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Abstract

This paper is devoted to analyze several properties of the bifractional Brownian
motion introduced by Houdré and Villa. This process is a self-similar Gaussian process
depending on two parameters H and K and it constitutes natural generalization of the
fractional Brownian motion (which is obtained for K = 1). We adopt the strategy of the
stochastic calculus via regularization. Particular interest has for us the case HK = 1

2
.

In this case, the process is a finite quadratic variation process with bracket equal to a
constant times t and it has the same order of self-similarity as the standard Brownian
motion. It is a short memory process even though it is neither a semimartingale nor a
Dirichlet process.

Key words and phrases: Bifractional Brownian motion, Dirichlet processes, self-similar processes,

calculus vie regularization.
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1 Introduction

The paper is devoted to investigate the properties and to construct a stochastic calculus
with respect to the bifractional Brownian motion. The ”old” and somewhat restrictive
theory of the stochastic integration with respect to Gaussian processes from the sixties-
seventies (see e.g. [30] or [35]) has been recently reinforced and considered from a new,
modern point of view, with a particular attention on the case of the fractional Brownian
motion (fBm) due to the significant applications of this process in different phenomena. Let
us briefly recall the principal techniques used in the Gaussian stochastic integration.
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• The Malliavin calculus approach (and the white noise calculus) has been used in e.g. [2],
[13], [15] or [31, 4] among others, to integrate stochastically with respect to Gaussian
processes of the form

∫ t
0 K(t, s)dWs where K is a deterministic kernel satisfying some

regularity conditions on s and t. This approach allows to prove an Itô formula and
(for the fractional Brownian motion) a Tanaka formula with Skorohod integral rep-
resentation for the local time. The ”natural” barrier for this approach in the fBm
case is H = 1

4 (H is the Hurst parameter) but an extended divergence integral can be
defined for every H ∈ (0, 1) (see [9, 36]). The limits of this theory are given by the
fact that it depends on the form and the properties of the kernel K, and also, there
are not existence results for stochastic equations with fBm in the Skorohod sense.

• The stochastic calculus via regularization has been developed starting from [43], [42]
and continued by several authors. Among typical contributions we quote [21], [18],
[25], [26], [24]. In that approach, stochastic integrals are defined through integrator
smoothing. This method was preceded by the discretization approach which consists
in discretizing the integrator process. These two approaches are almost of pathwise
type. The first contribution in applying pathwise techniques (discretization) in sto-
chastic calculus comes back to Föllmer [20]; relevant are the the works of Bertoin
[6] and more recently of [19], in the context of finite quadratic variation processes.
A monography [14] was also devoted to pure pathwise stochastic integration. Con-
cerning the specific case of Gaussian integrators, and in particular for fbm, stochastic
calculus via regularization was also used partially by [1] or [48]. A significant role in
that framework is played by the symmetric integral

∫ t
0 Y d◦B, where B is a continuous

process and Y is a locally integrable process. The exact definition is recalled at Sec-
tion 5. When the integrator B is Gaussian, the regularization approach does not use
in an essential way the form and the properties of the kernel of the process; it is based
in principal on the properties of the covariance function. Given an fbm B = BH ,
the ”natural” barrier for the existence of stochastic integrals of the type

∫ t
0 g(B)d◦B

for smooth functions g is H = 1
6 . For H ≤ 1

6 , in general the symmetric integral
∫ t
0 g(B)d◦B, does not exist; however an extended symmetric integral may be defined,

see [26]. Using calculus via regularization, stochastic differential equation driven by
fBm can be solved by standard methods as Doss-Sussmann, see e.g. [1, 18, 37]. Note
that the integral via regularization is equal to the Skorohod integral plus a trace term
(see [1]).

• The rough paths analysis introduced by Lyons (see [34] or [40]) can be applied to the fBm
situation. See [11] for the construction of the rough paths for fBm with parameter
H > 1

4 . As a consequence, stochastic equations driven by fBm can be stated and
solved.

We will focus now our attention to a Gaussian process that generalize the fractional Brown-
ian motion, called bifractional Brownian motion and introduced in [29]. Recall that the fBm
is the only self-similar Gaussian process with stationary increments starting from zero. For
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small increments, in models such as turbulence, fBm seems a good model but inadequate
for large increments. For this reason, in [29] the authors introduced an extension of the
fBm keeping some properties (self-similarity, gaussianity, stationarity for small increments)
but enlarged the modelling tool kit. Moreover, it happens that this process is a quasi-helix,
as defined e.g by J.P. Kahane (see [32], [33]).

We refer to [29] for the notions presented in this section.

Definition 1 The bifractional Brownian motion (BH,K
t )t≥0 is a centered Gaussian

process, starting from zero, with covariance

RH,K(t, s) := R(t, s) =
1

2K

((
t2H + s2H

)K − |t − s|2HK
)

(1)

with H ∈ (0, 1) and K ∈ (0, 1].

Note that, if K = 1 then BH,1 is a fractional Brownian motion with Hurst parameter
H ∈ (0, 1).

• If σ2
ε(t) := E

(

BH,K
t+ε − BH,K

t

)2
, then

lim
ε→0

σ2
ε(t)

ε2HK
= 21−K . (2)

• Let T > 0. For every s, t ∈ [0, T ], we have

2−K |t − s|2HK ≤ E

(

BH,K
t − BH,K

s

)2
≤ 21−K |t − s|2HK . (3)

Inequality (3) shows that the process BH,K is a quasi-helix in the sense of J.P. Kahane
(see [32] and [33] for various properties and applications of quasi-helices).

• For every H ∈ (0, 1) and K ∈ (0, 1],

lim
ε→0

sup
t∈[t0−ε,t0+ε]

∣
∣
∣
∣
∣

BH,K
t − BH,K

t0

t − t0

∣
∣
∣
∣
∣
= +∞

with probability one for every t0.

• The process is HK-self-similar.

• The process is Hölder continuous of order δ for any δ < HK. This follows from the
Kolmogorov criterium.
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In order to develop a stochastic calculus with respect to this process, the use of
Malliavin calculus in this context seems to constitute an hard task since the form of the
kernel of BH,K is not explicitly known. Therefore we will implement the stochastic calculus
via regularization with respect to BH,K , examining the case of each possible H and K.
Elements of the discretization approach (that is, the use of Riemann sums) are also present
in the paper to study various properties of this process, such as the strong variation, the
cubic variation, long-range dependence or local times. When HK 6= 1

2 , the process has a
some kind of ”fractional” behavior.

On the other hand, we will pay a special attention to the case HK = 1
2 (and K 6= 1;

if K = 1 then H = 1
2 and we have a Brownian motion). In this case we will show that BH,K

admits a non-trivial quadratic variation equal to constant times t, thus different from the
fractional situation. We will show that even in this case (HK = 1

2 and K 6= 1) the process
is not a semimartingale and it is not a Dirichlet process, although it is somewhat ”closer”
to the notion of semimartingale than the fBm is. In this special case, our process appears
to have something in common with the fBm with parameter less, bigger or equal to one
half. Let us summarize the results proved below.

• Although 2HK = 1 implies H > 1
2 , the process BH,K seems in this case to have similar

properties as the fBm with H < 1
2 : it is short-memory, it is not a Dirichlet process.

• Nevertheless, having finite energy, it is also linked to the fBm with parameter bigger
than 1

2 .

• Finally, there are elements placing this process on the ”Brownian motion scale”, of order
1
2 ; for example, if one consider occupation integrals Xt =

∫ t
0 f(BH,K

u )du, this quantity

has to be renormalized by the factor t−
1

2 to converge as t → ∞; moreover, the local
time of BH,K belongs to the same Sobolev-Watanabe space as the local time of the
Wiener process.

We organized the paper as follows. Section 2 contains some preliminaries on the
stochastic calculus via regularization. In Section 3 we study the strong variation of the
bifractional Brownian motion BH,K and we discuss its immediate consequences. Section 4
presents a detailed study of the process BH,K when HK = 1

2 : in particular it is neither a
semimartingale, nor a Dirichlet process, nor Markovian, but it is a short memory process.
In Section 5 we derive an Itô formula for the same process.

2 Preliminaries on the stochastic calculus via regularization

We will present here some notions of the stochastic calculus via regularization intervening
along this paper. Other elements of this theory will be recalled in Section 5. We refer to
[43], [42] or [18] for a more complete exposition. Throughout the paper by ucp-convergence
we mean the uniform convergence in probability on each compact interval. A stochastic
process (Xt)t≥0 will be extended by X0 for t ≤ 0, to the real line.
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We will use the concept of α- strong variation: that is, we say that the continuous
process X has a α-variation (α > 0) if

ucp − lim
ε→0

1

ε

∫ t

0
|Xs+ε − Xs|α ds exists. (4)

The limit is denoted by [X]
(α)
t .

The notion of n-covariation was introduced in [18]. It plays a significant role in the
stochastic calculus via regularization, for example in the case of the fractional Brownian mo-
tion with small Hurst index. If (X1, . . . , Xn) is a continuous vector, then the n-covariation
[X1, . . . , Xn] is given by

[X1, . . . , Xn]t = prob − lim
ε→0

1

ε

∫ t

0

(
X1

u+ε − X1
u

)
. . .

(
Xn

u+ε − Xn
u

)
du.

In this work we will actually only essentially cubic variation [X, X, X] of a process X.

We recall the basic properties and relationships of the above notions.

1. If X and Y are both semimartingales, then [X, Y ] is the usual semimartingale bracket.

2. Clearly, for n even integer, when it exists, [X](n) = [X, X, . . . , X]
︸ ︷︷ ︸

n times

.

3. Also, if the n-strong variation exists, then for every m > n it holds [X, X, . . . , X]
︸ ︷︷ ︸

m times

= 0.

3 The study of the α-strong variation

We study in this section the existence of the strong variation of the bifractional Brownian
motion BH,K and we discuss some immediate consequences.

Proposition 1 Let (BH,K
t )t∈[0,T ] be a bifractional Brownian motion with parameters H ∈

(0, 1) and K ∈ (0, 1]. Then it holds

[BH,K ]
(α)
t = 0, if α >

1

HK

and

[BH,K ]
(α)
t = 2

1−K
HK ρHKt if α =

1

HK
,

where ρHK = E|N |1/HK , N being a standard normal random variable.
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Proof: We will regard only the case 2HK = 1; the other case (2HK > 1) can be treated
similarly. Denote by

Cα
ε (t) =

1

ε

∫ t

0

∣
∣
∣B

H,K
s+ε − BH,K

s

∣
∣
∣

α
ds.

By Lemma 3.1 of [43] it suffices to show that C
1

HK
ε (t) converges in L2(Ω) as ε → 0 to

2
1−K
HK ρHKt. We have by (2)

E

∣
∣
∣B

H,K
s+ε − BH,K

s

∣
∣
∣

1

HK
=

(

E

∣
∣
∣B

H,K
s+ε − BH,K

s

∣
∣
∣

2
) 1

2HK

≈ 2
1−K
2HK ρHKε

(here the symbol ≈ means that the ratio of the two sides tends to 1) and therefore

lim
ε→0

E

(

C
1

HK
ε (t)

)

= 2
1−K
HK ρHKt.

To obtain the conclusion it suffices to show that

lim
ε→0

E

(

C
1

HK
ε (t)

)2

=
(

2
1−K
2HK ρHK

)2
t2. (5)

We have

E

(

C
1

HK
ε (t)

)2

=
2

ε2

∫ t

0

∫ u

0
µε(u, v)dvdu

where µε(u, v) := E

∣
∣
∣

(

BH,K
u+ε − BH,K

u

)(

BH,K
v+ε − BH,K

v

)∣
∣
∣

1

HK
.

Recall that if (G1, G2) is a Gaussian couple, then we can write

G2 =
Cov(G1, G2)

V ar2(G1)
G1 +

√

V ar2(G2) −
Cov2(G1, G2)

V ar2(G1)
N2 (6)

where N2 is a standard normal random variable.
Using (3) and (6) we get

µε(u, v)

ε2
= E




|N1|

1

HK

∣
∣
∣
∣
∣
∣

θε(u, v)

C1ε2HK
N1 + 21−KN2

√

1 −
(

θε(u, v)

C2ε2HK

)2
∣
∣
∣
∣
∣
∣

1

HK




 (7)

where C1, C2 are strictly positive constants and we denoted by

θε(u, v) = E

(

BH,K
u+ε − BH,K

u

)(

BH,K
v+ε − BH,K

v

)

. (8)

We compute

θε(u, v) = R(u + ε, v + ε) − R(u + ε, v) − R(v + ε, u) + R(u, v)

= (aε(u, v) + bε(u, v))
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where

aε(u, v) =
1

2K

[(
(u + ε)2H + (v + ε)2H

)K −
(
(u + ε)2H + v2H

)K

−
(
(v + ε)2H + u2H

)K
+

(
u2H + v2H

)K
]

(9)

and
bε(u, v) =

[
(u + ε − v)2HK

+ + (u − ε − v)2HK
+ − 2(u − v)2HK

]
. (10)

First, note that the term bε appears in the study of the standard fractional Brownian
motion with parameter HK (see [43]). It was actually proved that

lim
ε→0

bε(u, v)

ε2HK
= 0 and

∣
∣
∣
∣

bε(u, v)

ε2HK

∣
∣
∣
∣
≤ C. (11)

Let us analyze the function aε(u, v) as ε → 0. Note that in the fractional Brownian
motion case (when K = 1) this term vanishes. Using Taylor expansion and noticing that

a0(u, v) = 0 ,
daε(u, v)

dε
|ε=0 = 0 for every u, v

and
d2aε(u, v)

dε2
|ε=0 =

H2K(K − 1)

2K−3
(u2H + v2H)K−2u2H−1v2H−1

we obtain, for every u, v

aε(u, v) =
H2K(K − 1)

2K−3
(u2H + v2H)K−2u2H−1v2H−1ε2 + o(ε2).

This shows that

lim
ε→0

aε(u, v)

ε
= 0 for every u, v. (12)

To obtain (5) from (7), (11), (12) and by the dominated convergence, it suffices to

bound the quantity aε(u,v)
ε by a function H(u, v) integrable on [0, T ]2 uniformly in ε, for ε

small. Since
aε(u, v)

ε
= g(

u

ε
,
v

ε
) (13)

where

|g(x, y)| = |
(
(x + 1)2H + (y + 1)2H

)K −
(
(x + 1)2H + y2H

)K

−
(
x2H + (y + 1)2H

)K
+

(
x2H + y2H

)K |,

it is enough to bound g(x, y) for x, y large. This is obtained by observing that

|g(x, y)| ≤ 2
∣
∣(y + 1)2H − y2H

∣
∣
K →y→∞ 2(2H)K . (14)
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Remark 1 One can similarly show that the process BH,K admits the same variation in the
“classical” sense. That is, if

V
π, 1

HK
t (BH,K) =

n−1∑

i=0

∣
∣Bti+1

− Bti

∣
∣

1

HK (15)

with π : 0 = t0 < . . . , tn = t denoting a partition of [0, t], then

L1(Ω) − lim
|π|→0

V π
t = 0 (if α >

1

HK
), 2

1−K
HK ρHKt (if α =

1

HK
) and + ∞ (if α <

1

HK
).

Remark 2 The above Proposition 1 distinguishes a special case that seems to be more
interesting than the other cases: the case KH = 1

2 . If K = 1, then H = 1
2 and we deal with

a Wiener process. It K 6= 1, we have an example of a Gaussian process, having non-trivial
quadratic variation which equals 21−Kt, so, modulo a constant, the same as the Brownian
motion. The next section will be devoted to a detailed study of the process in this case.

Using similar arguments as in the proof of Proposition 1, we can show the following
result, that will imply that the process is not a semimartingale when 2HK 6= 1.

Proposition 2 For any p, q > 0, we have

1)

npHK−1
n−1∑

i=0

∣
∣
∣
∣
BH,K

j+1

n
T
− BH,K

j
n

T

∣
∣
∣
∣

p

→n→∞ 2
1−K
HK E

∣
∣
∣B

H,K
T

∣
∣
∣

p
in L1,

2)

npHK−1−q
n−1∑

i=0

∣
∣
∣
∣
BH,K

j+1

n
T
− BH,K

j
n

T

∣
∣
∣
∣

p

→n→∞ 0 in L1,

3)

npHK−1+q
n−1∑

i=0

∣
∣
∣
∣
BH,K

j+1

n
T
− BH,K

j
n

T

∣
∣
∣
∣

p

→n→∞ ∞ in probability

i.e. for all L > 0 there is a n0 such that for all n ≥ n0

P



npHK−1+q
n−1∑

j=0

∣
∣
∣B j+1

n
− B j

n

∣
∣
∣

p
< L



 <
1

L
.

The following result is a consequence of results in Cheridito [7] and of the above
Proposition.
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Proposition 3 The process BH,K is not a semimartingale if HK 6= 1
2 .

Remark 3 In fact, [7], pag. 20, introduces the notion of weak semimartingales which
generalizes the concept of semimartingales. Proposition 1.9 and 1.11 of [7], and the above
Proposition 2 imply that BH,K is not a weak semimartingale when HK 6= 1

2 .

In [8], the author introduced the so-called mixed processes, the sum of a Brownian
motion and an independent Gaussian process and study the equivalence in law of this
process to a Wiener process. Denote by W a standard Wiener processes. Mixing it with a
bifractional Brownian motion we get the following

Corollary 1 The process BH,K +W , restricted to each compact interval [0, T ], is equivalent
in law with a Wiener process if HK > 3

4

Proof: Recall Theorem 20 of Baudoin-Nualart [3]. If X is a Gaussian process with

covariance R(t, s) such that ∂2R
∂s∂t ∈ L2([0, T ]2), the process Yt = Xt +Wt is a semimartingale

(in its own filtration) equivalent in law to a Wiener process.
Concerning the process BH,K , note that for s ≤ t,

∂2R

∂s∂t
(s, t) =

1

2K

(

2HK(K − 1)
(
t2H + s2H

)K−2
(st)2H−1 + 2HK(2HK − 1)(t − s)2HK−2

)

.

Since
(
t2H + s2H

)K−2 ≤ 2K−2(st)H(K−2), the first part above belongs to L2([0, T ]2) for
HK > 1

2 and the second part for HK > 3
4 .

We finish this section with the study of the cubic variation. If B = BH is a fbm with
Hurst index H, the cubic variation [B, B, B] exists if and only if H > 1

6 : this fact provides
an intuition on the natural barrier for the existence of the symmetric-Stratonovich integral
∫ t
0 g(B)d◦B for a smooth real function g. In fact, given a process X, it was observed in

[25], taking g(x) = x2, that
∫ t
0 X2d◦X exists if and only if [X,X, X] exists. Moreover the

following inverse Itô formula holds:

∫ t

0
X2d◦X =

X3

3
− 1

6
[X, X,X]t.

If X is a bifractional Brownian motion BH,K , we can see that [X, X, X] exists if (and we
think, as commented in Remark 4 below, only if ) HK > 1

6 . A more complete discussion

about the existence of symmetric integrals of the type
∫ t
0 g(B)d◦B will be provided in Section

5.
The next result show that the cubic variation of a bifractional Brownian motion

BH,K exists if HK > 1
6 .

9



Proposition 4 If HK > 1
6 ,

[BH,K , BH,K , BH,K ]t = 0 (16)

for every t ≥ 0.

Proof: See Appendix.

Remark 4 In [26], Theorem 4.1. 2b) the authors proved, for the standard fractional Brown-
ian motion, that the cubic variation exists if and only if H > 1

6 . It seems that the argu-
ments used along the proof of the fact that for H ≤ 1

6 the cubic variation does not exist, can
be quasi-immediately extended to the bifractional situation, except the following one which
needs a particular attention: for fixed t > 0,

1√
ε

∫ t

0

(
Bu+ε − Bu

εHK

)3

du

converges in law to a centered Gaussian random variable. This statement has been proved
in Theorem 2.4 of [24] for K = 1, the proof being long and rather technical. We believe
the result is true also for K 6= 1 and that the limit of the above expression worth to be the
object of a further more detailed study.

4 The study of the case HK = 1
2

Throughout this Section (except the paragraph 4.6) we will assume that HK = 1
2 and

K 6= 1. The covariance function is given by

R(t, s) =
1

2K

((

t
1

K + s
1

K

)K
− |t − s|

)

.

The Proposition 2.1 of [29] ensures that it is positive defined.

At a first look, the process appears in this case to enjoy special properties, differ-
ent from the ones met in the study of the fractional Brownian motion: it has non-trivial
quadratic variation equal to constant times t and it is 1

2 - self-similar. We will also investigate
the following aspects of the process BH,K : if it is a semimartingale or a Dirichlet process;
having finite energy, it is known that it admits a Graversen-Rao decomposition (see [27]);
we study if is a long or short-memory process; some remarks on the regularity of its local
time are also given.
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4.1 Not a Dirichlet process

Definition 2 A process X will be said (Ft) L1−Dirichlet process if it can be written as
X = M + A, where M is local martingale with respect to (Ft) and A is a zero quadratic
variation process in the L1- sense (i.e. the sequence V π,2(A) given by (15) converges 0 zero
as |π| → 0 in L1(Ω)). If no filtration is mentioned, the underlying filtration will be the
natural filtration. X will simply be called L1−Dirichlet process.

We will need the following lemma.

Lemma 1 Let us consider, for every i, l ≥ 1, the following function on [0,∞)

f(α) =
(
(i + α)2H + (l + α)2H

)K −
(
i2H + (l + α)2H

)K

−
(
(i + α)2H + l2H

)K
+

(
i2H + l2H

)K
. (17)

Then the function f is strictly decreasing on [0,∞) and we have that f(x) ≤ 0 for every
x ≥ 0.

Proof: We have f(0) = 0 and, since 2HK = 1,

f ′(α) =

(
(i + α)2H + (l + α)2H

(i + α)2H

)K−1

+

(
(i + α)2H + (l + α)2H

(l + α)2H

)K−1

−
(

(i + α)2H + l2H

(i + α)2H

)K−1

−
(

i2H + (l + α)2H

(l + α)2H

)K−1

< 0.

As a consequence f is decreasing and negative.

Definition 3 A process X will be called (Ft)- quasi-Dirichlet process if for any T > 0,

Sπ :=

n−1∑

j=0

E
∣
∣E

(
Xti+1

− Xti/Fti

)∣
∣2 →|π|→0 0, (18)

where π : 0 = t0 < . . . tn = 1 is a partition of [0, T ]. Again, if no filtration is mentioned,
the underlying filtration will be the natural filtration and X will simply be called quasi-
Dirichlet process.

The next result can be easily established.

Lemma 2 An (Ft) L1- Dirichlet process is also an (Ft)- quasi-Dirichlet process.

11



Proof: Let X be an L1− Dirichlet process with canonical decomposition of X =
M + A. It holds that

n−1∑

j=0

E
∣
∣E

(
Xti+1

− Xti/Fti

)∣
∣2 =

n−1∑

j=0

E
∣
∣E

(
Ati+1

− Ati/Fti

)∣
∣2

≤
n−1∑

j=0

E
(
Ati+1

− Ati

)2 → 0.

The above Lemma 2 will help to establish the next result.

Proposition 5 When HK = 1
2 and K 6= 1, the process BH,K is not an L1- quasi-Dirichlet

process.

Using previous Lemma 2, we obtain the following.

Corollary 2 When HK = 1
2 and K 6= 1, the process BH,K is not a L1- Dirichlet process.

Proof (of hte Porposition 5): Let n ≥ 1 and ti = i
n , for i = 0 . . . n. We use the

notation ∆n
k = B k

n
− B k−1

n
. Let us put

Sn =
n−1∑

j=0

‖E
(

∆n
j+1/F j

n

)

‖2
2. (19)

we will show that
lim

n→∞
Sn ≥ C > 0.

Since the norm of the conditional expectation is a contraction, we have

Sn ≥
n−1∑

j=0

‖E
(
∆n

j+1/∆n
j , . . . ,∆n

1

)
‖2
2

and using the fact that (∆n
j+1, ∆

n
j , . . . ,∆n

1 ) is a Gaussian vector, we obtain

E
(
∆n

j+1/∆n
j , . . . ,∆n

1

)
=

j
∑

k=1

bk∆
n
k

where b = A−1m with m the vector

m =
(
Cov

(
∆n

j+1, ∆
n
l

))

l=1,...,j

and A is the matrix
A = (Cov (∆n

i , ∆n
l ))i,l=1,...,j .

12



We get

‖E
(
∆n

j+1/∆n
j , . . . ,∆n

1

)
‖2
2

= bT Ab = mT A−1m ≥ ‖m‖2
2

λ
(20)

λ being the largest eigenvalue of A. We find first an upper bound for λ. The Gersghorin
Circle Theorem (see [23], Theorem 8.1.3, pag. 395) and Lemma 1 implies that

λ ≤ max
i=1,...,j

j
∑

l=1

|Ail|

=
1

2Kn
max

i=0,...,j−1

j−1
∑

l=0

∣
∣
∣

[(
(i + 1)2H + (l + 1)2H

)K −
(
i2H + (l + 1)2H

)K

−
(
(i + 1)2H + l2H

)K
+

(
i2H + l2H

)K
]∣
∣
∣

=
1

2K

1

n
max

i=0,...,j−1

[(
j2H + i2H

)K −
(
j2H + (i + 1)2H

)K
+ 1

]

.

Let us define the function g : [0, j − 1] → R,

g(x) =
(
j2H + x2H

)K −
(
j2H + (x + 1)2H

)K
+ 1.

We have

g′(x) =

(
x2H + j2H

x2H

)K−1

−
(

(x + 1)2H + j2H

(x + 1)2H

)K−1

=

(

1 +

(
j

x

)2H
)K−1

−
(

1 +

(
j

x + 1

)2H
)K−1

≤ 0

Thus g is decreasing and maxi=0,j−1 g(i) = g(0) = j − (1 + j2H)K + 1. To summarize, we
obtained

λ ≤ 1

2K

1

n
h1(j) (21)

with h1(j) = j − (1 + j2H)K + 1.
On the other hand, by Lemma 1,

‖m‖2
2 =

j
∑

l=1

(
Cov

(
∆n

j+1, ∆
n
l

))2

=
1

22Kn2

j−1
∑

l=0

[(
(j + 1)2H + (l + 1)2H

)K −
(
j2H + (l + 1)2H

)K

−
(
(j + 1)2H + l2H

)K
+

(
j2H + l2H

)K
]2

≥ 1

22Kn2
|f(

1

2
)|h2(j) (22)

13



where the function f is defined by (17) and we denoted by

h2(j) = −
j−1
∑

l=0

[(
(j + 1)2H + (l + 1)2H

)K −
(
j2H + (l + 1)2H

)K

−
(
(j + 1)2H + l2H

)K
+

(
j2H + l2H

)K
]

= 2Kj −
(
(j + 1)2H + j2H

)K
+ 1.

Combining all the above estimations (21), (22) and (20) , we obtain

Sn =
n−1∑

j=0

‖E
(

∆n
j+1/F j

n

)

‖2
2 ≥ C

n

n−1∑

j=0

h2(j)

h1(j)
.

By using the asymptotic behavior of the functions h1 and h2 we can see that

lim
j→∞

h1(j) = lim
j→∞

h2(j) = 1 − 2K−1 > 0.

Consequently, h2(j)
h1(j) > C > 0 when j is large enough and the conclusion follows.

A natural question is either our process is a semimartingale or not. Let us remember
some important facts about Gaussian semimartingales.

Remark 5 In the Gaussian case, the notion of semimartingale is closely related to the
notion of quasimartingale (see below the definition). That is, assuming that the Gaussian
process X is continuous, then X is a semimartingale (for its natural filtration) if and only if
it is a quasimartingale (for the natural filtration). We refer to C. Stricker [46], Proposition
1 and Emery [17], pag. 704, before Theorem 2 (see also Song [44]).

We recall the definition of the quasimartingale.

Definition 4 A stochastic process (Xt)t≥0 is a quasimartingale if for every T > 0,

Xt ∈ L1(Ω) for every t ∈ [0, T ]

and

sup
∆

n−1∑

j=0

∣
∣
∣

∣
∣
∣E

(

Xtj+1
− Xtj/FX

tj

)∣
∣
∣

∣
∣
∣
1

< ∞,

where FX denote the natural filtration of the process X and ∆ : 0 = t0 < t1 < . . . tn = 1 is
a partition of [0, T ].

An immediate consequence of the above result is that the process BH,K is not a
semimartingale.

14



Proposition 6 Let us suppose that HK = 1
2 and K 6= 1. Then the process BH,K is not a

semimartingale.

Proof: Suppose that BH,K is a semimartingale. Then, by the above Remark 5, it follows
that BH,K is a quasimartingale and this clearly implies that it is a quasi-Dirichlet process.
The conclusion follows by Proposition 5.

Of course, being not a semimartingale, BH,K is not a quasimartingale. But it enjoys
when HK = 1

2 (and only in this case) a special property:

sup
π

n−1∑

j=0

‖E
(

BH,K
tj+1

− BH,K
tj

/BH,K
j − BH,K

j−1

)

‖1 < ∞ (23)

where as before 0 = t0 < . . . < tn = 1 is a partition of [0, T ].
Note that the relation (23) is not true for the fBm (it follows from the computa-

tions contained in [7], Section 4.3 but it can be also directly seen without difficulty). To
interpret this, we will say that the process BH,K with HK = 1

2 is somewhat ”closer” to a
semimartingale than the fBm (with parameter different from 1

2) is.

Proof of (23): Consider ti = i
n for 0 < i < n and recall the notation

∆n
j+1 = ∆n

j+1B
H,K = BH,K

j+1

n

− BH,K
j
n

for every j.

Using the linear regression as in (6) we can write

∆n
j+1 = α(j, n)∆n

j + β(j, n)N

where N is a standard normal random variable independent of BH,K
j
n

− BH,K
j−1

n

and

α(j, n) =
Cov(∆n

j+1, ∆
n
j )

V ar(∆n
j )

.

Therefore,
E

(
∆n

j+1/∆n
j

)
= (α(j, n) − 1)∆n

j .

Using the fact that for a centered normal random variable Z we have

‖Z‖L2 =

√
π

2
‖Z‖L1

15



we will obtain

Tn :=
n−1∑

j=0

∣
∣
∣
∣

∣
∣
∣
∣
E

(

BH,K
j+1

n

− BH,K
j
n

/∆n
j

)∣
∣
∣
∣

∣
∣
∣
∣
1

=

√

2

π

n−1∑

j=0

∣
∣
∣
∣(α(j, n) − 1)∆n

j

∣
∣
∣
∣
2

=

√

2

π

n−1∑

j=0

|α(j, n) − 1|
(

1

n

)HK

. (24)

Therefore, we get

Tn = cst.
1√
n

n−1∑

j=1

[(
(j + 1)2H + j2H

)K

−
(
(j + 1)2H + (j − 1)2H

)K − 2Kj +
(
(j − 1)2H + j2H

)K
]

=
1√
n

n−1∑

j=1

jf(
1

j
)

where

f(x) =
[(

(1 + x)2H + 1
)K −

(
(1 + x)2H + (1 − x)2H

)K − 2K +
(
1 + (1 − x)2H

)K
]

.

We have that f(0) = 0, f ′(0) = 0 and f ′′(0) = 2H(K − 1)2K−1. Thus, when n is large, Tn

has the same behavior as
1√
n

n−1∑

j=1

1

j

which goes to 0 as n → ∞.

4.2 Graversen-Rao decomposition

We discuss the Graversen-Rao decomposition for finite energy processes in the context of
the discretization approach. Let us recall the main result of Graversen-Rao [27]. We say
that a process X has finite energy if

sup
π

E

[
n−1∑

i=0

(
Xti+1

− Xti

)2

]

< ∞. (25)

The main result of [27] states if X has finite energy, then it can be decomposed as X =
M+A, where M is a square integrable martingale and A is ”orthogonal” along a subsequence
of partitions, to any square integrable martingale. See also [10] for results in this context.
More precisely, we have

16



Theorem 1 If X is a finite energy process, then we can decompose X as

X = M + A (26)

where M is a square integrable martingale and A is a predictable process such that, for any
T > 0, there exists a subsequence πnj of partitions of [0, T ] with the mesh tending to zero
as j → ∞ satisfying

E




∑

ti∈πnj ,ti≤t

(Ati+1
− Ati)(Nti+1

− Nti)



 → 0 (27)

as j → ∞ for any square integrable martingale N .

Remark 6 The decomposition (26) is not unique. We have that (see [27]), if M ′ + A′

is another decomposition, then A − A′ is a continuous martingale. The continuity of the
martingale A − A′ can be obtained even if X is a càdlàg process.

Corollary 3 The process BH,K admits a decomposition BH,K = M + A, where M is a
(non identical zero) local martingale and A satisfies (27).

Of course, the Graversen-Rao decomposition holds also for HK > 1
2 since it is a

zero quadratic variation process; however in this case the martingale part is zero.

4.3 Short-memory process

We use the following definition.

Definition 5 We say that a stochastic process X has long-memory (resp. short-memory)
if for any a > 0 it holds

∑

n≥a

r(n) = ∞ (resp.
∑

n≥a

r(n) < ∞)

where
r(n) = E ((Xn+1 − Xn)(Xa+1 − Xa)) . (28)

Proposition 7 If 2HK = 1 and K 6= 1, the process BH,K is a short-memory process.

Proof: See Appendix.

Remark 7 We can also prove that if HK > 1
2 the process BH,K has long-memory, and for

HK < 1
2 it has short-memory.
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4.4 Not a Markov process

Proposition 8 For every K ∈ (0, 1] and H ∈ (0, 1), the process BH,K is not a Markov
process.

Proof: Recall that (see Revuz-Yor [41]) a Gaussian process with covariance R is Markovian
if and only if

R(s, u)R(t, t) = R(s, t)R(t, u)

for every s ≤ t ≤ u. It is straightforward to check that BH,K does not satisfy this condition.

4.5 Remarks on the local times

We provide in this subsection a brief study of the local time of the bifractional Brownian
motion with a particular look at the case 2HK = 1. Recall that, concerning the regularity
of the local time of fBm, the following facts happen in general: it belongs to the Sobolev-
Watababe space (see [38] or [49] for definitions) D

α,2 with α < 1
2H − 1

2 and it has to be
renormalized by the factor t−H to converge to a nontrivial limit. We generalize this results
to the bifractional case. As a general fact, the regularity ”of order H” is replaced by the
”order HK”. When HK = 1

2 the process BH,K , from the point of view of the regularity of
its local time, appears to belong to the same class as the standard Wiener process.

Let us define, for every t ≥ 0, and x ∈ R, the local time of BH,K as

L(t, x) = L2(Ω) − lim
ε→0

∫ t

0
pε (Bs − x) ds. (29)

where pε(x) = 1√
2πε

e−
x2

2ε is the Gaussian kernel of variance ε > 0. The Wiener chaos

expansion can be used to prove the existence and the regularity of L. By In we denote the
Wiener-Itô multiple integral with respect to B (see [35] for details).

Proposition 9 For every t ≥ 0 and x ∈ R, the local time L(t, x) exists and admits the
following chaotic decomposition

L(t, x) =
∑

n≥0

∫ t

0

ps2HK(x)

snHK
Hn

( x

s2HK

)

In(1⊗n
[0,s])ds. (30)

where Hn is the nth Hermite polynomial defined for n ≥ 1 by

Hn(x) =
(−1)n

n!
ex2/2 dn

dxn

(

e−x2/2
)

,

and H0(x) = 1.
Moreover, it belongs to the space D

α,2 for every α < 1
2HK − 1

2 .
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Proof: The arguments of [12] can be applied to prove the existence and the chaotic
expansion of L(t, x).

Here we will just indicate how to evaluate the D
α,2 norm. Similarly to [12] or [16],

we have

‖L(t, x)‖2
α,2 =

∑

n≥0

(1 + n)α
E

(∫ t

0

ps2HK(x)

snHK
Hn

( x

s2HK

)

In(1⊗n
[0,s])ds

)

≤ C(t, H, K)
∑

n≥0

(1 + n)α

√
n

∫ t

0

∫ u

0

R(u, v)n

(uv)HKn

dvdu

(uv)H

= C(t, H, K)
∑

n≥0

(1 + n)α

√
n

∫ t

0

∫ u

0

u2HKnR(1, v
u)n

(uv)HKn

dvdu

(uv)H

= C(t, H, K)
∑

n≥0

(1 + n)α

√
n

∫ 1

0

(
R(1, z)

zHK

)n dz

zHK
dz,

where C(t,H,K) is a generic constant depending on t,H, K which may differ from line to
line. We notice that

R(1, z)

zHK
≤ Q(z)K

where Q(z) = 1+z2H−(1−z)2H

2zH . The behavior of the function Q has been studied in Lemma
2 of [16]. By applying the techniques used in [16], we get

∫ 1

0

(
R(1, z)

zHK

)n dz

zHK
dz ≤ c(H,K)n− 1

2HK

where the constant c(H, K) does not depend on n. This gives the conclusion.

Remark 8 In particular, for HK = 1
2 , we find the same order of regularity as the standard

Brownian motion (see [39]).

We finish this section with a short result on the asymptotic behavior of the occupa-
tion integrals of BH,K .

Proposition 10 Let f be a continuous function with compact support and let us define,
for every t ≥ 0, Xt =

∫ t
0 f(BH,K

s )ds. Then we have

t−HKXt →d
t→∞ f̃L(1, 0) (31)

where f̃ =
∫ 1
0 f(x)dx and ”→d” stands for the convergence in distribution.
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Proof: Let us assume HK = 1
2 ; the general case is analogous. It holds, by the HK = 1

2 -
self-similarity of the process and the occupation time formula

Xt = t

∫ 1

0
f(But)du

=d t

∫ 1

0
f(t

1

2 Bu)du = t

∫

R

f(t
1

2 x)L(1, x)dx = t
1

2

∫ t

0
f(y)L(1, yt−

1

2 )dy.

This shows that

t−
1

2

∫ t

0
f(Bu)du =d

∫

R

f(y)L(1, t−
1

2 y)dy.

Using the existence of a bicontinuous version for the local time (see [5] or [22]) one can see
that the right side converges as t → ∞ to L(1, 0)

∫

R
f(y)dy.

5 Itô formula

We prove in this section an Itô formula for the bifractional Brownian motion with any
parameter H ∈ (0, 1) and K ∈ (0, 1]. We first present some more elements of the stochastic
calculus via regularization. Note that the notions are a little bit relaxed, the limits being
considered in probability.

Let us consider two continuous processes X and Y . The symmetric integral of Y
with respect to X is defined as

∫ t

0
YudoXu = prob − lim

ε→0

1

ε

∫ t

0

Yu+ε + Yu

2
(Xu+ε − Xu) du, t ≥ 0.

More generally, if m ≥ 1 and Y is locally bounded, the m-order symmetric integral of Y
with respect to X is given

∫ t

0
Yudo(m)Xu = prob − lim

ε→0

1

ε

∫ t

0

Yu + Yu+ε

2
(Xu+ε − Xu)m du, t ≥ 0.

We have

1. If X and Y are both semimartingales, then
∫

Y d◦X is the classical Fisk-Stratonovich
integral.

2. We have ∫ t

0
Ysd

◦(1)Xs =

∫ t

0
Ysd

◦Xs.

In the fractional Brownian motion case, the above more or less classical definitions
are sufficient to develop a stochastic calculus if the parameter is strictly bigger that 1

6 (see
[25], [26]). An extended notion of m-order ν-integral , where ν is a probability measure, is
needed when the Hurst index is less than 1

6 . This extended approach has been introduced
in [26]. We recall the definition of the m-order ν-integral (see [26] and [47]).
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Definition 6 Let m ≥ 1 and ν a probability measure on [0, 1]. For a locally bounded function
g : R → R, the m-order ν-integral of g(X) with respect to X is given by

∫ t

0
g(Xu)dν,mXu = lim

ε→0
prob

1

ε

∫ t

0
du (Xu+ε − Xu)m

∫ 1

0
g (Xu + α(Xu+ε − Xu)) ν(dα).

(32)

This integral with respect to X is in general defined only for integrands of the type
g(X). Note that

• If µ = δ0 and m ∈ N
∗, then

∫ t
0 g(Xu)dν,mXu is the m-order forward integral (see [25]).

• If µ = δ0+δ1
2 , then

∫ t
0 g(Xu)dν,mXu is the m-order symmetric integral defined above.

The following Itô’s formula was proved in [26].

Theorem 2 Let n, l ≥ 1 integers and let ν be a symmetric probability measure on [0, 1]
verifying

m2j :=

∫ 1

0
α2jν(dα) =

1

2j + 1
for j = 1, . . . , l − 1.

If f ∈ C2n(R) and X is a continuous process with (2n)-variation it holds that

f(Xt) = f(X0) +

∫ t

0
f ′(Xu)dν,1Xu +

n−1∑

j=l

kl,j

∫ t

0
f (2j+1)(Xu)dδ1/2,2j+1Xu (33)

provided that all the integrals except one exist. Here kl,j denote universal constants. The
above sum is by convention zero if l > n − 1.

In particular, when ν = δ0+δ1
2 , we have

f(Xt) = f(X0) +

∫ t

0
f ′(Xu)d◦Xu +

n−1∑

j=l

kl,j

∫ t

0
f (2j+1)(Xu)dδ1/2,2j+1Xu. (34)

Remark 9 When ν is the Lebesgue measure on [0, 1] one can prove an Itô’s formula with
very few assumptions (see Proposition 3.5 in [26]): if f ∈ C1(R), then

∫ t
0 f ′(Xu)dν,1Xu

exists and

f(Xt) = f(X0) +

∫ t

0
f ′(Xu)dν,1Xu.

However this formula is almost a tautology; the interesting case arises when ν is discrete.

We treat now the particular case of the bifractional Brownian motion. The proof of
the below theorem will be postponed to the Appendix.
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Theorem 3 Let g be a locally bounded real function. If n is a positive integer such that
(2n + 1)HK > 1

2 , the integral
∫ t
0 g(BH,K

u )dδ1/2,2n+1BH,K
u exists and vanishes.

Remark 10 As a consequence of the above theorem, if (2n + 1)HK > 1
2 the integrals

∫ t
0 g(BH,K

u )dδ1/2,2l+1BH,K
u exist and vanish for all integers l ≥ n.

In particular, if HK > 1
6 , the integrals

∫ t
0 g(BH,K

u )d
δ 1
2

,l
exist and vanish for l ≥ 3.

As a consequence of Theorem 2 and 3, we obtain the following Itô’s formula for the
bifractional Brownian motion.

Theorem 4 a. Let ν be a symmetric probability measure. If HK > 1
6 and f ∈ C6(R),

the integral
∫ t
0 f ′(BH,K

u )dν,1BH,K
u exists and we have

f(BH,K
t ) = f(0) +

∫ t

0
f ′(BH,K

u )dν,1BH,K
u . (35)

b. Let µ a probability measure satisfying

m2j :=

∫ 1

0
α2jµ(dα) =

1

2j + 1
j = 1, . . . , r − 1

and let us assume r ≥ 2. If 2(2r + 1)H > 1 and f ∈ C4r+2(R), then the integral
∫ t
0 f ′(BH,K

u )dν,1BH,K
u exists and we have

f(BH,K
t ) = f(0) +

∫ t

0
f ′(BH,K

u )dν,1BH,K
u . (36)

Remark 11 An example of a measure verifying point b. of Theorem 4 is given in [26],
Remark 4.6.

Remark 12 • if HK > 1
6 , then the stochastic calculus via regularization gives an Itô’s

formula of standard type for the bifractional Brownian motion

f(BH,K
t ) = f(0) +

∫ t

0
f ′(BH,K

u )d0BH,K
u .

This follows from Theorem 4 b. and Theorem 2, formula (34).

• if HK ≤ 1
6 one need an extended, relaxed way to integrate.

Remark 13 Itô’s formula given in Theorem 4 could be written for the case f(t, BH,K
t ).

This fact can be used to solve stochastic differential equations driven by BH,K of the type

dXt = σ(Xt)dBH,K
t + b(Xt)dt, X0 = α. (37)

where the stochastic integral is understood in the symmetric sense. We will not insist on
this topic since standard arguments apply. We refer e.g. to [1] for the definition of the
solution of (37) and for the method to solve this equation. Another approach, not related to
Gaussian processes, is provided in [18] .
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6 Appendix

Proof of Proposition 4: For every t ≥ 0, denote by

Iε
t = E

(
∫ t

0

(BH,K
u+ε − BH,K

u )3

ε
du

)2

.

We will prove that Iε
t converges to zero as ε → 0 for every t. Using the relation

E
(
G3

3G
3
4

)
= 6Cov3 (G3, G4) + 9Cov (G3, G4)V ar(G3)V ar(G4)

if G3, G4 are two centered Gaussian random variables, it holds that

Iε
t = 2

∫ t

0

∫ u

0

E

(

BH,K
u+ε − BH,K

u

)3 (

BH,K
v+ε − BH,K

v

)3

ε2
dvdu

= 12

∫ t

0

∫ u

0

θε(u, v)3

ε2
dvdu

+9

∫ t

0

∫ u

0

θε(u, v)V ar
(

BH,K
u+ε − BH,K

u

)

V ar
(

BH,K
v+ε − BH,K

v

)

ε2
dvdu

= 12

∫ t

0

∫ u

0

(aε(u, v) + bε(u, v))3

ε2
dvdu

+9

∫ t

0

∫ u

0

(aε(u, v) + bε(u, v))V ar
(

BH,K
u+ε − BH,K

u

)

V ar
(

BH,K
v+ε − BH,K

v

)

ε2
dvdu

:= Aε + Bε.

where θ, a, b are given by (8), (9) and (10).
We estimate first the term Bε. We have

Bε = 9

∫ t

0

∫ u

0

aε(u, v)V ar
(

BH,K
u+ε − BH,K

u

)

V ar
(

BH,K
v+ε − BH,K

v

)

ε2
dvdu

+9

∫ t

0

∫ u

0

bε(u, v)V ar
(

BH,K
u+ε − BH,K

u

)

V ar
(

BH,K
v+ε − BH,K

v

)

ε2
dvdu

:= B1
ε + B2

ε .

By (3) it holds that

B2
ε ≤ cst.ε4HK

∫ t

0

∫ u

0

bε(u, v)

ε2
dvdu

and this converges to zero since it has been already studied in [25], Proposition 3.8.
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The B1
ε can be bounded by

B1
ε ≤ cst.ε4HK

∫ t

0

∫ u

0

aε(u, v)

ε2
dvdu

and this goes to zero by the (12) and (14).

Concerning the summand Aε, we can write

Aε = 12

∫ t

0

∫ u

0

aε(u, v)3

ε2
dvdu + 36

∫ t

0

∫ u

0

aε(u, v)2bε(u, v)

ε2
dvdu

+36

∫ t

0

∫ u

0

aε(u, v)bε(u, v)2

ε2
dvdu + 12

∫ t

0

∫ u

0

bε(u, v)3

ε2
dvdu

:= A1
ε + A2

ε + A3
ε + A4

ε.

The last term A4
ε appears in the study of the fractional Brownian motion with parameter

HK. When ε is close to zero, it behaves as (see [25], proof of Proposition 3.8)

cst.ε6HK−1

∫ ∞

0

(
(x + 1)2HK + (x − 1)2HK − 2x2HK

)3
dx

and this goes to zero if HK > 1
6 .

Treatment of the three remaining terms is similar. For example, concerning A1
ε,

using (12) we obtain that

A1
ε ≤ cst.

∫ t

0

∫ u

0
aε(u, v)dvdu

and this tends to zero as ε → 0 by (12), (13) and (14).

Proof of Proposition 7 : We have, for any a > 0 and n ≥ a,

r(n) = E ((Bn+1 − Bn)(Ba+1 − Ba))

=
1

2K

[(
(n + 1)2H + (a + 1)2H

)K −
(
(n + 1)2H + a2H

)K

−
(
n2H + (a + 1)2H

)K
+

(
n2H + a2H

)K
]

=
1

2K
nf

(
1

n

)

where

f(x) =
(
(1 + x)2H + ((a + 1)x)2H

)K −
(
1 + ((a + 1)x)2H

)K

−
(
(1 + x)2H + (ax)2H

)K
+

(
1 + (ax)2H

)K
.

We study the behavior of f at the origin. We have f(0) = 0 and

f ′(x) = x2H−1G1(x) + G2(x)
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where

G1(x) = (a + 1)2H
(
(1 + x)2H + ((a + 1)x)2H

)K−1 − (a + 1)2H
(
1 + ((a + 1)x)2H

)K−1

−a2H
(
(1 + x)2H + (ax)2H

)K−1
+ a2H

(
1 + (ax)2H

)K−1

and

G2(x) = (1 + x)2H−1
[(

(1 + x)2H + ((a + 1)x)2H
)K−1 −

(
(1 + x)2H + (ax)2H

)K−1
]

.

We can show that G1(x) = (1 − 2H)
[
(a + 1)2H − a2H

]
x + o(x) and writing G′

2(x) =
x2H−1H1(x) + H2, we obtain G′

2(x) = (1 − 2H)
[
(a + 1)2H − a2H

]
x2H + o(x2H). Conse-

quently,
f(x) = 2(1 − 2H)

[
(a + 1)2H − a2H

]
x2H+1 + o(x2H+1).

Therefore,
∑

n≥a

r(n) = 2−K
∑

n≥a

nf(
1

n
)

has the same nature as the series
∑

n≥a

1

n2H

and this is finite since 2HK = 1 implies H > 1
2 .

Proof of Theorem 3 : After use of localization arguments, it will be enough to suppose
g bounded. In that case, we will prove that, for m = 2n + 1 with n ≥ 1, the quantity

1

ε

∫ 1

0
g

(

BH,K
u+ε − BH,K

u

2

)
(

BH,K
u+ε − BH,K

u

)m
du

converges to zero in L2(Ω) as ε → 0 or equivalently

J (m)
ε :=

1

2ε

∫

D

∫

E

[

g

(

BH,K
u+ε − BH,K

u

2

)

g

(

BH,K
v+ε − BH,K

v

2

)

×
(

BH,K
u+ε − BH,K

u

)m (

BH,K
v+ε − BH,K

v

)m]

dvdu (38)

tends to zero as ε → 0, where D is the set (0 < u < v < 1).
Using exactly the same arguments as in [26], we can consider the following reduc-

tions:

•
1

2m
< HK ≤ 1

m
≤ 1

2
,
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• The integration domain D can be replaced by the set

Dε = {ε1−ρ < v < u < 1, ε1−ρ < v − u < 1 with ρ small enough }.

The next step is to do the linear regression on the Gaussian vector

(G1, G2, G3, G4) = (Bu+ε + Bu, Bv+ε + Bv, Bu+ε − Bu, Bv+ε − Bv)

with covariance matrix

Λ =

(
Λ11 Λ∗

21

Λ21 Λ22

)

with

Λ11 =

(
Aε(u, u) Aε(u, v)
Aε(u, v) Aε(v, v)

)

where

Aε(u, v) =
1

2K

[((
(u + ε)2H + (v + ε)2H

)K − (u − v)2HK
)

+
((

(u + ε)2H + v2H
)K − (u + ε − v)2HK

)

+
((

u2H + (v + ε)2H
)K − (u − ε − v)2HK

)

((
u2H + v2H

)K − (u − v)2HK
)]

.

The matrix Λ21 is given by

Λ21 =

(
Cov(G3, G1) Cov(G3, G2)
Cov(G4, G1) Cov(G4, G2).

)

Since the matrix Λ11 is symmetric and positive definite, we can write Λ11 = MM∗ where

M =





√

Aε(u, u) 0
A(u,v)√
Aε(u,u)

√
Dε(u,v)√
A(u,u)





and

(M∗)−1 =






1√
Aε(u,u)

− A(u,v)√
Aε(u,u)Dε(u,v)

0

√
Aε(u,u)√
Dε(u,v)




 .

By linear regression, we can write (see also [26])

(
G3

G4

)

= A

(
G1

G2

)

+

(
Z3

Z4

)

= R

(
N1

N2

)

+

(
Z3

Z4

)
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where R is given by R = Λ21(M
∗)−1, the vector (Z3, Z4) is independent from (G1, G2) and

the random variables N1 and N2 are independent.

Next, the term J
(m)
ε given by (38) can be divided into three summands as follows.

J (m)
ε =

1

2ε

∫

Dε

∫

E

[

g

(
G1

2

)

g

(
G2

2

)

(Γ3 + Z3)
m (Γ4 + Z4)

m

]

dvdu

=
1

2ε

∫

Dε

∫

E

[

g

(
G1

2

)

g

(
G2

2

)]

Zm
3 Zm

4 dvdu

+
1

2ε

∫

Dε

∫

E

[

g

(
G1

2

)

g

(
G2

2

)]
(
Γ3Z

m−1
3 Zm

4 + Γ4Z
m
3 Zm−1

4

)
dvdu

+
1

2ε

∫

Dε

∫

E

[

g

(
G1

2

)

g

(
G2

2

)]

×
m∑

j=0

m∑

k=2

Cj
mCk

m

(

Γj
3Z

m−j
3 Γk

4Z
m−k
4 + Γk

3Z
m−k
3 Γj

4Z
m−j
4

)

dvdu

:= J1 + J2 + J3.

First, by Lemma 5.2 in [26], we note that J2 = 0. We prove next that the term J3

goes to zero as ε → 0. In order to do it, following the computations in [26], the key point
that we have to check is to show that

∫

Dε

∫

|rij |ldudv ≤ cst.ε1+lKH for all i, j ∈ {1, 2}

where rij are the coefficients of the matrix R. This follows since we prove the following
bounds:

cst.u2HK ≤ Aε(u, u) ≤ cst.u2HK , Aε(u, v) ≤ cst.uHKvHK (39)

and
Dε(u, v) ≥ cst.u2HK(v − u)2HK (40)

where cst. denotes a generic positive constant. We will use the following inequalities, for
x, y > 0,

(x + y)K ≥ 2K−1(xK + yK) and (x + y)2HK ≥ 22HK−1(x2HK + y2HK) ≥ 1

2
(x2HK + y2HK).

Concerning the lower bound of (39), we can write

Aε(u, u) =
1

2K

[

2K(u + ε)2HK + 2Ku2HK + 2
(
(u + ε)2H + u2H

)K − 2ε2H + 2Ku2HK
]

≥ 1

2K

[
2K+1(u + ε)2HK + 2K+1u2HK − 2ε2HK

]

≥ (since u > ε)
1

2K

(
2K+1u2HK + (2K+1+2HK−2)ε2HK

)

≥ cst.u2HK
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and for the lower bound in (39), it holds

Aε(u, u) ≤ 4
(
u + ε)2H + u2H

)K − 2ε2HK

≤ 2
(
(2u)2H + u2H

)K
+ 2

(
(u + ε)2H + u2H − ε2H

)K

≤ cst.u2HK .

Regarding the inequality (40), we note that

Aε(u, u)

u2HK
= ϕ

( ε

u

)

,
Aε(v, v)

(v − u)2HK
=

ϕ
(

u
ε

u
v

)

(
1 − u

v

)2HK

where
ϕ(x) = (1 + x)2HK + 1 + 21−K

[
(1 + (1 + x)2H)K − x2HK

]

and
Aε(u, v)2

u2HK(v − u)2HK
= h

( ε

u
,
v

u

)

with

h(x, y) =
y2HK

2K(y − 1)2HK





((
1

y
+ 2

x

y
+

x2

y

)H

+

(

y + 2x +
x2

y

)H
)K

−
(

1

y
− 2 + y

)HK




+





(

1

yH
+

(

y + 2x +
x2

y

)H
)K

−
(

1

y
+ y +

x2

y
− 2 − 2

x

y
+ 2x

)HK




+





((
1

y
+ 2

x

y
+

x2

y

)H

+ xyH

)K

−
(

1

y
+ y +

x2

y
− 2 + 2

x

y
− 2x

)HK




+

[(
1

yH
+ yH

)K

−
(

1

y
− 2 + y

)HK
]

.

As a consequence we can write,

Dε(v, v)

u2HK(v − u)2HK
= τ

( ε

u
,
v

u

)

where the function τ : [0, 1]×]1,∞[ is given by

τ(x, y) =
y2HKϕ(x)ϕ(x

y )

(y − 1)2HK
− h(x, y).

Next, we note the following point: if v > u, τ(0, v
u) is strictly positive since D0(u, v) is the

determinant of the covariance matrix of (Bu, Bv) and as in [26] it suffices to check that

∀ε > 0 , ∀(u, v) ∈ Dε ,
∣
∣
∣ϕ

( ε

u
,
v

u

)

− ϕ
(

0,
v

u

)∣
∣
∣ ≤ c

( ε

u

)α
with α > 0
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and it can be checked that every term appearing in the expression of T satisfies this property.

The proof of the fact that J1 tends to zero as ε → 0 is a straightforward generaliza-
tion of Lemma 5.4 in [26].
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