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and nonlinear equations. We also prove that a version of the MLE using only discrete observations is still a strongly consistent estimator.

Introduction

Stochastic calculus with respect to fractional Brownian motion (fBm) has recently known an intensive development, motivated by the wide array of applications of this family of stochastic processes. For example, fBm is used as a model in network tra¢ c analysis; recent work and empirical studies have shown that tra¢ c in modern packet-based high-speed networks frequently exhibits fractal behavior over a wide range of time scales; this has major implications for the statistical study of such tra¢ c. An other example of applications is in quantitative …nance and econometrics: the fractional Black-Scholes model has been recently introduced (see e.g. [START_REF] Hu | Fractional white noise calculus and applications to …nance[END_REF], [START_REF] Djehiche | Hedging options in market models modulated by fractional Brownian motion[END_REF]) and this motivates the statistical study of stochastic di¤erential equations governed by fBm.

The topic of parameter estimation for stochastic di¤erential equations driven by standard Brownian motion is of course not new. Di¤usion processes are widely used for modeling continuous time phenomena; therefore statistical inference for di¤usion processes has been an active research area over the last decades. When the whole trajectory of the di¤usion can be observed, then the parameter estimation problem is somewhat simpler. But in practice data is typically collected at discrete times and thus of particular contemporary interest are works in which an approximate estimator, using only information gleaned from the underlying process in discrete time, is able to do as well as an estimator that uses continuously gathered information. This is in fact a rather challenging question and several methods have been employed to construct good estimators for discretely observed di¤usions; amongs these methods, we refer to numerical approximation to the likelihood function (see Aït-Sahalia [START_REF] Sahalia | Maximum likelihood estimation of discretely sampled di¤usions: a closed form approximation approach[END_REF], Poulsen [START_REF] Poulsen | Approximate maximum likelihood estimation of discretely observed di¤ usion processes[END_REF], Beskos et al. [START_REF] Beskos | Exact and computationally e¢ cient likelihood-based inference for discretely observed di¤usion processes[END_REF]), martingale estimating functions (see Bibby and Sorensen [START_REF] Bibby | Martingale estimation functions for discretely observed di¤usion processes[END_REF] ), indirect statistical inference (see Gourieroux et al. [START_REF] Gourieroux | Indirect Inference[END_REF]), or the Bayesian approach (see Elerian et al. [START_REF] Elerian | Likelihood inference for discretely observed nonlinear di¤usions[END_REF]), some sharp probabilistic bounds on the convergence of estimators in [START_REF] Bishwal | Rates of convergence of approximate maximum likelihood estimators in the Ornstein-Uhlenbeck process[END_REF], or [START_REF] Dacunha-Castelle | Estimation of the coe¢cients of a di¤usion from discrete observations[END_REF], [START_REF] Pedersen | A new approach to maximum likelihood estimation for stochastic di¤erential equations based on discrete observations[END_REF], [START_REF] Cleur | Maximum likelihood estimates of a class of one-dimensional stochastic di¤erential equation models from discrete data[END_REF] for particular situations. We mention the survey [START_REF] Sorensen | Parametric inference for di¤ usion processes observed at discreted points time: a survey[END_REF] for parameter estimation in discrete cases, further details in the works of [START_REF] Breton | On continuous and discrete sampling for parameter estimation in di¤usion type processes[END_REF], [START_REF] Yu | On a property of estimator of parameter of trend coe¢ cient[END_REF], or the book [START_REF] Yu | Parameter Estimation for Stochastic Processes, Heldermann[END_REF].

Parameter estimation questions for stochastic di¤erential equations driven by fBm are, in contrast, in their infancy. Some of the main contributions include [START_REF] Kleptsyna | Parameter estimation and optimal …ltering for fractional type stochastic systems[END_REF], [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF], [START_REF] Rao | Parameter estimation for linear stochastic di¤erential equations driven by fractional Brownian motion[END_REF] or [START_REF] Kukush | Statistical inference with fractional Brownian motion[END_REF]. We take up these estimation questions in this article. Our purpose is to contribute further to the study of the statistical aspects of the fractional stochastic calculus, by introducing the systematic use of e¢ cient tools from stochastic analysis, to yield results which hold in some non-linear generality. We consider the following stochastic equation

X t = Z t 0 b(X s )ds + B H t ; X 0 = 0 (1) 
where B H is a fBm with Hurst parameter H 2 (0; 1) and the nonlinear function b satis…es some regularity and non-degeneracy conditions. We estimate the parameter on the basis of the observation of the whole trajectory of the process X. The parameter H, which is assumed to be known, characterizes the local behavior of the process, with Hölder-regularity increasing with H; if H = 1=2, fBm is standard Brownian motion (BM), and thus has independent increments; if H > 1=2, the increments of fBm are positively correlated, and the process is more regular than BM;

if H < 1=2, the increments are negatively correlated, and the process is less regular than BM. H also characterizes the speed of decay of the correlation between distant increments. Estimating long-range dependence parameters is a di¢ cult problem in itself, which has received various levels of attention depending on the context;

the text [START_REF] Bardet | Semi-parametric estimation of the long-range dependence parameter : a survey[END_REF] can be consulted for an overview of the question; we have found the yet unpublished work [START_REF] Coeurjolly | L-type estimators of the fractal dimension of locally self-similar Gaussian processes[END_REF], available online, which appears to propose a good solution applicable directly to fBm. Herein we do not address the Hurst parameter estimation issue.

The results we prove in this paper are as follows:

for every H 2 (0; 1), we give concrete assumptions on the nonlinear coe¢ cient b to ensure the existence of the maximum likelihood estimator (MLE) for the parameter (Proposition 1);

for every H 2 (0; 1) and under certain hypotheses on b which include nonlinear classes, we prove the strong consistency of the MLE (Theorems 2 and 3, depending on whether H < 1=2 or H > 1=2; and Proposition 2 and Lemma 3 for the scope of non-linear applicability of these theorems); note that for H > 1=2 and b linear, this has also been proved in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF];

for every H 2 (0; 1), the bias and mean-square error for the MLE are estimated in the linear case (Proposition 3); this result was established for H > 1=2 in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF].

In this paper we also present a …rst practical implementation of the MLE studied herein, using only discrete observations of the solution X of equation [START_REF] Sahalia | Maximum likelihood estimation of discretely sampled di¤usions: a closed form approximation approach[END_REF], by replacing integrals with their Riemann sum approximations. We show that the discretization time-step for the Riemann sum approximations of the MLE can be …xed while still allowing for a strongly consistent estimator in large time, a result valid in the linear case and some non-linear classes (Proposition 5 and Theorem 4).

To establish all these results, we use techniques in stochastic analysis including the Malliavin calculus, and supremum estimations for stochastic processes. The Malliavin calculus, or the stochastic calculus of variations, was introduced by P.

Malliavin in [START_REF] Malliavin | Stochastic calculus of variations and hypoelliptic operators[END_REF] and developed by D. Nualart in [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]. Its original purpose was to study the existence and the regularity of the density of solutions to stochastic di¤erential equations. Since our hypotheses in the present paper to ensure existence and strong consistency of the MLE are given in terms of certain densities (see Condition (C)), the techniques of the Malliavin calculus appear as a natural tool.

We believe our paper is the …rst instance where the Malliavin calculus and supremum estimations are used to treat parameter estimation questions for fractional stochastic equations. These techniques should have applications and implications in statistics and probability reaching beyond the question of MLE for fBm. For example, apart from providing the …rst proof of strong consistency of the MLE for an fBm-driven di¤erential equation with non-linear drift or with H < 1=2, more generally, in (Itô-) di¤usion models, the strong consistency of an estimator follows if one can prove that an expression of the type

I t := R t 0 f 2 (X s )ds tends to 1 as t ! 1
almost surely. To our knowledge, a limited number of methods has been employed to deal with this kind of problem: for example, if X is Gaussian the Laplace transform can be computed explicitly to show that lim t!1 I t = 1 a.s.; also, if X is an ergodic di¤usion, a local time argument can be used to show the above convergence.

Particular situations have also been considered in [START_REF] Yu | On a property of estimator of parameter of trend coe¢ cient[END_REF], [START_REF] Yu | Estimation of the trend parameter of a di¤usion process[END_REF]. We believe that our stochastic analytic tools constitute a new possibility, judging by the fact that the case of H < 1=2 is well within the reach of our tools, in contrast with the other above-mentioned methods, as employed in particular in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF] (see however a general Bayesian-type problem discussed in [START_REF] Kleptsyna | Parameter estimation and optimal …ltering for fractional type stochastic systems[END_REF]).

The organization of our paper is as follows. Section 2 contains preliminaries on the fBm. In Section 3 we show the existence of the MLE for the parameter in [START_REF] Basawa | Statistical Inference for Stochastic Processes[END_REF] and in Section 4 we study its asymptotic behavior. Section 5 contains some additional results in the case when the drift function is linear. In Section 6, a discretized version of the MLE is studied. The Appendix (Section 7) contains most of the technical proofs.

We gratefully acknowledge our debt to the insightful comments of the editor, associate editor, and two referees, which resulted in several important improvements on an earlier version of this paper.

Preliminaries on the fractional Brownian motion and fractional calculus

We consider (B H t ) t2[0;T ] , B H 0 = 0 a fractional Brownian motion with Hurst parameter H 2 (0; 1), in a probability space ( ; F; P). This is a centered Gaussian process with covariance function R given by

R(t; s) = E B H t B H s = 1 2 t 2H + s 2H jt sj 2H s; t 2 [0; T ]: (2) 
Let us denote by K the kernel of the fBm such that (see e.g. [START_REF] Norros | An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion[END_REF])

B H t = Z t 0 K(t; s)dW s ( 3 
)
where W is a Wiener process (standard Brownian motion) under P. Denote by E H the set of step functions on [0; T ] and let H be the canonical Hilbert space of the fBm; that is, H is the closure of E with respect to the scalar product

h1 [0;t] ; 1 [0;s] i H = R(t; s):
The mapping 1 [0;t] ! B H t can be extended to a isometry between H and the Gaussian space generated by B H and we denote by B H (') the image of ' 2 H by this isometry.

We also introduce the operator K from E H to L 2 ([0; T ]) de…ned by

(K ')(s) = K(T; s)'(s) + Z T s ('(r) '(s)) @K @r (r; s)dr: (4) 
With this notation we have (K 1 [0;t] )(s) = K(t; s) and hence the process

W t = Z t 0 (K ; 1 1 [0;t] )(s)dB H s ( 5 
)
is a Wiener process (see [START_REF] Alos | Stochastic calculus with respect to Gaussian processes[END_REF]); in fact, it is the Wiener process referred to in formula

(3), and for any non-random ' 2 H, we have

B H (') = R T 0 (K ')(s)dW (s)
, where the latter is a standard Wiener integral with respect to W .

Lastly we recall some elements of fractional calculus. Let f be an L 1 function over the interval [0; T ] and > 0. Then

I 0+ f (t) = 1 ( ) Z T 0 f (s) (t s) 1 ds and D 0+ f (t) = 1 (1 ) d dt Z T 0 f (s) (t s) ds
are the Riemann-Liouville fractional integrals and derivatives of order 2 (0; 1).

The latter admit the following Weil representation 1)

D 0+ f (t) = 1 (
f (t) t + Z t 0 f (t) f (y) (t y) +1 dy
where the convergence of the integrals at t = y holds in the L p -sense (p > 1) . We can formally de…ne, for negative orders ( < 0), the fractional integral operators as

I = D . If K H is the linear operator (isomorphism) from L 2 ([0; T ]) onto I H+ 1 2 + (L 2 ([0; T ]))
whose kernel is K(t; s), [START_REF] Decreusefond | Stochastic analysis of the fractional Brownian motion[END_REF] can be consulted for formulas for K H ;

we provide here the formulas for the inverse operator of K H in terms of fractional integrals

K 1 H h (s) = s H 1 2 I 1 2 H 0+ (s 1 2 H h 0 (s))(s); H 1 2 (6) 
and

K 1 H h (s) = s H 1 2 D H 1 2 0+ (s 1 2 H h 0 (s))(s); H 1 2 : (7) 
3 The maximum likelihood estimator for fBm-driven stochastic di¤erential equations

We will analyze the estimation of the parameter 2 R based on the observation of the solution X of the stochastic di¤erential equation

X t = Z t 0 b(X s )ds + B H t ; X 0 = 0 (8)
where B H is a fBm with H 2 (0; 1) and b : R ! R is a measurable function. Let us recall some known results concerning equation ( 8):

In [START_REF] Nualart | Regularization of di¤erential equations by fractional noise[END_REF] the authors proved the existence and uniqueness of a strong solution to equation [START_REF] Basawa | Statistical Inference for Stochastic Processes[END_REF] under the following assumptions on the coe¢ cient b:

if H < 1 2 , b satis…es the linear growth condition jb(x)j C(1 + jxj);

-if H > 1 2 , b is Hölder-continuous of order 2 (1 1 2H ; 1).
In [START_REF] Boufoussi | On a stochastic equation driven by a fBm with discontinuous drift[END_REF] an existence and uniqueness result for (8) is given when H > Remark 1 The case of the Hölder-continuous drift is elementary: it is not di¢ cult to show that the usual Picard iteration method can be used to prove the existence and uniqueness of a strong solution.

Throughout the paper, from now on, we will typically avoid the use of explicit H-dependent constants appearing in the de…nitions of the operator kernels related to this calculus, since our main interest consists of asymptotic properties for estimators.

In consequence, we will use the notation C(H); c(H); c H ; for generic constants depending on H, which may change from line to line.

Our construction is based on the following observation (see [START_REF] Nualart | Regularization of di¤erential equations by fractional noise[END_REF]). Consider the

process BH t = B H t +
R t 0 u s ds where the process u is adapted and with integrable paths. Then we can write

BH t = Z t 0 K(t; s)dZ s (9) 
where

Z t = W t + Z t 0 K 1 H Z 0 u r dr (s)ds: (10) 
We have the following Girsanov theorem.

Theorem 1 i) Assume that u is an adapted process with integrable paths such that

t ! Z t 0 u s ds 2 I H+ 1 2 L 2 ([0; T ]) a.s.
ii) Assume that E(V T ) = 1 where

V T = exp Z T 0 K 1 H Z 0 u r dr (s)dW s 1 2 Z T 0 K 1 H Z 0 u r dr (s) 2 ds ! : (11) 
Then under the probability measure P de…ned by d P=dP = V T it holds that the process Z de…ned in [START_REF] Cleur | Maximum likelihood estimates of a class of one-dimensional stochastic di¤erential equation models from discrete data[END_REF] is a Brownian motion and the process BH (9) is a fractional Brownian motion on [0; T ].

Hypothesis. We need to make, at this stage and throughout the remainder of the paper, the following assumption on the drift: b is di¤erentiable with bounded derivative b 0 ; thus the a¢ ne growth condition holds.

This Girsanov theorem is the basis for the following expression of the MLE.

Proposition 1 Denote, for every t 2 [0; T ], by

Q t = Q t (X) = K 1 H Z 0 b(X r )dr (t): (12) 
Then Q 2 L 2 ([0; T ]) almost surely and the MLE is given by

t = R t 0 Q s dW s R t 0 Q 2 s ds : (13) 
Before proving Proposition 1, we need the following estimates: 

Lemma
h (t) = Z t 0 b (X s ) ds:
We prove that the process h satis…es i) and ii) of Theorem 1. Note …rst that the application of the operator K 1 H preserves the adaptability. We treat separately the cases when H is bigger or less than one half.

The case H < 1=2: To prove i), we only need to show that Q 2 L 2 ([0; T ]) P-a.s.

Indeed i) is equivalent to the following, almost-surely:

h 2 I H+1=2 + L 2 ([0; T ]) () K 1 H h 2 K 1 H I H+1=2 + L 2 ([0; T ]) :
Then using the isomorphism property of K H we see that i) is equivalent to

K 1 H h 2 L 2 ([0; T ]), which means Q 2 L 2 ([0; T ]) a.
s. by de…nition. Now using relation [START_REF] Bishwal | Rates of convergence of approximate maximum likelihood estimators in the Ornstein-Uhlenbeck process[END_REF] we thus have, for some constant C H which may change from line to line, using the hypothesis jb (x)j C (1 + jxj), for all s T ,

jQ s j C H s H 1=2 Z s 0 (s u) 1=2 H u 1=2 H b (X u ) du C H 1 + sup u s jX u j ; (16) 
which we can rewrite, thanks to Lemma 1, as

sup s T jQ s j C (H; T ) 1 + sup s T jX (s)j ! ;
which, thanks to inequality [START_REF] Djehiche | Hedging options in market models modulated by fractional Brownian motion[END_REF], is of course much stronger than Q 2 L 2 ([0; T ]) a.s., since sup s T jX (s)j has moments of all orders (see [START_REF] Nualart | Regularization of di¤erential equations by fractional noise[END_REF]).

To prove ii) it su¢ ces to show that there exists a constant > 0 such that

sup s T E exp( Q 2 s ) < 1:
Indeed, one can invoke an argument used by Friedman in [START_REF] Friedman | Stochastic di¤ erential equations and applications[END_REF], Theorem 1.1, page 152, showing that this condition implies the so-called Novikov condition (see [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]), itself implying ii). Since Q satis…es (16), the above exponential moment is a trivial consequence of inequality [START_REF] Djehiche | Hedging options in market models modulated by fractional Brownian motion[END_REF] and the Fernique's theorem on the exponential integrability of the square of a seminorm of a Gaussian process.

The case H > 1=2: Using formula [START_REF] Boufoussi | On a stochastic equation driven by a fBm with discontinuous drift[END_REF] we have in this case that

Q s = c H " s 1 2 H b(X s ) + H 1 2 s H 1 2 Z s 0 b(X s )s 1 2 H b(X u )u 1 2 H (s u) H+ 1 2 du # (17) = c H " s 1 2 H b(X s ) + H 1 2 s H 1 2 b(X s ) Z s 0 s 1 2 H u 1 2 H (s u) H+ 1 2 du + H 1 2 s H 1 2 Z s 0 b(X s ) b(X u ) (s u) H+ 1 2 u 1 2 H du #
and using the fact that

Z s 0 s 1 2 H u 1 2 H (s u) H 1 2 du = c(H)s 1 2H
we get

jQ s j c H s 1 2 H jb(X s )j + s H 1 2 Z s 0 b(X s ) b(X u ) (s u) H+ 1 2 u 1 2 H du ! := A(s) + B(s):
The …rst term A(s) above can be treated as in [START_REF] Nualart | Regularization of di¤erential equations by fractional noise[END_REF], proof of Theorem 3, due to our Lipschitz assumption on b. We obtain that for every > 1, E exp(

Z t 0 A 2 s ds) < 1: (18) 
To obtain the same conclusion for the second summand B(s) we note that by Lemma 1, up to a multiplicative constant, the random variable

G = sup 0 u<s T jX s X u j ju sj H "
is bounded by

1 + sup u T jX u j ! jt sj 1 H+" + sup 0 u<s T jB H s B H u j ju sj H "
and it su¢ ces to use the calculations contained in [START_REF] Nualart | Regularization of di¤erential equations by fractional noise[END_REF].

Conclusion.

Properties i) and ii) are established for both cases of H, and we may apply Theorem 1. Expression [START_REF] Decreusefond | Stochastic analysis of the fractional Brownian motion[END_REF] for the MLE follows a standard calculation, since (using the notation P for the probability measure induced by (X s ) 0 s t , and the fact that P 0 = P),

F ( ) := log dP dP 0 = Z t 0 Q s dW s 2 2 Z t 0 Q 2 s ds: (19) 
We …nish this section with some remarks that will relate our construction to previous works ( [START_REF] Kleptsyna | Parameter estimation and optimal …ltering for fractional type stochastic systems[END_REF], [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF], [START_REF] Rao | Parameter estimation for linear stochastic di¤erential equations driven by fractional Brownian motion[END_REF]). Details about these links are given in Section 5.

Alternative form of the MLE. By ( 8) we can write, by integrating the quantity

K ; 1 1 [0;t] (s) for s between 0 and t, Z t 0 K ; 1 1 [0;t] ( ) (s)dX s = Z t 0 K ; 1 1 [0;t] ( ) (s)b(X s )ds + W t : (20) 
On the other hand, by ( 8) again,

X t = Z t 0 K(t; s)dZ s ( 21 
)
where Z is given by [START_REF] Cleur | Maximum likelihood estimates of a class of one-dimensional stochastic di¤erential equation models from discrete data[END_REF]. Therefore, we have the equality

Z t 0 K ; 1 1 [0;t] ( ) (s)dX s = Z t : (22) 
By combining [START_REF] Yu | On a property of estimator of parameter of trend coe¢ cient[END_REF] and ( 22) we obtain

Z t 0 K 1 H Z 0 b(X r )dr (s)ds = Z t 0 K ; 1 1 [0;t] ( ) (s)b(X s )ds and thus the function t ! R t 0 K ; 1 1 [0;t] ( ) (s)b(X s )ds is absolutely continu-
ous with respect to the Lebesgue measure and

Q t = d dt Z t 0 K ; 1 1 [0;t] ( ) (s)b(X s )ds: (23) 
By [START_REF] Cleur | Maximum likelihood estimates of a class of one-dimensional stochastic di¤erential equation models from discrete data[END_REF] we get that the function ( 19) can be written as

F ( ) = Z t 0 Q s dZ s + 2 2 Z t 0 Q 2 s ds:
As a consequence, the maximum likelihood estimator t has the equivalent

form t = R t 0 Q s dZ s R t 0 Q 2 s ds : (24) 
The above formula [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF] shows explicitly that the estimator t is observable if we observe the whole trajectory of the solution X.

Asymptotic behavior of the maximum likelihood estimator

This section is devoted to studying the strong consistency of the MLE (13). A similar result has been proven in the case b(x) x and H > 1 2 in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF]. We propose here a proof of strong consistency for a class of functions b which contains signi…cant non-linear examples. By replacing [START_REF] Cleur | Maximum likelihood estimates of a class of one-dimensional stochastic di¤erential equation models from discrete data[END_REF] in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF], we obtain that

t = R t 0 Q s dW s R t 0 Q 2 s ds
with Q given by ( 12) or [START_REF] Yu | Statistical Inference for Ergodic Di¤ usion Processes[END_REF]. To prove that t ! almost surely as t ! 1 (which means by de…nition that the estimator t is strongly consistent), by the strong law of large numbers we need only show that

lim t!1 Z t 0 Q 2 s ds = 1 a.s. : (25) 
To prove that lim t!1 R t 0 Q 2 s ds = 1 in a non-linear case, it is necessary to make some assumption of non-degeneracy on the behavior of b. In order to illustrate our method using the least amount of technicalities, we will restrict our study to the case where the function jbj satis…es a simple probabilistic estimate with respect to fractional Brownian motion.

(C) There exist positive constants t 0 and K b , both depending only on H and the function b, and a constant < 1= (1 + H) such that for all t t 0 and all " > 0, we have P jQ t (!)j = p t < " "t H K b , where under P, ! has the law of fractional Brownian motion with parameter H.

The case H < 1 2

In this part we prove the following result.

Theorem 2 Assume that H < 1=2 and that Condition (C) holds. Then the estimator t is strongly consistent, that is,

lim t!1 t = almost surely:
Before proving this theorem, we discuss Condition (C). To understand this condition, we …rst note that with t H the positive measure on [0; t] de…ned by t H (dr) = (r=t) 1=2 H (t r) 1=2 H dr, according to the representation (6), we have

Q t = Z t 0 t H (ds) b(! s )
and therefore, by the change of variables r = s=t,

Q t p t = Z 1 0 1 H (dr) b (! tr ) t H (26) 
D = Z 1 0 1 H (dr) b t H !r t H ; (27) 
where the last inequality is in distribution under P.

If b has somewhat of a linear behavior, we can easily imagine that b t H !r =t H will be of the same order as b (! r ). Therefore Q t = p t should behave, in distribution for …xed t, similarly to the universal random variable The non-degeneracy condition on jb 0 j above can be relaxed. It is possible, for example, to prove that if, for x x 0 , only the condition jb 0 (x)j x holds, then Condition (C) holds as long as does not exceed a positive constant 0 (H) depending only on H. However, such a proof is more technical than the one given below, and we omit it.

The hypothesis of fractional power decay on b 00 , while crucial, does allow b to have a truly non-linear behavior. Compare with Lemma 3 below, which would correspond to the case = 1 here.

The hypotheses of the above proposition imply that b is monotone.

The proof of Proposition 2 requires a criterion from the Malliavin calculus, which we present here. The book [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] by D. Nualart is an excellent source for proofs of the results we quote. Here we will only need to use the following properties of the Malliavin derivative D with respect to W (recall that W is the standard Brownian motion used in the representation (3), i.e. de…ned in ( 5)). For simplicity of notation we assume that all times are bounded by T = 1. The operator D, from a subset of

L 2 ( ) into L 2 ( [0; 1]
), is essentially the only one which is consistent with the following two rules:

1. Consider a centered Gaussian random variable Z 2 L 2 ( ); it can be therefore

represented as Z = W (f ) = R 1 0 f (s) dW (s) for some non-random function f 2 L 2 ([0; 1]
). The operator D picks out the function f , in the sense that for any r 2 [0; 1],

D r Z = f (r) :
2. D is compatible with the chain rule, in the sense that for any 2 C 1 (R) such that both F := (Z) and 0 (Z) belongs to L 2 ( ), for any r 2 [0; 1],

D r F = D r (Z) = 0 (Z) D r Z = 0 (Z) f (r) :
For instance, using these two rules, de…nition (3) and formula (5) relative to the fBm ! under P, we have that under P, for any r s,

D r b t H !s = t H b 0 t H !s K (s; r) : (28) 
It is convenient to de…ne the domain of D as the subset D 1;2 of r.v.'s F 2 L 2 ( )

such that D F 2 L 2 ( [0; 1]). Denote the norm in L 2 ([0; 1]) by k k. The set D 1;2
forms a Hilbert space under the norm de…ned by

kF k 2 1;2 = E jF j 2 + E kD F k 2 = E jF j 2 + E Z 1 0 jD r F j 2 dr:
Similarly, we can de…ne the second Malliavin derivative D 2 F as a member of L 2 [0; 1] 2 , using an iteration of two Malliavin derivatives, and its associated Hilbert space D 2;2 .

Non-Hilbert spaces, using other powers than 2, can also be de…ned. For instance, the space D 2;4 is that of random variables F having two Malliavin derivatives, and

satisfying kF k 4 2;4 = E jF j 4 + E kD F k 2 + E D 2 ; F 4 L 2 ([0;1] 2 ) = E jF j 4 + E Z 1 0 jD r F j 2 dr + E Z 1 0 jD r D s F j 2 drds 2 < 1
We also note that the so-called Ornstein-Uhlenbeck operator L acts as follows (see [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]Proposition 1.4.4]):

LF = L (Z) = Z 0 (Z) + 00 (Z) kf k 2 :
We have the following Lemma, whose proof we omit because it follows from ([31, Proposition 2.1.1. and Exercise 2.1.1]).

Lemma 2 Let F be a random variable in D 2;4 , such that E

h kDF k 8 i < 1.
Then F has a continuous and bounded density f given by

f (x) = E " 1 (F >x) LF kDF k 2 2 DF DF ; D 2 F L 2 ([0;1] 2 ) kDF k 4 !# Proof of Proposition 2.
Step 0: strategy. Using the identity in law [START_REF] Breton | On continuous and discrete sampling for parameter estimation in di¤usion type processes[END_REF], and the shorthand notation

= H 1 , let F = Q t p t = Z 1 0 (dr) b t H !r t H :
It is su¢ cient to prove that F has a density which is bounded by K b t H where the constant K b depends only on b and H. Indeed

P jQ t (!)j = p t < " R " 0 K b t H dx = "t H K b .
In this proof, C b;H denotes a constant depending only on b and H, whose value may change from line to line.

Step 1: calculating the terms in Lemma 2. We begin with the calculation of DF .

Since the Malliavin derivative is linear, we get

D r F = t H R 1 0 (ds) D r b t H !s .
Then from [START_REF] Liptser | Statistics of random processes II[END_REF] we get

D r F = Z 1 r (ds) b 0 t H !s K (s; r) :
Thus we can calculate

kDF k 2 = Z 1 0 dr Z 1 r (ds) b 0 t H !s K (s; r) 2 = Z 1 0 Z 1 0 (ds) ds 0 b 0 t H !s b 0 t H !s 0 Z min(s;s 0 ) 0 K (s; r) K s; r 0 dr = Z 1 0 Z 1 0 (ds) ds 0 b 0 t H !s b 0 t H !s 0 R s; s 0 ;
where R is the covariance of fBm in [START_REF] Alos | Stochastic calculus with respect to Gaussian processes[END_REF]. A similar calculation yields

D 2 q;r F = t H Z 1 max(q;r) (ds) b 00 t H !s K (s; r) K (s; q) and D 2 F 2 L 2 ([0;1] 2 ) = t 2H Z 1 0 Z 1 0 (ds) ds 0 b 00 t H !s b 00 t H !s 0 R s; s 0 2 :
For the Ornstein-Uhlenbeck operator, which is also linear, we get

LF = Z 1 0 (ds) b 0 t H !s !s + b 00 t H !s t H s 2H :
Step 2: estimating the terms in Lemma 2. With the expressions in the previous step, using the hypotheses of the proposition, we now obtain, for some constant C H depending only on H,

Ẽ [jLF j] C H b 0 1 + t H b 1 Z 1 0 (ds) s 2H Ẽ " 1 1 + t H j! s j #! = C H b 0 1 + t H b 1 E " Z 1 0 (ds) s 2H 1 1 + (ts) H jZj #! ;
where Z is a generic standard normal random variable. We deal …rst with the integral in s. Using the fact that (ds) has a bounded density, and the elementary fact that for any a > 0 and any < 1, we have

R 1 0 ds (1 + as ) 1 (1 ) 1 a 1 ,
we may now write, using a = t H jZj and = H,

Ẽ [jLF j] C H;b 1 + t H(1 ) 1 1 H E h jZj i C H;b 1 + t H(1 ) :
The estimation of D 2 F is similar. Using its expression in the previous step, the boundedness of d =ds d =ds 0 R (s; s 0 ), and the fact that R 1 0 ds (1 + as ) 2

(1 2 ) 1 a 2 , with = H < 1=2, we get

Ẽ D 2 F L 2 ([0;1] 2 ) C b;H t H(1 ) :
Also almost surely, for any p 2, for some constant C H;p depending only on H and p, since b 0 has a constant sign, we obtain

1 kDF k p = Z Z [0;1] 2 (ds) ds 0 R s; s 0 b 0 t H !s b 0 t H !s 0 ! p=2 C H;p b p 0 :
Lastly, it is convenient to invoke the Cauchy-Schwartz inequality to get

DF DF ; D 2 F L 2 ([0;1] 2 ) kDF k 4 D 2 F L 2 ([0;1] 2 )
kDF k 2 ;

Step 3: applying Lemma 2; conclusion. The third estimate in the previous step (for p = 8) proves trivially that Ẽ kDF k 8 is …nite. That F 2 D 2;4 follows again trivially from the boundedness of b 0 and b 00 using the expressions in Step 1. Thus Lemma 2 applies. We conclude from the estimates in the previous step that F has a density f which is bounded as

f (x) C H;b 1 + t H(1 ) b 2 0
With t 1, the conclusion of the proposition follows.

A smaller class of functions b satisfying condition (C), but which is not restricted to H < 1=2, is given in the following result, proved in the Appendix.

Lemma 3 Let H 2 (0; 1). Assume xb(x) has a constant sign for all x 2 R + and a constant sign for all x 2 R . Assume

jb (x) =xj = c + h (x) (29) 
for all x, where c is a …xed positive constant, and lim Proof of Theorem 2. Since we only want to show that (25) holds, and since R t 0 jQ s j 2 ds is increasing, it is su¢ cient to satisfy condition [START_REF] Kleptsyna | Parameter estimation and optimal …ltering for fractional type stochastic systems[END_REF] for t tending to in…nity along a sequence (t n ) n2N . We write, according to the representation (6), for each …xed t 0,

I t = I t (X) := Z t 0 jQ s (X)j 2 ds = Z t 0 Z s 0 s H (dr) b(X r ) 2 ds
where X is the solution of the Langevin equation ( 8) and the positive measure s H is de…ned by s H (dr) = (r=s) 1=2 H (s r) 1=2 H dr. Recall from the Girsanov Theorem 1 applied to X, that with

T = exp Z T 0 Q s (X) dW s 1 2 Z T 0 jQ s (X)j 2 ds
where W is standard Brownian motion under P, we have that under the probability measure P de…ned by its Radon-Nikodym derivative d

P dP F X T = T for all T 0,
X is a fractional Brownian motion with parameter H. Moreover, since T is a true martingale, this Girsanov transformation can be reversed. See [35, Theorem

VIII.1.7]: with L t = R T 0 Q s (X) dW s , we can write that dP d P F X T = ~ T ;
where under P, ~ can be written as the exponential martingale

~ t = exp Lt 1 2 D LE t
for some martingale L under P satisfying

D LE t = hLi t = I t (X) = R t 0 jQ s (X)j 2 ds.
Here, since X is still a fractional Brownian motion with parameter H under P, we will use the notation ! for X, to signify that X does not have the law of X under P.

Thence consider a sequence of constants ( n ) 1 n=0 which will be chosen later. We claim that for any such n and for t = t n = n k with …xed k 1, it holds that

P [I tn (X) < tn ] C(p; H; b) 1 n 2=p exp ( tn ) (30) 
with some p > 

jV t V s j M # C M;H;b b n t n HM :
In order for the bound [START_REF] Norros | An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion[END_REF] to be summable in n, it is su¢ cient to choose tn = (2 ) 1 log n, and to take p very close to 1, so that n 2=p exp ( tn ) can be bounded above by any power n 3=2+" for any " > 0. Therefore, by the Borel-Cantelli lemma, there exists a random almost surely …nite integer n 0 (!) depending on the function b ( ) via the constant K b , and depending on the constants H, p, and , such that for all n > n 0 (!),

I n k (!) 1 2 log n;
where the constants p and can be chosen, for instance, as described in the lines following inequality (50), implying the result (25) along the sequence

t n = n k ! 1,
and the Theorem. satis…es Condition (29) in Lemma 3). Then the maximum likelihood estimator t is strongly consistent.

The linear case

In this section we present some comments in the case when the drift b is linear. We will assume that b(x)

x to simplify the presentation. In this case, the solution X to equation ( 8) is the fractional Ornstein-Uhlenbeck process and it is possible to prove more precise results concerning the asymptotic behavior of the maximum likelihood estimator.

Remark 3 In [START_REF] Cheridito | Fractional Ornstein-Uhlenbeck processes[END_REF], it is shown that there exists an unique almost surely continuous process X that satis…es the Langevin equation ( 8) for any H 2 (0; 1). Moreover the process X can be represented as

X t = Z t 0 e (t u) dB H u ; t 2 [0; T ] (31) 
where the above integral is a Wiener integral with respect with B H (which exists also as a pathwise Riemann-Stieltjes integral). It follows from the stationarity of the increments of B H that X is stationary and the decay of its auto-covariance function is like a power function. The process X is ergodic, and for H > 1 2 , it exhibits a long-range dependence.

Let us brie ‡y recall the method employed in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF] to estimate the drift parameter of the fractional OU process. Let us consider the function , for 0 < s < t 1,

k(t; s) = c 1 H s 1 2 H (t s) 1 2 H with c H = 2H ( 3 2 H) (H + 1 2 ) (32) 
and let us denote its Wiener integral with respect to B H by

M H t = Z t 0 k(t; s)dB H s : (33) 
It has been proved in [START_REF] Norros | An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion[END_REF] that M H is a Gaussian martingale with bracket

hM H i t := ! H t = 1 H t 2 2H with H = 2H (3 2H) (H + 1 2 ) ( 3 2 H) : (34) 
The authors called M H the fundamental martingale associated to fBm. Therefore, observing the process X given by ( 8) is the same thing as observing the process

Z KB t = Z t 0 k(t; s)dX s
which is actually a semimartingale with the decomposition

Z KB t = Z t 0 Q KB s d! H s + M H t ( 35 
)
where

Q KB t = d d! H Z t 0 k(t; s)X s ds; t 2 [0; T ]: (36) 
By using Girsanov's theorem (see [START_REF] Norros | An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion[END_REF] and [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF]) we obtain that the MLE is given by

t := KB t = R t 0 Q KB s dZ KB s R t 0 (Q KB s ) 2 d! H s : (37) 
Remark 4 We can observe that our operator (13) or ( 24) coincides (possibly up to a multiplicative constant) with the one used in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF] and given by [START_REF] Rao | Statistical Inference for Di¤ usion type processes[END_REF]. Assume that H < 1 2 ; the case H > 1 2 is just a little more technical.

Proof. Using relations ( 12) and ( 32) we can write

Q t = C(H)t H 1 2 Z t 0 s 1 2 H (t s) 1 2 H b(X s )ds = C(H)t H 1 2 Z t 0 d dt k(t; s)b(X s )ds = C(H)t H 1 2 d dt Z t 0 k(t; s)b(X s )ds: It is not di¢ cult to see that d dt R t 0 k(t; s)b(X s )ds = C(H)t 1 2H Q KB t
and therefore

Q t = C(H)t 1=2 H Q KB t : (38) 
On the other hand, it can be similarly seen that

Z KB t = C(H) Z t 0 s 1 2 H dZ s : (39) 
and the estimation given by ( 37) and ( 24) coincide up to a constant.

To compute the expression of the bias and of the mean square error and to prove the strong consistency of the estimator, one has the option, in this explicit linear situation, to compute the Laplace transform of the quantity R t 0 (Q KB s ) 2 d! H s . This is done for H > 1=2 in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF], Section 3.2, and the following properties are obtained: the estimator t is strongly consistent, that is, t ! almost surely when t ! 1;

the bias and the mean square error are given by

-If < 0, when t ! 1, then E( t ) v 2 t , E( t ) 2 v 2 t j j; (40) 
-If > 0, when t ! 1, then

E( t ) v 2 p sin H 3 2 e t p t (41) 
E( t ) 2 v 2 p sin H 5 2 e t p t: (42) 
It is interesting to realize that the rate of convergence of the bias and of the mean square error does not depends on H. In fact the only di¤erence between the classical case (see [START_REF] Liptser | Statistics of random processes II[END_REF]) and the fractional case is the presence of the constant p H in (40), (41), and (42). It is natural to expect the same results if H < 1 2 . This is true, as stated below, and proved in the Appendix in Section 7.4.

Proposition 3 If H < 1 2 , then (40), (41), and (42) hold.

Discretization

In this last section we present a discretization result which allows the implemention of an MLE for an fBm-driven stochastic di¤erential equation.

We …rst provide background information on discretely observed di¤usion processes in the classical situation when the driving noise is the standard Brownian motion.

Assume that dX t = b(X t ; ) + (X t ; )dW t where ; b are known functions, W is a standard Wiener process and is the unknown parameter. If continuous information is available, the parameter estimation by using maximum likelihood method is somewhat simpler; indeed, the maximum likelihood function can be obtained by means of the standard Girsanov theorem and there are results on the asymptotic behavior of the estimator (consistency, e¢ ciency etc...).

We refer to the monographs [START_REF] Basawa | Statistical Inference for Stochastic Processes[END_REF], [START_REF] Rao | Statistical Inference for Di¤ usion type processes[END_REF] or [START_REF] Yu | Statistical Inference for Ergodic Di¤ usion Processes[END_REF] for complete expositions of this topic.

"Real-world" data is, however, typically discretely sampled (for example stock prices collected once a day, or, at best, at every tick). Therefore, statistical inference for discretely observed di¤usion is of great interest for practical purposes and at the same time, it poses a challenging problem. Here the main obstacle is the fact that discrete-time transition functions are not known analytically and consequently the likelihood function is in general not tractable. In this situation there are alternative methods to treat the problem. Among these methods, we refer to numerical approximation to the likelihood function (see Aït-Sahalia [START_REF] Sahalia | Maximum likelihood estimation of discretely sampled di¤usions: a closed form approximation approach[END_REF], Poulsen [START_REF] Poulsen | Approximate maximum likelihood estimation of discretely observed di¤ usion processes[END_REF], Beskos et al.

[4]), martingale estimating functions (see Bibby and Sorensen [START_REF] Bibby | Martingale estimation functions for discretely observed di¤usion processes[END_REF] ), indirect statistical inference (see Gourieroux et al. [START_REF] Gourieroux | Indirect Inference[END_REF] ) or Bayesian approaches (see Elerian et al. [START_REF] Elerian | Likelihood inference for discretely observed nonlinear di¤usions[END_REF]). We refer to [START_REF] Sorensen | Parametric inference for di¤ usion processes observed at discreted points time: a survey[END_REF] for a survey of methods of estimations in the discrete case.

When the transition functions of the di¤usion X are known, and (x; ) = x with unknown and not depending on , then Dacunha-Castelle and Florens-Zmirou [START_REF] Dacunha-Castelle | Estimation of the coe¢cients of a di¤usion from discrete observations[END_REF] propose a maximum likelihood estimator which is strongly consistent for the pair ( ; ). They also gives a measure of the loss of information due to the discretization as a function depending on the interval between two observations.

A more particular situation is the case when is known (assume that = 1).

Then the maximum likelihood function, given by exp

R t 0 b(X s )dX s 2 2
R t 0 b(X s ) 2 ds , can been approximated using Riemann sums as

exp N 1 X i=0 b(X t i ) X t i+1 X t i 2 2 N 1 X i=0 b(X t i ) 2 (t i+1 t i ) ! :
As a consequence a the following maximum likelihood estimator can be obtained from the discrete observations of the process X at times t 0 ; : : : ; t N in a …xed interval [0; T ];with discrete mesh size decreasing to 0 as N ! 1 (see [START_REF] Breton | On continuous and discrete sampling for parameter estimation in di¤usion type processes[END_REF], including proof of convergence to the continuous MLE):

N;T = P N 1 i=0 b(X t i )(X t i+1 X t i ) P N 1 i=0 jb(X t i )j 2 (t i+1 t i ) : (43) 
In the fractional case, we are aware of no such results. We propose a …rst concrete solution to the problem. We choose to work with the formula (24) by replacing the stochastic integral in the numerator and the Riemann integral in the denominator by their corresponding approximate Riemann sums, using discrete integer time.

Speci…cally we de…ne for any integer n 1,

n := P n m=0 Q m (Z m+1 Z m ) P n m=0 jQ m j 2 : ( 44 
)
Our goal in this section is to prove that n is in fact a consistent estimator for . By our Theorems 2 and 3, it is of course su¢ cient to prove that lim n!1 n n = 0 almost surely. One could also consider the question of the discretization of T using a …ne time mesh for …xed T , and showing that this discretization converges almost surely to t ; by time-scaling such a goal is actually equivalent to our own.

It is crucial to note that in the fractional case the process Q given by [START_REF] Dacunha-Castelle | Estimation of the coe¢cients of a di¤usion from discrete observations[END_REF] depends continuously on X and therefore the discrete observation of X does not allow directly to obtain the discrete observation of Q. We explain how to remedy this issue: Q m appearing in (44) can be easily approximated if we know the values of X n ; n 1 since only a deterministic integral appears in the expression of (12); indeed, for H < 1 2 , the quantity

Q n = c(H)n H 1 2 n 1 X j=0 (n j) H 1 2 j 1 2 H b(X j ) (45) 
can be deduced from observations and it holds that

lim n (Q n Q n ) = 0 almost surely.
This last fact requires a proof, which is simpler than the proof of convergence of n n to 0, but still warrants care; we present the crucial estimates of this proof in the appendix, in Section 7.5.1.

Note moreover that calculation of n also relies on Z m , which is not observable; yet from formula [START_REF] Yu | Parameter Estimation for Stochastic Processes, Heldermann[END_REF], where Z m is expressed as a stochastic integral of a deterministic function against the increments of X, again, we may replace all the Z m 's by their Riemann sum; proving that these sums converge to the Z m 's follows from calculations which are easier than those presented in Section 7.5.1, because they only require discretizing the deterministic integrand. We summarize this discussion in the following precise statement, referring to Section 7.5.1 for indications of its proof.

Proposition 4 With Q n as in (45) and

Z n = P n 1 j=0 K ; 1 1 [0;n] ( ) (j) (X j+1 X j ),
then almost surely n n converges to 0, where n is given by ( 44) with Z and Q replaced by Z and Q.

Let hM i n denote the quadratic variation at time n of a square-integrable martingale M . We introduce the following two semimartingales:

A t := Z t 0 Q s dZ s ( 46 
)
B t := Z t 0 Q [s] dZ s (47) 
where [s] denotes the integer part of s. We clearly have

B n = P n 1 m=0 Q m (Z m+1 Z m ).
Thus using the fact that Z is a Brownian motion under P, we see that

hBi n = n 1 X m=0 jQ m j 2 (48) while hA Bi n = Z n 0 Q s Q [s] 2 ds = n 1 X m=0 Z m+1 m jQ s Q m j 2 ds: (49) 
Therefore from de…nitions ( 13) and (44) we immediately get the expressions

n = A n hAi n and n = B n hBi n :
The following proposition de…nes a strategy for proving that n -and, by the previous proposition, n -is a consistent estimator for . See the Appendix, Section and for all k > 1, E

h jhA Bi n j k i n k E h jhBi n j k i ,
then almost surely lim n!1 n = .

This proposition allows us to prove the following, under the condition (C') below, which is stronger than (C), but still allows for non-linear examples.

Theorem 4 Assume b 0 is bounded and the following condition holds:

(C' ) There exist positive constants t 0 and K b , both depending only on H and the function b, such that for all t t 0 and all " > 0, we have P jQ t (!)j = p t < " "K b , where under P, ! has the law of fractional Brownian motion with parameter H.

Then for all H 2 (0; 1=2), almost surely lim n!1 n = where the discretization n of the maximum likelihood estimator n is de…ned in (44). If H 2 (1=2; 1), the same conclusion holds if we assume in addition that b 00 is bounded.

By Proposition 4, the above statements hold with replaced by .

Remark 5 Condition (C') holds as soon as the random variable Q t (!) = p t has a density that is bounded uniformly t. When H < 1=2, this is a statement about the random variables

R 1 0 H 1 (ds) b t H !s t H .
In all cases, Condition (C') holds for the class of non-linear functions de…ned in Lemma 3.

Remark 6

We conjecture that Theorem (4) holds if we replace (C') by (C), in view for example of the fact that the conditions of Proposition 5 hold for any < 2H.

Step 1 in the theorem's proof is the obstacle to us establishing this.

Appendix

7.1 Proof of Lemma 3

De…ne V t := t H Z 1 0 1 H (dr) b t H !r D = Q t p t ;
Our assumption implies four di¤erent scenarios in terms of the constant sign of b on R + or R . We will limit this proof to the situation where b (x) has the same sign as

x. The other three cases are either similar or easier. Thus we have b (x) = cx+xh (x).

Also de…ne V = R 1 0 1 H (dr) c! r and E t = V t V so that V t = E t + V . Now E t = Z 1 0 1 H (dr) b t H !r t H c! r = t H Z 1 0 1 H (dr) b t H !r ct H !r = Z 1 0 1 H (dr) !r h t H !r :
For P-almost every !, the function ! is continuous, and thus bounded on [0; 1].

Therefore, P-almost surely, uniformly for every r 2 [0; 1], lim t!1 h t H !r = 0.

Thus the limit is preserved after integration against 1 H , which means that P-almost surely, lim t!1 E t = 0. Now …x " > 0. There exists t 0 (!) …nite P-almost surely such that for any t > t 0 (!), jE t j ". Thus if jV t j < ", we must have jV j = jV + E t E t j = jV t E t j jV t j + jE t j 2". This proves that P-almost surely,

lim sup t!1
fjV t j < "g fjV j < 2"g and therefore,

lim sup t!1 P [jV t j < "] P lim sup t!1 fjV t j < "g P [jV j < 2"] :
Now we invoke the fact that V is precisely the random variable studied in the …rst, linear, example, so that P [jV j < 2"] 2K" for some constant K depending only on c and H, …nishing the proof of the lemma under Condition [START_REF] Malliavin | Stochastic calculus of variations and hypoelliptic operators[END_REF].

The proof of the last statement of the lemma is identical to the above development, the constant C only adding a term to E t which converges to 0 deterministically.

Proof of relation (30)

Using the trivial fact that 1 ( 1;a] (x) exp ( x) exp ( a), and Hölder's inequality, we can write

P [I t (X) < t ] = Ẽ 1 It(!)< t ~ t (!) exp ( t ) Ẽ h exp I t (!) + Lt 2 1 I t (!) i = exp ( t ) Ẽ h exp ( ) I t (!) + Lt + 2 1 I t (!) i exp ( t ) Ẽ [exp ( p ( ) I t (!))] 1=p Ẽ h exp q Lt q + 2 1 I t (!) i 1=q : (50) 
where 0 < < are arbitrary …xed positive constants. We may now choose the conjugate Hölder exponents p 1 +q 1 = 1. It will be convenient to allow p > 1 to be as close to 1 as possible, hence q will be very large. We also want

q 2 =2 = q + 2 1 .
This forces us to take = 2 1 (q 1), which will also be very large. We then take to be a …xed value > . The choice on q means that the last term in (50) above is equal to 1. Hence, letting y := p ( )

we have P [I t (X) < t ] exp ( t ) Ẽ [exp ( yI t (!))] 1=p : (51) 
To evaluate the above expectation, since exp ( yI t (!)) is a random variable in the interval (0; 1), we …rst write

Ẽ [exp ( yI t (!))] = Z 1 0 P [exp ( yI t ) > x] dx = Z 1 0 e z P I t < z y dz:
Now let t = t n = n k for some …xed k 1, and for all n 2 N. We also introduce a positive sequence b n whose de…nition will be motivated below. We write

I tn = Z tn 0 jQ s (!)j 2 ds Z tn tn bn jQ s (!)j 2 ds b n jQ tn (!)j 2 Z tn tn bn jQ tn (!) Q s (!)j jQ tn (!) + Q s (!)j ds b n jQ tn (!)j 2 sup s2[tn bn;tn] jQ tn (!) Q s (!)j jQ tn (!) + Q s (!)j ! : b n jQ tn (!)j 2 2 sup s2[0;tn] jQ s (!)j sup s2[tn bn;tn] jQ tn (!) Q s (!)j ! : (52) 
We will need the result of the next lemma in order to control the variations of Q on the interval [t n b n ; t n ]. It can be considered as a consequence of the fact that V t := t 1=2 Q t is an asymptotically sub-stationary process in the second Gaussian chaos, although the proof we present below only requires the use of moments of V via the Kolmogorov continuity lemma, because of the fact that we are working in the Hölder scale of fractional Brownian regularity. Recall the statement of Lemma 4. 

[Lemma 4] Let V t (!) := t 1=2 Q t (!). If b n > 0

:

The proof of this lemma will be given further below. We now use it as follows.

Let x = z=(2y): Let

Z n = 2 sup s2[0;tn] jQ s (!)j sup s2[tn bn;tn] jQ tn (!) Q s (!)j =t n :
We also introduce another positive sequence a n . From (52), we have

P I tn < z y P jQ tn (!)j 2 =t n Z n < x t n b n = P jQ tn (!)j 2 =t n Z n < x b n t n ; Z n a n + P jQ tn (!)j 2 =t n Z n < x b n t n ; Z n < a n P [Z n a n ] + P jQ tn (!)j 2 =t n < x b n t n + a n : (53) 
By condition (C), the last term in line (53) above can be bounded as

P jQ tn (!)j 2 =t n < x b n t n + a n K b t H n r x b n t n + a n : (54) 
We now show that the …rst term in line (54) is bounded as follows, for any value M 1, for some constant C M;H;b depending only on M , H, and the function b:

P [Z n a n ] C 00 M;H;b b n t n H 1 a n ! M : (55) 
We start o¤ by writing, 

Z n =
jV t (!) V s (!)j (56) 
where we used the bound s t n b n > t n =2, which holds for n large since b n t n .

To control the term involving Q s (!), note that by [START_REF] Kukush | Statistical inference with fractional Brownian motion[END_REF], we get

sup s2[0;tn] jQ s (!)j C b sup s2[0;tn] p s Z 1 0 1 H (dr) (1 + j! sr j) s H dr C (b; H) sup s2[0;tn] 1 + sup u2[0;s] j! u j ! s 1=2 H C (b; H) t 1=2 H n 1 + sup s2[0;tn] j! s j ! D = t 1=2 n C (b; H) t H n + sup u2[0;1] j! u j ! :
Here the last equality is in distribution, using scaling. Now it is known that the supremum of fBm on [0; 1] is a subgaussian random variable with mean c H and scale H , two constants depending only on H; this fact can be proven using the standard theory of Gaussian supremum estimates (see e.g. [START_REF] Fernique | Régularité des trajectoires de fonctions aléatoires gaussiennes[END_REF]). This means that it has moments of all orders, which depend only on H.

We now apply this result and Lemma 4 to (56), to obtain 

jV t (!) V s (!)j 2M # Ẽ1=2 " sup s2[0;tn] jQ s (!)j 2M # a n p t n =4 M C 0 M;H;b b n t n HM (t n ) M=2 Ẽ1=2 2 4 1 + sup s2[0;1] j! s j ! 2M 3 5 a n p t n =4 M C 00 M;H;b b n t n H 1 a n ! M ;
from which our claim (55) follows. We now choose positive numbers j; k; `and de…ne

t n = n k , b n = n j , a n = n `.
Thus using (53), (54), and (55),

P I tn < z y K b t H 1=2 n b 1=2 n p x + a n b n t n + C M;H;b b n t n H 1 a n ! M : (57) 
We are ready to show how to choose the parameters j; k; `; M . First we force a n b n t n = 1, so that `= k j. Next we impose conditions to make summable terms in n appear on the right-hand side of (57):

To make the second term on the right-hand side of (57) smaller than n 2 , since we may choose M as large as we want, we simply need to choose the parameters j and k so that the power of n in

(b n =t n ) H =a n = n (1 H)k (1+H)j
is negative, i.e.:

k < j 1 + H 1 H :
For the …rst term on the right-hand side of (57), which is proportional to

t H 1=2 n b 1=2 n p x + 1 = n k(1=2 H)+j=2 p
x + 1, if we want to make a term n 2 appear, it is su¢ cient to require k > j + 4 1 2 H :

To ensure that the above two restrictions on k are compatible, it is su¢ cient to require

j + 4 1 2 H < j 1 + H 1 H () j 1 + H 1 H 1 1 2 H > 4 1 2 H :
We can comply with this restriction by making j larger than where the constant C (p; H; b) can be chosen as depending only on p; H, and b.

Proof of Lemma 4

To apply the Kolmogorov continuity lemma (see [35, 

Ẽ h jV t V s j M i = Ẽ " Z 1 0 (dr) b (! tr ) t H b (! sr ) s H M # (c H ) M Z 1 0 (dr) Ẽ " b (! tr ) t H b (! sr ) s H M # (c H ) M Z 1 0 (dr) ( t HM Ẽ h jb (! tr ) b (! sr )j M i + jt sj s 1+H M Ẽ h jb (! sr )j M
Ẽ h jV t V s j M i C M;H;b Z 1 0 (dr) ( t HM b M 0 jt sj M H + jt sj s 1+H M s M H b M 0 ) = C M;H;b Z 1 0 (dr) 
jU u U v j ju vj M # KC M;H;b (b n =t n ) M H :
Since 1 ju vj , the statement of the Lemma follows.

Proof of the Theorem 3

Recall from the proof of Proposition 1 that we can write

Q t = c(H)t 1 2 H b(X t ) + c 0 (H) Z t 0 t H (dr) (b(X t ) b(X r )) : (58) 
We note that in this case the expression t H (dr) does not determine a measure, but we still use this notation to simplify the presentation; the Lipschitz assumption on b and the Hölder property of X do ensure the existence of the integral.

One can actually follow the proof in the case H < 1 2 line by line. All we have to do here is to prove an equivalent of Lemma 4 on the variations of Q, this being the only point where the form of Q, which di¤ers depending on whether H is bigger or less than 1=2, is used. We will illustrate how the second summand of Q in (58) (which is the most di¢ cult to handle) can be treated.

Denoting by

Q 0 t = R t 0 t H (dr) (b(X t ) b(X r )), it holds Q 0 t t 1 2 = t 1 2 Z t 0 t H (dr) (b(X t ) b(X r )) D = Z 1 0 1 H (dr) b(t H !1 ) b(t H !r ) t H :
where again

D = denotes equality in distribution. Now, if V 0 t := t 1 2 Q 0 t , we have V 0 t V 0 s = Z 1 0 1 H (dr)t H b(t H !1 ) b(t H !r ) b(s H !1 ) + b(s H !r ) + (t H s H ) Z 1 0 1 H (dr) b(s H !1 ) b(s H !r ) := J 1 + J 2 ; it holds that Ẽ jJ 2 j M jt H s H j M b M 0 s HM Ẽ Z 1 0 1 H (dr) j! r !1 j M C M;H;b jt sj s 1+H M s HM
and it has been already proved that this is bounded by C M;H;b (jt sj=t n ) M H . For the term denoted by J 1 one can obtain the same bound simply by using the Lipschitz property of b: for every a; b, using the mean-value theorem, for points a 2 [s H a; t H a]

and b 2 [s H b; t H b], we obtain b(t H a) b(t H b) b(s H a) + b(s H b) = b 0 ( a ) t H s H a + b 0 ( b ) t H s H b b 0 1 jt H s H j (jaj + jbj) ;
Then, obviously,

Q t = Z t 0 A(t; v)dZ v :
On the other hand, it has been proved in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF] (see relations (3.4) and (3.5) therein) that for H > 1 2 ,

Q KB t = Z t 0 A KB (t; v)dZ KB v with A KB (t; s) = c(H)(t 2H 1 + s 2H 1 ):
Using the relations between Q and Q KB and between Z and Z KB (see Remark 4), it follows that, for every H > 1 2 , and s < t, A(s; t) = c(H)

" s t 1 2 H + t s 1 2 H # : (59) 
We show that the above relation ( 59) is true for H < 1 2 as well. We use an argument inspired by [START_REF] Decreusefond | Stochastic analysis of the fractional Brownian motion[END_REF], proof of Theorem 3.1. We observe that the functions H 2 (0; 1) ! A(s; t) and H 2 (0; 1) ! c(H)

" s t 1 2 H + t s 1 2 H
# are analytic with respect to H and coincide on (1=2; 1). Moreover, both are well-de…ned for every H 2 (0; 1) (in fact it follows from [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF] that A is well-de…ned for H > 1 2 and it is more regular for H As a consequence, (59) holds for every H and this shows that

Z t 0 Q s dZ s = Z t 0 Q KB s dZ KB s = c(H) Z KB t Z t 0 r 2H 1 dZ KB r t
and all the calculations contained in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF], Sections 3.2, 4 and 5 hold for every H 2 (0; 1). For conciseness, we only indicate how to establish one of the crucial estimates for this proposition, that the quantity

S n := P n m=0 Q m Q m (Z m+1 Z m )
P n m=0 jQ m j 2 converges to 0 almost surely, and then only for H < 1=2. Since we want to show that S n tends to 0 almost surely, and P and P share the same null sets, we may assume that Z is a Brownian motion, and X is a fractional Brownian motion adapted to Z's …ltration.

De…ne the quantity

R n = n 1 X j=0 (n j) H 1=2 j 1=2 H Z j+1 j (b (X j ) b (X s )) ds:
This is related to S n via the fact that m H 1=2 jR m j = Q m Q m . We claim that for any " > 0, almost surely, for large m; that is m m 0 , jR m j r 0 + m H+1+" c H kb 0 k where r 0 is a …xed random variable. This is su¢ cient to conclude that lim n S n = 0. Indeed, we will see below (Section 7.5. where the last estimate is in virtue of the Riemann sums for R 1 0 (1 x) H 1=2 x 1=2+" dx.

Proof of Proposition 5

By our Theorems 2 and 3, it is of course su¢ cient to prove that lim n!1 n n = 0: converges to 0. Let k and be …xed positive values. For the …rst term in (62), using our hypotheses, by Chebyshev's and the Burkholder-Davis-Gundy inequalities, and from the expression of the semimartingales Z as Z t = R t 0 Q s dW s + R t 0 Q s ds, we have

P h jA n B n j k > n k E h hBi k n ii n k E 1 h hBi k n i E h jA n B n j k i c( )2 k n k n k :
Thus picking a positive value < and choosing k large enough, by the Borell-Cantelli lemma, almost surely, for n large enough

jA n B n j n E h hBi k n i 1=k 1 K n hBi n ;
which …nishes the proof of the proposition. In the entire proof below, n 0 (!) will denote a random, almost surely …nite, integer;

it may change from line to line, as it is introduced via various di¤erent applications of the Borel-Cantelli lemma, but one only needs to take the supremum of all such integers to have correct statements throughout.

Step 1. Bounding jQj 2 below. Using only Condition (C'), we immediately get, for any 2 (0; 1=2 H), for any large t,

P h jQ t j < t 1=2 i K b t :
To be able to apply the Borel-Cantelli lemma, we now let t = n A where n is an integer and A is a constant exceeding 1 . We then get, almost surely, for any n > n 0 (!),

jQ n A j > n A(1=2 ) : (63) 
We also bound other Q m 0 's that are in close proximity to Q Certainly, if m is of the form n A for large enough n, by choosing small enough, we obtain that the lower bound m 1=2 on jQ m j 2 obtained in (63) is dominant compared to m 1=2 " for " close to H (1 4 ). Hence we get jQ m 0 j 2 > jQ m j 2 1 m 1=2 " jQ m j ! 2 jQ m j 2 =2: (64)

Step 2. Bounding hBi from below. For n given, let n 1 be the largest integer such that n A 1 n < (n 1 + 1) A : Also assume n is large enough so that n A 1 n 0 (!).

Thus, applying (64 We can now invoke (63) to say that almost surely, for n > n 0 (!) A hBi n (n 1 ) A(2 2 ) n A 1 4 = 2 1 (n 1 ) A(2+2 ) :

) with m = n A 1 , hBi m n A 1 X m=0 jQ m j 2 Q n A 1 2 + X m 0 =n A 1 (n A 1 ) 4 jQ m 0 j 2 Q n A 1 2 + 2 1 X m 0 =n A 1 (n A 1 ) 4 Q n A 1 2 Q n A 1 2 n A
Given that we may write n A 1 1 + n 1 1 > n, so that n A 1 > n=2, we can …nally conclude that hBi n 1 2 1+2A(1+ ) n 2+2 :

(65)

Step 3. Bounding hA Bi's terms from above. We may generically bound the general term of hA Bi n : The random variable Y m = m H R 1 0 j! mr j dr is equal in distribution to a sub-Gaussian random variable: let y H be its mean, which only depends on H. Therefore, there exists a number H which also only depends on H such that for each m and 

1 2

 2 under the hypothesis b(x) = b 1 (x) + b 2 (x), b 1 satisfying the above conditions and b 2 being a bounded nondecreasing left (or right) continuous function.

R 1 0 1 HProposition 2 Remark 2

 122 (dr) b (! r ) (whose distribution depends only on b and H). Generally speaking, if this random variable has a bounded density, the strongest version of condition (C), i.e. with = 0, will follow. In the linear case, of course, the factors t H disappear from expression (27), leaving a random variable which is indeed known to have has a bounded density, uniformly in t, by the arcsine law. The presence of the factor t H in Condition (C) gives even more ‡exibility, however, since in particular it allows a bound on the density of Q t = p t to be proportional to t H . Leaving aside these vague considerations, we now give, in Proposition 2, a simple su¢ cient condition on b which implies condition (C). The proof of this condition uses the tools of the Malliavin calculus; as such, it requires some extra regularity on b. We also give a class of non-linear examples of b's satisfying (C) (Condition (29) in Lemma 3) which are more restricted in their global behavior than in Proposition 2, but do not require any sort of local regularity for b. Assume H < 1=2. Assume that b 0 is bounded and that b 00 satis…es jb 00 (x)j b 1 = 1 + jxj for some 2 (H= (1 H) ; 1). Assume moreover that jb 0 j is bounded below by a positive constant b 0 . Then, letting = 1 , Condition (C) holds. The condition < 1= (1 + H) from Condition (C) does translates as > H= (1 H), which is consistent with < 1 because H < 1=2:

  x!1 h (x) = 0. Then Condition (C) is satis…ed with = 0. Condition (C) also holds for any b of the above form to which a constant C is added: j(b (x) C) =xj = c + h (x) and lim x!1 h (x) = 0. Note that this condition is less restrictive than saying b is asymptotically a¢ ne, since it covers the family b (x) = C + cx + (jxj ^1) for any 2 (0; 1). In some sense, Condition (C) with = 0 appears to be morally equivalent to this class of functions.

4. 2 1 2Theorem 3

 213 The case H > Due to the fact that the function Q is less regular in this case, we should not expect that the proof of the following Theorem be a consequence of the proof in the case H < 1=2: Nevertheless, it deviates from the former proof very little. On the other hand, we cannot rely on Proposition 2 to …nd a convenient su¢ cient condition for Condition (C); instead one can look to the non-linear class of examples in Lemma 3, which satisfy the strong version ( = 0) of Condition (C) for all H 2 (0; 1): The next result's proof is in the Appendix. Assume that H > 1 2 and b satis…es Condition (C) with = 0 (e.g. b

7. 5 . 2 ,

 52 for its proof.Proposition 5 Let H 2 (0; 1). If there exists a constant > 0 such that n hA Bi n = hBi n is bounded almost surely for n large enough, for all k 1, for some constant K > 0, almost surely, for large n, hBi k n

:

  Now we use the fact that b is Lipshitz, so for some constant b 0 , jb (x) b (y)j b 0 jx yj and jb (x)j b 0 (1 + jxj); and we use the Gaussian law of !. For some constant C M;H;b which may change from line to line,

1 2 )

 2 . To conclude (59) for every H 2 (0; 1), we invoke the fact that if f; g : (a; b) ! R are two analytic functions and the set fx 2 (a; b); f (x) = g(x)g has an accumulation point in (a; b), then f = g.

7. 5 4 7. 5 . 1

 5451 Proof of Theorem Proof of Proposition 4

jX j X s j = r 0 + n 2H b 0 n 1 X j=m 0 ( 1 1 X j=m 0 ( 1

 101101 j=n) H 1=2 (j=n) 1=2 H sup s2[j;j+1] jX j X s j r 0 + n 2H n H+" n j=n) H 1=2 (j=n) 1=2 H (j=n) H+" = r 0 + c H n H+"+1 (1 + O (1=n)) ;

7. 5 . 3

 53 Proof of Theorem 4 (Steps 1 through 4)

  n A . For any …xed integer m, consider the set I m of integers m 0 in the interval [ m m 4 ; m], where is also assumed to be less than 1=4. Then by Lemma 4 and Chebyshev's inequality, for any integer k, P sup m 0 2I m jZ m Z m 0 j > m " m k" m Hk(1 4 ) : Thus for k large enough and 0 < " < H (1 4 ), by Borell-Cantelli's lemma, for m > m 0 (!), for any integer m 0 2 [ m m 4 ; m], jZ m 0 j > jZ m j m " ; from which we conclude, via the formula Z m = Q m = p m, that jQ m 0 j > jQ m j m 1=2 " :

jZ m Z s j 2 > m 2 # 1 m 1 0 1 0j!

 2111 jZ s Z m j 2 ds + 2 jZ m j 2 jZ s Z m j 2 ds + 2 jZ m j 2 =m:(66)We begin by dealing with the …rst term in (66): by Lemma 4 for any M > 0, M (H ) :Hence for < H, for M large enough, by the Borel-Cantelli lemma, for m > m 0 (!),Z m+1 m jZ m Z s j 2 ds sup s2[m;m+1] jZ m Z s j 2 m 2 :(67)For the second term in (66), which involves Z m , we note that the hypothesis b 0 bounded implies that for some constant c b , jb (x)j c b (1 + jxj) : Thus by[START_REF] Kukush | Statistical inference with fractional Brownian motion[END_REF],jZ m j = Z (dr) b (! rm ) m H c b;H + c b m HZ mr j dr:

x > 0 ,P 2 H: 2 ;m + m 1 2 2m 1 2 : 1 m=0 R m+1 m jQ s Q m j 2 jQ s Q m j 2 ds + 2n 2 2 :

 0222122 [jY m y H j > x] 2 exp (x y H ) 2 For x = m , this translates as the existence of a constant y b;H depending only on H and b such that P jZ m j > b;H + so that there exists a constant c b;H depending only on b and H such that by the Borel-Cantelli lemma, almost surely, for m > m 0 (!), jZ m j 2 c b;H log m: (68) Plugging (67) and (68) into (66), we conclude that for any < H, almost surely, for m > m 0 (!), Z m+1 m jQ s Q m j 2 ds c b;H log m Step 4. Conclusion. From the formula hA Bi n = P n ds, using the last estimate of the previous step, we get From the …nal estimate (65) of Step 2, we may now write almost surely hA Bi n hBi nP m 0 (!) m=0 R m+1 m jQ s Q m j 2 ds n 2+2 + 1 n 2( + ) :Hence the …rst statement of Proposition 5 is established for any < 2H.

  1, p close to 1, where the constant C(p; H; b) depends only on p; H; and b. The proof of (30) is very technical and will be given in the Appendix, Section 7.2. It uses the fact, proved therein, that the supremum sup s2[0;t] jQ s j behaves like a sub-Gaussian random variable with scale p t, meaning that after dividing by p t, the tail of its distribution is no heavier than a standard normal's; it is also based on the following crucial lemma, whose proof is likewise postponed to Section 7.2; this lemma will be used in other parts of this paper as well. The notation b n t n means lim n!1 b n =t n = 0. Lemma 4 Let V t := t 1=2 Q t . The process V is P-almost surely continuous. Moreover, if b n > 0 and b n t n for large n, then for any M > 2, there exists a constant

	C M;H such that	
	Ẽ "	sup

s;t2[tn bn;tn]

  Theorem I.2.1]), we must evaluate the moments of the increments of V : let M > 2 and s < t with s; t 2 [t n b n ; t n ]; abbreviate := 1 H ; let c H denote the mass of , or other constants depending only on H. We have

  Since we assume that b n t n , we can certainly use the fact that t n > 2b n , so that 2s 2(t n b n ) > t n t, and therefore (t s) =t (t s) =s 2 (t s) =t n forIf we now de…ne U on the interval [0; 1] by U u = V tn bn+ubn , we see that U satis…esẼ h jU u U v j M i C M;H;b (b n =t n ) M H ju vj HM :Temporarily normalizing U by the constant C M;H;b (b n =t n ) M H , and applying[35, 

						(	t s t	M H	+	t s s
	n large enough. Hence we have proved that			
	Ẽ h	jV t V s j M	i	C M;H;b	Z 1 0	(dr)	t s t n	M H	= C M;H;b	jt sj M H t M H
	Theorem I.2.1], we …nally get that the unnormalized U has a continuous version,
	and for any < H 1=M and a universal constant K
		Ẽ "	sup						
			u;v2[0;1]						

M ) : n :

  On the other hand, the IID terms fZ m+1 Z m g m2N are standard normal, so that one trivially proves that almost surely for n m 0 (abusively using the same m 0 as above), up to some non-random universal constant c, jZ m+1 Z m j c p log m. It follows that the portion of S n for m m 0 is bounded above by n 2 P n m=0 m H 1=2 r 0 + m H+1+" c H kb 0 k p log m, which is itself bounded above by (r 0 + c H kb 0 k) n 3=2+" which obviously tends to 0 as n ! 1 as soon as" < 1=2.Now let us prove our claim on R m . It is a known fact, which is obtained using standard tools from Gaussian analysis, or simply the Kolmogorov lemma, that for

	3, Step 2, inequality (65)) that almost jX t X s j M # j HM : Indeed, this is easier to prove than Lemma 4. The usual application of the Borel-surely, for large n, P n m=0 jQ m j 2 E " sup s;t2[j;j+1] Cantelli lemma after Chebyshev's inequality for an M large enough, implies that for any > H, almost surely, for large j, sup s;t2[j;j+1] jX t X s j j . Consequently for any " > 0, jR m j 2 b 0 m 0 X j=0 (n j) H 1=2 j 1=2 H Z j+1 j jX j X s j ds + b 0 n 1 X n any M 1 j=m 0

2 

. Then sum of all terms in the numerator of S n for m m 0 , after having been divided by S n 's denominator, tend to 0 when n ! 1.

(n j) H 1=2 j 1=2 H sup s2[j;j+1]
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Proof of Theorem 4: strategy and outline.

First note that since the probability measures P and P are equivalent (see Theorem 1), almost sure statements under one measure are equivalent to statements about the same stochastic processes under the other measure, and therefore we may prove the statements in the theorem by assuming that the process Z in the de…nitions (46) and ( 47) is a standard Brownian motion, since such is its law under P.

Furthermore, for the same reason, we can assume that, in these same de…nitions, Q is given by formula [START_REF] Dacunha-Castelle | Estimation of the coe¢cients of a di¤usion from discrete observations[END_REF] where X is replaced by ! whose law is that of standard fBm.

We will use speci…cally, instead of ( 12), the explicit formula [START_REF] Kukush | Statistical inference with fractional Brownian motion[END_REF] when H < 1=2:

For H > 1=2 the formula (17) must be used instead, which shows the need for a control of b's second derivative. For the sake of conciseness, we restrict our proofs to the case H < 1=2. The result of the theorem is establised as soon as one can verify the hypotheses of Proposition 5. Here we present only the proof of the …rst of the three hypotheses. The other two are proved using similar or simpler techniques.

To achieve our goal in this proof, it is thus su¢ cient to prove that almost surely, for large n, hBi n n 1 while hA Bi n n 2 where the values 1 and 2 are non random and 1 > 2 . We establish these estimates in the appendix. Summarizing, we …rst prove that for appropriately chosen constants A and , for all integers m 0 in the interval [n A n 4 A ; n A ], almost surely for large n, jQ m 0 j exceeds n A(1=2 ) =2 and thus

Proof of Proposition 3

To avoid tedious calculations with fractional integrals and derivatives, we will take advantage of the calculations performed in [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF] when H > 1 2 ; nevertheless we believe that a direct proof is also possible. Actually the only moment when the authors of [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type processes[END_REF] use the fact that H is bigger than 1 2 is the computation of the process Q. By relations ( 21) and ( 23) we can write

Note that from the formulas presented in Section 2, we have

To unify the notation, we write

and we just observe that the constant c(H) above is analytic with respect to H. Let us consider, for v t a function A(v; t) such that

In preparation for this, we …rst note that by classical properties for quadratic variations, and using our hypothesis, for large enough n, we have

Now we prove that (60) implies almost surely,

Indeed let x n = hAi n = hBi n . Then we can write

where c is a possibly random almost surely …nite constant. Let " > 0 be given;

it is elementary to check that the inequality (x 1) 2 2" (x + 1) is equivalent to jx (1 + ")j p 4" + " 2 . For us this implies immediately jx n 1j 6cn , proving the claim (61). 

Now we have

:

By Theorems 2 and 3, A n = hAi n converges to the …nite constant . By the limit (61), the last term in the above expression converges to 2, so that the entire expression