N
N

N

HAL

open science

An Efficient Memory Operations Optimization
Technique for Vector Loops on Itanium 2 Processors
Jalby William, Christophe Lemuet, Sid Touati

» To cite this version:

Jalby William, Christophe Lemuet, Sid Touati. An Efficient Memory Operations Optimization Tech-
nique for Vector Loops on Itanium 2 Processors. Concurrency and Computation: Practice and Expe-

rience, 2006, 18 (11), pp.1485-1508. 10.1002/cpe.1017 . hal-00130629

HAL Id: hal-00130629
https://hal.science/hal-00130629v1

Submitted on 28 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00130629v1
https://hal.archives-ouvertes.fr

An Efficient Memory Operations Optimization Technique for
Vector Loops on Itanium 2 Processors

William JALBY, Christophe IEMUET, Sid-Ahmed-Ali TOUATI
April 10, 2009

Abstract

To keep up with a large degree of instruction level paratal(ILP), the Itanium 2 cache systems use a complex
organization scheme: load/store queues, banking andeaténg. In this paper, we study the impact of these cache
systems on memory instructions scheduling. We demongtrateif no care is taken at compile time, the non-precise
memory disambiguation mechanism and the banking strucause severe performance loss, even for very simple
regular codes. We also show that grouping the memory opeain a pseudo-vectorized way enables the compiler to
generate more effective code for the Itanium 2 processae.iifipact of this code optimization technique on register
pressure is analyzed for various vectorization schemes.

keywords Performance Measurement, Cache Optimization, Memory #&Ogptimization, Bank Conflicts, Memory
Address Disambiguation, Instruction Level Parallelism.

1 Introduction

To satisfy the ever increasing data request rate of modecropriocessors, large multilevel memory hierarchies are
no longer the unique efficient solution [8]: computer arebis have to rely on more and more sophisticated mech-
anisms [10, 6], in particular, load/store queues (to detmopgmory access and arithmetic operations), banking and
interleaving (to increase bandwidth), prefetch mechagi@moffset latency).

One key mechanism to tolerate/hide memory latency is theobotder processing of memory requests. With
the advent of superscalar processors, the concept of toaellgueues has become a standard. The basic principle is
simple: consecutively issued memory requests are storadjireue and simultaneously processed. This allows the
requests with shorter processing time (in the case of caitfleth bypass requests with a longer processing time (for
example, in the case of a cache miss). Unfortunately, degperiels may exist between memory requests: for example,
aload followed by a store (or vice-versa) both addressirgtixthe same memory location have to be executed strictly
in order to preserve program semantics. This is done orilyti®y specific hardware mechanisms whose task is, first,
to detect memory request dependencies and, second (ifsaeggdo satisfy such dependencies. These mechanisms
are under high pressure in memory-bound programs, becaunserous “in-flight” memory requests have to be treated.

Another mechanism that tries to reduce the design complekdache systems is banking, that was already present
in the old vector machines such as Cray XMP [19]. Insteadediting a large number of ports, and thus increasing the
area complexity, caches are divided into multiple bankstvician then be accessed simultaneously. Consequently, if
some requested memory addresses are mapped to the saméhleaeknemory operations cannot be serviced at the
same time, even if they are independent (a sequence of reaidstance). This potential side effect may be hidden in
the presence of load-store queues with large capacity.

In order to satisfy this high request rate, memory depengldetection mechanisms are simplified at the expense of
accuracy and performance [15]. To be accurate, the mem@srdkence detection must be performed on full address

bits, which might be complex and expensive. In practice ctiraparison between two accessed memory locations is
carried out on a short part of the addresses: usually, a fevotder bits. If these low order bits match, the hardware
takes a conservative action, i.e., it considers that tHeafidresses match and triggers the procedure for a collision
(serialization of the memory requests).

In this paper, we use the Itanium 2 architecture [13, 12, 84 target hardware platform. First, because it offers
a large degree of instruction level parallelism (ILP) treadirectly manageable by the compiler. Second, because its
cache subsystem is complex: three cache levels, sopléstipeefetch capabilities, etc.

Due to the already complex nature of the problem, our studwiigently restricted to the L2 and L3 cache subsys-
tem' (excluding memory) and to simple vector codes (BLAS 1 typepy; Daxpy). Although they are simple, such
as BLAS 1 codes are fairly representative of memory addtesarss in scientific computing. The choice of scientific
computing as a target application area is motivated by tlelksnt match between scientific codes (easier to analyze
statically) and the Itanium 2 architecture (well designedeixploiting static information).

Even with this limited scope in terms of application codas, study reveals that performance behavior is rather
complex and hard to analyze on real processors. In partjdhl@ banking/interleaving structure of the L2 and L3
caches is shown to have a major interaction with the accestsess streams, potentially inducing large performance
loss. Furthermore, the non-precise memory disambiguatiechanism of Itanium 2 is responsible for bad dynamic
ILP utilization if no care is taken at compile time.

We demonstrate that vectorizing memory accesses allows gisttrid of most of the L2 and L3 cache bank con-
flicts. Unfortunately, this technique may increase regiptessure. Therefore, such impact on register pressure is
presented and evaluated.

Note that we do not aim to optimize whole complex applicatisuch as SPEC codes. This is because the po-
tential benefits of general code optimization may be smamtieut in real applications, for the reason that cache
performance is polluted by numerous side effects. Thanksit@approach that uses micro-benchmarks, the new ar-
chitectural insights are being highlighted.

Our article is organized as follows. Section 2 describeseoqerimental setup: hardware platform as well as
software platform (compiler and OS). In Section 3, our tagmdes and experimental methodology are presented.
Section 4 highlights the performance bugs caused by thepnecise memory disambiguation and the banking struc-
ture of the Itanium 2 cache levels. In Section 5, we proposemimization strategy for memory accesses based
on a pseudo-vectorization. We give our experimental redoltvalidate the effectiveness of such a method. Sec-
tion 6 studies the impact of the Id/st vectorization on reggipressure. Section 7 presents related work in the field of
micro-benchmarking and improving ld/st queues and memmgndbiguation mechanisms. Finally, some concluding
remarks and directions for future work are given.

2 Experimental Setup

The machine used in our experiments is a real uniprocesmoiuih 2 based system, equipped with a 900MHz pro-
cessor and 3GB memory. The general processor architea@aren{eresting combination of VLIW and advanced
speculative mechanisms) is described in [12, 24, 3, 13].IEmum 2 processor offers a wide degree of parallelism:

e six general purpose ALUs, two integer units, and one shift un

e the data cache unit contains four memory ports enablingwacgeof either four loads requests or two loads and
two stores requests in the same clock cycle;

10n Itanium 2, L1 cannot hold FP operands.

o two floating point multiply-add units allowing the processo execute two floating point multiply-add opera-
tions per cycle

e six multimedia functional units;
e three branch units, etc.

All the computational units are fully pipelined, so eachdtianal unit (FU) can accept one new instruction per
clock cycle (in the absence of stalls). Instructions areigeal together in blocks of three instructions (called a lbeind
Up to two bundles can be issued per cycle. Due to the wealtbraftional units, a rate of six instructions executed
per cycle can be sustained.

In our test machine, the caches are organized in three leiglérestricted by the Itanium 2 design not to store
floating point data), L2 (unified, 256 KB, 8 way associativeteback allocate, 128 bytes cache line), and L3 (unified,
1.5 MB, 12 way associative).

The L2 is capable of supporting up to four memory accessesyme: either four loads, or two loads and two
stores. The L2 cache is organized in 16 banks, with an irgeirig of 16 bytes, that is, a bank can contain two double
FP elements. For instance, the addresses from 0 to 15 aredoitabank 0, and those from 16 to 31 in bank 1,
et®. Thus, two double FP elements that are 256 bytes apart rasicessarily in the same bank. In other words,
two memory elements reside in the same bank if their addfes® she same bit fields7,6,5,4. Finally, the cache
interface (for both L1 and L2) is equipped with a Id/st quell@xng cache hits to bypass cache misses (provided that
the addresses are correctly disambiguated).

In addition to the standard load and store instructions atifig point operands (single and double precision), the
Itanium instruction set offers a load floating pair instiantthat is capable of loading 16 bytes at once, provided that
the corresponding accessed memory address is aligned ohyelBoundary.

Our test machine is running Linux 1A-64 Red Hat 7.1 based en?tld.18 smp kernel. The page size used by the
system is 16 KB and we use the following compiler: Intel C++#iler Version 7.0 Beta, Build 20020703. Although
various compiler options have been tested for our simple 8l1Akernels, it was found that the combination of -O3
and -restrict was the most powerful. These compiler flagsnalls to use most of the advanced features of the Ita-
nium 2 architecture: software pipelining, prefetch instrons, predication and rotating registers. In order t@hethe
peak performance, the “-restrict” option is essential losedt let the compiler assume that distinct arrays are pgjnt
to disjoint memory regions, therefore allowing it to perfoa full static reordering of loads and stores. The Fortran
compiler was also tested but, for our simple loops, the caterpted was almost identical to the one obtained with
the C language.

Besides the compiler, our hand optimized versions wereastgpared to the Intel optimized library MKL 6.0.

All our experiments have been conducted with the perfmolkida order to use the various hardware performance
counters. Thanks to these hardware counters, we were alpleetisely compute the number of cycles needed to
execute a program fraction. This is done by accessing thaapegisterar.itc. Also, other hardware counters allow
us to systematicly check the validity of all our experimerisr instance, we can observe that the TLB miss ratio is
almost zero. Also, we can check the data location (in whiainedevel the data reside) by analyzing the miss and hit
ratio of each cache level, etc. In other words, we can enfiatente measured what we desired to measure, and that
all our experiments were correct.

3 Target Codes and Performance M easurement

The BLAS 1 kernels are simple vector loops. In this artidhe, detailed results are given for two of them:

2Remember that the accessed addresses are multiples ot8xgngse double FP data.

1. copy:Y (i) «— X(i);
2. daxpy:Y (i) « Y (i) +a x X(i);

All the FP arrays are in double precision (8 bytes FP elemefitsat is, X (i) denotes thé'" element of the array .

In our experiments, the array layout in the virtual memorgiepis tightly controlled. In particular, the impact of the
starting address of each arrayandY is studied in depth. To achieve this goal, the parameterseOX (respectively,
Offset Y) are introduced, according to the following redeis:

e Virtual address of X(i)= Offset X + &i;
e Virtual address of Y(i)= Offset Y + &i;

In our article, the offset of an array is defined as its re@gtarting address to a page boundary. Changing the
values of Offset X and Offset Y allows one to change the L2 aBdank access pattern. Furthermore, it permits to
change the accessed address streams in order to checklityecdithe hardware to fully detect independent memory
operations. We will see that the hardware does not reactsdmiild do, even if we execute a simple kernel of inde-
pendent memory operations.

For example, let us assume that for the Copy kernel, the additeeams of X and Y are interleaved, ileoad
X(0),Store Y(0),Load X(1),Store Y(1),etc. Then, if both Offset X and Offset Y are equal modulo 256,
the pair of load and store will systematically hit the samekd@r every iteration.

The termcomputation sizés used to denote the total number of distinct elements afyaXraccessed during the
whole execution of the loop. The impact of the computatiae svas not directly studied: all of the problems arising
with very short computation size were not tackled.

In our study, we focus on steady state behavior, using adypmmputation size of at least 1440 (corresponding
to the computation of 1440 elements), which is large enoogteach peak performance while still allowing us to
keep the operands in the L2 cache. If we want to lock the ojplsramL3, we choose a larger computation size while
flushing the data from L2. That is, when we experiment withltBecache, we ensure that no data can be keptin L2,
while keeping all the data in L3.

The measurements were performed on a stand-alone systepeéich benchmark code was the unique running
user application), only one measurement being performadiate. All timing measurements were performed using
themov ar.itcinstruction to read the cycle counter of the processoffitsel

Thanks to the perfmon toolkit, reading the various cachesmainters allows us to check, first, our assumptions
that operands were effectively kept in the desired cachel,lend second, that the penalties associated with DTLB
remained negligible.

All of the performance numbers presented are normalized,the measurements correspond to the average num-
ber of clock cycles needed to compute one vector elemenedBHAS 1 results. For instance, in the case of Daxpy,
it is the average number of cycles needed to perform oneauictsdnY (i) < Y (¢) + a x X ().

One of the major points of focus in this paper is the impactradyaoffsets on performance. Therefore, 2D plots
(isosurface) will be displayed. The X-axis (resp. Y-axisjresponds to the offset of the X array (resp. Y array).
A geographiccolor code is used: dark colors correspond to the worst padace (highest number of clock cycles)
while light colors correspond to the best performance (Evmeimber of clock cycles). These 2D plots are very useful
to qualitatively understand the spatial nature of the dyicahenomena.

After explaining our experimental configuration, the neattion presents our experimental results.

Offset Y | Offset X | Accessed Banks | Performance in cycle$

OffY=0 | Off X=0 | 0 0 0 0 (quadruple conflicts on bank 0) 1
Off Y=0 | Off X=8 | 0 0 1 O (triple conflicts on bank 0) 1
Off Y =0 | Off X=64 | 8 0 8 0 (two double conflicts on bank 0 and 8D.9
Off Y =0 | Off X=72 | 8 0 8 0 (double conflicts on bank 0) 0.9
Off Y=8 | Off X=0 | 0 0 O 1 (triple conflicts on bank 0) 1
OffY=8 | Off X=8 | 0 0 1 1 (two double conflicts on bank 0 and 1.9
Off Y =8 | Off X=64 | 8 0 8 1 (double conflicts on bank 8) 0.9
Off Y =8 | Off X=72 | 8 0 9 1 (no conflict) 0.5

Table 1: Bank Conflicts on the Itanium 2 Processor

4 Itanium 2 Cache System Behavior

To illustrate the specific problems occuring due to the liamR cache systems, we use two simple kernels (which
are the simplest codes that put stress on the cache systé@imsy. only consist of a burst of independent memory
operations:

1. the first one, calletlxLy, corresponds to a loop in which two arrays X and Y are regylacicessed through
loads only:Load X(0),Load Y(0),Load X(1),Load Y(1),Load X(2),Load Y(2), etc.

2. the second one, callé&Sycorresponds to a loop in which one array X is accessed thrmagis, while array Y
is accessed through storésoad X(0),Store Y(0),Load X(1),Store Y(1),Load X(2),Store
Y(2), etc.

As can be seen, these micro-benchmarks contain only indepémemory operations and do not carry out any
useful computation. They are free from any data dependence.

For the simple LxLy kernel, a naive code generation wouldobaternate the access between array X andoad
X(0),Load Y(0),Load X(1),Load Y(1),Load X(2),Load Y(2), etc. Such a code (callddterleaved
LxLy) results in a large number of bank conflicts depending on tfige©X and Y values. The experimental results
(Figure 1(a)) perfectly describe this problem.

Theoretically, we expect a peak performance of 0.5 cyclgetform a pair of load operations, assuming that the
data is in L2 and performing up to 4 loads per cycle. Howevegan be seen in Figure 1(a), we get only a few points
of peak performance depending on array offsets (light gpit/e can observe two complex bad behavior patterns:

1. three diagonals separated by 256 bytes, where the pexfm@rdegrades to 1 cycle instead of 0.5;

2. agrid pattern can be clearly observed (sometimes oviéewidy the diagonals). On the “good” light points, the
performance is maximal (0.5 cycles). In the other points,garformance degrades to 0.9 cycles.

Both phenomena can be attributed to bank conflicts causelebinterleaved LxLy micro-kernel. Table 1 summa-
rizes the main bank conflicts. In this table, only the 4 firstmoey access are displayed, the other ones can be easily
deduced from this initial pattern. The 256 bytes period ef diagonal stripes in Figure 1(a) is due to the fact that
bank allocation is periodic with a 256 bytes period, i.eQ ®lements of the same array which are 256 bytes apart are
allocated to the same bank.

Another micro-benchmark has been used, namely, LxSy. Inifas to LxLy, except that it performs stores on
Y elements instead of loads. The performance of this codesayed in Figure 1(b). Again, we get two complex
bad behavior patterns: three diagonal stripes appearxsdieaily each 16Kb and a grid pattern can be clearly observed

The grid pattern is due to bank conflicts as was the case foy.Ll{bwever, the three diagonals of bad performance
are due to another hardware phenomena, in which the effecggregated with bank conflicts. They are caused by

Interleaved LxLy (L2) Interleaved LxSy (L2)

.}1.4 51z .}1.4 _si2
1.53-14 L 1.3-14 L
1.2-1.3 - L 445 1.2-13 L5
11-12 : 11-12 .
1-1.1 r38d 1-1.1 -3Ed
0.9-1 i o 0.3-1 I @
0.8-0.9 0=, 0.8-0.3 (705,
0.7-0.8 Lzss 0.7-08 L 2ss
0.6-0.7 [z 0.6-0.7 [= >
0.5-0.6 Lis2 @ 0.5-0.6 -FQE’E

.rgao -IE‘SO
:54 :6‘4
O G4 2R 192 250 320 384 448 512 QG4 25 182 250 320 384 448 512
Offset X (Bytes) Offset ¥ (Bytes)

(a) Assuming the data in L2, the legend correspofijsAssuming the data in L2, the legend corresponds to
to the number of clock cycles required to execute the number of clock cycles required to execute a couple

independent load operations. Lighter is better. of independent load and store. Lighter is better.
Copy (L2, Compiler v&.0) Daxpy (L2, Compiler ¥7.0)
.>2.DU 4 5] =2.00
W1.3-2.00 1.9-2.00
Wi18-13 448 1.6-139
mi7-1a 1.7-1.86
W160-17 384 1.60-1.7
1.5-1.60 & 1.5-1.60
.1.4-1_5 R 14-15
1.3-14 255 = 1.3-14
1.2-1.3 = 1.2-1.3
11-12 1z Z 11-12
1-11 “O: 1-1.1
0.9-1 128 0.9-1
0.8-0.9 0.8-049
0.7-08 & 07-08
0.6-0.7 0.6-0.7
L e R e pEpup
O B4 128 192 256 320 384 445 512 O 54 125 192 255 320 384 3 512
Offset X (Bytes) Offzet ¥ (Bytes)

(c) Assuming the data in L2, the legend correspoftjsAssuming the data in L2, the legend corresponds

to the number of clock cycles required to compute tméhe number of clock cycles required to compute one

vector element’ (i) < X (7). Lighter is better. vector element’ (i) « Y (i) + a x X (4). Lighter is
better.

Figure 1: Itanium 2 L2 Cache Level Behavior

bank position inside
number the bank

Memory

Address l ‘ IXXXX‘ l IOOOI

63 8 7654 3210

(a) A bank conflict occurs between two memory accesses ifvibedbuble FP elements are mapped to the
same bank, i.e., if the two addresses share the same bit {iglel$, 4.

The bit fields used by the
memory disambiguation mechanism

Memory

Address l X X X000 |

63 14 13 0
(b) A Ld/St conflict occurs if the two accessed address sherasame 14 low order bits.

Figure 2: Memory Operations Conflicts According to the AsezsAddresses

the non-precise memory disambiguation mechanism of ltar@uThat is, if two memory operations (a store followed
by a load) access two distinct memory addresses that shausathe 14 low-order bits, the hardware detects a false
memory dependence and triggers a sequential consisterayamiem. This is because in almost all modern ILP pro-
cessors, memory disambiguation does not perform a fullesfdits comparison: this hardware simplification causes
some independent memory operations to execute in serigduise the hardware does not detect their independence.
Itis the period of the diagonal stripes (16Kb) that revela bnly the 14 low-order address bits are checked in-flight
by the hardware.

Both bank conflicts and non-precise memory disambiguatose severe performance loss. Figure 2 summarizes
the two situations where independent memory operationsenalized by the processor. Current compilers do not
take into account this fact when they generate optimizea cddgures 1(c) and 1(d) show the performance of our
BLAS 1 kernels. The compiler generates a well optimized dgdé&ware pipelining, prefetching, loop unrolling), but
the peak performance is not reached even if the data is in b2 sltuation in L3 is exactly the same, as shown in
Figure 3(a) and 3(b). Note that the grid pattern does notapipethe copy case, because the compiler did not unroll
the loop to statically schedule 4 loads in parallel.

5 Our Code Optimization Technique

Since we are dealing with vector loops, in which iteratioresiadependent, most of our optimizations will be focused
on specific ordering of load and store instructions. Let uskilabout a way to avoid the dynamic conflicts between
memory operations. One of the ways to reduce these troubldsst vectorization. This is not a novel technique, and
we do not aim to propose a new one; we only want to show thasicksvectorization is a simple and yet elegant
solution to a difficult problem. We schedule memory accessaions not only according to data dependences and
resources constraints, but also taking into account theeaddstreams that they access. Since we do not know the
exact array offsets at compile tiriaye cannot determine precisely all memory locations thatevess. However, we
can rely on their relative address locations as defined bwttays. For instance, we can determine at compile time
the relative distance betwee(i) andX(i +1), but not betweeX(i) andY(i) since array offsets are determined
at linking time in the case of static arrays, or at executetimthe case of dynamically allocated arrays. Thus, we are
sure at compile time that the different addresses of theeesX(i), X(i +1),...,X(i +k) do not share the same
lower-order bits. We can also check if they are not mappetiecsme bank This fact enables us to group memory
operations accessing the same vector since we know thefivehddresses. Such memory access grouping is similar

SHowever, we can fix the relative array offsets between arfaysxample, with array padding.

Copy (L3, Compiler v5.0)

EEEEN
e
]
(=N =1

iy

oo o oo
1

i iy

1

Ma

— 1

[=J N
My G
=

oo BN o

Q84 125 182 25E6 320 384 448 512
Offset ¥ (Bytes)

(a) Assuming the data in L3, the legend corresponds
to the number of clock cycles required to compute one
vector element’ (7) < X (¢). Lighter is better.

Daxpy (L3, Compiler ¥7.0)

=23 - 512
2d-2a 1 n alin s | -l
23-z4 Ternanal TR g
2.20-2.3 = = e
z10-2.200 = B = L 582
Z-2.10 m | mmmmma | _.- o
19-2 = — - —320*;
1.6-1.3 toemnd = =
17-18 | s T g
1.6-1.7 e B s
15-16 | = & [T
14-15 [l i 708~
1.3-14 | o S ot
1.2-1.3 I = n s _—:E‘\f
11-12 [. . "

Offset X (Bytas)

(b) Assuming the data in L3, the legend corresponds
to the number of clock cycles required to compute one
vector elemenl’ (i) — Y () + a x X (¢). Lighter is
better.

Figure 3: Itanium 2 L3 Cache Level Behavior

to vectorization, except that only loads and stores areovizgetd. Other operations, such as floating point operations
are not vectorized, and hence they are left free to be scaddtlthe fine-grain level to enhance performance. A more
formal explanation of our vectorization method is presdiitethe next section.

Our load instruction scheduling consists, first, of veaing the memory accesses, and then grouping together odd
and even elements. For instance, the code generated foktlyekernel looks as follows.

[Ld X(0), Ld X(2), Ld X(4), Ld X(6)]
[Ld X(1), Ld X(3), Ld X(5), Ld X(7)]
[Ld Y(0), Ld Y(2), Ld Y(4), Ld Y(6)]

With such a load reordering strategy, the loads can be gbimpeackets of 4 elements, such that within a packet,
the addressed banks are distinct. The result of such a rogde depicted in Figure 4(a) (compare it with Figure 1(a))
The performance is perfectly stable, reaching the optimtith®cycle pel,oad X(i) Load Y(i) pair. As can
be seen, all of the bank conflicts are eliminated.

Now, for the LxSy kernel, the strategy used for the LxLy kérremn no longer be applied because a maximum of
two stores can be issued per cycle and we cannot group 4 stdtessame packet. Therefore, our technique consists
in grouping 2 loads with 2 stores, as follows:

[Ld X(0), Ld X(2), St Y(0), St Y(2)]
[Ld X(1), Ld X(3), St Y(1), St Y(3)]

Note that in case of the existence of data dependences (BLKe&nkls), we have to first shift the stores by a
constant factor (loop retiming), and then we group loadssintes as above. This scheduling technique completely
eliminates all the potential bank conflicts and the gridgrattisappears, as can be seen in Figure 4(b) vs. Figure 1(b).
However, we still have some diagonals of bad performancausscof the non-precise memory disambiguation that
results in ld/st conflicts. Fortunately, the performanaslm these diagonals is now lower than in the original versio
because we have reduced the conflict frequency betweendoadsores. Furthermore, they occur for particular com-
binations of Offset X and Y values: such cases are depictethbhpw diagonals in the Offset X and Y plane.

In order to solve this last problem, two code variants diffgrby their software pipeline degrees are generated.
That is, we shift the store elements, via loop retiming, bpastant factor. This results in shifting the diagonal ssip
by the same factor. Hence, we have two codes that exhibitssilmehavior, but the diagonals will be located in dif-
ferent (disjoint) areas in the Offset X and Y plane. Then,rerting a switch that dynamically selects the best code
variant depending on the Offset X and Y values, all perforoggtnoubles can be eliminated. We applied this technique
to all our micro-benchmarks and the results were satisfgckor instance, see Figures 4(c) and 4(d) (vs. Figures 1(c)
and 1(d)). As can be seen, all our BLAS 1 kernels run now at pedlormance for any array offset combination. The
same peak performance can be sustained for the L3 cachei¢geeds(a) and 5(b) vs Figures 3(a) and 3(b)).

If we do not apply dynamic code selection and we decide to kedpone version of the code, we still have an
important performance gain. Figure 6 shows the worst cadenpeance gain, counted as the worst performance of
the whole original code against the worst performance ofathele optimized code. The peak (best) performance of
the new codes are exactly the same as for the original onéstf@worst-case performance changes). Note that in
Figure 6, we do not report the gain obtained by the shiftingnénic code selection) strategy, but only the performance
of the optimized codes even if they contain bad diagongiesri

The results presented above show that vectorizing Id/statipas is a robust code optimization technique. How-
ever, we must be aware that register pressure may increéaustingd our opportunity to produce long vector accesses.
A first naive approach would be to abstract the register fiktae instruction set, i.e., we would consider that the 128
FP registers are organized Rvector registers of sizex: our ld/st vectorization would use thekevector registers.
Next, we could perform a standard instruction scheduling) register allocation pass using these vector instructions
assuming: available registers. Finally, in a post pass, every insimads expanded/replaced by a corresponding se-
guence ofn scalar instructions. Such a strategy has two problems; ifigghes beyond what is strictly required (only

Vector Lxly (L2) Vector LxSy (L2)

=14 512 =1.4 51z
1.3-14 L 1.3-14 |
1.2-13 L] 1.2-13 |-t
1.1-1.2 F 11-1.2 -
1-11 384 _ 1-11 35
0.9-1 I @ 0.9-1 [@
0.5-0.9 0=, 0.8-0.9 (7205,
0.7-0.48 _256‘“_’ 0.7-048 _256\"_"
0.6-0.7 L i 0.6-0.7 L i
0.5-0.6 Loz @ 0.5-0.6 | yogz @
L = |
.rgao -IE‘SO
:54 :6‘4
O G4 128 192 256 320 384 448 512 Q84 125 182 25E6 320 384 448 512
Offset X (Bytes) Offset ¥ (Bytes)

(a) Assuming the data in L2, the legend correspond®)oAssuming the data in L2, the legend corresponds to
the number of clock cycles required to execute twothre number of clock cycles required to execute a cou-
dependent load operations after vectorization. Ligpterof independent loads and stores after vectorization.

is better. Lighter is better.
Vector Copy (L2) Vector Daxpy (L2)

| =200 12 |-=200 &1z

W 19-2.00 L W19-2.00 L

mi5-139 L qas mi13-19 | s

mi7-1a 3 Wi7-18 3

W 1.60-1.7 384 (m1.60-1.7 384 _
1.5-1.60 [oon & 1.5-1.60 P
14-15 :3205 14-15 :sea%
1.3-14 Loz = 1.3-14 [oo —
12-13 e 12-13 >
11-12 Lroz ' 11-1.2 L7ge @
1-11 F i= 1-1.1 I =
0.9-1 Lreg ™ 0.9-1 708~
0.8-04 F 0.5-04 -
0.7-0.3 & 07-04 &4
06-0.7 (o 0E6-07 lo

0 64 125 192 255 320 354 448 512 O 64 125 192 256 520 354 448 512
Offset X (Bytes) Offset X (Bytes)

(c) Assuming the data in L2, the legend correspoftjsAssuming the data in L2, the legend corresponds
to the number of clock cycles required to comptdehe number of clock cycles required to compute one
one vector element’(:) < X (¢) after vectorizationvector element’ (i) «— Y (i) + a x X (4) after vector-
Lighter is better. ization. Lighter is better.

Figure 4: Impact of ld/st Vectorization on L2 Behavior

10

Vector Copy (L3)

[T 1111
=t 0 2 T A A T I G

et

=

T

2

—Prwinm ~mw) e s ™Y
Moo 1o

a1 AR
(=T an N VI

oo B in ;Do
.
0
=]

O &4 125 152 256 320 3684 448 512

Offset X (Bytas)

(&) Assuming the data in L3, the legend corresponds
to the number of clock cycles required to compute
one vector element’ (i) < X (z) after vectorization.
Lighter is better.

Vector Daxpy (L3)
.}2.5 _512
W:4-25 [
Wzi-24 i
WZz20-23 3
m2i0-2.z20 384
Toz [920 5.
1.8-13 [ee =
17-18 [~ =
16-17 Lyoz @
1.5-16 -5
14-135 REC]
1.3-14 3
1.2-1.3 54
s e

o G4 T2F 182 256 320 384 448 512
Offset ¥ (Bytes)

(b) Assuming the data in L2, the legend corresponds
to the number of clock cycles required to compute one
vector element’ (i) < Y (i) + a x X (4) after vector-
ization. Lighter is better.

Figure 5: Impact of Id/st Vectorization on Itanium 2 L3 Belav

11

100%:
90% 1
80% 1
70% 1
60% 1 5455%

] Speedup when data reside in |
o Speedup when data reside in |

50% -
40% 7
30% A
20% A
10% -

40.91%
33.33%

Speedup (%)

28.57%

18.18% 18.75%

LxLy LxSy Copy Daxpy

Micro—-Benchmarks

Figure 6: Worst-Case Performance Gain on the Itanium 2 BemdHigher is Better)

reordering of loads and stores is required, not of other F&taions). Second, iR “vector” registers are consumed
during the allocation pass, this will turn inte x R scalar registers consumed. This is a loss of registers silece
should not restrict the FP operations to be vectorized.

The next section shows how we do an effective register dilmean a better way.

6 Theimpact on Register Pressure

In this section, we present our method that applies a cyeligster allocation in a loop that consists of arithmetic
expressions. We exploit fine grain parallelism within the@gtions by using the software pipelining technique. Fur-
thermore, we vectorize memory access operations in orderdiml bank and Id/st queue conflicts.

6.1 Vectorization Methods

To highlight the impact on register pressure caused by dst \&ctorization, we use three micro benchmarks:
1. copy:Y (i) «— X (i);
2. daxpy:Y (i) « Y (i) +a x X(i);
3. vsumspyY (i) «— X (i) x Z(i) + T(4)

Our experiments are devoted to study the impact of Id/storexation on the register requirement versus the ini-
tiation intervall I of software pipelining. We study four variants (vectoripatversions) for each micro benchmark.
Floating point operations are not vectorized, thus theyfraeto be scheduled at the fine grain level. These vectoriza-
tion variants are as follows, where we give examples for thygydenchmark.

Variant 1 The loop is unrolled 4 times and the loads (resp. stores)ackqul, i.e., each vector operation consists of
4 loads (resp. 4 stores).

[Ld X(i), Ld X(i+1), Ld X(i+2), Ld X(i+3)]
[St Y(i), St Y(i+1), St Y(i+2), St Y(i+3)]

Variant 2 The loop is unrolled 8 times and 8 loads (resp. 8 stores) arkguiai.e., each vector operation consists of
8 loads (resp. 8 stores).

[Ld X(i), Ld X(i+1), Ld X(i+2),..., Ld X(i+7)]
[St Y(i), St Y(i+1l), St Y(i+2),..., St Y(i+7)]

12

Variant 3 Theloopis unrolled 8 times and every 4 loads (resp. storeg)@cked, i.e., each vector operation consists
of 4 loads (resp. 4 stores). Each block of 4 loads (store®sses only even or odd elements.

[Ld X(i), Ld X(i+2), Ld X(i+4), Ld X(i+6)]
[Ld X(i+1), Ld X(i+3), Ld X(i+5), Ld X(i+7)]
[St Y(i), St Y(i+2), St Y(i+4), St Y(i+6)]
[St Y(i+1), St Y(i+3), St Y(i+5), St Y(i+7)]

Variant 4 The loop is unrolled 4 times. We group 2 loads with 2 stores, each vector operation consists of 2
loads and 2 stores that access even or odd elements. Simeeatkemore load operations inside the unrolled loop
than stores, the remaining loads are grouped inside bldckdoads that access even or odd elements. Note that the
distancel of the store operations can be either fixed or kept as a paeamet

[Ld X(i), Ld X(i+2), St Y(i-d), St Y(i-d+2)]
[Ld X(i+1), Ld X(i+3), St Y(i-d+1), St Y(i-d+3)]

In order to group loads and stores in a vectorized way, wectlrevork on the data dependence graph (DDG) of
the loop, as explained in the following section.

6.2 Ld/St Vectorization at the DDG L evel
LetG = (V, E, 4, \) aloop DDG that consists of:

e V is the set of the statements in the loop body. The instancestdtament; (an operation) in iteration is
denoted byu(i).

e F is the set of precedence constraints (flow dependences er sghial constraints). Any edgehas the form
e = (u,v). The functiond(e) is the latency of the edgein terms of processor clock cycles an¢e) is the
distance of edge in terms of number of iterations.

If we want to vectorizés memory operations, . .., ux, we only have to add a cycl@ (with a null latency and
distance) that joins these operations. Such cycle reflaetéact that the connected operations are constrained to be
executed in parallel, which is equivalent to forming a séngdctor instruction.

Note that, sometimes, we have to unroll the Igojimes to vectorize thé operations considered. Figure 7 shows
an example of a vectorization that connects 4 loads and dsstorproduce a vectorized copy (variant 1). Bold circles
denote the operations that write into FP registers and liddge® denote flow dependences through FP registers. The
added edges (not in bold) do not refer to any data dependeutcare inserted to restrict the scheduler so as to vector-
ize the memory operations. Figure 8 shows a vectorized cadthywariant 4: as can be seen, each packets consists of
two loads connected with two stores. The stores are shiftddanfactord. This factor can be either fixed, or can be
left free to be computed by our register allocator [26].

Now we can apply classical software pipelining and regiatiercation on this modified DDG. We can use either
a post-pass register allocation after register-sensstbfeware pipelining [9], or a pre-pass register allocatibat is
sensitive to software pipelining [26].

Our technique that handles Id/st vectorization at the DD@lles better than classical vector register allocation.
This is because it applies vectorization to only a subsepefations (memory access only). The non-vectorized op-
erations are free to be scheduled at the fine-grain level so minimize the register requirement and to minimize the
initiation intervall I of software pipelining. Classical vector register alldoatechniques, such as described in [2, 4],
would require to multiply the number of registers neededffieroriginal loop by the unrolling factor. This is because
they assume that all statements are vectorized.

The next section summarizes our experimental results.

13

Figure 7: Vectorized copy (Variant 1)

(6,d) ©, 0)

0) (6,d)
@ unroll 8 times

(o
(o 0)
e —

@ o, 0) . (©.9)

\(O’ 0 [6d 69 © 0)‘ (o 0 |69 G o, o)
X (0, 0) K (O 0) !

- -—
D-->

N

o
@
i
i

Figure 8: Vectorized Copy (Variant 4), with Shifted Stores

6.3 Experimentswith Register Allocation

In our framework, it turns out that the approach of [26] is mopnvenient for us than other existing techniques for
two main reasons:

1. The authors apply register allocation before softwapelming, and hence avoidable spill code is not intro-
duced. This is a major issue, since our target codes are nyelnoamd, and we should not introduce additional
memory operations;

2. The experiments conducted by the authors show that thefimique is close to the optimal. Other existing
heuristics do not provide comparisons with an optimal rtegiallocation.

Figures 9 to 12 plot our experiments for each vectorizatimmant. We plot the results of the non vectorized loops
(the original unrolled loops) in order to highlight the difence in terms of register requirements. Our experiments
show two main trends, depending on the vectorization teghi

Trend 1 is highlighted by the experiments of variants 1, 2 and 3. Inhese codes, the vectorization is applied to
loads only, or to stores only. As can be seen, and as we expiota theoretical considerations, we have two main
conclusions:

1. such vectorization techniques do not akéf [4;

2. the register requirement is slightly increased for thedovalues ofl I. However, the difference with the non
vectorized codes is not greater than the vectorizationaedegre., if we vectorizé loads, then the difference in
terms of register requirement does not excked

Trend 2 is highlighted by the experiments of variant 4. In all thesdes, some loads and stores are packed in the
same vector instructions. We have two main conclusions:

1. Such vectorization techniques have a high impact/of. In all experiments of variant 4, th&/ /1 increases
(see the starting point of each curve). Indeed, the ve@toz introduces new critical cycles into the loops,
since we are connecting loads with stores into the same sydlae value of the new/ /I depends on the
distancel of the stores: the highet, the lowerM I 1.

2. The register requirement is substantially increaseds iBlbecause we vectorize loads together with stores, and
hence the lifetimes of variables are forced to be longer. difierence (in terms of register need) with the non
vectorized codes depends on the distahoéthe stores: the highef; the higher the register requirement.

7 Related Work and Discussion

In this paper, we used some micro-benchmarks to precisghlight performance bugs in real Id/st queues and to ex-
plore the effectiveness of cache banks. Micro-benchmgitkie., reduced and simple test codes) has been extensively
used to characterize and analyze computer architecturealin [17] developed the Stream Benchmark whose
main goal is to precisely calculate main memory performakicgortunately, the various cache levels are not covered
by this benchmark. McVogt al [18] introduced Imbench whose main goal is to detect peréoroe bottlenecks.
Saavedrat al[23] developed a suite of micro kernels to extract basicqrerbince numbers and used these numbers
to predict the performance of real applications. Igeal[14] extend the work of Abandadt al[1] to study the impact

of several architectural choices used in the HP V class and>2G00.

The aim of our micro-benchmarks is to study the importancthefmemory address stream. This aspect is not
covered by existing micro-benchmarks. Furthermore, oyr@gch is slightly different, in the sense that our final

4MTI denotes the standard minimal initiation interval, thathe, starting point of each curve in our figures.

15

Min R

copy - variant 1 daxpy - variant 1

30

; T T T 90 ; T T T
unroll x 4, non vectorized—— unroll x 4, non vectorized——
unroll x 4, vectorized-——- unroll x 4, vectorized-—-

.
Min R

0 5 10 15 20 25 30 0 5 10 15 20 25

vsumspy - variant 1
140

T : . : :
unroll x 4, non vectorized——
unroll x 4, vectorized--—-——

120

100

80

Min R

60

40

20

Figure 9: Register Requirements for Variant 1

16

Min R

60

copy - variant 2

r : . :
unroll x 8, non vectorized——
unroll x 8, vectorized----»--

.
Min R

10 15 20 25 30

vsumspy - variant 2

160

140

120

100

80

60

40

20

daxpy - variant 2

T : . : :
unroll x 8, non vectorized——
unroll x 8, vectorized----»--

5 10 15 20 25

300

250

200

150

Min R

100

50

T : . : :
unroll x 8, non vectorized——
unroll x 8, vectorized------

25 30

Figure 10: Register Requirements for Variant 2

17

Min R

60

copy - variant 3

r : . :
unroll x 8, non vectorized——
unroll x 8, vectorized----»--

160

daxpy - variant 3

140

120

100

Min R
o)
o
T

60

40+

20

Min R

300

250

200

150

100

50

T : . : :
unroll x 8, non vectorized——
unroll x 8, vectorized----»--

vsumspy - variant 3

T : . : :
unroll x 8, non vectorized——
unroll x 8, vectorized------

10 15 20 25

Figure 11: Register Requirements for Variant 3

18

Min R

50

45

40

35

30

25

20

15

10

copy - variant 4

T T T
unroll x 4, non vectorized——
unroll x 4, vectorized with distance =%----
unroll x 4, vectorized with distance =4-x----
unroll x 4, vectorized with distance =8-=

daxpy - variant 4

100

50

.
Min R

140

T T T T
unroll x 4, non vectorized——
unroll x 4, vectorized with distance =%----
unroll x 4, vectorized with distance =4--x----
unroll x 4, vectorized with distance =8-=

25 0

vsumspy - variant 4

120

100 |-

Min R

60 -

T T T T
unroll x 4, non vectorized——
unroll x 4, vectorized with distance =%->---
unroll x 4, vectorized with distance
unroll x 4, vectorized with distance =8-=

20 -

XA e 3 H AR HH X

10 15 20
Il

25 30

Figure 12: Register Requirements for Variant 4

19

30

goal is to improve code generation within a compiler and mdy ¢o test an architecture. We demonstrate that cache
systems are sensitive not only to the classical miss ratibalso to the ordering of the accessed addressestRai

[27] already noticed a similar phenomenon when they intoedithe read miss clustering: by changing the temporal

distribution of cache misses (this was achieved by modifyire address streams), they improved code performance
on a Convex Exemplar architecture.

On the other hand, improving Id/st queues and memory disgualtion mechanisms is an issue of active research.
Chrysos and Emer [7] proposed store sets as a hardwareosofatiincreasing the accuracy of memory dependence
prediction. Their experiments were conclusive by dematistg that they can nearly achieve peak performance in the
context of large instruction windows. Pagkalin [22] proposed an improved design of Id/st queues thaesdattter,
that is, they have improved the design complexity of memdsgmbiguation. Another similar hardware improvement
has been proposed by Sethumadhasiaal in [22]. A speculative technique for memory dependenceiptieh has
been proposed by Yoat alin [28]: the hardware try to predict colliding loads, relgion the fact that such loads tend
to repeat their delinquent behavior. Another speculatahnique devoted to superscalar processors was presented
by S. Onder [20]. The author presented a hardware mechahanhassigns the loads and stores to an appropriate
speculative level for memory dependence prediction.

All sophisticated techniques discussed above are hardseéugons. In the domain of scientific computation, the
codes are often regular, making it possible to achieve #@fecompile time optimizations. Thus, we do not require
such costly dynamic techniques. In this paper, we show tisahple Id/st vectorization is useful (in the context of
scientific loops) to solve the same problems tackled in [7,222 28, 20]. Coupling our cheaper software optimiza-
tion technique with the actual non precise memory disandtign mechanisms is less expensive than pure hardware
methods.

Note that many compilation techniques are dealing withrirediton scheduling and software pipelining to address
the memory aliasing problem [11]. However, these schemyés tiptimize loops witldynamianemory dependencies,
thatis, memory aliases that are not solvable at compile.tithes, they propose to use some EPIC/IA64 features, such
as predication, to generate faster codes. In our case, Wevithgperfect regular codes, where no memory aliasing
problem exists, since we are able to guarantee the indepeadé all memory operations. We seek a convenient way
to take benefit from this high potential ILP by consideringakelynamic memory disambiguation mechanisms; this
is the opposite approach of [11], since they rely on dynamgonory disambiguation to compensate weak static data
dependence analysis and ILP extraction.

Other code optimization methods may help to avoid the perémce bugs shown in our experiments. For instance,
array padding [21] can be used to modify the relative arrdget$, and it may be possible to guide it so that neither
Id/st nor bank conflicts can arise. However, such a technisjmeore convenient for cache miss reduction than for
eliminating Id/st conflicts: the problem discussed in trap@r does not arise because data is not in the cache, or due
to any other data locality problem; our actual experimerag@rformed on fully cached data. Other customizing data
layout techniques that improve memory parallelism exi& [25] and need whole program analysis for data layout
computation. However, they try to eliminate bank confliatsl amot Id/st queue collisions. Furthermore, we aim to
optimize scientific computation libraries alone, wheregsrcan be declared outside the functions, or can be dynami-
cally allocated. In this case, customizing data layout eless.

An alternative approach would be to copy multiple arrays msingle array and perform the computation on this
single array, giving full control over the memory layout,tlwith the expense of extra overhead. Since we deal with
memory-bound loops, each additional memory operation tayaropying increases the bottleneck.

Thus, we prefer to use Id/st vectorization because, firstpilerates the negative effects of current memory address
disambiguation strategies which use a subset of the adbitssSecond, it is also convenient for bank conflicts. Third
and last, itis applicable to all BLAS 1 routines, indeperttieinom the data layout of the caller program. Vectorizatio
is a complex technology, and many studies have been pertboméhis topic [5, 16]. In our framework, the problem

20

is simplified since we tackle fully parallel innermost loopse only seek a convenient vectorization degree. Ideally,
the higher this degree, the higher the performance, butitifeshthe register pressure too. Thus, we are constrained
by the number of available registers. We showed in this papear we can modify the register allocation step by
combining ld/st vectorization at the data dependence gf@pIG) level without hurting ILP extraction by using our
previous theoretical framework [26].

8 Conclusion and Future Work

Memory-bound programs rely on advanced compilation tequnes that try to keep data in the caches, hoping to fully
utilize a maximal amount of ILP on the underlying hardwaradtional units. Even in ideal cases when operands
are located in lower cache levels, and when compilers génerales that can statically be considered as “good”,
our article demonstrates that this is not sufficient for aiméhg peak performance. First, the memory disambiguation
mechanisms in the Itanium 2 processor do not perform corsgasion full address bits. If two memory operations
access two distinct memory locations but share the samewtdrdorder address bits, the hardware detects a false
dependence and triggers a serialization mechanism. Coesty, Id/st queues cannot be fully utilized to re-ordexr th
independent memory operations.

Second, the banking structure of Itanium 2 processors meyept us to execute independent loads in parallel.
If two elements are mapped to the same bank, independert &yadestricted to be executed sequentially, even if
enough functional units are available. This fact is a wethkn source of troubles, but current compilers still do not
take it into account (even with highly optimized, hand tutiedaries provided by the vendors), and the generated
codes can be 2 times slower on Itanium 2.

We demonstrated that a memory instruction reordering basetthe classical (but robust) vectorization can get
rid of these performance bugs. The cost of such techniquering of register need was analyzed. We have seen
that grouping loads together, and stores together, doekavat a major impact on register requirement. However,
when mixing some stores with loads into the same instrugionp, the register pressure may substantially increase
depending on the distances of the stores. Thus, if not enmgisters exist, we cannot generate a vectorized code.
However, an extensive set of experiments on random treegezhos that the 128 available registers of the Itanium 2
processor are sufficient to allocate a great majority of teeg of height 4 (without performance loss, i.e., without
increasing/ [).

The current vectorization strategy has been successfafffemented in our internal compiler devoted to optimize
scientific vector loops. This work will be extended into twajor directions. First, more complex kernels involving
a larger number of arrays and more complex arithmetic ofmeratwill be studied. Although our preliminary results
on register allocation are promising, they need to be temtedanalyzed in a more general framework. Second, main
memory access deserves a similar study. Already, somenpnelry experiences have confirmed us with the good
performance capabilities of the vectorization strategy.

9 Acknowledgement

This work has been supported by CEA-DAM, Bull and the Frendahistry of research.

References

[1] G. A. Abandah and E. S. Davidson. Characterizing Distiglol Shared Memory Performance: A Case Study of
the Convex SPP1000EEE Transactions on Parallel and Distributed Systef{2):206—216, February 1998.

[2] Randy Allen and Ken Kennedy. Vector Register AllocatitBEE Transactions on Computers-41(10):1290—-
1317, October 1992.

21

[3] D.H Bailey. Unfavorable Strides in Cache Memory SystemsScientific Programming/olume 4, pages 53-58,
1995.

[4] David Bernstein, Haran Boral, and Ron Y. Pinter. Optif@akining in Expression TreelEEE Transactions on
Computers37(11):1366—-1374, November 1988.

[5] D. A. Calahan, J. J. Dongarra, and D. Levine. Vectoriziogpilers : A test suite and results. Supercomputer
'88, pages 98-105. IEEE Press, 1988.

[6] Tien-Fu Chen and Jean-Loup Baer. Effective HardwaresBd3ata Prefetching for High-Performance Proces-
sors.|[EEE Transactions on Compute4(5):609-623, 1995.

[7] G. Chrysos and J. Emer. Memory Dependence PredictiorguSiore Sets. IRroceedings of the 25th Annual
International Symposium on Computer Architect@i®CA-98) volume 26,3 ofACM Computer Architecture
News pages 142-154, New York, June 1998. ACM Press.

[8] David E. Culler, Jaswinder Pal Singh, and Anoop Guarallel Computer Architecture: A Hardware/Software
Approach Morgan Kaufmann Publishers, San Francisco, CA, 1999.

[9] Dominique de Werra, Christine Eisenbeis, Sylvain Lgland Bruno Marmol. On a Graph-Theoretical Model
for Cyclic Register AllocationDiscrete Applied Mathematic83(2-3):191-203, July 1999.

[10] Keith I. Farkas, Norman P. Jouppi, and Paul Chow. Howfuls&re Non-blocking Loads, Stream Buffers and
Speculative Execution in Multiple Issue Processors?Proceedings of the First International Symposium on
High-Performance Computer Architectypages 78—89, Raleigh, North Carolina, January 1995. |IE&RTiter
Society TCCA.

[11] Benjamin Goldberg, Emily Crutcher, Chad Huneycutd &mishna Palem. Software Bubbles: Using Predication
to Compensate for Aliasing in Software Pipelines.2D02 International Conference on Parallel Architectures
and Compilation Techniques (PACT'0ppges 211221, Virginia, September 2002. IEEE.

[12] Jerome C. Huck, Dale Morris, Jonathan Ross, Allan D.dénHans Mulder, and Rumi Zahir. Introducing the
IA64 Architecture. INIEEE Micro, September 2000.

[13] Intel. Intel Itanium2 Processor Reference Manual foftBare Develoment Optimization. Technical Report
251110-001, Intel, June 2002.

[14] Ravi lyer, Nancy M. Amato, Lawrence Rauchwerger, anadrhaBhuyan. Comparing the Memory System
Performance of the HP V-Class and SGI Origin 2000 Multipssoes using Microbenchmarks and Scientific
Applications. InConference Proceedings of the International Conferenc8upercomputingpages 339-347,
Rhodes, Greece, June 1999. ACM SIGARCH.

[15] M. JohnsonSuperscalar Microprocessor DesigRrentice-Hall, Englewood Cliffs, New Jersey, 1991.

[16] David Levine, David Callaahan, and Jack Dongarra. A @arative Study of Automatic Vectorizing Compilers.
Parallel Computing17:1223-1244, 93.

[17] John D. McCalpin. Memory Bandwidth and Machine Balaic€urrent High Performance Computel&EE
Technical Committee on Computer Architecture newslelecember 1995.

[18] Larry McVoy and Carl Staelin. Imbench: Portable Toots Performance Analysis. IRroceedings of the
USENIX Annual Technical Conferengages 279-294, San Diego, CA, USA, January 1996. Usenbdcieon.

[19] W. Oed and O. Lange. On the Effective Bandwidth of Ireevled Memories in Vector Processor SystetB&E
Transactions on Computer€-34:949-957, 1985.

22

[20] Soner Onder. Cost Effective Memory Dependence Priedictsing Speculation Levels and Color Sets2002
International Conference on Parallel Architectures andn@mlation Techniques (PACT'02)age 232, Virginia,
September 2002. IEEE.

[21] Preeti Ranjan Panda, Hiroshi Nakamura, Nikil D. Duttda\lexandru Nicolau. Augmenting Loop Tiling with
Data Alignment for Improved Cache PerformantieEE Transactions on Computer3(2):142—-149, 1999.

[22] 1l Park, Chong liang Ooi, and T. N. Vijaykumar. ReduciDgsign Complexity of the Load/Store Queue. In
Proceedings of the 36th International Symposium on Miabaecture (MICRO-36)pages 411-422, San Diego,
December 2003. IEEE.

[23] R. H. Saavedra and A. J. Smith. Measuring Cache and TuBPaeance and Their Effect on Benchmark Run
Times. |[EEE Transactions on ComputeiS-44(10):1223-1235, October 1995.

[24] Harsh Sharangpaniand Ken Arora. Itanium ProcessorddichitecturelEEE Micro, 20(5):24—-43, September/
October 2000.

[25] Byoungro So, Mary Hall, and Heidi Ziegler. Custom Dataybut for Memory Parallelism. IRroceedings of
the 2004 International Symposium on Code Generation andyztion (CGO’04) pages 291-302, Palo Also,
CA, March 2004. |IEEE.

[26] Sid Ahmed Ali Touati and Christine Eisenbeis. EarlyiBdic Register Allocation on ILP ProcessomRarallel
Processing Lettersl4(2):287-313, 2004.

[27] Vijay S. Pai and Sarita Adve. Code Transformations tpiave Memory Parallelisml'he Journal of Instruction-
Level Parallelism2, May 2000. http://www.jilp.org/vol2.

[28] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculatechiiques for Improving Load Related Instruc-
tion Scheduling.26th Annual International Symposium on Computer Architec{26th ISCA’99), Computer
Architecture News27(2):42-53, May 1999.

[29] Xiaotong Zhuang, Santosh Pande, and John S. Greentardl Bramework for Parallelizing Load/Stores on
Embedded Processors. 2002 International Conference on Parallel ArchitectureslaCompilation Techniques
(PACT’02) page 68, Virginia, September 2002. IEEE.

23

