Carole Delporte-Gallet

Hugues Fauconnier

Felix Freiling

Lucia Draque Penso

Andreas Tielmann

Transforming Asynchronous Systems with Crash-Stop Failures and Failure Detectors to the General Omission Model *

Keywords: Transformations, Asynchronous Systems, Failure Detectors, Crash-Stop, General Omission

This paper studies the impact of omission failures on asynchronous distributed systems with crash-stop failures. For the large group of problem specifications that are restricted to correct processes, we show how to transform a crash-stop related problem specification into an equivalent omission one. For that, we provide transformations for algorithms and failure detectors, such that if and only if an algorithm using a failure detector satisfies a problem specification, then the transformed algorithm using the transformed failure detector satisfies the transformed problem specification. Our transformed problem specification is ensured to be non-trivial, and moreover, the transformation reveals itself to be in a reasonable sense weakest failure detector preserving.

.

Introduction

Message omission failures, which have been introduced in [START_REF] Hadzilacos | [END_REF] and been refined in [START_REF] Perry | Distributed agreement in the presence of processor and communication faults[END_REF] put the blame of a message loss to a specific process instead of an unreliable message channel. This property has lead to the development of reductions from security problems in the byzantine failure model [START_REF] Lamport | The Byzantine generals problem[END_REF], such as eletronic commerce and voting [START_REF] Freiling | Optimal randomized omissiontolerant uniform consensus in message passing systems[END_REF], fair-exchange [START_REF] Avoine | Gracefully degrading fair exchange with security modules[END_REF] and secure multiparty computation [START_REF] Fort | Trustedpals: Secure multiparty computation implemented with smartcards[END_REF], to well-known distributed problems in the general omission model, such as consensus [START_REF] Chaudhuri | Agreement is harder than consensus: set consensus problems in totally asynchronous systems[END_REF], where both process crashes and message omissions may take place. The general omission model can be obtained from the byzantine failure model by considering processes as parties that contain a tamper proof security module, such as a smartcard, which executes randomized [START_REF] Freiling | Optimal randomized omissiontolerant uniform consensus in message passing systems[END_REF] or deterministic [START_REF] Parvedy | Optimal early stopping uniform consensus in synchronous systems with process omission failures[END_REF] distributed algorithms and exchanges authenticated and cryptographed messages. Hence, in such a scenario, note that security module messages must go through their untrusted hosting parties, which are able to drop messages but not modify them. Therefore, the only failures that may appear to the trusted security modules are message omissions and process crashes (due to selfdestruction of the security modules or destruction by a malicious party). Thus, since the blame of a message drop (an omission) is put only at the security modules of the malicious parties, the security modules of the honest parties remain correct (i.e. failure-free), even if another party decides to drop messages from/to it.

In this paper, we want to provide the general omission model with the benefits of a well-understood system model like the crash-stop model. We show, that in asynchronous systems, both models are equivalent for problem specifications that are only related to correct processes 1 . This means, that we are able to transform an algorithm that uses a failure detector (as introduced in [START_REF] Deepak | Unreliable failure detectors for reliable distributed systems[END_REF]) to solve a problem specification in the crash-stop model into an algorithm that uses a transformed failure detector to satisfy the equivalent problem in the general omission model. We show the problem equivalence by proving also the inverse implication, that is, that if a transformed algorithm using a transformed failure detector satisfies a transformed problem specification, then the original algorithm using the original failure detector solves the original problem specification (see also Figure 1). Moreover, our transformation preserves also the "is weaker than" relation [START_REF] Deepak | The weakest failure detector for solving consensus[END_REF] between failure detectors. This means, that if a failure detector is a weakest failure detector for a certain (crash-stop) problem, then its transformation is a weakest of all transformed failure detectors for the transformed problem.

For clarity, we use the term correct only for processes that do not make any failure at all. Processes that do not crash are called crash-correct and processes that are able to send This definition of connected processes has been introduced in [START_REF] Delporte-Gallet | Revisiting failure detection and consensus in omission failure environments[END_REF]. To simplify, we consider only permanent omissions. Note that this restriction is not limiting, as we simply delegate the masking of transient omissions to the underlying asynchronous communication layer. The intuition behind our problem transformation is to exchange every crash-correct in the specification with crash-correct & connected (and likewise for the failure detector transformation). This means, that everything demanded for crash-correct processes in the original problem specification is now demanded for crash-correct & connected processes. To transform a crash-stop algorithm into one that is able to satisfy such a transformed specification, we augment it with two additional send-primitives (added as new communication layers). With these new primitives, we are able to "simulate" a crash-stop environment for the transformed algorithms. For crash-correct & connected processes, reliable communication is possible and not crash-correct & connected processes are not able to influence them.

Since it is in general not possible to provide guarantees for processes that are not connected, we limit ourselves to transform only problem specifications that refer exclusively to the state of processes before they crash. As an extension of our result, it would be possible to consider the specific case where only less than half of the processes are allowed to crash. In such a scenario, it would be possible for a process to check whether it is connected or not. It simply has to ping all other processes (e.g., before every step) and if it receives from less than the majority of the processes an answer, it keeps waiting forever and satisfies at least the safety properties of a problem specification.

The problem of automatically increasing the fault tolerance of problems in environments with crash-stop failures has been extensively studied before (e.g., [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF], [START_REF] Neiger | Automatically increasing the fault-tolerance of distributed algorithms[END_REF], [START_REF] Delporte-Gallet | The perfectly-synchronised round-based model of distributed computing[END_REF], or [START_REF] Rida | Simulating crash failures with many faulty processors (extended abstract)[END_REF]). The results of [START_REF] Neiger | Automatically increasing the fault-tolerance of distributed algorithms[END_REF], [START_REF] Delporte-Gallet | The perfectly-synchronised round-based model of distributed computing[END_REF], and [START_REF] Rida | Simulating crash failures with many faulty processors (extended abstract)[END_REF] assume in contrast to ours synchronous systems and no failure detectors. In [START_REF] Neiger | Automatically increasing the fault-tolerance of distributed algorithms[END_REF], several transformations from crash-stop to send omission, to general omission, and to Byzantine faults are proposed. In [START_REF] Delporte-Gallet | The perfectly-synchronised round-based model of distributed computing[END_REF], round-based algorithms with broadcast primitives are transformed into crash-stop-, general omission-, and Byzantine-tolerant algorithms. Asynchronous systems are considered in [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF], but in the context of link failures instead of omission failures and also without failure detectors. The types of link failures that are considered in [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF] are eventually reliable and fair-lossy links. Eventually reliable links can lose a finite (but unbounded) number of messages and fair-lossy links satisfy that if infinitely many messages are sent over it, then infinitely many messages do not get lost. To show our results, we extend the system model of [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF] such that we can model omission failures, failure patterns, and failure detectors. Another definition for a system model with crash-recovery failures2 , omission failures, and failure detectors is given in [START_REF] Dolev | Brief announcement: Failure detectors in omission failure environments[END_REF].

To the best of our knowledge, this is the first paper that investigates an automatic transformation to increase the fault tolerance of distributed algorithms in asynchronous systems augmented with failure detectors. We here give a transformation from the crashstop model to the general omission model.

We organize this paper as follows. In section 2, we define our formal system model, in section 3, we define our general problem and algorithm transformations, in section 4 we define our main theorem and sketch the proof, and finally, in section 5, we summarize and discuss our results. The detailed proof can be found in the appendix.

Model

The asynchronous distributed system is assumed to consist of n distinct processes Π = {p 1 , . . . , p n }. Each pair p i , p j of processes is connected via a direct communication channel. The asynchrony of the system means, that there are no bounds on the relative process speeds and message transmission delays. To allow an easier reasoning, a discrete global clock T is added to the system. The discrete range of the clock ticks is the set of natural numbers N. The processes do not have access to the clock, it is only used for making statements about the system. The system model used here is derived from that in [START_REF] Basu | Simulating reliable links with unreliable links in the presence of process crashes[END_REF]. It has been adapted to model also failure detectors and permanent omission failures.

Algorithms An algorithm A is defined as a vector of local algorithm modules (or simply modules) A(Π) = A(p 1), . . . , A(p n) . Each local algorithm module A(p i) is associated with a process p i ∈ Π and defined as a deterministic infinite state automaton. The local algorithm modules can exchange messages via send and receive primitives. We assume all messages to be unique.

Histories A local history of a local algorithm module

A(p i), denoted H A [i], is a finite or an infinite sequence s 0 i e 1 i s 1 i e 2 i s 2 i .
. . of alternating states and events of type send, receive, queryFD, or internal. We define H A [i]/ t to be the maximal prefix of H A [i] where all events have occurred before time t. A history

H A of A(Π) is a vector of local histories H A [1], H A [2], . . . , H A [n] .
Failures and Failure Patterns A failure pattern F is a function that maps each value t from T to an output value that specifies which failures have occurred up to time t during an execution of a distributed system. Such a failure pattern is totally independent of any algorithm. A crash-failure pattern C : T → 2 Π denotes the set of processes that have crashed up to time t (∀t :

C(t) ⊆ C(t + 1)).
Additionally to the crash of a process, it can fail by not sending or not receiving a message. We say that it omits a message. The message omissions do not occur because of link failures, they model overflows of local message buffers or the behavior of a malicious adversary with control over the message flow of certain processes. It is important that for every omission, there is a process responsible for it. As we already mentioned, we consider only permanent omissions and leave the treatment of transient omissions over to the underlying asynchronous communication layer. There are two types of permanent omissions: permanent send omissions and permanent receive omissions. Intuitively, a process has a permanent send omission if it always fails by not sending messages to a certain other process after a certain point in time. Analogously, a process has a permanent receive omission if it always fails by not receiving messages from a certain other process after a certain point in time. In the following, to do not get confused, we use p s if we think of the sending process and p d for the destination. The permanent omissions are modeled via send-/receive-omission failure patterns:

O S : T → 2 Π×Π and O R : T → 2 Π×Π If (p s , p d) ∈ O S (t)/O R (t)
, then process p s /p d has a permanent send/receive-omission to process p d /p s at time t. All the failure patterns defined so far can be put together to a single failure pattern F = (C, O S , O R).

We here define some predicates processes might fulfill depending on the failure pattern and the time t.

crashed(F, t) := {p | p ∈ C(t)} crash-correct(F, t) := {p | p ∈ C(t)} send-omissive(F, t) := {p s | ∃p d : (p s , p d) ∈ O S (t)} receive-omissive(F, t) := {p d | ∃p s : (p s , p d) ∈ O R (t)}. omissive(F, t) := send-omissive(F, t) ∪ receive-omissive(F, t)
The following predicates are used to formalize our notion of connected processes. We first define a process p to be directly-reachable from a process q, if every message sent by q to p will be received by p. This means, that there occurs no omission in the direction from q to p and the crash-correctness of q implies the crash-correctness of p. Reachable is then the transitive closure of directly-reachable. To define the connected processes, we formalize the notion of "are able to send/receive messages to/from correct processes" with the definition of out-/in-connected. More formally:

directly-reachable(F, t) := {(p, q) | (q, p) ∈ O S (t) ∧ (p, q) ∈ O R (t) ∧ q ∈ crash-correct(F, t) → p ∈ crash-correct(F, t)} reachable(F, t) := {(p d , p s) | (p d , p s) ∈ directly-reachable(F, t) ∨ ∃r ∈ Π : ((p d , r) ∈ reachable(F, t) ∧ (r, p s) ∈ reachable(F, t))} in-connected(F, t) := {p d | ∃c ∈ correct(F) : (p d , c) ∈ reachable(F, t)} out-connected(F, t) := {p s | ∃c ∈ correct(F) : (c, p s) ∈ reachable(F, t)} connected(F, t) := in-connected(F, t) ∩ out-connected(F, t)
Instead of crash-correct, we write also cc and instead of crash-correct ∩ connected, we write cc+c. We define for every predicate ϕ:

ϕ(F) := t∈T {ϕ(F, t) | ∀t ≥ t : ϕ(F, t) = ϕ(F, t)} (e.g., ϕ = connected).
This means, that ϕ(F) is the set where the failure pattern does not change anymore (at least in relevance to ϕ). We define the point in time when a process stops/some processes stop fulfilling a predicate ϕ: t not(ϕ,F ,p,q,...) := max{t | (p, q, . . .) ∈ ϕ(F, t)}.

If (p, q, . . .) ∈ ϕ(F), then we say that t not(ϕ,F ,p,q,...) = ∞.

We define an environment E to be a set of possible failure patterns. E t c.s. denotes the set of all failure patterns where only crash-stop faults occur and at most t processes crash. E t g.o. denotes the set of all failure patterns where crash-stop and omission faults may occur and at most t processes are not crash-correct and connected (clearly, E t c.s. ⊆ E t g.o.).

Failure Detectors A failure detector provides (possibly incorrect) information about the failure pattern that occurs in an execution [START_REF] Deepak | Unreliable failure detectors for reliable distributed systems[END_REF]. A failure detector history FDH with range R is a function from Π×T to R. FDH(p, t) is the value of the failure detector module of process p at time t. A failure detector D is a function that maps a failure pattern F to a set of failure detector histories with range R D . D(F) denotes the set of possible failure detector histories permitted by D for the failure pattern F.

Reliable Links A reliable link does not create, duplicate, or lose messages. Formally, the link from p i to p j is reliable in history H according to failure pattern F, if H satisfies:

L1: (No Creation) For all messages m, if p j receives m from p i , then p i sends m to p j .

L2: (No Duplication) For all messages m, p j receives m from p i at most once.

L3: (No Loss) For all messages m, if p i sends m to p j , (p i , p j) ∈ O S (F), (p j , p i) ∈ O R (F), and p j executes receive actions infinitely often, then p j receives m from p i .

We specify, that our underlying communication channels ensure reliable links.

Problem Specifications Let Π be a set of processes and A be an algorithm. We define H(A(Π), E) to be the set of all tuples (H A , F) such that H A is a history of A(Π) and F ∈ E.

A system S(A(Π), E) of A(Π) is a subset of H(A(Π), E).
A problem specification Σ is a set of tuples of histories and failure patterns and a system S satisfies a problem specification Σ, if S ⊆ Σ. Take Consensus as an example: It is specified by making statements about some variables propose and decide in the states of a history (e.g., the value of decide has eventually to be equal at all (crash-)correct processes).

We say that a problem specification Σ is cc-restricted, if for all (H, F) ∈ Σ, and for all (H , F) with H[i]/ t not(cc,F ,p i) = H [i]/ t not(cc,F ,p i) (for all p i), the following holds: (H , F) ∈ Σ. Analogously, a problem specification Σ is cc+c-restricted, if for all (H, F) ∈ Σ, and for all (H , F) with

H[i]/ t not(cc+c,F ,p i) = H [i]/ t not(cc+c,F ,p i) (for all p i): (H , F) ∈ Σ.
Intuitively, a cc-restricted problem specification makes only assumptions about cc processes. Consider the specification of non-uniform Consensus (see Table 1). The three properties validity, agreement, and termination are only related to correct processes (and the initial states of all processes) and therefore, the states of a process p i after its time of disconnection (t not(cc+c,F ,p i)) does not have any influence on whether Consensus is reached or not. Therefore, non-uniform Consensus is cc-restricted.

From Crash-Stop to General Omission

To improve the fault-tolerance of algorithms, we simulate a single state of the original algorithm with several states of the simulation algorithm. For these additional states, we augment the original states with additional variables. Since an event of the simulation algorithm may lead to a state where only the augmentation variables change, the sequence of the original variables may stutter. We call a history H a stuttered and augmented extension of a history H (H ≤ sa H), if H and H differ only in the value of the augmentation variables and all additional states are caused by differences in these variables.

Transformation of Problem Specifications

To transform a problem specification, we first show a transformation of a tuple of a trace and a failure pattern. Based on this transformation, we transform a whole problem specification. The intuition behind this transformation is that for crash-correct restricted problem specifications, everything demanded for crash-correct processes is only demanded for crash-correct & connected processes after the transformation. More formally:

(H , F) ∈ trans((H, F)) ⇔ ∀p i ∈ Π : H[i]/ t not(cc,F ,p i) ≤ sa H [i]/ t not(cc+c,F ,p i)
This implies that for all p i : t not(cc,F ,p i) ≤ t not(cc+c,F ,p i) .

trans(Σ) = {(H , F) | (H , F) ∈ trans((H, F)) ∧ (H, F) ∈ Σ}
A transformation of non-uniform Consensus, where properties of certain propose-and decision-variables of (crash-)correct processes are specified would lead to a specification where the same properties are ensured for the states of crash-correct & connected processes, because only histories with the same states (disregarding the augmentation variables) are allowed in the transformation at this processes (see also table 1). We also take the states of processes before they become disconnected into account, because they (e.g., their initial states for the propose variables) may also have an influence on the fulfillment of a problem specification, although they are after their disconnection not allowed to have this influence anymore.

Consensus trans(Consenus) Validity:

The decided value of every The decided value of every cc process must have been cc+c process must have been proposed.

proposed. Agreement:

No two cc processes decide No two cc+c processes decide differently. differently Termination: Every cc process eventually Every cc+c process eventually decides. decides

Table 1: Transformation of non-uniform Consensus

Transformation of Failure Detector Specifications We allow all failure detector histories for a failure pattern F in trans(D) that are allowed in the crash-stop version of F in D:

trans(D)(F) := F {D(F) | ∀t : cc(F , t) = cc+c(F, t)}
If we take an Ω failure detector [START_REF] Deepak | The weakest failure detector for solving consensus[END_REF] which outputs only failure detector histories with a cc common leader at all cc processes as example, then the transformed failure detector outputs these failure detector histories if and only if they provide a cc+c common leader at all cc+c processes.

Transformation of Algorithms

In our algorithm transformation, we add new communication layers such that some of the omission failures in the system become transparent to the algorithm (see Figure 2). We transform a given algorithm A into another algorithm A = trans(A) in two steps: • In the first step, we remove the send and receive actions from A and simulate them with a three-way-handshake (3wh) algorithm. The algorithm is described in Figure 3.

The idea of the 3wh-algorithm is to substitute every send-action with an exchange of three messages. This means, that to send a message to a certain process, it is necessary for a process to be able to send and to receive messages from it. Moreover, while the communication between connected processes is still possible, processes that are only in-connected or only out-connected (and not both) become totally disconnected. Hence, we eliminate influences of disconnected processes not existing in the crash-stop case.

• Then, in the second step, we remove the send and receive actions from the three way handshake algorithm and simulate them with a relaying algorithm. The relaying algorithm is described in Figure 4. The idea of the relay algorithm is to relay every message to all other processes, such that they relay it again and all crash-correct & connected processes can communicate with each other, despite the fact that they are not directly-reachable.

To execute the simulation algorithms in parallel with the actions from A, we add some new (augmentation) variables to the set of variables in the states of A. Whenever a step of the simulation algorithms is executed, the state of the original variables in A remains untouched and only the new variables change their values. Whenever a process queries a local failure detector module D(p i), we translate it to a query on trans(D)(p i).

Proof

Algorithm 3wh 1: upon event 3wh-send(p i , m, p j) do 2: trigger send(p i , [1, m], p j) ; 3: 4: upon event deliver(p j , [l, m], p i) do 5:

if (l = 1) then 6:

trigger send(p i , [2, m], p j) ; 7:

elseif (l = 2) then 8:

trigger send(p i , [3, m], p j) ; 9:

elseif (l = 3) then 10:

trigger 3wh-deliver(p j , m, p i) ;

Figure 3: The Three Way Handshake Algorithm for Process p i .

Main Theorem We now define the main theorem of this work. Assume a problem specification Σ is cc-restricted. Then, if and only if there is an algorithm A that satisfies Σ using a failure detector D in an environment with at most t crash-stop failures (0 ≤ t ≤ n) and no omission failures, then trans(A) satisfies trans(Σ) using trans(D) in an environment where at most t processes are not crash-correct & connected. This theorem does not only show that our transformation works, it furthermore ensures that we do not transform to a trivial problem specification, but to an equivalent one, since we prove both directions. We say, that S t c.s. (A) := H(A(Π), E t c.s.) and S t g.o. (A) := H(A (Π), E t g.o.).

Theorem 1. Let Σ be a cc-restricted problem specification. Then, if A is an algorithm using a failure detector D and A = trans(A) is the transformation of A using trans(D), it holds that:

∀t with 0 ≤ t ≤ n : S t c.s. (A) ⊆ Σ ⇔ S t g.o. (A) ⊆ trans(Σ)
Proof. Because of the lack of space, we will only give an intuition of the proof here and postpone the formal proof into the appendix. We divide up the proof into two parts. Let S c.s. := S t c.s. (A) and S g.o. := S t g.o. (A) and assume that A = trans(A).

"⇒": Assume that S c.s. ⊆ Σ. By constructing for a given (H, F) in S g.o. a tuple (H , F) in S c.s. with (H, F) ∈ trans((H , F)), we can show that S g.o. ⊆ trans(S c.s.) (Proposition 1 in the appendix). In this construction, we remove the added communication layers from H and use the properties of our two send-primitves to prove the reliability of the links in H . We ensure "No Loss" with the relaying algorithm and "No Creation" with the three way handshake algorithm. As we know from the definition of trans, that trans(S c.s.) ⊆ trans(Σ), we can conclude that S g.o. ⊆ trans(Σ).

Algorithm Relay 1: upon event init do 2: relayed i := ∅; 3:

delivered i := ∅; 4: 5: upon event relay-send(p i , m, p j) do 6:

for k :=

relayed i := relayed i ∪ {[m, p k]};
Figure 4: The Relaying Algorithm for Process p i .

"⇐": Assume that S g.o. ⊆ trans(Σ). We construct a history H for all histories H in S c.s. , such that H is in S g.o. ⊆ trans(Σ). Together with the fact, that Σ is cc restricted, we can use this to prove that S c.s. ⊆ Σ (Proposition 2 in the appendix).

Weakest Failure Detectors A failure detector [START_REF] Deepak | The weakest failure detector for solving consensus[END_REF] is a weakest failure detector for a problem specification, if it is necessary and sufficient. Sufficient means, that there exists an algorithm using this failure detector that satisfies the problem specification, whereas necessary means, that every other sufficient failure detector is reducible to it. In the appendix we prove quite straighforwardly that our transformations preserve the weakest failure detector property at least according to the class of transformed failure detectors.

Theorem 2. If D is the weakest failure detector for Σ, then trans(D) is the weakest transformed failure detector for trans(Σ).

Summary

We have given transformations for algorithms, failure detectors, and problem specifications, so crash-stop resilient algorithms can be automatically enhanced to tolerate the more severe general omission failures, highly applicable in practical settings running security problems. From the definition of trans follows:

A Formal Proof

(H, F) ∈ S g.o. ⇒ ∃(H , F) ∈ S c.s. : ∀p i ∈ Π : H [i]/ t not(cc,F ,p i) ≤ sa H[i]/ t not(cc+c,F ,p i) (1)
We will in the following construct a new history H and a failure pattern F from H and F which satisfy equation (1):

(a) At first, we undo step 2 of the transformation and remove the variables, additional states, and events of the relaying algorithm from H. This means, that every time a relay-send or relay-receive event in H occurs, this event is substituted by an send/receive event of the underlying communication channel. We let the inserted events take place at the time when the relay events have been completed (since a process may take several steps to accomplish the relaying task). We call the intermediate history we get after this H 1 .

(b) Then, we undo step 1 and remove the variables, additional states, and events of the three way handshake algorithm from H 1 (in the same way as above). We call this intermediate history H 2 .

(c) After that, we construct F , such that ∀t : cc(F , t) = cc+c(F, t) ∧ omissive(F) = ∅.

To build H from H 2 , we substitute every query on a failure detector trans(D) in H 2 with a query on D in H and remove all states and events for every process p i that occur after time t not(cc,F ,p i) . Proof. Follows immediately from (c).

H

Lemma 2. H is a history of A(Π) using D.

Proof. All events and states are from A(Π), because all additional events and states have been removed. If algorithm A makes use of a failure detector D, then trans(D)(F) = D(F) (Since ∀t : cc(F , t) = cc+c(F, t)).

Lemma 3. All links in H are reliable according to F .

Proof. We have to show the three properties of reliable links, namely: No Creation (Lemma 5), No Duplication (Lemma 6), and No Loss (Lemma 7).

To prove lemma 5, we first need to show the auxiliary lemma 4:

Lemma 4. Let t s be the time a send event from A(p i) to A(p j) in H 2 occurs, t r be the time of the corresponding receive event in H 2 , and t j := t not(cc+c,F ,p j) and t i := t not(cc+c,F ,p i) . Then:

t s ≥ t i ⇒ t r ≥ t j
Proof. The above lemma is equivalent to: t r < t j implies t s < t i . At first, we observe that t s < t r and p i ∈ C(t s) (because the receive event is executed at time t s). Assume t r < t j . Since A(p j) receives the message, we can conclude:

t not(reachable,F ,p j ,p i) > t r > t s

not yet delivered it (and relay-delivers m in this case). Otherwise, it propagates m further to all other processes (lines 14-16). Since p i is at the time of the in step (a) in H 1 inserted send-event out-connected in F (otherwise, p i would have already crashed in F), there is a path of directly-reachable cc+c processes to a (totally) correct process in F. A correct process will receive m and relay it (possibly indirectly) to A(p j), since p j is in-connected in F (because it takes infinitely many steps in (H , F)).

The following lemma is used for the proof of proposition 2.

Lemma 8. Let (H 1 , F 1) be in trans((H 1 , F 1)) and (H 2 , F 2) be in trans((H 2 , F 2)). Then, for all p i ∈ Π:

H 1 [i]/ t not(cc+c,F 1 ,p i) = H 2 [i]/ t not(cc+c,F 2 ,p i) ⇒ H 1 [i]/ t not(cc,F 1 ,p i) = H 2 [i]/ t not(cc,F ∈ ,p i)
Proof. Follows from the definition of trans and the fact, that t not(cc,F ,p i) ≤ t not(cc+c,Ftr,p i) .

Proposition 2. S c.s. ⊆ Σ Proof. Assume (H, F) ∈ S c.s. . We then build an new history H from H and simulate all links according to the specification of the three-way-handshake and the relay algorithm such that (H , F) ∈ trans((H, F)) and (H , F) ∈ S g.o. ⊆ trans(Σ) (F ∈ E t c.s. implies that F ∈ E t g.o). This means, that there exists a (H , F) ∈ Σ, with (H , F) ∈ trans((H , F)). Together with Lemma 8 and the fact, that Σ is cc restricted, we can conclude that (H, F) ∈ Σ.

Figure 1 :

 1 Figure 1: The Three Transformations

Figure 2 :

 2 Figure 2: Additional Communication Layers

Theorem 2 .

 2 If D is the weakest failure detector for Σ, then trans(D) is the weakest transformed failure detector for trans(Σ). Proof. If D is the weakest failure detector for Σ, then trans(D) is sufficient for trans(Σ) (Theorem 1). Assume a transformed failure detector D = trans(D) is sufficient for trans(Σ). Then, we know, that D is sufficient for Σ (Theorem 1)) and moreover, D is reducible to D (since D is the weakest failure detector for Σ). If the reduction algorithm is T D →D , then trans(T D →D) using trans(D) emulates the outputs of trans(D). Therefore, D = trans(D) is reducible to trans(D). Proposition 1. S g.o. ⊆ trans(S c.s.) Proof. The proposition is equivalent to (H, F) ∈ S g.o. ⇒ (H, F) ∈ trans(S c.s.)

 The schedule of the construction is illustrated in Figure5. From the construction of H and F it is clear, that ∀p i ∈ Π :H [i]/ t not(cc,F ,p i) ≤ sa H[i]/ t not(cc+c,F ,p i) . It remains to show, that (H , F) ∈ S c.s.. This means, that at most t processes crash in F (Lemma 1), H is a history of A(Π) using D (Lemma 2), and all links in H are reliable according to F (Lemma 3).

	-→	H 1	-→	H 2	-→	H
	(a): undo step 2		(b): undo step 1		(c): crash not	
	(the relaying)		(the 3wh)		cc+c processes	
		Figure 5: Construction of H		

Lemma 1. At most t processes crash in F .

This type of problem specifications are somehow similar to non-uniform specifications. They are defined similarly to the ones in[START_REF] Rida | Simulating crash failures with many faulty processors (extended abstract)[END_REF].

In an environment with crash-recovery failures, crashed processes are allowed to recover and participate again in the distributed computation.

was supported by the PROCOPE-project.

Since the in H 2 removed 3wh-algorithm has only allowed to 3wh-deliver messages after having received a [3, m] message (lines 9-10 in Figure 3), which is only sent from a process after having on his part received a [2, m] message (lines 7-8), we are sure that after the 3wh-send event, A(p i) was able to receive the [2, m] message from A(p j) and therefore:

From the definition of connected follows:

If we put all paths together, we have: with (2) and (4)

with (3) and (5)

Equation (6) and (7) imply t not(connected,F ,p i) > t s and together with p i ∈ C(t s), we conclude that t i > t s .

Lemma 5. (No Creation in H .) For all messages m, if p j receives m from p i in H , then p i sends m to p j in H .

Proof. We know, that there is no creation in H. In our construction, send events of the same layer can only decrease in the local history of crashed processes in step (c) (after the time of their crash). But since Lemma 4 shows that messages that are sent from a process that is already disconnected in F (and therefore crashed in F) can only be received by processes that are already disconnected too, the corresponding receive events also get lost in H . Lemma 6. (No Duplication in H .) For all messages m: p j receives m from p i at most once.

Proof. In the 3wh-algorithm, no message is delivered more than once and in the relayalgorithm, every message received is remembered in a variable delivered i (lines 11-13 in Figure 4).

Lemma 7. (No Loss in H according to F .) For all messages m, if p i sends m to p j and p j executes receive actions infinitely often, then p j receives m from p i .

Proof. In the removed relaying algorithm, after every relay-send event, the message m is relayed by A(p i) to all other processes (lines 6-7 in Figure 4). If a cc+c process (in F) receives such a relayed message, it checks in lines 11-12 whether it is the recipient and has