln(t),0,x
t ) − µn(t)

∥

∥

∥

2

vt

≤ 2 osc2(f)I(L(X
Ln(t),0,x
t )|µn(t))

≤ 2 osc2(f) exp

(

−2
t− 1

cLS
n(t)

)

I(L(X
Ln(t),0,x
1 )|µn(t))

≤ 2cx osc2(f) exp

(

−2
t− 1

cLS
n(t)

)

(1 + n(t))d+dxdV . (prop. 1.5).(14)

Remark 2.3. Note that if we suppose (following Royer) a uniform logarithmic
Sobolev inequality, the proof is easily concluded: since n is of the order of t, the
power of n is a power of t, and the exponential term ensures the convergence to
zero.

Recall that tempered measures charge only well-tempered configurations. If we
consider the left-hand side only for such configurations, we may replace dx by dtmp

on the right-hand side.
Since by hypothesis, CLS(Ln) ≤ C n

log(n) , and since n(t) ≤ ρt + 1,

exp

(

−2
t − 1

cLS
n(t)

)

≤ exp

(

−2
(t − 1) log(n(t))

Cn(t)

)

≤ exp

(

−2
(t − 1)

C(ρt + 1)
log(n(t))

)

For all C′ > Cρ, and all t large enough, (t − 1)/(C(ρt + 1)) > 1/C′, therefore

exp

(

−2
t− 1

cLS
n(t)

)

≤ exp

(

−
2

C′
log(n(t))

)

≤ n(t)−2/C′

Coming back to (14), we obtain
∣

∣

∣P
n(t)
t f − µnf

∣

∣

∣

2

≤ c′
x

osc2(f)n(t)−2/C′

(1 + n(t))d+dtmpdV

The r.h.s. converges as soon as d + dtmpdV < 2/C′, i.e.:

C′ <
2

d + dtmpdV
.
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This is possible if

(15) C <
2

ρ(d + dtmpdV )
.

Under this condition, we have shown:

∀x ∈ S′,
∣

∣

∣P
n(t)
t f(x) − µnf

∣

∣

∣ −−−→
t→∞

0.

Once we have chosen a scale n(t) that guarantees convergence for the first two
terms of (12), the last one may be dealt with thanks to a compacity argument ([11]
p. 72)

∃(tk), tk → ∞, ∃µ ∈ Gt, µLn(tk),0

k→∞
−−−−→ µ.

Along this particular sequence tk of times,

∀x,x tempered, ∀f, Ptk
f(x)

k→∞
−−−−→ µf.

Let then ν be another tempered Gibbs measure. It is known (cf. [11], Theorem
4.2.13) that ν is necessarily invariant w.r.t the semi-group Pt. Then

ν(f) = ν(Ptk
f).

Ptk
f converges pointwise to µf . Letting k go to infinity, since f is bounded, we

have by dominated convergence:

ν(f) = ν(µf) = µf.

Since this is true for f in a sufficiently large class of functions, ν = µ and the
tempered Gibbs measure is unique: theorem 2.2 follows from Assumption 1.

3. Beyond logarithmic Sobolev inequalities

3.1. Strong enough Beckner inequalities imply uniqueness. We now prove
uniqueness under assumption 2. The compacity argument and the comparison
between finite and infinite volume still hold ; the only thing to check is that the
assumption is strong enough to guarantee :

PL
t f − µLf

t→∞
−−−→ 0.

Once more, we use Pinsker’s inequality to bound this difference by an entropy. This
entropy does not decay exponentially fast (since we do not suppose log-Sobolev
inequalities anymore), but we are able to show that it converges nonetheless.

The argument is adapted from [5], where the following result is proved.

Theorem 3.1 ([5], Th. 5.5). Let µ be a probability measure on R
n, absolutely

continuous w.r.t. Lebesgue measure, and satisfying a GBI(a) inequality.
Let ν (an initial law) be such that:

(16) ∃t0, C, ∀t ≥ t0, ∀p ≥ 1,

(∫

Ptν logp
+(Ptν)

)1/p

≤ Cp.

Then the entropy starting from ν decays sub exponentially along Pt:

(17) ∀a′ < a, ∃s, t0, ∀t ≥ t0, Entµ(Ps+tν) ≤ exp
(

1 − t1/(2−a′)
)

.
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Note that our parameter a is linked to the α appearing in [5] by a = (2α− 2)/α
(cf. example 4.3 of [5]).

Since this theorem entails a fast convergence (faster than polynomial), it is natu-
ral to expect that it should be enough for our purposes. Unfortunately, this results
holds for large (and unspecified) t, and we need to use it for a relatively small t (of
the order of the diameter of the box L).

Therefore, we will use ideas of [5] to prove a similar result with explicit constants.
The preliminary estimates we need were already cited in the previous section (cf.
(8)) . We prove the result in two steps: first we bound the entropy for small times,
then we iterate the estimate.

3.1.1. First entropy estimate. We follow the idea of the fifth section of [5], (Con-
vergence to equilibrium for diffusion processes).

It is well-known that logarithmic Sobolev inequalities imply exponential conver-
gence of the entropy. When we only have a Beckner inequality, we may still prove
exponential convergence, but only for bounded functions.

Lemma 3.2 ([5], example 4.3). If µ satisfies GBI(a), there exists C′
a such that,

for any bounded probability density h:

(18) Entµ(Pth) ≤ Entµ(h) × exp

(

−
t

C′
a

(

1 + log1−a (‖h‖∞)
)

)

.

Cattiaux, Gentil and Guillin have shown that this implies decay estimates for
all functions, but the decay is not exponential.

The idea of their proof is to decompose a function h in a bounded part h1h≤K

and a remainder h1h>k, and then choose an appropriate K.
Using this method, we prove the following:

Proposition 3.3. If µn satisfies a GBI(a) inequality, uniformly in n, then for all
a < a0, there exists a polynomial Q = Qa,x, whose degree depends only on V and
the dimension d, and a number t0(a), such that

(19) ∀s ≥ 1, ∀t ≥ t0(a), Hn
s+t ≤

1

ct,n
φ(Hs),

where φ(x) = x
(

1 + log+(1/x)
)

, and ct,n = t1/(1−a)/Q(n).

We will need the following lemma, which we quote without proof.

Lemma 3.4 ([5], lemma 5.3). Let h be a probability density w.r.t. µ. If there exists
c > 0 such that the p-entropy is bounded:

∀p > 1, Hp,t ≤ cp,

and if K satisfies

K ≥ e2, log(K) ≥ 2e × Entµ(h),

then

Entµ(h1h>K) ≤ (ec + 2)
Entµ(h)

log(K)
log

(

log(K)

Entµ(h)

)

.

We will also need bounds on the entropy of bounded functions.
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Lemma 3.5. Let µ be a measure that satisfies GBI(a). There exists C′
a such that,

if h is a bounded probability density, H is the entropy of h, and K satisfies

K ≥ e2, log(K) ≥ 4H,

then

Entµ (Pt(h1h≤K)) ≤ H × exp

(

t

C′
a log1−a (K)

)

.

Proof. This lemma follows from equation (18). In order to see this, we would like to
normalize h1h≤K so that it becomes a probability density, and apply the previous
lemma. This can be done if

∫

h1h≤K 6= 0. Lemma 3.4 from [6], shows that, for
K ≥ e2 :

∫

h1h>K ≤
2H

log K
.

Since we assume log(K) ≥ 4H ,
∫

h1h>K ≤
1

2
,

and since
∫

h = 1, this entails:

(20)

∫

h1h≤K = 1 −

∫

h1h>K ≥ 1/2.

Let us denote by h̃ the renormalized version of h1h≤K . It is a bounded probability
density, and we may apply the bound (18) :

Entµ(Pth̃) ≤ exp



−
t

C′
a

(

1 + log1−a
(∥

∥

∥h̃
∥

∥

∥

∞

))



Entµ(h̃).

We multiply both sides by
∫

h1h≤Kdµ, and put these factors in the entropies (by
homogeneity).

(21) Entµ(Pt(h1h≤K)) ≤ exp



−
t

C′
a

(

1 + log1−a
(∥

∥

∥h̃
∥

∥

∥

∞

))



Entµ(h1h≤K).

Finally, we control the sup norm of h̃:

h̃ =
h1h≤K

∫

h1h≤Kdµ

≤
K

1/2
,

where we reused the bound (20) on the integral. Since K ≥ e, the denominator of
(21) is bounded above:

C′
a

(

1 + log1−a(
∥

∥

∥h̃
∥

∥

∥

∞
)
)

≤ C′
a

(

log1−a(K) + log1−a(2K)
)

≤ C′′
a log1−a(K).

This proves the lemma. �

We now proceed to the proof of the proposition 3.3.
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Proof. By definition, Ht = EntµLn
(ht). We consider the time s + t, and truncate

hs: for all K,

hs = hs1hs≤K + hs1hs>K .

For any positive functions (f, g), Ent(f+g) ≤ Ent(f)+Ent(g) — this follows easily
from the variational formula for the entropy: Entµ(f) = sup

{∫

fh,
∫

ehdµ = 1
}

.
Therefore,

∀s, t, ∀K, Ht+s = Ent(Pths) ≤ Ent(Pt(hs1hs≤K)) + Ent(Pt(hs1hs>K))

≤ Ent(Pt(hs1hs≤K)) + Ent(hs1hs>K),

since the entropy decreases along Pt. Suppose that K satisfies:

(22)

{

K ≥ ee,

log(K) ≥ 2eHs.

We now apply lemma 3.5 to the first term. For the second term, (8) shows that the
hypotheses of lemma 3.4 are fulfilled. If K satisfies both hypotheses, we get:

(23) Ht+s ≤ exp

(

−
t

Ca0 log(K)1−a0

)

Hs + Q(n)
Hs

log(K)
log

(

log(K)

Hs

)

.

We now define K to be the unique solution on (ee,∞) of the following equation:

(24) log(K) =

(

t

Ca0 log log K

)1/(1−a0)

,

This K (which depends on t) is well defined, because K 7→ log(K) log log(K)1/(1−a0)

is bijective from ]ee,∞[ onto ]0,∞[. Assume for the time being that K satifies the
second condition of (22). The inequality (23) becomes

Ht+s ≤
1

log(K)
Hs + Q(n)

Hs

log(K)
log

(

log(K)

Hs

)

.

Let us work a little bit to get a simpler bound. Since K ≥ ee, log log K ≥ 1, and
Q(n) may always be taken larger than 1. This yields:

Ht+s ≤
log log(K)

log(K)
Hs +

Q(n)Hs

log(K)

(

log log(K) + log+(1/Hs)
)

≤
log log(K)

log(K)
Hs +

Q(n)Hs

log(K)
log log(K)

(

1 + log+(1/Hs)
)

≤

(

log log(K)

log(K)

)

Q(n)Hs

(

2 + log+ (1/Hs)
)

.(25)

Our choice of K ensures that there exists a constant ca such that:

log log(K)/ log(K) ≤
ca

t1/(1−a)
,

for any t larger than a t0(a).
Insert this into equation (25), and define Qa(n) = 2caQ(n). The bound becomes

Ht+s ≤
Qa(n)

t1/(1−a)
Hs

(

1 + log+(1/Hs)
)

,

which is exactly (19).
Let us go back to the case where K (defined as the solution of (24)) does not

satisfy (22). Since by definition K ≥ ee, we need only consider the case where
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log(K) ≤ 2eHs. We know that there exists a polynomial Q′
a,x such that Hn

s ≤
Q′

a,x(n), for all s ≥ 1. In this case,

log(K) ≤ Q′′
a,x(n).

In other words,

1 ≤
Q′′

a,x(n)

log(K)
.

Since log log(K) ≥ 1, it follows that

1 ≤
log log K

log K
Q′′

a,x(n).

Finally, the entropy H decreases along the semi-group. For every s ≥ 1, and
t ≥ t0(a), we have:

Ht+s ≤ Hs ≤

(

log log K

log K

)

Q′′
a,x(n)Hs(2 + log+(1/Hs)).

This shows that (25) still holds, and the end of the proof is the same. �

3.2. Iteration of the estimate. We are now in a position to prove theorem 2.2,
under Assumption 2.

The previous estimate (19) is useful if ct,n is greater than 1. Let D be the degree
of Q (it does not depend on x nor on a). We will assume:

(26) a0 > amin =
D − 1

D
.

Note that we may choose a > amin in lemma 3.3.

Lemma 3.6. The following properties hold.

• There exists t0(n) such that, for all t > t0(n), ct,n > 1 ;
• There exists u0(n) such that, for all u > u0, u may be written as t(ct,n)2,

with t > t0(n) ;
• The quantity u0(n) is relatively small:

(27) u0(n) = o(n).

Moreover, for all u > u0(n),for all s ≥ 1,

(28) Hn
s+u ≤ (e + Hs) exp

(

−
u1/(3−a)

Q(n)(1−a)/(3−a)

)

.

This lemma implies theorem 2.2.
Indeed, we only need to show that the entropy at time t in the box Ln(t) converges

to zero. We apply the lemma with s = 1, u = t, n = n(t) (this is possible thanks to
(27)). Since Q(n) is (by definition) of degree D, it is bounded above by nD (up to
a constant), and there is a c such that:

H
n(t)
1+t ≤

(

e + H
n(t)
1

)

exp

(

−c

(

n(t)

n(t)D(1−a)

)1/(3−a)
)

.

Since H
n(t)
1 grows polynomially in n (this is the result of theorem 1.5) and t is of

the order of n, it suffices to show that the power of n in the exponential is positive,
and the whole quantity will go to zero. This power is:

1

3 − a
(1 − D + aD) ,
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which is indeed positive, because a > amin (defined by (26)).
This shows that the entropy at time t in the box Ln(t) goes to zero. As was

already said before, the other parts of the proof require no change, therefore theorem
2.2 will be proved as soon as we show lemma 3.6.

Proof of lemma 3.6. Let us begin by showing the existence of t0, u0.
Recall that ct,n = t1/(1−a)/Q(n), and that the degree of Q is D. Let us choose

an a′ such that

amin < a′ < a < a0,

If we define t0 = cnD(1−a′) for some constant c,

ct,n ≥
t1/(1−a)

nD
> 1,

for t ≥ t0.
One then defines u = u(t, n) = t(ct,n)2. This increases with t, and one may

choose

u0(n) = u(t0(n), n) = cnD(1−a′)(3−a)/(1−a)/Q(n)2.

We would like u0 to be small w.r.t. n (we do not want to wait for a period longer
than the diameter of the box). The previous choice ensures:

u0(n) ∼ cnD(1−a′)(3−a)/(1−a)−2D.

This u0 is negligible compared with n when

D
(1 − a′)(3 − a)

1 − a
− 2D < 1.

This is satisfied for a′ = a (because D(3−a)−2D = D(1−a) < 1, since a > amin).
By continuity, this still holds for some a′ < a.

Let us now prove (28). The idea is to iterate the estimate given by lemma 3.3.
To do this, fix t > t0(n), and define the sequence (uk) by uk = Hs+kt. To control
uk, we compare it to vk defined recursively by:

{

v0 = u0,

vk+1 = f(vk),

where f(x) = 1
ct,n

φ(x) (cf. lemma 3.3). Since f is increasing, and

uk+1 ≤ f(uk)

(this follows from equation (19), applied with s = s + tk, and t = t), it is easily
seen by induction that uk ≤ vk.

Now vk is easily studied by standard methods: the condition ct,n > 1 ensures
that f has only one stable stationary point, xe = exp(1−ct,n), and that vk converges
to this point. If we start from a point to the left of xe, vk is always bounded by xe.

On the right of xe, f is a
(

1 − 1
ct,n

)

-contraction. Therefore, for all k,

(29) vk ≤ xe +

(

1 −
1

ct,n

)k

(v0 − xe)+ .

The explicit value of xe, and the bound (1 − 1/c)k ≤ exp(−k/c) show that:

∀k, vk ≤ exp(1 − ct,n) + v0 exp(−k/ct,n).
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Let us now look at the entropy H at time s + u. If u can be written as u = kt with
a t > t0(n), the previous iterated bound reads:

Hs+u ≤ exp(1 − ct,n) + v0 exp(−k/ct,n).

For any u > u0(n), let us choose t such that t(ct,n)2 = u, and k = c2
t,n (more

precisely, k is the nearest integer). By definition of u0, t is larger than t0. Now t
and ct,n may be rewritten as functions of u:

tc2
t,n = u, therefore t =

(

uQ(n)2
)(1−a)/(3−a)

,

ct,n =
1

Q(n)
(uQ(n)2)1/(3−a).

Since u0 = Hs, we obtain:

Hs+u ≤ (e + Hs) exp (−ct,n)

≤ (1 + Hs) exp

(

−
u1/(3−a)

Q(n)(1−a)/(3−a)

)

.

This concludes the proof. �

3.3. Are Beckner inequalities the right scale ? We show here that the scale
of Beckner inequalities is arguably the “right” one for proving uniqueness. We
only give a heuristic argument, using a toy model introduced by T. Bodineau and
F. Martinelli in [4].

This paper studies the phase transition regime, and tries to find lower bounds
on the growth of the constants, as the size increases. The type of result they get is:

Proposition 3.7. In the phase transition regime, for the + boundary condition,
the LS constants (in [−n, n]d) grow at least like n2.

This result is similar to our theorem: If the proposition holds in our setting, and
in the whole phase transition regime, then a sublinear growth of the LS constants
must imply that no phase transition occurs.

Their approach is however very different: they find a “good” test function for
which the entropy is large whereas the energy stays small.

In another section, the authors introduce a toy model, which is supposed to
reproduce the main aspects of the dynamics for the (classical) Ising model, in the
phase transition regime: namely, the dynamics of the disappearance of a big droplet
of − spins when the boundary condition is +.

The model is a birth and death process on {0, nd}. with rates b and d:

(30)

b(x) = xα if x ≥ 1,

b(0) = 1,

d(x + 1) = xα exp ((x + 1)α − xα) if x ≥ 2

d(1) = e.

We choose α = d−1
d and note that the process is reversible w.r.t. µ defined by

µ(x) = 1
Z exp(−xα).

The authors of [4] then proceed to study the Poincaré and log-Sobolev constants
of this one-dimensional by means of Muckenhoupt-like criteria, established in the
discrete case by Miclo ([10]). In fact, similar results exist for any Beckner inequality.
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We rephrase here a result from [2] (the discrete version of Theorem 13, justified
in the remarks at the end of section 4 — note that our a is related to their r by
a = 2(1 − 1/r)).

Proposition 3.8. For any i ∈ Z, define the following quantities:

R+(x) =
∑

y≥x

µ(y), R−(x) =
∑

y≤x

µ(y),

S+(i, x) =
x
∑

y=i+1

1

µ(y)b(y)
, S−(i, x) =

i−1
∑

x

1

µ(y)b(y)

B+(i) = sup
x>i

S+(i, x)R+(i, x) loga

(

1 +
1

2R+(i, x)

)

B−(i) = sup
x<i

S−(i, x)R−(i, x) loga

(

1 +
1

2R−(i, x)

)

.

Finally, let B = infi(B+(i) ∧ B−(i)). Then µ satisfies a GBI(a)inequality if and
only if B is finite, and there exists a universal constant k such that 1

kB ≤ Ca ≤ kB.

This can be used to find explicit bounds on the Beckner constants, thanks to the
estimates ([4]):

∑

y≥x

µ(y) ≈ x1−α exp(−xα),

x
∑

y=i+1

1

µ(y)b(y)
≈ x1−2α exp(xα),

where X ≈ Y means that there exists a k (independant of x, i, α) such that 1
kX ≤

Y ≤ kX . This implies estimates on B+, B− and B, e.g.:

B+(i, x) ≈ x1−2α exp(xα)x1−α (xα)
a

≈ x1−3α+αa.

Define ad to be the solution of 1 − 3α + αa = 0. If a > ad, B ≈ B+(i, Nd) ≈
Nd(1−3α+αa) and the Beckner constant blows up with N . If a < ad, B, and therefore
the Beckner constant, stays bounded with N .

Since ad = (3α − 1)/α and α is defined in terms of a “dimension” d, we have
shown the following

Theorem 3.9. Consider the toy model defined by (30) For each value of the “di-
mension” d, there exists an ad such that :

• If a > ad, the Beckner constant C(a, N) grows like N ;
• If a < ad, the Beckner constant C(a, n) stays bounded in N .

Moreover, ad satisfies:

• If d = 1 or 2, ad < 0 so that all constants blow up in N ;
• If d = 3, ad = 0, the Poincaré constant stays bounded whereas all other

constants blow up;
• If d > 3, ad ∈ (0, 1).

In particular, this tells us that (if the toy model is an appropriate approximation
of the true model), there may be parameters for which the phase transition occurs,
but the Poincaré constant stays bounded. This leads us to believe that theorem 2.2
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should not be too far from optimality, and that it should not be possible to prove
uniqueness if we only suppose a uniform Poincaré inequality.
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tional analysis, volume 1745 of Lecture Notes in Math., pages 147–168. Springer, Berlin,
2000.

[8] M. Ledoux. Logarithmic Sobolev inequalities for unbounded spin systems revisited. In
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