
HAL Id: hal-00130629
https://hal.science/hal-00130629v1

Submitted on 28 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Memory Operations Optimization
Technique for Vector Loops on Itanium 2 Processors

Jalby William, Christophe Lemuet, Sid Touati

To cite this version:
Jalby William, Christophe Lemuet, Sid Touati. An Efficient Memory Operations Optimization Tech-
nique for Vector Loops on Itanium 2 Processors. Concurrency and Computation: Practice and Expe-
rience, 2006, 18 (11), pp.1485-1508. �10.1002/cpe.1017�. �hal-00130629�

https://hal.science/hal-00130629v1
https://hal.archives-ouvertes.fr


An Efficient Memory Operations Optimization Technique for
Vector Loops on Itanium 2 Processors

William JALBY , Christophe LEMUET, Sid-Ahmed-Ali TOUATI

April 10, 2009

Abstract

To keep up with a large degree of instruction level parallelism (ILP), the Itanium 2 cache systems use a complex
organization scheme: load/store queues, banking and interleaving. In this paper, we study the impact of these cache
systems on memory instructions scheduling. We demonstratethat, if no care is taken at compile time, the non-precise
memory disambiguation mechanism and the banking structurecause severe performance loss, even for very simple
regular codes. We also show that grouping the memory operations in a pseudo-vectorized way enables the compiler to
generate more effective code for the Itanium 2 processor. The impact of this code optimization technique on register
pressure is analyzed for various vectorization schemes.

keywords Performance Measurement, Cache Optimization, Memory Access Optimization, Bank Conflicts, Memory
Address Disambiguation, Instruction Level Parallelism.

1 Introduction

To satisfy the ever increasing data request rate of modern microprocessors, large multilevel memory hierarchies are
no longer the unique efficient solution [8]: computer architects have to rely on more and more sophisticated mech-
anisms [10, 6], in particular, load/store queues (to decouple memory access and arithmetic operations), banking and
interleaving (to increase bandwidth), prefetch mechanisms (to offset latency).

One key mechanism to tolerate/hide memory latency is the out-of-order processing of memory requests. With
the advent of superscalar processors, the concept of load/store queues has become a standard. The basic principle is
simple: consecutively issued memory requests are stored ina queue and simultaneously processed. This allows the
requests with shorter processing time (in the case of cache hits) to bypass requests with a longer processing time (for
example, in the case of a cache miss). Unfortunately, dependencies may exist between memory requests: for example,
a load followed by a store (or vice-versa) both addressing exactly the same memory location have to be executed strictly
in order to preserve program semantics. This is done on-the-fly by specific hardware mechanisms whose task is, first,
to detect memory request dependencies and, second (if necessary), to satisfy such dependencies. These mechanisms
are under high pressure in memory-boundprograms, because numerous “in-flight” memory requests have to be treated.

Another mechanism that tries to reduce the design complexity of cache systems is banking, that was already present
in the old vector machines such as Cray XMP [19]. Instead of creating a large number of ports, and thus increasing the
area complexity, caches are divided into multiple banks which can then be accessed simultaneously. Consequently, if
some requested memory addresses are mapped to the same bank,these memory operations cannot be serviced at the
same time, even if they are independent (a sequence of reads for instance). This potential side effect may be hidden in
the presence of load-store queues with large capacity.

In order to satisfy this high request rate, memory dependence detection mechanisms are simplified at the expense of
accuracy and performance [15]. To be accurate, the memory dependence detection must be performed on full address
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bits, which might be complex and expensive. In practice, thecomparison between two accessed memory locations is
carried out on a short part of the addresses: usually, a few low order bits. If these low order bits match, the hardware
takes a conservative action, i.e., it considers that the full addresses match and triggers the procedure for a collision
(serialization of the memory requests).

In this paper, we use the Itanium 2 architecture [13, 12, 24] as a target hardware platform. First, because it offers
a large degree of instruction level parallelism (ILP) that is directly manageable by the compiler. Second, because its
cache subsystem is complex: three cache levels, sophisticated prefetch capabilities, etc.

Due to the already complex nature of the problem, our study iscurrently restricted to the L2 and L3 cache subsys-
tem1 (excluding memory) and to simple vector codes (BLAS 1 type: Copy, Daxpy). Although they are simple, such
as BLAS 1 codes are fairly representative of memory address streams in scientific computing. The choice of scientific
computing as a target application area is motivated by the excellent match between scientific codes (easier to analyze
statically) and the Itanium 2 architecture (well designed for exploiting static information).

Even with this limited scope in terms of application codes, our study reveals that performance behavior is rather
complex and hard to analyze on real processors. In particular, the banking/interleaving structure of the L2 and L3
caches is shown to have a major interaction with the accessedaddress streams, potentially inducing large performance
loss. Furthermore, the non-precise memory disambiguationmechanism of Itanium 2 is responsible for bad dynamic
ILP utilization if no care is taken at compile time.

We demonstrate that vectorizing memory accesses allows us to get rid of most of the L2 and L3 cache bank con-
flicts. Unfortunately, this technique may increase register pressure. Therefore, such impact on register pressure is
presented and evaluated.

Note that we do not aim to optimize whole complex applications, such as SPEC codes. This is because the po-
tential benefits of general code optimization may be smoothened out in real applications, for the reason that cache
performance is polluted by numerous side effects. Thanks toour approach that uses micro-benchmarks, the new ar-
chitectural insights are being highlighted.

Our article is organized as follows. Section 2 describes ourexperimental setup: hardware platform as well as
software platform (compiler and OS). In Section 3, our target codes and experimental methodology are presented.
Section 4 highlights the performance bugs caused by the non-precise memory disambiguation and the banking struc-
ture of the Itanium 2 cache levels. In Section 5, we propose anoptimization strategy for memory accesses based
on a pseudo-vectorization. We give our experimental results to validate the effectiveness of such a method. Sec-
tion 6 studies the impact of the ld/st vectorization on register pressure. Section 7 presents related work in the field of
micro-benchmarking and improving ld/st queues and memory disambiguation mechanisms. Finally, some concluding
remarks and directions for future work are given.

2 Experimental Setup

The machine used in our experiments is a real uniprocessor Itanium 2 based system, equipped with a 900MHz pro-
cessor and 3GB memory. The general processor architecture (an interesting combination of VLIW and advanced
speculative mechanisms) is described in [12, 24, 3, 13]. TheItanium 2 processor offers a wide degree of parallelism:

• six general purpose ALUs, two integer units, and one shift unit;

• the data cache unit contains four memory ports enabling a service of either four loads requests or two loads and
two stores requests in the same clock cycle;

1On Itanium 2, L1 cannot hold FP operands.

2



• two floating point multiply-add units allowing the processor to execute two floating point multiply-add opera-
tions per cycle

• six multimedia functional units;

• three branch units, etc.

All the computational units are fully pipelined, so each functional unit (FU) can accept one new instruction per
clock cycle (in the absence of stalls). Instructions are grouped together in blocks of three instructions (called a bundle).
Up to two bundles can be issued per cycle. Due to the wealth of functional units, a rate of six instructions executed
per cycle can be sustained.

In our test machine, the caches are organized in three levels: L1 (restricted by the Itanium 2 design not to store
floating point data), L2 (unified, 256 KB, 8 way associative, write back allocate, 128 bytes cache line), and L3 (unified,
1.5 MB, 12 way associative).

The L2 is capable of supporting up to four memory accesses percycle: either four loads, or two loads and two
stores. The L2 cache is organized in 16 banks, with an interleaving of 16 bytes, that is, a bank can contain two double
FP elements. For instance, the addresses from 0 to 15 are located in bank 0, and those from 16 to 31 in bank 1,
etc2. Thus, two double FP elements that are 256 bytes apart residenecessarily in the same bank. In other words,
two memory elements reside in the same bank if their address share the same bit fields{7,6,5,4}. Finally, the cache
interface (for both L1 and L2) is equipped with a ld/st queue allowing cache hits to bypass cache misses (provided that
the addresses are correctly disambiguated).

In addition to the standard load and store instructions on floating point operands (single and double precision), the
Itanium instruction set offers a load floating pair instruction that is capable of loading 16 bytes at once, provided that
the corresponding accessed memory address is aligned on a 16byte boundary.

Our test machine is running Linux IA-64 Red Hat 7.1 based on the 2.4.18 smp kernel. The page size used by the
system is 16 KB and we use the following compiler: Intel C++ Compiler Version 7.0 Beta, Build 20020703. Although
various compiler options have been tested for our simple BLAS 1 kernels, it was found that the combination of -O3
and -restrict was the most powerful. These compiler flags allow us to use most of the advanced features of the Ita-
nium 2 architecture: software pipelining, prefetch instructions, predication and rotating registers. In order to reach the
peak performance, the “-restrict” option is essential because it let the compiler assume that distinct arrays are pointing
to disjoint memory regions, therefore allowing it to perform a full static reordering of loads and stores. The Fortran
compiler was also tested but, for our simple loops, the code generated was almost identical to the one obtained with
the C language.

Besides the compiler, our hand optimized versions were alsocompared to the Intel optimized library MKL 6.0.

All our experiments have been conducted with the perfmon toolkit in order to use the various hardware performance
counters. Thanks to these hardware counters, we were able toprecisely compute the number of cycles needed to
execute a program fraction. This is done by accessing the special registerar.itc. Also, other hardware counters allow
us to systematicly check the validity of all our experiments. For instance, we can observe that the TLB miss ratio is
almost zero. Also, we can check the data location (in which cache level the data reside) by analyzing the miss and hit
ratio of each cache level, etc. In other words, we can ensure that we measured what we desired to measure, and that
all our experiments were correct.

3 Target Codes and Performance Measurement

The BLAS 1 kernels are simple vector loops. In this article, the detailed results are given for two of them:

2Remember that the accessed addresses are multiples of 8 since we use double FP data.
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1. copy:Y (i)← X(i);

2. daxpy:Y (i)← Y (i) + a×X(i);

All the FP arrays are in double precision (8 bytes FP elements). That is,X(i) denotes theith element of the arrayX .
In our experiments, the array layout in the virtual memory space is tightly controlled. In particular, the impact of the
starting address of each arrayX andY is studied in depth. To achieve this goal, the parameters Offset X (respectively,
Offset Y) are introduced, according to the following relations:

• Virtual address of X(i)= Offset X + 8×i;

• Virtual address of Y(i)= Offset Y + 8×i;

In our article, the offset of an array is defined as its relative starting address to a page boundary. Changing the
values of Offset X and Offset Y allows one to change the L2 and L3 bank access pattern. Furthermore, it permits to
change the accessed address streams in order to check the ability of the hardware to fully detect independent memory
operations. We will see that the hardware does not react as itshould do, even if we execute a simple kernel of inde-
pendent memory operations.

For example, let us assume that for the Copy kernel, the address streams of X and Y are interleaved, i.e.,Load
X(0), Store Y(0), Load X(1), Store Y(1), etc. Then, if both Offset X and Offset Y are equal modulo 256,
the pair of load and store will systematically hit the same bank for every iteration.

The termcomputation sizeis used to denote the total number of distinct elements of array X accessed during the
whole execution of the loop. The impact of the computation size was not directly studied: all of the problems arising
with very short computation size were not tackled.

In our study, we focus on steady state behavior, using a typical computation size of at least 1440 (corresponding
to the computation of 1440 elements), which is large enough to reach peak performance while still allowing us to
keep the operands in the L2 cache. If we want to lock the operands in L3, we choose a larger computation size while
flushing the data from L2. That is, when we experiment with theL3 cache, we ensure that no data can be kept in L2,
while keeping all the data in L3.

The measurements were performed on a stand-alone system (i.e., each benchmark code was the unique running
user application), only one measurement being performed ata time. All timing measurements were performed using
themov ar.itcinstruction to read the cycle counter of the processor itself.

Thanks to the perfmon toolkit, reading the various cache miss counters allows us to check, first, our assumptions
that operands were effectively kept in the desired cache level, and second, that the penalties associated with DTLB
remained negligible.

All of the performance numbers presented are normalized, i.e., the measurements correspond to the average num-
ber of clock cycles needed to compute one vector element of the BLAS 1 results. For instance, in the case of Daxpy,
it is the average number of cycles needed to perform one instructionY (i)← Y (i) + a×X(i).

One of the major points of focus in this paper is the impact of array offsets on performance. Therefore, 2D plots
(isosurface) will be displayed. The X-axis (resp. Y-axis) corresponds to the offset of the X array (resp. Y array).
A geographiccolor code is used: dark colors correspond to the worst performance (highest number of clock cycles)
while light colors correspond to the best performance (lowest number of clock cycles). These 2D plots are very useful
to qualitatively understand the spatial nature of the dynamic phenomena.

After explaining our experimental configuration, the next section presents our experimental results.
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Offset Y Offset X Accessed Banks Performance in cycles

Off Y =0 Off X =0 0 0 0 0 (quadruple conflicts on bank 0) 1
Off Y =0 Off X =8 0 0 1 0 (triple conflicts on bank 0) 1
Off Y =0 Off X =64 8 0 8 0 (two double conflicts on bank 0 and 8)0.9
Off Y =0 Off X =72 8 0 8 0 (double conflicts on bank 0) 0.9
Off Y =8 Off X =0 0 0 0 1 (triple conflicts on bank 0) 1
Off Y =8 Off X =8 0 0 1 1 (two double conflicts on bank 0 and 1)0.9
Off Y =8 Off X =64 8 0 8 1 (double conflicts on bank 8) 0.9
Off Y =8 Off X =72 8 0 9 1 (no conflict) 0.5

Table 1: Bank Conflicts on the Itanium 2 Processor

4 Itanium 2 Cache System Behavior

To illustrate the specific problems occuring due to the Itanium 2 cache systems, we use two simple kernels (which
are the simplest codes that put stress on the cache systems).They only consist of a burst of independent memory
operations:

1. the first one, calledLxLy, corresponds to a loop in which two arrays X and Y are regularly accessed through
loads only:Load X(0), Load Y(0), Load X(1), Load Y(1), Load X(2), Load Y(2), etc.

2. the second one, calledLxSycorresponds to a loop in which one array X is accessed throughloads, while array Y
is accessed through stores:Load X(0), Store Y(0), Load X(1), Store Y(1), Load X(2), Store
Y(2), etc.

As can be seen, these micro-benchmarks contain only independent memory operations and do not carry out any
useful computation. They are free from any data dependence.

For the simple LxLy kernel, a naive code generation would be to alternate the access between array X and Y:Load
X(0), Load Y(0), Load X(1), Load Y(1), Load X(2), Load Y(2), etc. Such a code (calledInterleaved
LxLy) results in a large number of bank conflicts depending on the Offset X and Y values. The experimental results
(Figure 1(a)) perfectly describe this problem.

Theoretically, we expect a peak performance of 0.5 cycles toperform a pair of load operations, assuming that the
data is in L2 and performing up to 4 loads per cycle. However, as can be seen in Figure 1(a), we get only a few points
of peak performance depending on array offsets (light points). We can observe two complex bad behavior patterns:

1. three diagonals separated by 256 bytes, where the performance degrades to 1 cycle instead of 0.5;

2. a grid pattern can be clearly observed (sometimes overwritten by the diagonals). On the “good” light points, the
performance is maximal (0.5 cycles). In the other points, the performance degrades to 0.9 cycles.

Both phenomena can be attributed to bank conflicts caused by the interleaved LxLy micro-kernel. Table 1 summa-
rizes the main bank conflicts. In this table, only the 4 first memory access are displayed, the other ones can be easily
deduced from this initial pattern. The 256 bytes period of the diagonal stripes in Figure 1(a) is due to the fact that
bank allocation is periodic with a 256 bytes period, i.e., two elements of the same array which are 256 bytes apart are
allocated to the same bank.

Another micro-benchmark has been used, namely, LxSy. It is similar to LxLy, except that it performs stores on
Y elements instead of loads. The performance of this code is displayed in Figure 1(b). Again, we get two complex
bad behavior patterns: three diagonal stripes appears periodically each 16Kb and a grid pattern can be clearly observed.

The grid pattern is due to bank conflicts as was the case for LxLy. However, the three diagonals of bad performance
are due to another hardware phenomena, in which the effects are aggregated with bank conflicts. They are caused by
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(a) Assuming the data in L2, the legend corresponds
to the number of clock cycles required to execute two
independent load operations. Lighter is better.

(b) Assuming the data in L2, the legend corresponds to
the number of clock cycles required to execute a couple
of independent load and store. Lighter is better.

(c) Assuming the data in L2, the legend corresponds
to the number of clock cycles required to compute one
vector elementY (i)← X(i). Lighter is better.

(d) Assuming the data in L2, the legend corresponds
to the number of clock cycles required to compute one
vector elementY (i) ← Y (i) + a ×X(i). Lighter is
better.

Figure 1: Itanium 2 L2 Cache Level Behavior
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(a) A bank conflict occurs between two memory accesses if the two double FP elements are mapped to the
same bank, i.e., if the two addresses share the same bit fields{7,6,5,4}.
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(b) A Ld/St conflict occurs if the two accessed address share the same 14 low order bits.

Figure 2: Memory Operations Conflicts According to the Accessed Addresses

the non-precise memory disambiguation mechanism of Itanium 2. That is, if two memory operations (a store followed
by a load) access two distinct memory addresses that share the same 14 low-order bits, the hardware detects a false
memory dependence and triggers a sequential consistency mechanism. This is because in almost all modern ILP pro-
cessors, memory disambiguation does not perform a full address bits comparison: this hardware simplification causes
some independent memory operations to execute in serial, because the hardware does not detect their independence.
It is the period of the diagonal stripes (16Kb) that reveals that only the 14 low-order address bits are checked in-flight
by the hardware.

Both bank conflicts and non-precise memory disambiguation cause severe performance loss. Figure 2 summarizes
the two situations where independent memory operations areserialized by the processor. Current compilers do not
take into account this fact when they generate optimized code. Figures 1(c) and 1(d) show the performance of our
BLAS 1 kernels. The compiler generates a well optimized code(software pipelining, prefetching, loop unrolling), but
the peak performance is not reached even if the data is in L2. The situation in L3 is exactly the same, as shown in
Figure 3(a) and 3(b). Note that the grid pattern does not appear in the copy case, because the compiler did not unroll
the loop to statically schedule 4 loads in parallel.

5 Our Code Optimization Technique

Since we are dealing with vector loops, in which iterations are independent, most of our optimizations will be focused
on specific ordering of load and store instructions. Let us think about a way to avoid the dynamic conflicts between
memory operations. One of the ways to reduce these troubles is ld/st vectorization. This is not a novel technique, and
we do not aim to propose a new one; we only want to show that classical vectorization is a simple and yet elegant
solution to a difficult problem. We schedule memory access operations not only according to data dependences and
resources constraints, but also taking into account the address streams that they access. Since we do not know the
exact array offsets at compile time,3 we cannot determine precisely all memory locations that we access. However, we
can rely on their relative address locations as defined by thearrays. For instance, we can determine at compile time
the relative distance betweenX(i) andX(i+1), but not betweenX(i) andY(i) since array offsets are determined
at linking time in the case of static arrays, or at execute time in the case of dynamically allocated arrays. Thus, we are
sure at compile time that the different addresses of the elementsX(i), X(i+1), . . . ,X(i+k) do not share the same
lower-order bits. We can also check if they are not mapped to the same bank This fact enables us to group memory
operations accessing the same vector since we know their relative addresses. Such memory access grouping is similar

3However, we can fix the relative array offsets between arrays, for example, with array padding.
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(a) Assuming the data in L3, the legend corresponds
to the number of clock cycles required to compute one
vector elementY (i)← X(i). Lighter is better.

(b) Assuming the data in L3, the legend corresponds
to the number of clock cycles required to compute one
vector elementY (i) ← Y (i) + a ×X(i). Lighter is
better.

Figure 3: Itanium 2 L3 Cache Level Behavior
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to vectorization, except that only loads and stores are vectorized. Other operations, such as floating point operations,
are not vectorized, and hence they are left free to be scheduled at the fine-grain level to enhance performance. A more
formal explanation of our vectorization method is presented in the next section.

Our load instruction scheduling consists, first, of vectorizing the memory accesses, and then grouping together odd
and even elements. For instance, the code generated for the LxLy kernel looks as follows.

[Ld X(0), Ld X(2), Ld X(4), Ld X(6)]
[Ld X(1), Ld X(3), Ld X(5), Ld X(7)]
[Ld Y(0), Ld Y(2), Ld Y(4), Ld Y(6)]
...

With such a load reordering strategy, the loads can be grouped in packets of 4 elements, such that within a packet,
the addressed banks are distinct. The result of such a reordering is depicted in Figure 4(a) (compare it with Figure 1(a)).
The performance is perfectly stable, reaching the optimum of 0.5 cycle perLoad X(i) Load Y(i) pair. As can
be seen, all of the bank conflicts are eliminated.

Now, for the LxSy kernel, the strategy used for the LxLy kernel can no longer be applied because a maximum of
two stores can be issued per cycle and we cannot group 4 storesin the same packet. Therefore, our technique consists
in grouping 2 loads with 2 stores, as follows:

[Ld X(0), Ld X(2), St Y(0), St Y(2)]
[Ld X(1), Ld X(3), St Y(1), St Y(3)]
...

Note that in case of the existence of data dependences (BLAS 1kernels), we have to first shift the stores by a
constant factor (loop retiming), and then we group loads andstores as above. This scheduling technique completely
eliminates all the potential bank conflicts and the grid pattern disappears, as can be seen in Figure 4(b) vs. Figure 1(b).
However, we still have some diagonals of bad performance because of the non-precise memory disambiguation that
results in ld/st conflicts. Fortunately, the performance loss in these diagonals is now lower than in the original version
because we have reduced the conflict frequency between loadsand stores. Furthermore, they occur for particular com-
binations of Offset X and Y values: such cases are depicted bynarrow diagonals in the Offset X and Y plane.

In order to solve this last problem, two code variants differing by their software pipeline degrees are generated.
That is, we shift the store elements, via loop retiming, by a constant factor. This results in shifting the diagonal stripes
by the same factor. Hence, we have two codes that exhibit similar behavior, but the diagonals will be located in dif-
ferent (disjoint) areas in the Offset X and Y plane. Then, by inserting a switch that dynamically selects the best code
variant depending on the Offset X and Y values, all performance troubles can be eliminated. We applied this technique
to all our micro-benchmarks and the results were satisfactory. For instance, see Figures 4(c) and 4(d) (vs. Figures 1(c)
and 1(d)). As can be seen, all our BLAS 1 kernels run now at peakperformance for any array offset combination. The
same peak performance can be sustained for the L3 cache (see Figures 5(a) and 5(b) vs Figures 3(a) and 3(b)).

If we do not apply dynamic code selection and we decide to keeponly one version of the code, we still have an
important performance gain. Figure 6 shows the worst case performance gain, counted as the worst performance of
the whole original code against the worst performance of thewhole optimized code. The peak (best) performance of
the new codes are exactly the same as for the original ones (only the worst-case performance changes). Note that in
Figure 6, we do not report the gain obtained by the shifting (dynamic code selection) strategy, but only the performance
of the optimized codes even if they contain bad diagonal stripes.

The results presented above show that vectorizing ld/st operations is a robust code optimization technique. How-
ever, we must be aware that register pressure may increase, limiting our opportunity to produce long vector accesses.
A first naive approach would be to abstract the register file and the instruction set, i.e., we would consider that the 128
FP registers are organized ask vector registers of sizem: our ld/st vectorization would use thesek vector registers.
Next, we could perform a standard instruction scheduling and register allocation pass using these vector instructions
assumingk available registers. Finally, in a post pass, every instruction is expanded/replaced by a corresponding se-
quence ofm scalar instructions. Such a strategy has two problems: first, it goes beyond what is strictly required (only
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(a) Assuming the data in L2, the legend corresponds to
the number of clock cycles required to execute two in-
dependent load operations after vectorization. Lighter
is better.

(b) Assuming the data in L2, the legend corresponds to
the number of clock cycles required to execute a cou-
ple of independent loads and stores after vectorization.
Lighter is better.

(c) Assuming the data in L2, the legend corresponds
to the number of clock cycles required to compute
one vector elementY (i) ← X(i) after vectorization.
Lighter is better.

(d) Assuming the data in L2, the legend corresponds
to the number of clock cycles required to compute one
vector elementY (i)← Y (i)+a×X(i) after vector-
ization. Lighter is better.

Figure 4: Impact of ld/st Vectorization on L2 Behavior
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(a) Assuming the data in L3, the legend corresponds
to the number of clock cycles required to compute
one vector elementY (i) ← X(i) after vectorization.
Lighter is better.

(b) Assuming the data in L2, the legend corresponds
to the number of clock cycles required to compute one
vector elementY (i)← Y (i)+a×X(i) after vector-
ization. Lighter is better.

Figure 5: Impact of ld/st Vectorization on Itanium 2 L3 Behavior
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reordering of loads and stores is required, not of other FP operations). Second, ifR “vector” registers are consumed
during the allocation pass, this will turn intom × R scalar registers consumed. This is a loss of registers sincewe
should not restrict the FP operations to be vectorized.

The next section shows how we do an effective register allocation in a better way.

6 The impact on Register Pressure

In this section, we present our method that applies a cyclic register allocation in a loop that consists of arithmetic
expressions. We exploit fine grain parallelism within the operations by using the software pipelining technique. Fur-
thermore, we vectorize memory access operations in order toavoid bank and ld/st queue conflicts.

6.1 Vectorization Methods

To highlight the impact on register pressure caused by our ld/st vectorization, we use three micro benchmarks:

1. copy:Y (i)← X(i);

2. daxpy:Y (i)← Y (i) + a×X(i);

3. vsumspy:Y (i)← X(i)× Z(i) + T (i)

Our experiments are devoted to study the impact of ld/st vectorization on the register requirement versus the ini-
tiation intervalII of software pipelining. We study four variants (vectorization versions) for each micro benchmark.
Floating point operations are not vectorized, thus they arefree to be scheduled at the fine grain level. These vectoriza-
tion variants are as follows, where we give examples for the copy benchmark.

Variant 1 The loop is unrolled 4 times and the loads (resp. stores) are packed, i.e., each vector operation consists of
4 loads (resp. 4 stores).

[Ld X(i), Ld X(i+1), Ld X(i+2), Ld X(i+3)]
[St Y(i), St Y(i+1), St Y(i+2), St Y(i+3)]

Variant 2 The loop is unrolled 8 times and 8 loads (resp. 8 stores) are packed, i.e., each vector operation consists of
8 loads (resp. 8 stores).

[Ld X(i), Ld X(i+1), Ld X(i+2),..., Ld X(i+7)]
[St Y(i), St Y(i+1), St Y(i+2),..., St Y(i+7)]
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Variant 3 The loop is unrolled 8 times and every 4 loads (resp. stores) are packed, i.e., each vector operation consists
of 4 loads (resp. 4 stores). Each block of 4 loads (stores) accesses only even or odd elements.

[Ld X(i), Ld X(i+2), Ld X(i+4), Ld X(i+6)]
[Ld X(i+1), Ld X(i+3), Ld X(i+5), Ld X(i+7)]
[St Y(i), St Y(i+2), St Y(i+4), St Y(i+6)]
[St Y(i+1), St Y(i+3), St Y(i+5), St Y(i+7)]

Variant 4 The loop is unrolled 4 times. We group 2 loads with 2 stores, i.e., each vector operation consists of 2
loads and 2 stores that access even or odd elements. Since there are more load operations inside the unrolled loop
than stores, the remaining loads are grouped inside blocks of 4 loads that access even or odd elements. Note that the
distanced of the store operations can be either fixed or kept as a parameter.

[Ld X(i), Ld X(i+2), St Y(i-d), St Y(i-d+2)]
[Ld X(i+1), Ld X(i+3), St Y(i-d+1), St Y(i-d+3)]

In order to group loads and stores in a vectorized way, we directly work on the data dependence graph (DDG) of
the loop, as explained in the following section.

6.2 Ld/St Vectorization at the DDG Level

Let G = (V, E, δ, λ) a loop DDG that consists of:

• V is the set of the statements in the loop body. The instance of astatementu (an operation) in iterationi is
denoted byu(i).

• E is the set of precedence constraints (flow dependences or other serial constraints). Any edgee has the form
e = (u, v). The functionδ(e) is the latency of the edgee in terms of processor clock cycles andλ(e) is the
distance of edgee in terms of number of iterations.

If we want to vectorizek memory operationsu1, . . . , uk, we only have to add a cycleC (with a null latency and
distance) that joins these operations. Such cycle reflects the fact that the connected operations are constrained to be
executed in parallel, which is equivalent to forming a single vector instruction.

Note that, sometimes, we have to unroll the loopk times to vectorize thek operations considered. Figure 7 shows
an example of a vectorization that connects 4 loads and 4 stores to produce a vectorized copy (variant 1). Bold circles
denote the operations that write into FP registers and bold edges denote flow dependences through FP registers. The
added edges (not in bold) do not refer to any data dependence,but are inserted to restrict the scheduler so as to vector-
ize the memory operations. Figure 8 shows a vectorized copy with variant 4: as can be seen, each packets consists of
two loads connected with two stores. The stores are shifted with a factord. This factor can be either fixed, or can be
left free to be computed by our register allocator [26].

Now we can apply classical software pipelining and registerallocation on this modified DDG. We can use either
a post-pass register allocation after register-sensitivesoftware pipelining [9], or a pre-pass register allocationthat is
sensitive to software pipelining [26].

Our technique that handles ld/st vectorization at the DDG level is better than classical vector register allocation.
This is because it applies vectorization to only a subset of operations (memory access only). The non-vectorized op-
erations are free to be scheduled at the fine-grain level, so as to minimize the register requirement and to minimize the
initiation intervalII of software pipelining. Classical vector register allocation techniques, such as described in [2, 4],
would require to multiply the number of registers needed forthe original loop by the unrolling factor. This is because
they assume that all statements are vectorized.

The next section summarizes our experimental results.
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Ld X(i+2)

St Y(i+2)

Ld X(i)

St Y(i)

Ld X(i+1)

St Y(i+1)

Ld X(i+3)

St Y(i+3)

Ld X(i)

St Y(i)

unroll 4 times

(0, 0)

(0, 0)

(0, 0)(0, 0)(0, 0)

(0, 0)(0, 0) (0, 0)

Figure 7: Vectorized copy (Variant 1)

Ld X(i)

St Y(i)

Ld X(i+5) Ld X(i+7)

St Y(i+5−d) St Y(i+5−d)

Ld X(i+2)Ld X(i)

Ld X(i+3)Ld X(i+1)

Ld X(i+4) Ld X(i+6)

St Y(i+1−d) St Y(i+3−d)

St Y(i+6−d)St Y(i+4−d)St Y(i+2−d)St Y(i−d)

unroll 8 times

(0, 0)

(0, 0)

(0, 0) (0, 0)(6, d)(6, d)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)(0, 0)

(0, 0)

(0, 0)

(0, 0) (0, 0)

(0, 0) (0, 0)(0, 0) (6, d) (6, d) (6, d) (6, d)

(6, d)(6, d)

Figure 8: Vectorized Copy (Variant 4), with Shifted Stores
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6.3 Experiments with Register Allocation

In our framework, it turns out that the approach of [26] is more convenient for us than other existing techniques for
two main reasons:

1. The authors apply register allocation before software pipelining, and hence avoidable spill code is not intro-
duced. This is a major issue, since our target codes are memory-bound, and we should not introduce additional
memory operations;

2. The experiments conducted by the authors show that their technique is close to the optimal. Other existing
heuristics do not provide comparisons with an optimal register allocation.

Figures 9 to 12 plot our experiments for each vectorization variant. We plot the results of the non vectorized loops
(the original unrolled loops) in order to highlight the difference in terms of register requirements. Our experiments
show two main trends, depending on the vectorization technique.

Trend 1 is highlighted by the experiments of variants 1, 2 and 3. In all these codes, the vectorization is applied to
loads only, or to stores only. As can be seen, and as we expected from theoretical considerations, we have two main
conclusions:

1. such vectorization techniques do not alterMII 4;

2. the register requirement is slightly increased for the lower values ofII. However, the difference with the non
vectorized codes is not greater than the vectorization degree, i.e., if we vectorizek loads, then the difference in
terms of register requirement does not exceedk.

Trend 2 is highlighted by the experiments of variant 4. In all these codes, some loads and stores are packed in the
same vector instructions. We have two main conclusions:

1. Such vectorization techniques have a high impact onMII. In all experiments of variant 4, theMII increases
(see the starting point of each curve). Indeed, the vectorization introduces new critical cycles into the loops,
since we are connecting loads with stores into the same cycles. The value of the newMII depends on the
distanced of the stores: the higherd, the lowerMII.

2. The register requirement is substantially increased. This is because we vectorize loads together with stores, and
hence the lifetimes of variables are forced to be longer. Thedifference (in terms of register need) with the non
vectorized codes depends on the distanced of the stores: the higherd, the higher the register requirement.

7 Related Work and Discussion

In this paper, we used some micro-benchmarks to precisely highlight performance bugs in real ld/st queues and to ex-
plore the effectiveness of cache banks. Micro-benchmarking (i.e., reduced and simple test codes) has been extensively
used to characterize and analyze computer architectures. McCalpin [17] developed the Stream Benchmark whose
main goal is to precisely calculate main memory performance. Unfortunately, the various cache levels are not covered
by this benchmark. McVoyet al [18] introduced lmbench whose main goal is to detect performance bottlenecks.
Saavedraet al [23] developed a suite of micro kernels to extract basic performance numbers and used these numbers
to predict the performance of real applications. Iyeret al [14] extend the work of Abandahet al [1] to study the impact
of several architectural choices used in the HP V class and SGI O2000.

The aim of our micro-benchmarks is to study the importance ofthe memory address stream. This aspect is not
covered by existing micro-benchmarks. Furthermore, our approach is slightly different, in the sense that our final

4
MII denotes the standard minimal initiation interval, that is,the starting point of each curve in our figures.
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goal is to improve code generation within a compiler and not only to test an architecture. We demonstrate that cache
systems are sensitive not only to the classical miss ratio, but also to the ordering of the accessed addresses. Paiet al
[27] already noticed a similar phenomenon when they introduced the read miss clustering: by changing the temporal
distribution of cache misses (this was achieved by modifying the address streams), they improved code performance
on a Convex Exemplar architecture.

On the other hand, improving ld/st queues and memory disambiguation mechanisms is an issue of active research.
Chrysos and Emer [7] proposed store sets as a hardware solution for increasing the accuracy of memory dependence
prediction. Their experiments were conclusive by demonstrating that they can nearly achieve peak performance in the
context of large instruction windows. Parket al in [22] proposed an improved design of ld/st queues that scales better,
that is, they have improved the design complexity of memory disambiguation. Another similar hardware improvement
has been proposed by Sethumadhavanet al in [22]. A speculative technique for memory dependence prediction has
been proposed by Yoazet al in [28]: the hardware try to predict colliding loads, relying on the fact that such loads tend
to repeat their delinquent behavior. Another speculative technique devoted to superscalar processors was presented
by S. Onder [20]. The author presented a hardware mechanism that assigns the loads and stores to an appropriate
speculative level for memory dependence prediction.

All sophisticated techniques discussed above are hardwaresolutions. In the domain of scientific computation, the
codes are often regular, making it possible to achieve effective compile time optimizations. Thus, we do not require
such costly dynamic techniques. In this paper, we show that asimple ld/st vectorization is useful (in the context of
scientific loops) to solve the same problems tackled in [7, 22, 22, 28, 20]. Coupling our cheaper software optimiza-
tion technique with the actual non precise memory disambiguation mechanisms is less expensive than pure hardware
methods.

Note that many compilation techniques are dealing with instruction scheduling and software pipelining to address
the memory aliasing problem [11]. However, these schemes try to optimize loops withdynamicmemory dependencies,
that is, memory aliases that are not solvable at compile time. Thus, they propose to use some EPIC/IA64 features, such
as predication, to generate faster codes. In our case, we deal with perfect regular codes, where no memory aliasing
problem exists, since we are able to guarantee the independence of all memory operations. We seek a convenient way
to take benefit from this high potential ILP by considering weak dynamic memory disambiguation mechanisms; this
is the opposite approach of [11], since they rely on dynamic memory disambiguation to compensate weak static data
dependence analysis and ILP extraction.

Other code optimization methods may help to avoid the performance bugs shown in our experiments. For instance,
array padding [21] can be used to modify the relative array offsets, and it may be possible to guide it so that neither
ld/st nor bank conflicts can arise. However, such a techniqueis more convenient for cache miss reduction than for
eliminating ld/st conflicts: the problem discussed in this paper does not arise because data is not in the cache, or due
to any other data locality problem; our actual experiments are performed on fully cached data. Other customizing data
layout techniques that improve memory parallelism exist [29, 25] and need whole program analysis for data layout
computation. However, they try to eliminate bank conflicts and not ld/st queue collisions. Furthermore, we aim to
optimize scientific computation libraries alone, where arrays can be declared outside the functions, or can be dynami-
cally allocated. In this case, customizing data layout is useless.

An alternative approach would be to copy multiple arrays into a single array and perform the computation on this
single array, giving full control over the memory layout, but with the expense of extra overhead. Since we deal with
memory-bound loops, each additional memory operation by array copying increases the bottleneck.

Thus, we prefer to use ld/st vectorization because, first, itmoderates the negative effects of current memory address
disambiguation strategies which use a subset of the addressbits. Second, it is also convenient for bank conflicts. Third
and last, it is applicable to all BLAS 1 routines, independently from the data layout of the caller program. Vectorization
is a complex technology, and many studies have been performed on this topic [5, 16]. In our framework, the problem
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is simplified since we tackle fully parallel innermost loops. We only seek a convenient vectorization degree. Ideally,
the higher this degree, the higher the performance, but the higher the register pressure too. Thus, we are constrained
by the number of available registers. We showed in this paperhow we can modify the register allocation step by
combining ld/st vectorization at the data dependence graph(DDG) level without hurting ILP extraction by using our
previous theoretical framework [26].

8 Conclusion and Future Work

Memory-bound programs rely on advanced compilation techniques that try to keep data in the caches, hoping to fully
utilize a maximal amount of ILP on the underlying hardware functional units. Even in ideal cases when operands
are located in lower cache levels, and when compilers generate codes that can statically be considered as “good”,
our article demonstrates that this is not sufficient for sustaining peak performance. First, the memory disambiguation
mechanisms in the Itanium 2 processor do not perform comparisons on full address bits. If two memory operations
access two distinct memory locations but share the same 14 lower-order address bits, the hardware detects a false
dependence and triggers a serialization mechanism. Consequently, ld/st queues cannot be fully utilized to re-order the
independent memory operations.

Second, the banking structure of Itanium 2 processors may prevent us to execute independent loads in parallel.
If two elements are mapped to the same bank, independent loads are restricted to be executed sequentially, even if
enough functional units are available. This fact is a well known source of troubles, but current compilers still do not
take it into account (even with highly optimized, hand tunedlibraries provided by the vendors), and the generated
codes can be 2 times slower on Itanium 2.

We demonstrated that a memory instruction reordering basedon the classical (but robust) vectorization can get
rid of these performance bugs. The cost of such technique in terms of register need was analyzed. We have seen
that grouping loads together, and stores together, does nothave a major impact on register requirement. However,
when mixing some stores with loads into the same instructiongroup, the register pressure may substantially increase
depending on the distances of the stores. Thus, if not enoughregisters exist, we cannot generate a vectorized code.
However, an extensive set of experiments on random trees showed us that the 128 available registers of the Itanium 2
processor are sufficient to allocate a great majority of the trees of height 4 (without performance loss, i.e., without
increasingII).

The current vectorization strategy has been successfully implemented in our internal compiler devoted to optimize
scientific vector loops. This work will be extended into two major directions. First, more complex kernels involving
a larger number of arrays and more complex arithmetic operations will be studied. Although our preliminary results
on register allocation are promising, they need to be testedand analyzed in a more general framework. Second, main
memory access deserves a similar study. Already, some preliminary experiences have confirmed us with the good
performance capabilities of the vectorization strategy.
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